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Abstract 

Morphological parameters like cotton height, branches, Leaf Area Index and biomass are 
mainly affected by the vegetation water content (VWC). Periodical assessment of the VWC 
and crop parameters is required for timely management of the crop for maximizing yield. The 
study aimed at using both optical and microwave remotely sensed data to assess cotton crop 
condition based on the above mentioned traits. Vegetation indices (VI) derived from ground 
based measurements (5 narrow band and 2 broad band VIs) as well as satellite derived 
reflectance (2 broad band VIs) were assessed. Regression models were derived for estimating 
LAI, biomass and plant water content using the ground based indices and applied to the 
satellite derived spectral index (from LISS-III) map to estimate the respective parameters. 
HH and HV polarization from RISAT-1 were used to derive Radar Vegetation Index (RVI). 
The coefficient of determination of the model for estimating LAI, biomass and vegetation 
water content of cotton with optical vegetation index as input parameter were found to be 
0.42, 0.51 and 0.52, respectively. The correlation between RVI and plant height, date of 
planting in terms of the age of the crop and vegetation water content were found to range 
between 0.4 to 0.6. The fresh biomass from RVI showed spatial variability from 100 gm-2 to 
4000 gm-2 while the dry biomass map derived from NDVI showed spatial variability of 50 to 
950 g m-2 for the study area. Plant water content in the district varied from 65 to 85%. The 
correlation between optical vegetation index and RVI was not significant. Hence a multiple 
linear regression model using both optical index (NDVI and LSWI) and SAR index (RVI) 
was developed to assess the LAI, biomass and plant water content. The model showed a R2 of 
0.5 for LAI estimation but not significant for biomass and water content. This study show 
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cased the use of combined optical and microwave (C band) remote sensing for cotton 
condition assessment. 

Key words: SAR remote sensing, Optical remote sensing, RISAT-1, LISS III, RVI, VI, 
cotton, height, LAI, Biomass, Vegetation water content 

 

1. Introduction 

Cotton (Gossypium sp.) is the most important fibre crop worldwide, cultivated in 
approximately 35 Mha area. Its yield is governed by the height and number of fruiting 
branches in addition to the green leaf area index (LAI) and is a branched indeterminate crop. 
All these morphological parameters are mainly affected by the plant water status. Hence, 
periodical assessment of the above traits as well as the plant water content throughout the 
growth season is required for proper and timely management of the crop for maximizing 
yield. Reflective properties of the cotton crop can determine the green LAI and plant water 
status while information on height, branching habit and plant water content can be derived 
through microwave remote sensing (C band). Moreover, being a rainy season active (June-
September) crop- flowering and boll formation, optical data acquisition at regular interval is a 
constraint due to prevailing cloud cover. The reflected energy from vegetated surfaces could 
be used for monitoring crop condition through estimation of morphological traits such as 
LAI, biomass and plant water content as well as through detection of biotic stress. In the 
reflective region of the optical spectrum, assessment of crop growth and plant status is 
generally accomplished by computing a ratio or linear combination of visible and near-
infrared reflectance or microwave region, termed a vegetation index (VI) (Rouse et al., 1973). 
Some VIs have been found to be sensitive to greenness while some are sensitive to plant 
water status. This sensitivity is attributed to the absorption of incident red radiation by plant 
chlorophyll, scattering of incident NIR radiation by plant leaf structure and absorption of 
shortwave infrared radiation by plant water (Rouse et al., 1973).  

