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Abstract: This paper describes a proposed fractional filter-based multi-scale underwater and hazy 9 
image enhancement algorithm. The proposed system combines a modified global contrast operator 10 
with fractional order-based multi-scale filters used to generate several images, which are fused 11 
based on entropy and standard deviation. The multi-scale-global enhancement technique enables 12 
fully adaptive and controlled colour correction and contrast enhancement without over exposure of 13 
highlights when processing hazy and underwater images. This in addition to 14 
illumination/reflectance estimation coupled with global and local contrast enhancement. The 15 
proposed algorithm is also compared with the most recent available state-of-the-art multi-scale 16 
fusion de-hazing algorithm. Experimental comparisons indicate that the proposed approach yields 17 
better edge and contrast enhancement results without halo effect, colour degradation and is faster 18 
and more adaptive than all other algorithms from the literature.    19 

Keywords: Fractional order calculus-based multi-scale contrast operator; hybrid local-global 20 
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 23 

1. Introduction 24 
Hazy and underwater images share similar characteristics in terms of reduced visibility and low 25 

contrast due to the nature of image formation [1] [2]. Several single image-based enhancement and 26 
restoration models and algorithms have been proposed to solve this problem [1] [2]. However, they 27 
work with varying degrees of success at the cost of increased structural and computational 28 
complexity. Consequently, there are relatively few digital hardware realizations and reduced real-29 
time prospects for such schemes due to high computational cost.  30 

In this work we propose a fractional order-based algorithm for enhancement of hazy and 31 
underwater images. The algorithm utilizes an improved global contrast operator, which performs 32 
colour correction while a fractional order, multiscale spatial filter-based scheme performs localized 33 
enhancement. In the filter kernel is implemented using fractional calculus and combined with global 34 
contrast operators for further enhancement. Furthermore, the scheme is incorporated into a partial 35 
differential equation-based flow to further improve results and control over the enhancement 36 
processes. We then compare results with other algorithms from the literature and show that the 37 
proposed system is effective with the fastest execution time.   38 

The paper is outlined as follows; the second section provides the background, motivation and 39 
key contributions of the proposed system. Section three presents the proposed algorithms for both 40 
underwater and hazy image enhancement in addition to solutions to problems and modifications. 41 
Section four presents and compares the results (obtained using the proposed system) to other 42 
algorithms from the literature. The fifth section explicitly compares the proposed approach against a 43 
recent algorithm from the literature, further strengthening the justification of the proposed scheme. 44 
The final section presents the conclusion. 45 

 46 
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2. Materials and Methods 47 

2.1 Underwater image processing algorithms 48 
Underwater image processing algorithms can be classified as either restoration, enhancement or 49 

colour correction- and illumination normalization-based approaches [2] and range from medium to 50 
high computational and structural complexity. The restoration-based algorithms incorporate de-51 
blurring and de-hazing processes using either Weiner [3] deconvolution or dark channel prior (DCP)-52 
based techniques respectively [2]. Examples include algorithms by Galdran et al [4], Li et al [5], Li 53 
and Guo [6], Zhao et al [7], Chiang and Chen [8], Wen et al [9], Serikawa and Lu [10], Carlevaris-54 
Bianco et al [11], Chiang et al [12], etc. Conversely, the enhancement-based algorithms do not employ 55 
any models derived from physical phenomena or prior image information [2]. They utilize 56 
statistical/histogram-based or logarithmic contrast enhancement/stretching and colour correction 57 
techniques in their formulation. Examples include works by Iqbal et al [13], Ghani and Isa [14], Fu et 58 
al [15], Gouinaud et al [16], Bazeille et al [17], Chambah et al [18], Torres-Mendez and Dudek [19], 59 
Ahlen et al [20] [21], Petit et al [22], Bianco et al [23], Prabhakar et al [24], Lu et al [25] and Li et al [5]. 60 
Recently, entropy and gradient optimized underwater image processing algorithms based on partial 61 
differential equations were developed [26] [27] and yielded effective and automated enhancement 62 
surpassing results from previous algorithms. 63 

The illumination normalization-based algorithms attempt to resolve uneven lighting issues in 64 
the acquired underwater images scenes. The algorithms in this class include works by Prabhakar et 65 
al [24], Garcia et al [28], Rzhanov et al [29], Singh et al [30] and Fu et al [15].  66 

2.2 Hazy image processing algorithms 67 
Hazy image processing also deals with visibility restoration of image scenes degraded by 68 

weather conditions and can be multi- or single-image based solutions [31]. Furthermore, hazy image 69 
processing algorithms can also be classified as either restoration or enhancement-based schemes. In 70 
the restoration-based hazy image processing, the de-hazing process is based on the hazy image 71 
formation model [31]. The objective is therefore to obtain the de-hazed image from the input hazy 72 
image. The algorithms in this class include the popular DCP method by He et al [32], which has been 73 
adopted and modified in various forms and a review of several DCP-based methods can be found in 74 
[1].  75 

Other schemes include works based on segmentation [33] [34] [35], fusion [36] [37], geometry 76 
[38], Weighted Least Squares [39], variational [40] [41] [37] [42] and regularization approaches [34] 77 
using sparse priors [43] and other boundary constraints [44], biological retina-based model [45] and 78 
multi-scale convolutional neural networks [46]. The enhancement-based hazy image processing 79 
method is based on directly obtaining the by-product of radiance scene recovery through visibility 80 
restoration by contrast enhancement/maximization. The algorithms in this category utilize contrast 81 
limited adaptive histogram equalization (CLAHE), histogram specification (HS) [47] and Retinex [48] 82 
[49] [50]. Additionally, some of these algorithms combine dark channel priors and transmission map 83 
extraction with contrast enhancement for refinement. However, consistently good results are not 84 
guaranteed as some images will depict colour fading/distortion and darkening of regions in addition 85 
to over-enhancement of sky/homogeneous regions. Thus some threshold and segmentation-based 86 
algorithms [33] [34] [35] [51] have been developed to solve the peculiar problems of these algorithms. 87 
Furthermore, recently developed algorithms using partial differential equations (PDEs) and gradient 88 
metric-based optimization were developed [52] [53] to avoid the usage of DCP-based stages and 89 
multiple (and manual adjustment of) parameters. Recently, an Artificial Multiple-Exposure Image 90 
Fusion (AMEF) de-hazing algorithm was proposed by Galdran [54], which represents the current 91 
state-of-the-art.  92 

