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9 Abstract: This paper describes a proposed fractional filter-based multi-scale underwater and hazy
10 image enhancement algorithm. The proposed system combines a modified global contrast operator
11 with fractional order-based multi-scale filters used to generate several images, which are fused
12 based on entropy and standard deviation. The multi-scale-global enhancement technique enables
13 fully adaptive and controlled colour correction and contrast enhancement without over exposure of
14 highlights when processing hazy and underwater images. This in addition to
15 illumination/reflectance estimation coupled with global and local contrast enhancement. The
16 proposed algorithm is also compared with the most recent available state-of-the-art multi-scale
17 fusion de-hazing algorithm. Experimental comparisons indicate that the proposed approach yields
18 better edge and contrast enhancement results without halo effect, colour degradation and is faster
19 and more adaptive than all other algorithms from the literature.
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23

24 1. Introduction

25 Hazy and underwater images share similar characteristics in terms of reduced visibility and low
26 contrast due to the nature of image formation [1] [2]. Several single image-based enhancement and
27  restoration models and algorithms have been proposed to solve this problem [1] [2]. However, they
28  work with varying degrees of success at the cost of increased structural and computational
29  complexity. Consequently, there are relatively few digital hardware realizations and reduced real-
30 time prospects for such schemes due to high computational cost.

31 In this work we propose a fractional order-based algorithm for enhancement of hazy and
32 underwater images. The algorithm utilizes an improved global contrast operator, which performs
33 colour correction while a fractional order, multiscale spatial filter-based scheme performs localized
34  enhancement. In the filter kernel is implemented using fractional calculus and combined with global
35  contrast operators for further enhancement. Furthermore, the scheme is incorporated into a partial
36  differential equation-based flow to further improve results and control over the enhancement
37  processes. We then compare results with other algorithms from the literature and show that the
38  proposed system is effective with the fastest execution time.

39 The paper is outlined as follows; the second section provides the background, motivation and
40  key contributions of the proposed system. Section three presents the proposed algorithms for both
41  underwater and hazy image enhancement in addition to solutions to problems and modifications.
42 Section four presents and compares the results (obtained using the proposed system) to other
43 algorithms from the literature. The fifth section explicitly compares the proposed approach against a
44 recent algorithm from the literature, further strengthening the justification of the proposed scheme.
45  The final section presents the conclusion.

46
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47 2. Materials and Methods
48 2.1 Underwater image processing algorithms
49 Underwater image processing algorithms can be classified as either restoration, enhancement or

50  colour correction- and illumination normalization-based approaches [2] and range from medium to
51  high computational and structural complexity. The restoration-based algorithms incorporate de-
52 blurring and de-hazing processes using either Weiner [3] deconvolution or dark channel prior (DCP)-
53 based techniques respectively [2]. Examples include algorithms by Galdran et al [4], Li et al [5], Li
54 and Guo [6], Zhao et al [7], Chiang and Chen [8], Wen et al [9], Serikawa and Lu [10], Carlevaris-
55  Bianco et al [11], Chiang et al [12], etc. Conversely, the enhancement-based algorithms do not employ
56  any models derived from physical phenomena or prior image information [2]. They utilize
57  statistical/histogram-based or logarithmic contrast enhancement/stretching and colour correction
58  techniques in their formulation. Examples include works by Igbal et al [13], Ghani and Isa [14], Fu et
59 al [15], Gouinaud et al [16], Bazeille et al [17], Chambah et al [18], Torres-Mendez and Dudek [19],
60  Ahlen et al [20] [21], Petit et al [22], Bianco et al [23], Prabhakar et al [24], Lu et al [25] and Li et al [5].
61  Recently, entropy and gradient optimized underwater image processing algorithms based on partial
62 differential equations were developed [26] [27] and yielded effective and automated enhancement
63  surpassing results from previous algorithms.

64 The illumination normalization-based algorithms attempt to resolve uneven lighting issues in
65  the acquired underwater images scenes. The algorithms in this class include works by Prabhakar et
66  al [24], Garcia et al [28], Rzhanov et al [29], Singh et al [30] and Fu et al [15].

67 2.2 Hazy image processing algorithms

68 Hazy image processing also deals with visibility restoration of image scenes degraded by
69  weather conditions and can be multi- or single-image based solutions [31]. Furthermore, hazy image
70 processing algorithms can also be classified as either restoration or enhancement-based schemes. In
71  the restoration-based hazy image processing, the de-hazing process is based on the hazy image
72 formation model [31]. The objective is therefore to obtain the de-hazed image from the input hazy
73 image. The algorithms in this class include the popular DCP method by He et al [32], which has been
74  adopted and modified in various forms and a review of several DCP-based methods can be found in
75 1]