Although optical remote sensing provides a powerful farm management tool, there are some 
serious limitations that have restricted crop condition assessment especially in rainy season, 
due to limited periods of cloud-free sky conditions. Microwave remote sensing, in particular, 
Radar has immense and untapped potential to complement conventional optical remote 
sensing techniques in the monitoring and assessing crop growth. At the appropriate 
frequencies, it provides information on the entire canopy and not just the first layer of leaves. 
Various experiments to investigate the response of microwave region to crop biomass and 
condition (Jin and Liu, 1997, Wigneron et al., 1999, Maity et al., 2004) for a variety of crops 
are needed to develop robust quickly implementable models. The scattering behaviour of the 
radar signal is governed by both the dielectric properties of the soil and vegetation and the 
geometric configuration of the scattering elements (soil roughness, leaves, stalk, and fruit) 
with respect to the wavelength, direction, and polarization of the incident wave. There is 
some evidence that the radar signal at high frequencies (C band and higher) is particularly 
sensitive to such plant parameters as GLAI, plant biomass, and percentage of vegetation 
cover (Bouman, 1991; Prevot et al., 1993). The vegetation canopy can be characterized using 
several biophysical variables (i.e., Vegetation Water Content- VWC and biomass) as well as 
traditional remote sensing indices like Normalised Difference Vegetation Index (NDVI) and 
LAI variables (Jackson and Schmugge, 1991, Tucker, 1979). The uniqueness of using the 
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optical and Radar combination in the current and future perspective such as RS 2 and repeat 
mission with RISAT 1A, 1B to form a constellation (high temporal frequency) for robust and 
near real time crop health monitoring at all seasons. Detailed comparative study on narrow 
and broad leaf crops using multifrequency multitemporal polarimetric data, collected at C- 
and L-bands by means of airborne and satellite synthetic aperture radar (SAR), showed that 
the relations between the backscattering of crops and the vegetation biomass depend on plant 
type (Macelloni et al., 2001).Mono- and multi-temporal TerraSAR-X and ALOS PALSAR 
biomass estimation models were analyzed for the development of accurate biomass 
estimations for forests (Englhart et al.,2011).  
 

Several indications to derive vegetation information from radar and radiometer data including 
Radar Vegetation Index (RVI) were tested for VWC estimation through a generalized linear 
model (GLCM) by Srivastava et al. (1990).  Gao and Goetz (1995) proposed a kind of Radar 
Vegetation Index (RVI) and applied to rice crop and soybean crops. Kim et al. (2012) 
compared RVI for L-, C- and X-bands to crop growth, LAI and NDVI. The RVI was found to 
correlate well with VWC, LAI and NDVI. The VWC has been used to separate out canopy 
contribution of volume scattering to retrieve soil moisture in the SMAP mission (Huang et 
al.,2015, Yamada, 2015). RVI was found well correlated with VWC for vegetation types 
having a greater dynamic range of growth measure like sigma naught and also used for other 
applications including yield estimation (Kim et al., 2012, Huang et al., 2015).  

In this investigation, we examine the relationship between dual-polarised radar response with 
above ground measured biomass, VWC, age of the crop and height among the key plant 
biophysical parameters. The major focus is on the use of the proposed RVI (Kim and Van 
Zyl, 2001) for crop stage, condition and vigour assessment. These observations were 
analyzed to determine the applicability of current and future higher penetration radar satellite 
systems on the vegetation condition monitoring within crop types in varied vigour regions. In 
this case, we are developing a robust way to characterize plant water content using radar 
observations synchronous to critical (important) stages of cotton crop particularly when time 
series data are available. We analyse the relationships between the RVI for RISAT data and 
crop growth parameters (VWC and biomass) over the entire cotton growth cycle. The 
complimentary use of optical and microwave remotely sensed data to assess cotton crop 
condition has been showcased in the study. 