Physical methods depend on prior image information obtained by capturing the image scenes 93 
at different times under varying conditions using physical hardware/optical equipment such as 94 
cameras and lighting rigs [2]. They may also incorporate multi-image processing schemes for either 95 
hazy or underwater images. However, consistently good results are not assured due to the 96 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 July 2018                   doi:10.20944/preprints201807.0402.v1

Peer-reviewed version available at J. Imaging 2018, 4, 108; doi:10.3390/jimaging4090108

http://dx.doi.org/10.20944/preprints201807.0402.v1
http://dx.doi.org/10.3390/jimaging4090108


 3 of 24 

 

unpredictable nature of weather and aquatic medium conditions. Also the cost of such hardware 97 
imaging systems is prohibitive and are usually not universally applicable. Such schemes are fully 98 
listed and described in work by Li et al [5]. Single-image-based software implementations offer the 99 
best outcome when factors such as cost, time, replicability and convenience are considered since they 100 
do not necessarily require prior knowledge of the environment or image acquisition process for 101 
operation [2] [5]. Thus, the scope of this work is limited to single-image-based enhancement of both 102 
hazy and underwater images. 103 

The primary motivation for this work is to develop fast, practical and effective algorithms for 104 
underwater and hazy image enhancement that are amenable to hardware implementation for real-105 
time operation.  106 

2.3 Key contributions and features of proposed scheme 107 
The key contributions and features of this work include: 108 

 A modified global contrast enhancement and a multi-scale illumination/reflectance model-based 109 
algorithm using fractional order calculus-based kernels. 110 

 Relatively low- complexity underwater image enhancement algorithm utilizing colour 111 
correction and contrast operators. 112 

 Frequency-based approach to image de-hazing and underwater image enhancement using 113 
successive, simultaneous high frequency component augmentation and low frequency 114 
component reduction. 115 

 Feasible hazy and underwater image enhancement algorithm for relatively easier hardware 116 
architecture implementation utilizing fractional order calculus-based filters. 117 

 Avoidance of dark channel prior based stages and iterative schemes by utilizing combined 118 
multi-level convolution using fractional derivatives. 119 

3 Proposed algorithms 120 

Underwater image enhancement usually involves some colour correction/white balancing in 121 
addition to contrast enhancement process, usually a local/global operation. The first step to reducing 122 
the need for such involved local processing was to avoid the over-exposure of bright regions while 123 
enhancing the dark regions. Initial logarithmic solutions were ineffective and flattened the images in 124 
addition to fading colours. Thus, a new formulation for the global contrast operator had to be devised 125 
to achieve this objective. We present the modification and realization of the improved global contrast 126 
operator and spatial filter based system for processing underwater and hazy images. Furthermore, 127 
the simplified scheme using integer and fractional calculus is presented in the form of spatial masks 128 
based on the Grunwald-Letnikov definition [55].  129 

3.1 Selection and modification of global contrast operator  130 

Previously, extensive experiments where conducted (to determine effectiveness) on several 131 
contrast stretching algorithms [26]. Due to adjustable nature of the high and low values by adjusting 132 
the percentiles, the contrast stretching (CS) algorithm appeared to be much more versatile than the 133 
other algorithms. However, it works best for faded low-contrast images but not so well for 134 
underwater images since it does not perform adequate colour correction unless applied iteratively. 135 
Conversely some of the other algorithms were too harsh, had no effect or minimal impact on most 136 
underwater images, while others resulted in colour bleeding. The selected algorithms such as the 137 
piecewise linear transform (PWL) [56] and the gain offset correction (GOC) [57] were selected for 138 
incorporation into effective PDE -based formulations [26] [27]. This was because some underwater 139 
images responded better to GOC2 (due to its mainly colour correction ability) than to PWL (due to 140 
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its generality) and vice versa. Thus, there is the need to develop a global contrast operator that would 141 
merge the advantages of both GOC2 and PWL while mitigating their weaknesses. 142 

Since the linear contrast stretch (similar to the PWL and GOC) does not utilize any edge 143 
enhancement features or region-based methods, it does not enhance noisy edge artefacts. However, 144 
several of these contrast stretching algorithms lead to oversaturation of already bright regions of the 145 
image (whitening out/over-exposure). This is in addition to a thresholding effect when applied to 146 
images with bimodal histogram. The linear contrast can be applied to both greyscale and colour 147 
images with excellent results similar to the PWL. However, the PWL method also suffers from the 148 
thresholding of images when there are distinct regions of dark and light intensity, leading to whiting 149 
out of bright areas. This is because it truncates values at upper and lower limits to maximum and 150 
minimum possible pixel values in the image without taking into account pixels in those regions, the 151 
linear contrast stretch seeks to expand the range based on the surrounding pixels in the distribution. 152 

Underwater image enhancement usually involves some colour correction/white balancing in 153 
addition to contrast enhancement process, which is usually a local/global operation. The GOC2 154 
algorithm adequately processed underwater images, which required mild colour correction and 155 
contrast enhancement and thus avoided overexposure of highlights unlike most other tested contrast 156 
enhancement algorithms [26]. This necessitated the incorporation of a local contrast operator such as 157 
the CLAHE, which though effective, further added to the computational complexity of the algorithms 158 
and introduced additional parameters. The first step to reducing the need for such involved local 159 
processing was to avoid the over-exposure of bright regions while enhancing the dark regions. Initial 160 
logarithmic solutions were not effective and flattened the images in addition to fading colours; thus, 161 
a new formulation for the global contrast operator had to be devised to achieve this objective.  162 

3.1.1 Gain offset correction-based stretching (GOCS) 163 

The expression for the GOC algorithm [57] is given as shown in (1); 164 

௢ಸೀ಴మܫ                     = ቂ ௅ିଵ
ூ೘ೌೣିூ೘೔೙

ቃ ௜ܫ) −  ௠௜௡),                              (1) 165ܫ

The contrast stretching algorithm is given as; 166 

௢಴ೄܫ                          = ൤ூ೘ೌೣିூ೘೔೙
ூ೓೔೒೓ିூ೗೚ೢ

൨ ௜ܫ) − (௟௢௪ܫ + ௠௜௡ܫ ,                             (2) 167 

In (4) and (5), ܫ௢ಸೀ಴మ and ܫ௢಴ೄ are the enhanced images using GOC and CS respectively, ܫ௠௔௫, ܫ௠௜௡ 168 
are maximum and minimum pixel intensities in the input image, ܫ௜, ܮ is the number of grey intensity 169 
levels (256= ܮ for unsigned integer, eight-bit-per-pixel (uint8, 8bpp) image format), while ܫ௟௢௪ and 170 
 ௛௜௚௛ are the lower and upper percentiles of the image pixel intensity distribution normally set at 5% 171ܫ
and 95% respectively.  172 