76 Other schemes include works based on segmentation [33] [34] [35], fusion [36] [37], geometry
77 [38], Weighted Least Squares [39], variational [40] [41] [37] [42] and regularization approaches [34]
78  using sparse priors [43] and other boundary constraints [44], biological retina-based model [45] and
79  multi-scale convolutional neural networks [46]. The enhancement-based hazy image processing
80  method is based on directly obtaining the by-product of radiance scene recovery through visibility
81  restoration by contrast enhancement/maximization. The algorithms in this category utilize contrast
82  limited adaptive histogram equalization (CLAHE), histogram specification (HS) [47] and Retinex [48]
83  [49] [50]. Additionally, some of these algorithms combine dark channel priors and transmission map
84  extraction with contrast enhancement for refinement. However, consistently good results are not
85  guaranteed as some images will depict colour fading/distortion and darkening of regions in addition
86  to over-enhancement of sky/homogeneous regions. Thus some threshold and segmentation-based
87 algorithms [33] [34] [35] [51] have been developed to solve the peculiar problems of these algorithms.
88  Furthermore, recently developed algorithms using partial differential equations (PDEs) and gradient
89  metric-based optimization were developed [52] [53] to avoid the usage of DCP-based stages and
90  multiple (and manual adjustment of) parameters. Recently, an Artificial Multiple-Exposure Image
91  Fusion (AMEF) de-hazing algorithm was proposed by Galdran [54], which represents the current
92  state-of-the-art.

93 Physical methods depend on prior image information obtained by capturing the image scenes
94 at different times under varying conditions using physical hardware/optical equipment such as
95  cameras and lighting rigs [2]. They may also incorporate multi-image processing schemes for either
96  hazy or underwater images. However, consistently good results are not assured due to the
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97  unpredictable nature of weather and aquatic medium conditions. Also the cost of such hardware

98  imaging systems is prohibitive and are usually not universally applicable. Such schemes are fully

99  listed and described in work by Li et al [5]. Single-image-based software implementations offer the
100  best outcome when factors such as cost, time, replicability and convenience are considered since they
101  do not necessarily require prior knowledge of the environment or image acquisition process for
102 operation [2] [5]. Thus, the scope of this work is limited to single-image-based enhancement of both
103 hazy and underwater images.
104 The primary motivation for this work is to develop fast, practical and effective algorithms for
105  underwater and hazy image enhancement that are amenable to hardware implementation for real-
106  time operation.

107 2.3 Key contributions and features of proposed scheme

108 The key contributions and features of this work include:

109 ¢  Amodified global contrast enhancement and a multi-scale illumination/reflectance model-based
110 algorithm using fractional order calculus-based kernels.

111 e Relatively low- complexity underwater image enhancement algorithm utilizing colour
112 correction and contrast operators.

113 e  Frequency-based approach to image de-hazing and underwater image enhancement using
114 successive, simultaneous high frequency component augmentation and low frequency
115 component reduction.

116 o Feasible hazy and underwater image enhancement algorithm for relatively easier hardware
117 architecture implementation utilizing fractional order calculus-based filters.

118 e  Avoidance of dark channel prior based stages and iterative schemes by utilizing combined
119 multi-level convolution using fractional derivatives.

120 3 Proposed algorithms

121 Underwater image enhancement usually involves some colour correction/white balancing in
122 addition to contrast enhancement process, usually a local/global operation. The first step to reducing
123 the need for such involved local processing was to avoid the over-exposure of bright regions while
124 enhancing the dark regions. Initial logarithmic solutions were ineffective and flattened the images in
125  addition to fading colours. Thus, anew formulation for the global contrast operator had to be devised
126  to achieve this objective. We present the modification and realization of the improved global contrast
127  operator and spatial filter based system for processing underwater and hazy images. Furthermore,
128  the simplified scheme using integer and fractional calculus is presented in the form of spatial masks
129  based on the Grunwald-Letnikov definition [55].

130 3.1 Selection and modification of global contrast operator

131 Previously, extensive experiments where conducted (to determine effectiveness) on several
132 contrast stretching algorithms [26]. Due to adjustable nature of the high and low values by adjusting
133 the percentiles, the contrast stretching (CS) algorithm appeared to be much more versatile than the
134 other algorithms. However, it works best for faded low-contrast images but not so well for
135 underwater images since it does not perform adequate colour correction unless applied iteratively.
136  Conversely some of the other algorithms were too harsh, had no effect or minimal impact on most
137  underwater images, while others resulted in colour bleeding. The selected algorithms such as the
138  piecewise linear transform (PWL) [56] and the gain offset correction (GOC) [57] were selected for
139 incorporation into effective PDE -based formulations [26] [27]. This was because some underwater

140  images responded better to GOC2 (due to its mainly colour correction ability) than to PWL (due to
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141  its generality) and vice versa. Thus, there is the need to develop a global contrast operator that would
142 merge the advantages of both GOC2 and PWL while mitigating their weaknesses.

143 Since the linear contrast stretch (similar to the PWL and GOC) does not utilize any edge
144 enhancement features or region-based methods, it does not enhance noisy edge artefacts. However,
145  several of these contrast stretching algorithms lead to oversaturation of already bright regions of the
146  image (whitening out/over-exposure). This is in addition to a thresholding effect when applied to
147  images with bimodal histogram. The linear contrast can be applied to both greyscale and colour
148  images with excellent results similar to the PWL. However, the PWL method also suffers from the
149  thresholding of images when there are distinct regions of dark and light intensity, leading to whiting
150  out of bright areas. This is because it truncates values at upper and lower limits to maximum and
I51  minimum possible pixel values in the image without taking into account pixels in those regions, the
152 linear contrast stretch seeks to expand the range based on the surrounding pixels in the distribution.
153 Underwater image enhancement usually involves some colour correction/white balancing in
154  addition to contrast enhancement process, which is usually a local/global operation. The GOC2
155  algorithm adequately processed underwater images, which required mild colour correction and
156  contrast enhancement and thus avoided overexposure of highlights unlike most other tested contrast
157  enhancement algorithms [26]. This necessitated the incorporation of a local contrast operator such as
158  the CLAHE, which though effective, further added to the computational complexity of the algorithms
159  and introduced additional parameters. The first step to reducing the need for such involved local
160  processing was to avoid the over-exposure of bright regions while enhancing the dark regions. Initial
161  logarithmic solutions were not effective and flattened the images in addition to fading colours; thus,

162  anew formulation for the global contrast operator had to be devised to achieve this objective.