2. Study area & Data used 

Surendranagar district of Gujarat state in Western India, a major cotton belt in the country has 
been selected for the study. Gujarat is the second largest producer of cotton in India. 
Surendranagar district is primarily an agricultural district with cotton and cumin as the 
predominant crops. The centre point of the region bears latitude 22.73ÁN and longitude 
72.63ÁE. The climate of the study area is semi-arid with annual rainfall of 366 mm in 2016. 
Soil type is black cotton soil with silty clay loam texture. Other major crops being cultivated 
are pearlmillet, wheat, sesame, groundnut, etc.  About 37% of land holdings are with small 
and marginal farmers and the average size of the holdings is 1.22 ha. Castor, Sesame, 
Sorghum are other crops sown in kharif season in this area. Two different types of cotton are 
grown, Bt (Bacillus thuringenesis genetically modified) and indigenous cotton. Bt cotton is 
mostly irrigated. It is sown before the monsoon season during the month of May-early June 
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with pre-sowing irrigation and an intermittent irrigation as and when required depending on 
the water requirement satisfaction. Later on the water requirement is met with monsoon 
showers. The indigenous cotton is mostly rainfed, sown with the onset of monsoon rains, late 
sown in July.  

Datasets 

Ground:  Ground reflectance with ASD spectroradiometer in the spectral range of 350-2500 
nm, observation on LAI, plant height, row-row and plant to plant spacing, row direction, 
planting date, biomass, plant water content were measured. 

Satellite  

Optical: Data from Linear Imaging Self Scanner (LISS-III) of Resourcesat-2 at 23.5 m spatial 
resolution was acquired from NDC-NRSC and cotton mask derived from RS2-AWiFS or 
Gujarat state was collected from MNCFC, New Delhi.    

Synthetic Aperture Radar (SAR): SAR data consisting of multi-temporal scenes from 
RISAT-1 MRS-mode in descending pass (incidence angle 36Á) were used. Till recently the 
Medium Resolution SCANSAR (MRS-HH/HV) mode of RISAT-1 18m pixel spacing has 
been used for operational monitoring of crop areas in India.   Data were acquired in the 
monsoon season at different principal stages of crops viz. initial vegetative, peak vegetative 
and flowering, boll formation. The major kharif fibre crop cotton is addressed here, the 
validity of truncated formula in equation 2 for extension for RVI using quad-pol RISAT-1 
(Fine Resolution Stripmap-FRS-2 data for a region in North India (Haryana) was carried out 
in a previous study (Haldar et al., 2017). Details of data used with their source and other 
details are given in table 1. 

Table 1: Details of ground and Satellite data used for this study  

Data Satellite/ 
Sensor/ 
instrume
nt 

Resolution Source Remarks 

HH, HV polarized 
data 

RISAT1 
(SAR-
MRS) 

18 m (pixel 
spacing) 

NDC-NRSC Data acquired for three 
dates (1 July, 26 July 
and 20 August) 

Multispectral radiance 
at four bands (Green, 
Red, NIR and SWIR)  

Resourcesat
-2 (LISS-
III) 

24 m NDC-NRSC Data for two clear-sky 
dates (3 September and 
23 September, 2016  

Ground spectra over 
the spectral region of 
350-2500nm 

ASD 
fieldspec 
spectro-
radiometer 

In-situ 
(spectral 
resolution at 
1nm) 

-- Spectral observation 
were only taken for 
August month  

 

Though there were no overlapping dates of RISAT-1 and LISS III, the close by dates on 20 
August and 3 September have synergy. Also the spatial resolution of the SAR and optical 
satellite datasets were comparable. 
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3. Methodology 

3.1 Ground data collection  

Selection of cotton fields was based on crop type, crop area, fields with >3ha area were 
preferred. Ground data were collected on crop age, crop vigour, crop height, soil type, soil 
moisture, soil roughness, crop wet and dry biomass, Leaf area index (LAI) and vegetation 
water content (VWC). Most of the fields were 5ha or more in areal extent. Cotton crop 
samples were collected from 115 fields. 100 samples were used in the analysis. The ground 
data collection on various parameter collection are shown in fig.1 a-c. The two dominant 
cotton types are shown in fig 1d.  One scene from SAR image and the False Colour 
Composite (FCC) from LISS-III image along with selected sites are shown in fig 1e and f. 
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The indigenous cotton are totally rainfed and taken up by marginal farmers, sown with the 
onset of monsoon during July. The growth rate is miserably slow (table 2) with traditional 
package of practices only. The Bt cotton an advanced hybrid cotton in contrast sown in May 
with irrigation. All modern inputs/package of practices are applied. The picking of the boll 
starts in September, there are 3-4 pickings. On the other hand in indigenous cotton only one 
picking can be done in Dec/ January coinciding with the last picking of the indigenous cotton. 
 