The faults of the GOC lie in the statistics such as maximum and minimum pixel intensity values 173 
utilized in its computation. Since an image which is already utilizing its full dynamic range will not 174 
be affected by such statistics, we needed to realize a more influential statistic. The contrast stretching 175 
operator utilizes lower and upper percentiles of the image intensity distribution for its computation 176 
and as a result, does not suffer over-exposure effects and performs adequate contrast enhancement. 177 
Conversely, the GOC performs sufficient colour correction but minimal contrast enhancement. Thus, 178 
by replacing the maximum and minimum pixel intensity values with the upper and lower percentiles 179 
in the formulation, we can realize a new formula for the global contrast operation as; 180 
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௢ಸೀ಴ೄܫ         = ൤ ௅ିଵ
ூ೓೔೒೓ିூ೗೚ೢ

൨ ௜ܫ) −  ௟௢௪),                                     (3) 181ܫ

Initial experiments using the 5th and 95th percentiles led to some pixels being over-exposed and 182 
as we widened the range between the percentiles, the results improved and in some cases, settled on 183 
the 1st and 99th percentiles for best results. Increasing the range to its maximum yields a result similar 184 
to GOC as expected since the high and low percentiles now become the maximum and minimum 185 
pixel intensity values. The GOCS is related to the CS in the following form; 186 

௢಴ೄܫ = ௠௔௫ܫ)௢ಸೀ಴ೄܫ − (௠௜௡ܫ +  ௠௜௡,                                (4) 187ܫ

3.2 Proposed multi-scale local contrast operator  188 

We present the development of the multi-scale algorithm for local contrast enhancement, which 189 
replaces the CLAHE used in previous work, drastically reducing complexity and run-time. 190 

3.2.1 Modified spatial filter-based enhancement  191 

Given a filter-based approach to contrast enhancement and illumination correction [53]; 192 
,ݔ)௢ܫ           (ݕ = ,ݔ)ு௉ிܫ (ݕ + ,ݔ)௅௉ிܫ]  ,                      (5) 193	௞[(ݕ

Where the high-pass filtering operation was expressed as; 194 
,ݔ)ு௉ிܫ           (ݕ = ,ݔ)ܫ∇− ,ݔ)ܫଶ∇−	ݎ݋	(ݕ  195 (6)                       (ݕ

And the low-pass filtering was expressed as; 196 
,ݔ)௅௉ிܫ          (ݕ = ,ݔ)ܫ (ݕ + ,ݔ)ܫ∇ ,ݔ)ܫ	ݎ݋	(ݕ (ݕ + ∇ଶݔ)ܫ,  197 (7)               (ݕ
And using the isotropic heat diffusion equation; 198 

          డூ(௫,௬)
డ௧

= −∇ଶݔ)ܫ,  199 (8)                                (ݕ

The high-pass and low-pass filtering operations is redefined as;  200 
,ݔ)௧ାଵܫ          (ݕ = ,ݔ)௧ܫ (ݕ − ∇ଶݔ)ܫ,  201 (9)                          ݐ∆(ݕ

and 202 
,ݔ)௧ାଵܫ         (ݕ = ,ݔ)௧ܫ (ݕ + ∇ଶݔ)ܫ,  203 (10)                         ݐ∆(ݕ

This was further expanded into PDE-based formulations [53] as; 204 
,ݔ)௢ܫ        (ݕ = ,ݔ)ܫ∇− (ݕ + ܦ] − 1]ଵି௞{ݔ)ܫ, (ݕ + ,ݔ)ܫ∇  ௞                (11) 205{(ݕ

,ݔ)௢ܫ                   (ݕ = −∇ଶݔ)ܫ, (ݕ + ܦ] − 1]ଵି௞{ݔ)ܫ, (ݕ + ∇ଶݔ)ܫ,  ௞         (12) 206{(ݕ
Subsequently, fractional derivative-based re-definitions for high- and low-pass filtering of 207 

arbitrary order ߙ are obtained as; 208 
,ݔ)ு௉ிܫ                 (ݕ = −∇ఈݔ)ܫ,  209 (13)                              (ݕ

and 210 

,ݔ)௅௉ிܫ            (ݕ = 	∫ ,ݔ)ு௉ிܫ Ωஐ݀(ݕ = −∫ ∇ఈݔ)ܫ, Ωஐ݀(ݕ = ,ݔ)ܫ (ݕ + ∇ఈݔ)ܫ,  211 (14)           	(ݕ

Leading to the expression; 212 
,ݔ)௘ܫ           (ݕ = −∇ఈݔ)ܫ, (ݕ + ,ݔ)ܫ] (ݕ + ∇ఈݔ)ܫ,  ௞                   (15) 213[(ݕ

We further extend the application to hazy image enhancement as; 214 
,ݔ)ܷ                (ݕ = ௠௔௫ܫ − ,ݔ)ܫ  215 (16)                             (ݕ

                    ௘ܷ
ఈ(ݔ, (ݕ = −∇ఈܷ(ݔ, (ݕ + ቂ−∫ ∇ఈܷ(ݔ, Ωஐ݀(ݕ ቃ

௞
                   (17)                                                 216 

,ݔ)௘ఈܫ                          (ݕ = ௘ܷ೘ೌೣ
ఈ − ௘ܷ

ఈ(ݔ,  217 (18)                              (ݕ
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In the latter expressions of eqn. (16) to (18),  ܷ(ݔ, (ݕ  is the inverted image, ܫ௠௔௫  is the 218 
maximum pixel intensity of the input image, ݔ)ܫ, ,ݔ)ఈܷ∇ ,(ݕ  is the fractional derivative of the 219 (ݕ

inverted image and ∫ ∇ఈܷ(ݔ, Ωஐ݀(ݕ  denotes the fractional order integral. Additionally, ௘ܷ
ఈ(ݔ,  is 220 (ݕ

the enhanced inverted image using fractional order-based operations and ௘ܷ೘ೌೣ
ఈ  is the maximum 221 

pixel intensity of ௘ܷ
ఈ(ݔ, (ݕ  while ܫ௘ఈ(ݔ, (ݕ  is the de-hazed image using fractional order-based 222 

operations. Additionally, we wish to reduce the computational load of computing both the derivative 223 
and the integral, especially in the fractional order-based version. Thus, we simple obtain the fractional 224 
integral of the input image and subtract it from the original image and multiply by the appropriate 225 
factor to obtain the fractional order derivative. This saves resources especially on digital hardware 226 
implementations since only one operator is utilized and re-used. This is easily expressed as;  227 