163 3.1.1 Gain offset correction-based stretching (GOCS)

164  The expression for the GOC algorithm [57] is given as shown in (1);

165 I | 1= i), M

o6ocz [Imax ~Imin

166  The contrast stretching algorithm is given as;

Imax—Imin
167 logs = [m] (Ui = Liow) + Lyin, @)
168  In (4) and (5), Io,,., and I, , are the enhanced images using GOC and CS respectively, Lyay, Imin

169  aremaximum and minimum pixel intensities in the input image, I;, L is the number of grey intensity
170  levels (L =256 for unsigned integer, eight-bit-per-pixel (uint8, 8bpp) image format), while I,,, and
171 Iy, are the lower and upper percentiles of the image pixel intensity distribution normally set at 5%
172 and 95% respectively.

173 The faults of the GOC lie in the statistics such as maximum and minimum pixel intensity values
174 utilized in its computation. Since an image which is already utilizing its full dynamic range will not
175  be affected by such statistics, we needed to realize a more influential statistic. The contrast stretching
176  operator utilizes lower and upper percentiles of the image intensity distribution for its computation
177  and as a result, does not suffer over-exposure effects and performs adequate contrast enhancement.
178  Conversely, the GOC performs sufficient colour correction but minimal contrast enhancement. Thus,
179 by replacing the maximum and minimum pixel intensity values with the upper and lower percentiles

180  in the formulation, we can realize a new formula for the global contrast operation as;
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L-1
181 logoes = [m] (I; = Liow), 3)
182 Initial experiments using the 5% and 95t percentiles led to some pixels being over-exposed and

183  as we widened the range between the percentiles, the results improved and in some cases, settled on
184  the 1stand 99t percentiles for best results. Increasing the range to its maximum yields a result similar
185  to GOC as expected since the high and low percentiles now become the maximum and minimum
186  pixel intensity values. The GOCS is related to the CS in the following form;

187 I Logocs Umax = Tmin) + Imin,s 4)

ocs —

188 3.2 Proposed multi-scale local contrast operator

189 We present the development of the multi-scale algorithm for local contrast enhancement, which

190  replaces the CLAHE used in previous work, drastically reducing complexity and run-time.

191  3.2.1 Modified spatial filter-based enhancement

192 Given a filter-based approach to contrast enhancement and illumination correction [53];

193 Iyt y) = lypp (6, y) + [I1pp (G, )1, )
194 Where the high-pass filtering operation was expressed as;

195 Iypr(x,y) = =VI(x,y) or =V21(x,y) ()
196 And the low-pass filtering was expressed as;

197 Lpr(x,y) = 1(x,y) + VI(x,y) or I(x,y) + V2I(x, y) @)
198 And using the isotropic heat diffusion equation;

199 2D = —V21(x,y) ®)
200 The high-pass and low-pass filtering operations is redefined as;

201 I (x,y) = I*(x,y) — V2I(x,y)At 9)
202 and

203 17 (x,y) = It (x, y) + V2I(x, y)At (10)
204 This was further expanded into PDE-based formulations [53] as;

205 I,(x,y) = =VI(x,y) + [D — 1]*"*{I(x,y) + VI(x, y)}* (11)
206 I,(x,y) = =V2I(x,y) + [D — 1]**{I(x,y) + V2I(x, y)}* (12)
207 Subsequently, fractional derivative-based re-definitions for high- and low-pass filtering of

208  arbitrary order a are obtained as;

209 Lypr(x,y) = =V9I(x, y) (13)

210 and

211 Lpr(x,y) = fn Lypr(x, y)dQ = — fn Ve (x,y)dQ = 1(x,y) + V¥ (x,y) (14)

212 Leading to the expression;

213 L(x,y) = =V (x,y) + [I(x,y) + VI (x, y)]* (15)

214 We further extend the application to hazy image enhancement as;

215 U(er) = Imax_I(x'y) (16)
k

216 Vg, y) = —VUxy) + |- [, VU y)da] 17)

217 Ig(x,y) = Ug, ., — U (x,y) (18)
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218 In the latter expressions of eqn. (16) to (18), U(x,y) is the inverted image, 4, is the

219 maximum pixel intensity of the input image, 1(x,y), V*U(x,y) is the fractional derivative of the

220  inverted image and | , V*U(x,y)dQ denotes the fractional order integral. Additionally, Ug(x,y) is

221  the enhanced inverted image using fractional order-based operations and UZ  is the maximum

€max
222 pixel intensity of UZ(x,y) while I%(x,y) is the de-hazed image using fractional order-based
223 operations. Additionally, we wish to reduce the computational load of computing both the derivative
224 and theintegral, especially in the fractional order-based version. Thus, we simple obtain the fractional
225  integral of the input image and subtract it from the original image and multiply by the appropriate
226  factor to obtain the fractional order derivative. This saves resources especially on digital hardware

227  implementations since only one operator is utilized and re-used. This is easily expressed as;

228 Iypr(x,y) = 1(x,y) — Ipr(x,y) 19)
229 Io(x,Y) = V[I(x,Y)_ILPF(x,Y)] + [ILPF(x,y, t)]k (20)
230 Which gives the expressions in both integer and fractional order calculus as;
k

231 LG y) =y [1G3) = {f,, Vi y)da}|+[f, Vi y)da] 1)

k
232 L,(x,y)=vy [I(x, y) — {fn v (x, y)dﬂ}] + [fﬂ v (x, y)dﬂ] (22)
233 The scheme for hazy image enhancement can also be updated accordingly without much effort.

234 3.2.2 Multi-scale illumination/reflectance contrast enhancement (Multi-IRCES)

235 The central idea is that by further decomposing a low-pass filtered image and enhancing the
236  details at each level and recombining the results, we would obtain much finer local enhancement.
237  Additionally, using the fractional order reduces or minimizes the issue of noise enhancement as high
238  frequency components are amplified at each stage, further reducing or minimizing the low frequency
239  components at each stage. Since the haze is a low frequency phenomenon, we expect that such effects
240  would be greatly reduced after processing without enhancing noise. The entropy and standard
241  deviation measures are utilized to select the best outcome for the processed image in terms of the

242 value of the exponent, k. The mathematical expressions for the algorithm are as shown in (23) to (29);

K
243 L,06y) = Iypr;(x,y) + [ILPFL.(x,y)] ;i=01,..,N—1 (23)
244 I (0 y) = TSN (e, )k = 2 (24)
245 Ig, (6, y) = =SNG 10 y); = 0.5 (25)
246 en, = entropy(IAk);eBk = entropy(l,) (26)
247 o, = std(l,,); 05, = std(lg,) (27)
248 foy) = {IAk(X,Y), ey, > €p, 0T 04, > Op, 28)
Ig, (x,y), €4, <ep, or oy, <op,
249 fo(x,y) = GOCS[f (x,y)] 29)
250 In eqn. (23), I;(x,y) is the enhanced image at level i and N is the number of decomposition

251 levels, while Iypp;(x,¥) and I,pp,(x,y) are high-pass and low-pass filtered images obtained at level

252 i. Based on experiments, we set N = 5. The obtained level images are then aggregated to obtain the
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253  final images, I e OF Ip, for the different values of the power factor, k in (24) and (25). The values
254  for the power factor are chosen to be multiples of two (2) due to hardware design considerations to
255  enable fast computation by bit shifting.

256 The respective entropies (e,,, ep,) and standard deviations (g4, 0p,) of the aggregated images
257  are computed (in eqns. (26) and (27)) and used to decide the best image outcome, f(x,y) in (28),
258  which is then processed with the modified global contrast enhancement algorithm to obtain the final
259  output image, f,(x,y) in (29). This is based on the simultaneous multi-level high frequency
260  component (edges and details) enhancement and multi-level low frequency component attenuation.
261 All processing operations are achieved with spatial filter kernels using fractional order-based
262 calculus, which slightly increases computation cost but also yields better results in terms of balanced
263  edge enhancement. However, we can also save on computation by utilizing integer-order-based
264  calculus for the kernel coefficients, though results will be more drastic. The diagram of the proposed
265  algorithm for enhancement of both hazy and underwater images is shown in Fig. 1. All processing
266  operations are achieved with spatial filter kernels using fractional order-based calculus, which
267  slightly increases computation cost but also yields better results in terms of balanced edge
268  enhancement. However, we can also save on computation by utilizing integer-order-based calculus

269  for the kernel coefficients, though results will be more drastic.
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271 Figure 1. Proposed algorithm (PA) for enhancing hazy and underwater images

272 3.2.3 Preliminary results

273 After testing several images, it was discovered that some images were better enhanced when
274  using the 5% and 95t percentiles rather than the 15t and 99% percentiles. The representative images of
275  these two groups include those unaffected by wide ranges while the other exhibits over-exposure for
276  narrow ranges. This was partly the reason that the PWL approach was utilized in previous work [27].
277  Thus, one approach would be to devise a means of selecting the appropriate percentiles for these two
278  groups of images. A simple compromise was to set the range between the 2nd and 98t percentiles.
279 However, we would still be faced with the issue of outlier images, which resist colour correction

280  attempts. Thus, the need for the localized operator to aid in the detail recovery in the otherwise over-
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exposed regions when global contrast operations are performed. In Fig. 2, a sample result of the
algorithm is shown for high-pass and high-boost configurations. The latter is used to minimize edge

and noise over-enhancement, while the former improves details in the processed images as shown.

(@) (b) (c)

Figure 2. (a) Underwater image enhanced with (b) PA using high-pass and (c) high-boost fractional

filter settings

3.3 Problems and solutions

The initial developed scheme worked extremely well for underwater images and several hazy
images. However, problems were observed in other hazy images. These issues included colour
fading, distortion, discolouration, image darkening, inadequate haze removal, and over-enhanced
edges. Thus, we devised solutions to some of these problems. The colour correction routine was

omitted and the output, f(x,y) was reformulated as;

_ 14, ) +ip, (1Y)
B 2

fC,y) (30)

This improved results and resolved colour distortion in the affected hazy images, though there
was some colour fading in RGB and HSI/HSV versions. Thus, we utilized the red-green-blue-
intensity/value (RGB-1V) formulation [58] to improve colour rendition, which resulted in colour
enhancement but with dark images. We also investigated the use of CLAHE to improve local contrast,
resulting in drastic improvements. However, enhanced images also exhibited halo effects and colour
distortion, which persisted despite combination with the multi-scale IRCES algorithm. Furthermore,
there was drastic colour loss/fading using CLAHE in addition to increased computational
complexity, defeating the initial objective of the proposed approach. Thus, alternatives were
considered to resolve these issues.