,ݔ)ு௉ிܫ                     (ݕ = ,ݔ)ܫ (ݕ − ,ݔ)௅௉ிܫ  228  (19)                           	(ݕ
,ݔ)௢ܫ                  (ݕ = ,ݔ)ܫ]ߛ (ݕ − ,ݔ)௅௉ிܫ [(ݕ + ,ݔ)௅௉ிܫ] ,ݕ ௞[(ݐ 	                    (20) 229 

Which gives the expressions in both integer and fractional order calculus as; 230 

,ݔ)௢ܫ                   (ݕ = ߛ ቂݔ)ܫ, (ݕ − ቄ∫ ,ݔ)ܫ∇ Ωஐ݀(ݕ ቅቃ + ቂ∫ ,ݔ)ܫ∇ Ωஐ݀(ݕ ቃ
௞
	              (21) 231 

,ݔ)௢ܫ         (ݕ = ߛ ቂݔ)ܫ, (ݕ − ቄ∫ ∇ఈݔ)ܫ, Ωஐ݀(ݕ ቅቃ + ቂ∫ ∇ఈݔ)ܫ, Ωஐ݀(ݕ ቃ
௞
	             (22) 232 

The scheme for hazy image enhancement can also be updated accordingly without much effort.  233 

3.2.2 Multi-scale illumination/reflectance contrast enhancement (Multi-IRCES) 234 

The central idea is that by further decomposing a low-pass filtered image and enhancing the 235 
details at each level and recombining the results, we would obtain much finer local enhancement. 236 
Additionally, using the fractional order reduces or minimizes the issue of noise enhancement as high 237 
frequency components are amplified at each stage, further reducing or minimizing the low frequency 238 
components at each stage. Since the haze is a low frequency phenomenon, we expect that such effects 239 
would be greatly reduced after processing without enhancing noise. The entropy and standard 240 
deviation measures are utilized to select the best outcome for the processed image in terms of the 241 
value of the exponent, k. The mathematical expressions for the algorithm are as shown in (23) to (29); 242 

,ݔ)௜ܫ               (ݕ = ,ݔ)ு௉ி௜ܫ (ݕ + ,ݔ)௅௉ி௜ܫൣ ൧(ݕ
௞
	; ݅ = 0,1,… ,ܰ − 1                  (23) 243 

,ݔ)஺ೖܫ      (ݕ =
ଵ
ே
∑ ,ݔ)௜ܫ ேିଵ(ݕ
௜ୀ଴ ; ݇ = 2                          (24) 244 

,ݔ)஻ೖܫ       (ݕ =
ଵ
ே
∑ ,ݔ)௜ܫ ;(ݕ 		݇ = 0.5ேିଵ
௜ୀ଴                    (25) 245 

         ݁஺ೖ = ;஺ೖ൯ܫ൫ݕ݌݋ݎݐ݊݁ ݁஻ೖ =  246 (26)                     (஻ೖܫ)ݕ݌݋ݎݐ݊݁
஺ೖߪ                     = ஻ೖߪ;஺ೖ൯ܫ൫݀ݐݏ =  247 (27)                              (஻ೖܫ)݀ݐݏ

,ݔ)݂                   (ݕ = ቊ
,ݔ)஺ೖܫ ,(ݕ ݁஺ೖ > ݁஻ೖ ஺ೖߪ	ݎ݋	 > ஻ೖߪ
,ݔ)஻ೖܫ ,(ݕ ݁஺ೖ < ݁஻ೖ ஺ೖߪ	ݎ݋	 < ஻ೖߪ

                       (28) 248 

                              ௢݂(ݔ, (ݕ = ,ݔ)݂]ܵܥܱܩ  249 (29)                           [(ݕ
In eqn. (23), ܫ௜(ݔ,  is the enhanced image at level ݅ and ܰ is the number of decomposition 250 (ݕ

levels, while ܫு௉ி௜(ݔ, ,ݔ)௅௉ி௜ܫ and (ݕ  are high-pass and low-pass filtered images obtained at level 251 (ݕ
݅. Based on experiments, we set ܰ = 5. The obtained level images are then aggregated to obtain the 252 
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final images, ܫ஺ೖ or ܫ஻ೖ for the different values of the power factor, ݇ in (24) and (25). The values 253 
for the power factor are chosen to be multiples of two (2) due to hardware design considerations to 254 
enable fast computation by bit shifting.  255 

The respective entropies (݁஺ೖ, ݁஻ೖ) and standard deviations (ߪ஺ೖ, ߪ஻ೖ) of the aggregated images 256 
are computed (in eqns. (26) and (27)) and used to decide the best image outcome,	݂(ݔ,  in (28), 257 (ݕ
which is then processed with the modified global contrast enhancement algorithm to obtain the final 258 
output image, ௢݂(ݔ, (ݕ  in (29). This is based on the simultaneous multi-level high frequency 259 
component (edges and details) enhancement and multi-level low frequency component attenuation.  260 

All processing operations are achieved with spatial filter kernels using fractional order-based 261 
calculus, which slightly increases computation cost but also yields better results in terms of balanced 262 
edge enhancement. However, we can also save on computation by utilizing integer-order-based 263 
calculus for the kernel coefficients, though results will be more drastic. The diagram of the proposed 264 
algorithm for enhancement of both hazy and underwater images is shown in Fig. 1. All processing 265 
operations are achieved with spatial filter kernels using fractional order-based calculus, which 266 
slightly increases computation cost but also yields better results in terms of balanced edge 267 
enhancement. However, we can also save on computation by utilizing integer-order-based calculus 268 
for the kernel coefficients, though results will be more drastic. 269 

 270 

Figure 1. Proposed algorithm (PA) for enhancing hazy and underwater images  271 

3.2.3 Preliminary results 272 

After testing several images, it was discovered that some images were better enhanced when 273 
using the 5th and 95th percentiles rather than the 1st and 99th percentiles. The representative images of 274 
these two groups include those unaffected by wide ranges while the other exhibits over-exposure for 275 
narrow ranges. This was partly the reason that the PWL approach was utilized in previous work [27]. 276 
Thus, one approach would be to devise a means of selecting the appropriate percentiles for these two 277 
groups of images. A simple compromise was to set the range between the 2nd and 98th percentiles. 278 
However, we would still be faced with the issue of outlier images, which resist colour correction 279 
attempts. Thus, the need for the localized operator to aid in the detail recovery in the otherwise over-280 
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exposed regions when global contrast operations are performed. In Fig. 2, a sample result of the 281 
algorithm is shown for high-pass and high-boost configurations. The latter is used to minimize edge 282 
and noise over-enhancement, while the former improves details in the processed images as shown. 283 

 284 
        (a)                          (b)                          (c)                                    285 

Figure 2. (a) Underwater image enhanced with (b) PA using high-pass and (c) high-boost fractional 286 
filter settings   287 

3.3 Problems and solutions  288 

The initial developed scheme worked extremely well for underwater images and several hazy 289 
images. However, problems were observed in other hazy images. These issues included colour 290 
fading, distortion, discolouration, image darkening, inadequate haze removal, and over-enhanced 291 
edges. Thus, we devised solutions to some of these problems. The colour correction routine was 292 
omitted and the output, ݂(ݔ,  was reformulated as; 293 (ݕ

,ݔ)݂             (ݕ =
ூಲೖ(௫,௬)ାூಳೖ(௫,௬)

ଶ
                             (30) 294 

This improved results and resolved colour distortion in the affected hazy images, though there 295 
was some colour fading in RGB and HSI/HSV versions. Thus, we utilized the red-green-blue-296 
intensity/value (RGB-IV) formulation [58] to improve colour rendition, which resulted in colour 297 
enhancement but with dark images. We also investigated the use of CLAHE to improve local contrast, 298 
resulting in drastic improvements. However, enhanced images also exhibited halo effects and colour 299 
distortion, which persisted despite combination with the multi-scale IRCES algorithm. Furthermore, 300 
there was drastic colour loss/fading using CLAHE in addition to increased computational 301 
complexity, defeating the initial objective of the proposed approach. Thus, alternatives were 302 
considered to resolve these issues.  303 

Wavelet-based fusion of ܫ஺ೖ(ݔ, (ݕ  and ܫ஻ೖ(ݔ, (ݕ  using mean, minimum or maximum 304 
configurations was implemented. Good results were observed in images with mostly uniform haze. 305 
Conversely, sky regions were degraded in hazy images with uneven haze or considerable sky 306 
regions. Furthermore, dark bands and outlines were observed around edges in some processed 307 
images. Overall, image results were inconsistent using this scheme. Thus we reformulated the multi-308 
scale algorithm after extensive analysis.  309 

Redundant frequencies, which were unnecessary in hazy image enhancement results were 310 
observed. This was due to the nature of the generation of the two combined images; ܫ஺ೖ(ݔ,  and 311 (ݕ
,ݔ)஻ೖܫ  leading to unbalanced contributions of frequency components. Constant varying of weights 312 ,(ݕ
for both images and corresponding results led to inconsistent results. Thus, a more formalized, 313 
systematic approach was required. Based on analysis of the Fourier Transform of the images, we 314 
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require subtle enhancement of the high frequency components and a drastic reduction of the 315 
contributions of the low frequency components. This informed the reformulation of the multi-scale 316 
algorithm for hazy images as; 317 

,ݔ)ܫ         (ݕ = ܷ௠௔௫ − ,ݔ)ܷ  318 (31)                          (ݕ
       ൛ܫ௅௉ி೔(ݔ, ,(ݕ ,ݔ)ு௉ி೔ܫ ൟ(ݕ = ,ݔ)ܫ൫݁ݏ݋݌݉݋ܿ݁݀  ൯                (32) 319(ݕ

   ܵ௅௉ி೔ = ∑ ∑ ,ݔ)௅௉ி೔ܫ (ݕ
ெିଵ
௬ୀ଴

ேିଵ
௫ୀ଴                            (33)    320 

   ܵு௉ி೔ = ∑ ∑ ,ݔ)ு௉ி೔ܫ (ݕ
ெିଵ
௬ୀ଴

ேିଵ
௫ୀ଴                           (34)               321 

         ௧ܵ௢௧௔௟ = ܵ௅௉ி೔ + ܵு௉ி೔                           (35) 322 

௅௉ி೔݌            =
ௌಽುಷ೔
ௌ೟೚೟ೌ೗

ு௉ி೔݌ ; =
ௌಹುಷ೔
ௌ೟೚೟ೌ೗

                          (36) 323 

In the expressions, (31) to (36), ܷ(ݔ, ,ݔ)ܫ and (ݕ  are the original and reversed hazy image, 324 (ݕ
respectively, while ܷ௠௔௫ is the maximum pixel intensity value of the image; ܫ௅௉ி೔(ݔ, ,ݔ)ு௉ி೔ܫ ,(ݕ  325 ,(ݕ
ܵ௅௉ி೔  and ܵு௉ி೔  are the low- and high-pass filtered images of level (or scale), i and their respective 326 
summations. The terms ௧ܵ௢௧௔௟ ௅௉ி೔݌ , ு௉ி೔݌ ,  are the total sum, and percentage of low and high 327 
frequency components, respectively. In order to balance the high and low frequency components, we 328 
create new constants, ܿଵ and ܿଶ to be dependent on each other using the percentages; 329 

                                      ܿଵ =
ଵ

௣ಽುಷ೔
;		ܿଶ =

ଵ
௖భ

                            (37) 330 

After evaluation of the two constants, we use the expression to obtain the enhanced level image 331 
as; 332 

,ݔ)௜ܫ  (ݕ = ܿଵൣܫு௉ி௜(ݔ, ൧(ݕ + ,ݔ)௅௉ி௜ܫൣ ൧(ݕ
௖మ 	                  (38) 333 

The level images are subsequently summed to obtain the enhanced image as shown in (39); 334 

,ݔ)݂  (ݕ = ଵ
஽ିଵ

∑ ,ݔ)௜ܫ ஽ିଵ(ݕ
௜ୀ଴                     (39) 335 

The de-hazed image, ܷᇱ(ݔ,  is obtained by inverting the image as shown; 336 (ݕ
           ܷᇱ(ݔ, (ݕ = ௠݂௔௫ − ,ݔ)݂  337 (40)                        (ݕ

Based on experiments, we set ܿଵ and ܿଶ as 1.21 and 0.8264 respectively since they are always 338 
constant. These are the default values for balanced enhancement of high and low frequency 339 
components to avoid visual artefacts. However, the values may be increased or decreased gradually 340 
for maximum visual effect in certain images. This new formulation solves the edge over-341 
enhancement, colour distortion and halo effect problem. The results are shown in Fig. 3 for processed 342 
images using previous and improved configurations of PA. Note the elimination of the colour 343 
distortion and reduced degree of noise enhancement for images in Fig. 3(b) compared to Fig. 3(a). 344 