Wavelet-based fusion of I, (x,y) and I, (x,y) using mean, minimum or maximum
configurations was implemented. Good results were observed in images with mostly uniform haze.
Conversely, sky regions were degraded in hazy images with uneven haze or considerable sky
regions. Furthermore, dark bands and outlines were observed around edges in some processed
images. Overall, image results were inconsistent using this scheme. Thus we reformulated the multi-
scale algorithm after extensive analysis.

Redundant frequencies, which were unnecessary in hazy image enhancement results were
observed. This was due to the nature of the generation of the two combined images; I,, (x,y) and
Ig, (x,y), leading to unbalanced contributions of frequency components. Constant varying of weights
for both images and corresponding results led to inconsistent results. Thus, a more formalized,

systematic approach was required. Based on analysis of the Fourier Transform of the images, we

d0i:10.20944/preprints201807.0402.v1
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315  require subtle enhancement of the high frequency components and a drastic reduction of the
316  contributions of the low frequency components. This informed the reformulation of the multi-scale

317  algorithm for hazy images as;

318 1(x,y) = Uy — U(x,y) (31)
319 {ILPFl. 6 ¥, Lupr, (%, y)} = decompose(I(x,y)) (32)
320 Sipr; = p)ry Zg];ol I1pF, (x,y) (33)
321 Supr; = p)ry Zg];ol Inpr, (x,y) (34)
322 Stotal = SLPFl- + SHPFl- (35)
323 Pipr; = %F Pupr; = Zj:;ll (36)
324 In the expressions, (31) to (36), U(x,y) and I(x,y) are the original and reversed hazy image,

325  respectively, while U, is the maximum pixel intensity value of the image; I, F (6 YD), Typr,(x,y),
326 Sipr; and Sypp, are the low- and high-pass filtered images of level (or scale), i and their respective
327  summations. The terms S;yq;, Prpr;, Pupr; are the total sum, and percentage of low and high
328  frequency components, respectively. In order to balance the high and low frequency components, we

329  create new constants, ¢; and ¢, tobe dependent on each other using the percentages;

1 1
330 Cp = TPF/ Cy = ; (37)
331 After evaluation of the two constants, we use the expression to obtain the enhanced level image
332 as;
333 Li(x,y) = Cl[IHPFL'(ny)] + [ILPFL'(ny)]CZ (38)
334 The level images are subsequently summed to obtain the enhanced image as shown in (39);
335 fGe,y) = =3P i (x,y) (39)
336 The de-hazed image, U’(x,y) is obtained by inverting the image as shown;
337 U'(%,y) = fnax — f(x,¥) (40)
338 Based on experiments, we set ¢; and ¢, as 1.21 and 0.8264 respectively since they are always

339 constant. These are the default values for balanced enhancement of high and low frequency
340  components to avoid visual artefacts. However, the values may be increased or decreased gradually
341  for maximum visual effect in certain images. This new formulation solves the edge over-
342  enhancement, colour distortion and halo effect problem. The results are shown in Fig. 3 for processed
343 images using previous and improved configurations of PA. Note the elimination of the colour
344  distortion and reduced degree of noise enhancement for images in Fig. 3(b) compared to Fig. 3(a).

345 The estimated computational complexity of the proposed approach is given as; O(NMw?2D) for
346 D levels using spatial window size, w of fractional order-based filter for an image with N rows and
347 M columns. Additionally, the algorithm can be speeded up by exploiting symmetric convolutional

348  structures to reduce the number of multiplications and additions.
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349

350 (@

351

352 (b)

353 Figure 3. Processed images using (a) previous configuration (b) improved configuration of PA

354 4. Results

355 We present the result comparisons of the proposed approach (PA) with other algorithms from
356  the literature. We utilize metrics such as entropy (E), (relative) average gradient (RAG) [59], global
357  contrast factor (GCF) [60], colourfulness or colour enhancement factor (CEF) [61] for underwater
358  images. For hazy images, we utilize the RAG, ratio of visible edges, Qe [1] and saturation
359  parameter/percentage of black or white pixels, o [1] to evaluate results. Higher values indicate better
360  results for the first two metrics while lower values imply improvement for the last metric. The
361  hardware specifications of the computing platform are: PC with Intel® Core i7-6500U x64-based
362  processor at 2.5GHz/2.59GHz, 12 GB RAM running 64-bit OS (Microsoft® Windows™ 10 Home) and
363  NVIDIA® GeForce™ 940M GPU with compute capability of 5.0.