The estimated computational complexity of the proposed approach is given as; ܱ(ܰݓܯଶܦ) for 345 
D levels using spatial window size, w of fractional order-based filter for an image with N rows and 346 
M columns. Additionally, the algorithm can be speeded up by exploiting symmetric convolutional 347 
structures to reduce the number of multiplications and additions. 348 
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 349 
(a) 350 

 351 
(b) 352 

Figure 3. Processed images using (a) previous configuration (b) improved configuration of PA 353 

4. Results 354 

We present the result comparisons of the proposed approach (PA) with other algorithms from 355 
the literature. We utilize metrics such as entropy (E), (relative) average gradient (RAG) [59], global 356 
contrast factor (GCF) [60], colourfulness or colour enhancement factor (CEF) [61] for underwater 357 
images. For hazy images, we utilize the RAG, ratio of visible edges, Qe [1] and saturation 358 
parameter/percentage of black or white pixels, σ [1] to evaluate results. Higher values indicate better 359 
results for the first two metrics while lower values imply improvement for the last metric. The 360 
hardware specifications of the computing platform are: PC with Intel® Core i7-6500U x64-based 361 
processor at 2.5GHz/2.59GHz, 12 GB RAM running 64-bit OS (Microsoft® Windows™ 10 Home) and 362 
NVIDIA® GeForce™ 940M GPU with compute capability of 5.0. 363 
 364 
4.1 Underwater images 365 

Results are presented in Fig. 4, which contains results from [5], amended with results from [27] 366 
and PA and show that there is a considerable contrast and edge enhancement as details are seen 367 
much more clearly with minimal haze. For the fish image in Fig. 4, only results by Ancuti, et al [62], 368 
Fu et al [15], Galdran, et al [4], PDE-based PWL-CLAHE (forward and reverse configuration) [27] and 369 
PA yield good results. The rest of the image results depict hazy, faded images with large degree of 370 
green colouration, while Li, et al’s method [5] yields an image with reddish colouration, implying 371 
over-compensation of red channel in the processed image.  372 
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 373 
 374 
 375 
 376 
 377 
 378 
 379 

Figure 4. (a) Original Fish2 image processed with algorithms proposed by (b) Ancuti et al [62] (c) Fu 380 
et al [15] (d) Chiang and Chen [8] (e) He et al [32] (f) Carlevaris-Bianco et al [11] (g) Serikawa and Lu 381 
[10] (h) Galdran et al [4] and (i) Li et al [5], and IPA using (j) PWL-CLAHE and (k) CLAHE-PWL-AD 382 
configurations (l) PA 383 

 384 
Based on the results, the proposed algorithm yields finer and sharper edges and details with 385 

minimal intrinsic noise due to the fractional derivative ability. The visual results are mostly reflected 386 
in the quantitative metrics shown in Table 1, with PA showing the highest AG values, indicating 387 
more visible edges and details especially on the rock face of the bottom left corner of the image 388 

KEY 
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(image(l)). However, PDE-GOC2-CLAHE yields the highest colourfulness (C) and entropy while the 389 
method by Fu, et al gives best GCF value (though there is over-exposure in the bright regions of the 390 
rock faces in image (c)). 391 
 392 

Table 1. Comparison of IPA with various algorithms for Fish2 image 393 

Measure

s 

\Algos 

Ancuti 

[62] 

Bianco 

[11] 

Chian

g 

[8] 

Fu  

[15] 

Galdra

n 

[4] 

He 

[32] 

Li 

 [5] 

Serikaw

a 

[10] 

(PDE-

PWL- 

CLAHE

) [27] 

PA 

Entropy 7.8438 7.1251 7.2986 7.862

8 

7.6376 7.4587 7.7168 7.4531 7.8945 7.2558 

GCF 9.5759 4.6944 3.9611 9.640

4 

8.7299 6.372 7.0632 4.9016 8.6257 6.9014 

C 54.570

4 

42.312

8 

54.897

5 

36.33

7 

64.0309 57.053

3 

63.849

8 

63.2207 77.5420 61.195

7 

AG 9.1638 4.1501 4.1285 9.473

2 

5.6937 5.174 7.6573 5.2034 10.4343 13.910

7 

 394 
4.2 Hazy image enhancement results 395 

We also present results and comparisons for hazy image contrast enhancement with algorithms 396 
from the literature using 53 real benchmark images employed in de-hazing experiments. Also, the 397 
FRIDA3 dataset [63] [64] consisting of left and right views of 66 synthetic images was also tested. The 398 
algorithms include Tarel and Hautiere [65], Dai et al [66], Nishino et al [67], He et al [32], Galdran et 399 
al [41], Wang and He [68], Zhu et al [69], Ren et al [46], partial differential equation-based single scale 400 
Retinex GOC-CLAHE (PDE-GOC-SSR-CLAHE) [52], PDE-IRCES [53], and PA. The proposed 401 
approach (PA) is much more vivid as it enhances edges and avoids discolouration of sky regions as 402 
seen in the Tiananmen image in Fig. 5. Best results are observed for PA, Ren, et al [46], Zhu, et al [69] 403 
and He et al [32] (has halos) followed by PDE-GOC-SSR-CLAHE [52] (has some halos) and PDE-404 
IRCES [53] (no halos but under-enhanced in some regions).  405 

The method by Tarel and Hautiere [65] shows over-enhancement of edges and discolouration of 406 
sky region similarly to PDE-IRCES. The method by Ren, et al shows sharpened features without sky 407 
discolouration or over-enhancement similar to Zhu, et al (which is darker). The PDE-GOC-SSR-408 
CLAHE yields considerable detail in non-homogeneous regions, while PA yields the highest detail 409 
and edge enhancement without sky discolouration or halo effects. The same is observed for the toys 410 
image in Fig. 6 as the image obtained from PA has the most enhanced edges and details compared to 411 
the other results. The PDE-GOC-SSR-CLAHE gives best local contrast enhancement, followed by the 412 
DCP method by He et al, and the methods by Wang, et al [68], Ren et al, Dai, et al [66] and Zhu, et al. 413 
The rest of the other image results are faded and still contain a reasonable amount of haze or have 414 
colour distortion or saturation with minimal edge enhancement. 415 
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 416 
     (a)                  (b)                   (c)                  (d) 417 

   418 
             (e)                 (f)                   (g)                  (h)          419 

                      420 
                         (i)                             421 

Figure 5. (a) Original hazy image (b) Tarel, et al (c) Zhu, et al (d) PA (e) PDE-IRCES (f) He, et al (g) 422 
PDE-GOC-SSR-CLAHE (h) Ren et al (i) AMEF 423 

 424 

 425 
     (a)                   (b)                     (c)                     (d)                                           426 

 427 
   (e)                     (f)                     (g)                     (h) 428 

  429 
   (i)                      (j)                     (k)                     (l)             430 
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       431 
 (m)         432 

Figure 6. (a) Original hazy image (b) Tarel, et al [65] (c) Dai et al [66] (d) PA (e) He et al [32] (f) Nishino, 433 
et al [67] (g) PDE-GOC-SSR-CLAHE [52] (h) PDE-IRCES [53] (i) Galdran, et al (EVID) [41] (j) Wang & 434 
He [68]  (k) Zhu, et al [69] (l) Ren, et al [46] (m) AMEF 435 

 436 
Additionally, we present the numerical results for the available algorithm implementations 437 

compared with PA in Table 2. Results indicate that RAG and ratio of visible edge values are the 438 
highest for PA, followed by PDE-GOC-SSR-CLAHE, He et al and Ren, et al. Thus, these two metrics 439 
indicate maximum edge enhancement corresponding to increased visibility and haze removal. The 440 
value of the Canon image yields the highest RAG value and the image result (not shown) depicted 441 
drastic edge and detail enhancement. 442 

The PA can also be configured to process only the intensity channel for hazy images using the 443 
HSI and HSV colour spaces to avoid hue distortion. However, the algorithm was initially conceived 444 
in the RGB space to enable the processing of both underwater and hazy colour images without need 445 
for modification. We also present the runtimes of PA in comparison with the other approaches in 446 
Table 3 and Fig. 7 to further showcase the low computational complexity of the algorithm. Only the 447 
method by Ren et al is fully optimized for GPU computation, with PA and other algorithms using 448 
parallel computation where possible. Results indicate that PA is the fastest algorithm of all the 449 
compared ones. Furthermore, the revised formulation combined with the RGB-IV does not increase 450 
run-time considerably, except for images with very large dimensions. Nevertheless, the run-time is 451 
still much less than the algorithms by He et al, Zhu et al and Ren et al. The revised scheme is also 452 
much easier to implement in FPGA hardware than the earlier version due to absence of global 453 
statistical computation. 454 

Additionally, we present the relative average gradient (RAG) values for the available algorithm 455 
implementations compared with the proposed approach in Table 2. Results indicate improvements 456 
using the proposed approach and the RAG values are the highest for the PA, followed by PDE-GOC-457 
SSR-CLAHE, He et al and Ren, et al. Thus, such RAG values indicate maximum edge enhancement 458 
corresponding to increased visibility and haze removal. The value of the Canon image yields the 459 
highest RAG value and the image result (not shown) depicted drastic edge and detail enhancement. 460 

 461 
 462 
 463 
 464 
 465 
 466 
 467 
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Table 2. RAG, ratio of visible edges and saturation parameter values for images processed with He 468 
et al [32], Zhu, et al [69], Ren, et al, PDE-GOC-SSR-CLAHE [52], PDE-IRCES [53] and PA 469 

    Algos 

 

 

 

 

Images  

He, et al 

[32]  

(Ω = 0.95, w 

= 15, A = 

240, r = 24)  

Zhu, et al [69] 

 ;0.95,1=ߚ

  ;0.1893=0ߠ

 ;1.0267=1ߠ

  ;1.2966−=2ߠ

Guided filter: 

  ;60=ݎ

 ;1=1ݐ ;0.05=0ݐ

 0.001=ߝ

Ren et al [46] 

 canyon) 1.3=ߛ

image)  

 1.5≥ߛ≥0.8

(others)  

PDE-GOC-

SSR-CLAHE 

[52] Δ0.25=ݐ; 

  1.5=ݐܽݏ݇

PDE-

IRCES 

[53] 

Δ0.25=ݐ 

PA 

Tiananmen  1.8455  

/0.9606  

/0.1879  

1.1866  

/1.0041  

/0.0814  

1.5649  

/0.8734  

/0.1288  

2.8225  

/1.0386  

/0.0625  

2.3219 

/1.1614 

/0 

4.4410 

/1.4514 

/0.1688 

Cones  1.4977  

/1.1478  

/0.3878  

0.9704  

/1.0873  

/0.2499  

1.3818  

/1.1042  

/0.2956  

2.7516  

/1.1999  

/0.2733  

2.5881 

/1.2064 

/0 

4.9702 

/1.4620 

/0.3142 

City1  1.1914  

/1.0332  

/0.1336  

0.9303  

/1.0075  

/0.2002  

1.2989  

/1.0232  

/0.2002  

1.7762  

/1.1164  

/0.0562  

2.4080 

/1.3458 

/0.00375 

3.8282 

/1.4898 

/0.1712 

Canyon  1.7481  1.2880  1.4564  2.5408  2.5224 3.9892 

/1.7903 

/0.2412 

 /1.1057  

/0.3796  

/1.0679  

/0.2412  

/1.0319  

/0.0446  

/1.2070  

/0.3103  

/1.19684 

/0.00019 

Canon  3.2903  

/1.0857  

/0.3947  

1.7127  

/0.9089  

/0.3198  

2.6871  

/1.0832  

/0.3831  

2.8059  

/1.1188  

/0.3947  

2.8783 

/1.3450 

/4.4E-05 

8.0224 

/1.5785 

/0.3942 

Mountain  1.7105  

/0.9348  

/0.0787  

1.2092  

/0.9307  

/0.0984  

1.6005  

/0.9784  

/0.0074  

2.7275  

/1.0202  

/0.0074  

2.9827 

/1.2977 

/7.1E-05 

6.5399 

/1.5503 

/0.0244 

Brickhouse  1.2006  

/0.9747  

/0.1172  

0.8597  

/1.1395  

/0.0730  

1.2118  

/1.0030  

/0.1288  

1.0836  

/1.1135  

/0.1021  

1.4105 

/1.2789 

/0 

3.0014 

/1.3563 

/0.0983 

Pumpkins  1.5927  

/0.9501  

/0.1581  

0.9311  

/0.6726  

/0.1333  

1.4753  

/0.9511  

/0.1764  

2.4539  

/1.0361  

/0.1516  

2.2777 

/1.1626 

/7.1E-05 

3.3553 

/1.6469 

/0.2329 

Train  1.5206  

/1.0090  

/0.1664  

0.9797  

/1.0509  

/0.3265  

1.2036  

/1.0203  

/0.2412  

1.5190  

/1.1106  

/0.3005  

2.2569 

/1.3589 

/0.0038 

4.3014 

/1.5151 

/0.2594 

Toys  2.2566  

/0.9712  

/0.3840  

1.6711  

/1.0117  

/0.2865  

2.1568  

/0.9576  

/0.2827  

2.9813  

/1.1095  

/0.3379  

2.1367 

/1.2887 

/2.8E-05 

4.2837 

/1.5937 

/0.3736 

 470 
 471 
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Table 3. Runtimes for hazy images processed with He et al [32], Zhu, et al [69], Ren, et al, AMEF, 472 
PDE-GOC-SSR-CLAHE [52], PDE-IRCES [53] and PA 473 