364

365 4.1 Underwater images

366 Results are presented in Fig. 4, which contains results from [5], amended with results from [27]
367  and PA and show that there is a considerable contrast and edge enhancement as details are seen
368  much more clearly with minimal haze. For the fish image in Fig. 4, only results by Ancuti, et al [62],
369  Fuetal[15], Galdran, et al [4], PDE-based PWL-CLAHE (forward and reverse configuration) [27] and
370  PA yield good results. The rest of the image results depict hazy, faded images with large degree of
371  green colouration, while Li, et al’s method [5] yields an image with reddish colouration, implying

372  over-compensation of red channel in the processed image.
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375
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379

380 Figure 4. (a) Original Fish2 image processed with algorithms proposed by (b) Ancuti et al [62] (c) Fu
381 et al [15] (d) Chiang and Chen [8] (e) He et al [32] (f) Carlevaris-Bianco ef al [11] (g) Serikawa and Lu
382 [10] (h) Galdran et al [4] and (i) Li et al [5], and IPA using (j) PWL-CLAHE and (k) CLAHE-PWL-AD
383 configurations (I) PA

384

385 Based on the results, the proposed algorithm yields finer and sharper edges and details with

386  minimal intrinsic noise due to the fractional derivative ability. The visual results are mostly reflected
387  in the quantitative metrics shown in Table 1, with PA showing the highest AG values, indicating

388  more visible edges and details especially on the rock face of the bottom left corner of the image
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389  (image(l)). However, PDE-GOC2-CLAHE yields the highest colourfulness (C) and entropy while the
390  method by Fu, et al gives best GCF value (though there is over-exposure in the bright regions of the

391  rock faces in image (c)).

392
393 Table 1. Comparison of IPA with various algorithms for Fish2 image
Measure | Ancuti | Bianco | Chian | Fu Galdra | He Li Serikaw | (PDE- PA
s [62] [11] g [15] n [32] [5] a PWL-
\Algos [8] [4] [10] CLAHE
) [27]
Entropy | 7.8438 | 7.1251 | 7.2986 | 7.862 | 7.6376 | 7.4587 | 7.7168 | 7.4531 7.8945 7.2558
8
GCF 9.5759 | 4.6944 | 3.9611 | 9.640 | 8.7299 | 6.372 | 7.0632 | 4.9016 8.6257 6.9014
4
C 54.570 | 42.312 | 54.897 | 36.33 | 64.0309 | 57.053 | 63.849 | 63.2207 | 77.5420 | 61.195
4 8 5 7 3 8 7
AG 9.1638 | 4.1501 | 4.1285 | 9.473 | 5.6937 | 5174 | 7.6573 | 5.2034 10.4343 | 13.910
2 7
394

395 4.2 Hazy image enhancement results

396 We also present results and comparisons for hazy image contrast enhancement with algorithms
397  from the literature using 53 real benchmark images employed in de-hazing experiments. Also, the
398  FRIDA3 dataset [63] [64] consisting of left and right views of 66 synthetic images was also tested. The
399  algorithms include Tarel and Hautiere [65], Dai et al [66], Nishino et al [67], He et al [32], Galdran et
400 al [41], Wang and He [68], Zhu et al [69], Ren et al [46], partial differential equation-based single scale
401  Retinex GOC-CLAHE (PDE-GOC-SSR-CLAHE) [52], PDE-IRCES [53], and PA. The proposed
402  approach (PA) is much more vivid as it enhances edges and avoids discolouration of sky regions as
403 seen in the Tiananmen image in Fig. 5. Best results are observed for PA, Ren, et al [46], Zhu, et al [69]
404  and He et al [32] (has halos) followed by PDE-GOC-SSR-CLAHE [52] (has some halos) and PDE-
405  IRCES[53] (no halos but under-enhanced in some regions).

406 The method by Tarel and Hautiere [65] shows over-enhancement of edges and discolouration of
407  sky region similarly to PDE-IRCES. The method by Ren, et al shows sharpened features without sky
408  discolouration or over-enhancement similar to Zhu, et al (which is darker). The PDE-GOC-SSR-
409  CLAHE yields considerable detail in non-homogeneous regions, while PA yields the highest detail
410  and edge enhancement without sky discolouration or halo effects. The same is observed for the toys
411  image in Fig. 6 as the image obtained from PA has the most enhanced edges and details compared to
412 the other results. The PDE-GOC-SSR-CLAHE gives best local contrast enhancement, followed by the
413 DCP method by He et al, and the methods by Wang, et al [68], Ren et al, Dai, et al [66] and Zhu, et al.
414  The rest of the other image results are faded and still contain a reasonable amount of haze or have

415  colour distortion or saturation with minimal edge enhancement.
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422 Figure 5. (a) Original hazy image (b) Tarel, et al (c) Zhu, et al (d) PA (e) PDE-IRCES (f) He, et al (g)
423 PDE-GOC-SSR-CLAHE (h) Ren et al (i) AMEF
424
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431
432 (m)
433 Figure 6. (a) Original hazy image (b) Tarel, et al [65] (c) Dai et al [66] (d) PA (e) He et al [32] (f) Nishino,
434 et al [67] (g) PDE-GOC-SSR-CLAHE [52] (h) PDE-IRCES [53] (i) Galdran, et al (EVID) [41] (j) Wang &
435 He [68] (k) Zhu, et al [69] (1) Ren, et al [46] (m) AMEF
436
437 Additionally, we present the numerical results for the available algorithm implementations

438  compared with PA in Table 2. Results indicate that RAG and ratio of visible edge values are the
439  highest for PA, followed by PDE-GOC-SSR-CLAHE, He et al and Ren, et al. Thus, these two metrics
440  indicate maximum edge enhancement corresponding to increased visibility and haze removal. The
441  value of the Canon image yields the highest RAG value and the image result (not shown) depicted
442  drastic edge and detail enhancement.