         Algos 

 

 

Images     

He, et al 

[32] 

Zhu, et al 

[69] 

Ren et al 

[46] 

AMEF 

[54] 

 PDE-GOC-

SSR-CLAHE 

[52] 

PDE-

IRCES 

[53] 

PA 

Tiananmen(450×600) 1.253494 0.991586 2.362754 1.4088  3.530989 2.330879 0.480659 

Cones (384×465) 0.850155 0.661314 1.651447 1.0506  2.381621 1.555098 0.268909 

City1(600×400) 1.094910 0.875287 2.070620 1.2709  3.203117 2.183417 0.283372 

Canyon (600×450) 1.237655 0.972741 2.529734 1.5066  3.821395 2.306129 0.309343 

Canon (525×600) 1.431257 1.135376 2.890541 1.6958  4.187972   2.717652 0.374638 

Mountain (400×600) 1.129231 0.880835 2.358143 1.2985  3.158335 2.055685 0.360240 

Brickhouse(711×693) 2.230871 1.667610 5.234674 2.3618  6.395965 4.385789 1.102332 

Pumpkins (400×600) 1.125475 0.901815 2.253179 1.5018  3.152969 2.143529 0.407310 

Train (400×600) 1.105757 0.849072 2.075004 1.2935  3.178277 1.995436 0.365481 

Toys (360×500) 0.844945 0.657376 1.578068 1.0387  2.429651 1.545031 0.260878 

 474 
 475 

 476 
(a) 477 
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 478 
(b) 479 

 480 
(c) 481 

Figure 7. Runtime comparison of various algorithms using (a) 53 real and 66 synthetic (b) left and (c) 482 
right view hazy images 483 

5 Visual comparison of AMEF and PA and Discussion 484 

The key components of the enhancement capability of AMEF are the CLAHE and Gamma 485 
Correction (GC) algorithm. Unlike the PDE-GOC-CLAHE, which included the CLAHE and 486 
minimized its negative effects [52], the AMEF does not possess such features. We directly compare 487 
and present a sample of visual results of the state-of-the-art AMEF with PA in Figs. 8 to 10. Based on 488 
visual observation, AMEF generally yields poor results without constant tuning of the clip limit, c. 489 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 July 2018                   doi:10.20944/preprints201807.0402.v1

Peer-reviewed version available at J. Imaging 2018, 4, 108; doi:10.3390/jimaging4090108

http://dx.doi.org/10.20944/preprints201807.0402.v1
http://dx.doi.org/10.3390/jimaging4090108


 18 of 24 

 

Fig. 8(c) shows that PA can replicate the results of the AMEF by utilizing a high-boost filter with 490 
slightly better contrast than AMEF without CLAHE. Adding CLAHE to PA yields better results than 491 
AMEF with CLAHE.  492 

The AMEF de-hazing algorithm yields images with halos and colour distortion similar to or 493 
worse than the CLAHE- or Retinex-based de-hazing algorithms as seen in the Brickhouse image in Fig. 494 
9(b). The AMEF is mainly suited to images with thick haze as seen in the Train image in Fig. 9(b), 495 
though there is colour fading. The Horses images was processed using c = 0.03 for AMEF and PA was 496 
processed using both filter settings. This is one of the images where AMEF performs adequately, 497 
though any slight increase in c leads to heavy colour distortion. Increasing the clip limit of the CLAHE 498 
in the AMF leads to increased colour distortion. Additionally, the AMEF algorithm is neither 499 
optimized nor adaptive and requires constant tuning of this clip limit parameter to obtain the best 500 
results for each hazy image. This makes the AMEF algorithm impractical for effective batch or real-501 
time image de-hazing processing as these issues were consistently observed using several benchmark 502 
hazy images. Ultimately, PA is much faster than the AMEF algorithm while yielding good 503 
enhancement results without halos, colour degradation or the need to constantly adjust parameters. 504 
Also, the AMEF is unable to enhance underwater images, while PA effortlessly performs this 505 
operation as seen in Fig. 11.  506 

 507 
              (a)                         (b)                        (c) 508 

 509 
             (d)                         (e)                          (f)                                 510 

Figure 8. (a) PA (b) without GOCS (c) using high-boost filter setting (d) AMEF (c = 0.1) (e) AMEF (c = 511 
0.01) (f) AMEF without CLAHE  512 
 513 
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 514 
           (a)                     (b)                           (c)                                 515 

 516 
           (d)                    (e)                           (f)                                  517 

Figure 9. (a) PA (high-boost) (b) & (c) PA (d) AMEF (c=0.03) (e) & (f) AMEF (c = 0.1)  518 

 519 

 520 
 (a)                                  (b)                                                                             521 

 522 
(c)                                  (d)                                                                                 523 

Figure 10. (a) PA (b) with high-boost filter setting (c) AMEF (c = 0.03) (d) AMEF without CLAHE  524 
 525 
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 526 
(a)                     (b)                      (c)                                 527 

Figure 11. (a) Original underwater image processed with (b) AMEF (c=0.1) (c) PA   528 

6. Conclusions 529 

A fast, adaptive and versatile multi-scale, fractional order-based hazy and underwater image 530 
enhancement algorithm with a relatively simplified structure suitable for hardware implementation 531 
has been proposed and developed. The earlier problems of the algorithm were addressed by 532 
automated balanced weighting of the filtered images used in the fusion process. The adherence to 533 
image entropy and standard deviation features coupled with global and local contrast enhancement 534 
ensures that visibility is greatly improved in the final result. Furthermore, comparisons with a recent 535 
state-of-the-art multi-scale algorithm shows that the proposed approach is unmatched in several 536 
aspects such as speed, consistency, versatility, adaptability and flexibility. Results show that the 537 
proposed scheme achieves the stated objectives and can be easily realized in hardware systems for 538 
fast image processing in challenging imaging environments. 539 
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