443 The PA can also be configured to process only the intensity channel for hazy images using the
444  HSI and HSV colour spaces to avoid hue distortion. However, the algorithm was initially conceived
445  in the RGB space to enable the processing of both underwater and hazy colour images without need
446  for modification. We also present the runtimes of PA in comparison with the other approaches in
447  Table 3 and Fig. 7 to further showcase the low computational complexity of the algorithm. Only the
448  method by Ren et al is fully optimized for GPU computation, with PA and other algorithms using
449  parallel computation where possible. Results indicate that PA is the fastest algorithm of all the
450  compared ones. Furthermore, the revised formulation combined with the RGB-IV does not increase
451  run-time considerably, except for images with very large dimensions. Nevertheless, the run-time is
452  still much less than the algorithms by He et al, Zhu et al and Ren et al. The revised scheme is also
453  much easier to implement in FPGA hardware than the earlier version due to absence of global
454  statistical computation.

455 Additionally, we present the relative average gradient (RAG) values for the available algorithm
456  implementations compared with the proposed approach in Table 2. Results indicate improvements
457  using the proposed approach and the RAG values are the highest for the PA, followed by PDE-GOC-
458 SSR-CLAHE, He et al and Ren, et al. Thus, such RAG values indicate maximum edge enhancement
459  corresponding to increased visibility and haze removal. The value of the Canon image yields the
460  highest RAG value and the image result (not shown) depicted drastic edge and detail enhancement.
461

462

463

464

465

466

467
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Table 2. RAG, ratio of visible edges and saturation parameter values for images processed with He

et al [32], Zhy, et al [69], Ren, et al, PDE-GOC-SSR-CLAHE [52], PDE-IRCES [53] and PA

Algos | He, etal Zhu, et al [69] Ren et al [46] PDE-GOC- PDE- PA
[32] B=0.95,1; y=1.3 (canyon SSR-CLAHE | IRCES
(Q=0.95w | 60=0.1893; image) [52] At=0.25; [53]
=15 A= 01=1.0267; 0.8<y<1.5 ksa=1.5 At=0.25
240, r=24) 0:=-1.2966; (others)
Image Guided filter:
r=60;
to=0.05; t1=1;
£=0.001
Tiananmen | 1.8455 1.1866 1.5649 2.8225 2.3219 4.4410
/0.9606 /1.0041 /0.8734 /1.0386 /1.1614 /1.4514
/0.1879 /0.0814 /0.1288 /0.0625 /0 /0.1688
Cones 1.4977 0.9704 1.3818 2.7516 2.5881 4.9702
/1.1478 /1.0873 /1.1042 /1.1999 /1.2064 /1.4620
/0.3878 /0.2499 /0.2956 /0.2733 /0 /0.3142
Cityl 1.1914 0.9303 1.2989 1.7762 2.4080 3.8282
/1.0332 /1.0075 /1.0232 /1.1164 /1.3458 /1.4898
/0.1336 /0.2002 /0.2002 /0.0562 /0.00375 /0.1712
Canyon 1.7481 1.2880 1.4564 2.5408 2.5224 3.9892
/1.1057 /1.0679 /1.0319 /1.2070 /1.19684 /1.7903
/0.3796 /0.2412 /0.0446 /0.3103 /0.00019 /0.2412
Canon 3.2903 1.7127 2.6871 2.8059 2.8783 8.0224
/1.0857 /0.9089 /1.0832 /1.1188 /1.3450 /1.5785
/0.3947 /0.3198 /0.3831 /0.3947 /4.4E-05 /0.3942
Mountain | 1.7105 1.2092 1.6005 2.7275 2.9827 6.5399
/0.9348 /0.9307 /0.9784 /1.0202 /1.2977 /1.5503
/0.0787 /0.0984 /0.0074 /0.0074 /7.1E-05 /0.0244
Brickhouse | 1.2006 0.8597 1.2118 1.0836 1.4105 3.0014
/0.9747 /1.1395 /1.0030 /1.1135 /1.2789 /1.3563
/0.1172 /0.0730 /0.1288 /0.1021 /0 /0.0983
Pumpkins | 1.5927 0.9311 1.4753 2.4539 2.2777 3.3553
/0.9501 /0.6726 /0.9511 /1.0361 /1.1626 /1.6469
/0.1581 /0.1333 /0.1764 /0.1516 /7.1E-05 /0.2329
Train 1.5206 0.9797 1.2036 1.5190 2.2569 4.3014
/1.0090 /1.0509 /1.0203 /1.1106 /1.3589 /1.5151
/0.1664 /0.3265 /0.2412 /0.3005 /0.0038 /0.2594
Toys 2.2566 1.6711 2.1568 2.9813 2.1367 4.2837
/0.9712 /1.0117 /0.9576 /1.1095 /1.2887 /1.5937
/0.3840 /0.2865 /0.2827 /0.3379 /2.8E-05 /0.3736
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472 Table 3. Runtimes for hazy images processed with He et al [32], Zhu, et al [69], Ren, et al, AMEF,
473 PDE-GOC-SSR-CLAHE [52], PDE-IRCES [53] and PA
Algos He, et al | Zhu, et al | Ren et al | AMEF PDE-GOC- PDE- PA
[32] [69] [46] [54] SSR-CLAHE | IRCES
[52] [53]
Images
Tiananmen(450x600) | 1.253494 | 0.991586 | 2.362754 | 1.4088 3.530989 2.330879 0.480659
Cones (384x465) 0.850155 | 0.661314 | 1.651447 | 1.0506 2.381621 1.555098 0.268909
City1(600x400) 1.094910 | 0.875287 | 2.070620 | 1.2709 3.203117 2.183417 0.283372
Canyon (600x450) 1.237655 | 0.972741 | 2.529734 | 1.5066 3.821395 2.306129 0.309343
Canon (525x600) 1.431257 | 1.135376 | 2.890541 | 1.6958 4.187972 2.717652 0.374638
Mountain (400x600) | 1.129231 | 0.880835 | 2.358143 | 1.2985 3.158335 2.055685 0.360240
Brickhouse(711x693) | 2.230871 | 1.667610 | 5.234674 | 2.3618 6.395965 4.385789 1.102332
Pumpkins (400x600) | 1.125475 | 0.901815 | 2.253179 | 1.5018 3.152969 2.143529 0.407310
Train (400x600) 1.105757 | 0.849072 | 2.075004 | 1.2935 3.178277 1.995436 0.365481
Toys (360x500) 0.844945 | 0.657376 | 1.578068 | 1.0387 2.429651 1.545031 0.260878
474
475
Runtime Comparison
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Runtime comparison (FRIDA3 Left view dataset)
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482 Figure 7. Runtime comparison of various algorithms using (a) 53 real and 66 synthetic (b) left and (c)
483 right view hazy images

484 5 Visual comparison of AMEF and PA and Discussion

485 The key components of the enhancement capability of AMEF are the CLAHE and Gamma
486  Correction (GC) algorithm. Unlike the PDE-GOC-CLAHE, which included the CLAHE and
487  minimized its negative effects [52], the AMEF does not possess such features. We directly compare
488  and present a sample of visual results of the state-of-the-art AMEF with PA in Figs. 8 to 10. Based on

489  visual observation, AMEF generally yields poor results without constant tuning of the clip limit, c.
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490  Fig. 8(c) shows that PA can replicate the results of the AMEF by utilizing a high-boost filter with
491  slightly better contrast than AMEF without CLAHE. Adding CLAHE to PA yields better results than
492  AMEF with CLAHE.

493 The AMEF de-hazing algorithm yields images with halos and colour distortion similar to or
494  worse than the CLAHE- or Retinex-based de-hazing algorithms as seen in the Brickhouse image in Fig.
495  9(b). The AMEF is mainly suited to images with thick haze as seen in the Train image in Fig. 9(b),
496  though there is colour fading. The Horses images was processed using ¢ = 0.03 for AMEF and PA was
497  processed using both filter settings. This is one of the images where AMEF performs adequately,
498  though any slight increase in ¢ leads to heavy colour distortion. Increasing the clip limit of the CLAHE
499  in the AMF leads to increased colour distortion. Additionally, the AMEF algorithm is neither
500  optimized nor adaptive and requires constant tuning of this clip limit parameter to obtain the best
501  results for each hazy image. This makes the AMEF algorithm impractical for effective batch or real-
502  time image de-hazing processing as these issues were consistently observed using several benchmark
503  hazy images. Ultimately, PA is much faster than the AMEF algorithm while yielding good
504  enhancement results without halos, colour degradation or the need to constantly adjust parameters.
505  Also, the AMEF is unable to enhance underwater images, while PA effortlessly performs this

506  operation as seen in Fig. 11.

507

508 (@) (b) (c)

509

510 (d) (e) (f)

511 Figure 8. (a) PA (b) without GOCS (c) using high-boost filter setting (d) AMEF (c=0.1) (e) AMEF (c=
512 0.01) (f) AMEF without CLAHE

513
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514
515 () (b) (c)

516
517 (d) (e) )

518 Figure 9. (a) PA (high-boost) (b) & (c) PA (d) AMEF (c=0.03) (e) & (f) AMEF (c =0.1)

519

520
521

522
523 (0 (d)

524 Figure 10. (a) PA (b) with high-boost filter setting (c) AMEF (c =0.03) (d) AMEF without CLAHE
525
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526
527 (a) (b) ()
528 Figure 11. (a) Original underwater image processed with (b) AMEF (c=0.1) (c) PA

529 6. Conclusions

530 A fast, adaptive and versatile multi-scale, fractional order-based hazy and underwater image
531  enhancement algorithm with a relatively simplified structure suitable for hardware implementation
532 has been proposed and developed. The earlier problems of the algorithm were addressed by
533 automated balanced weighting of the filtered images used in the fusion process. The adherence to
534  image entropy and standard deviation features coupled with global and local contrast enhancement
535  ensures that visibility is greatly improved in the final result. Furthermore, comparisons with a recent
536  state-of-the-art multi-scale algorithm shows that the proposed approach is unmatched in several
537  aspects such as speed, consistency, versatility, adaptability and flexibility. Results show that the
538  proposed scheme achieves the stated objectives and can be easily realized in hardware systems for

539  fast image processing in challenging imaging environments.

540
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