The field information was collected during all the three dates synchronous to the satellite 
overpass. Wet biomass was collected for 1sq. m. area housing about 2-3 cotton plants. Plant 
samples were collected by cutting above ground biomass. The VWC was computed from wet 
and dry biomass across all the sampling sites.  Other land cover information such as urban, 
water body, villages, natural vegetation and plantations were also collected. Collateral data of 
climatic parameters like rainfall were also referred. The parameters are enlisted with their 
data range in table 2. 

Table. 2 Ranges of measured cotton crop parameter (In-situ) figures in brackets denote the 
standard deviation. 

 Crop Parameter 

 Cotton crop types Plant 
height 
(cm) 

Wet biomass 
(gm-2) 

Age  
(days) 

Crop 
Cover 
(%) 

Crop 
Vigour 

LAI 
(m2m-2) 

Hybrid Cotton (Bt) 

 

90-140 900 ï 7000  70-110 70-90 Medium ï 
Very good 

3.5-6  

1st July 25-50 ( 
10 cm) 

80-800 (50) 60 70 Medium 1-2.5 
(0.6) 

 

Fig.1a) Ground data collection a) Spectro-radiometer b) LAI measurements c) Wet biomass measurements d) Bt 
cotton(above) and indigenous cotton(below) e) False Colour Composite (FCC) of (a) temporal HH backscatter (1 July, 
26 July and 20 August) and (f) of LISS-III image (Green, Red, NIR) in Surendranagar overlaid with sampling points 
and routes. 
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26th July 30-75 
(10cm) 

500-7000 
(100) 

85 80 Good 2-4.5 
(0.92) 

20th August 50-170 
(10cm) 

1000-7000 
(100) 

110 90-100 Good-very 
good 

4-6 
(0.35) 

Indigenous Cotton 15-60 50-500 15-40 10-40 Poor - 
Average 

<1-1.5 

1st July  NA NA (not 
sown) 

NA 0 NA NA 

26th July  15-30 
(15 cm) 

10-50 15 10-20 Poor <1 

20th August  30-60 
(15 cm) 

100-500 40 20-40 Average 1-1.5 

Ground spectra were collected from 25 sites with both BT and indigenous cotton (fig.1) 
during August 22 to 23 using the ASD Field Spec Pro Spectro-radiometer (Analytical 
Spectral Devices Inc., Boulder, CO, USA). The spectrometer consisted of a spectral range of 
350ï2,500 nm and a 25Á field of view and is equipped with three sensors [(visible (400ï750 
nm) and near infrared-NIR (750ï1,100 nm), shortwave infrared-SWIR1 (1,000ï1,800 nm) 
and SWIR2 (1,800ï2,500 nm)] with spectral sampling of 3, 10 and 10 nm, respectively. The 
instrument was periodically calibrated using a standard Spectralon white reference panel 
(Labsphere Inc., North Sutton, NH, USA). The white reference was measured at 30 min 
intervals to check the instrument stability for 100% reflectance. Built-in spectral resolution 
output of the data from the ASD operating system is 1 nm along the whole spectrum. Spectra 
of adjacent soil was also collected to match the pure crop spectra with the spectra of the 
image pixel.   

3.2 Optical data processing and generation of VI  

The pre-processing of the ground reflectance from ASD spectroradiometer included 
conversion of raw data to reflectance at 1 nm using the Viewspec software and conversion of 
narrow bands to LISS III equivalent bands using spectral response function (SRF) of LISS III 
while pre-processing of LISS-III data included DN to radiance conversion, radiance to 
surface reflectance conversion using the atmospheric correction module, SACRS2 (a Scheme 
for Atmospheric Correction of Resourcesat-2 (RS2) AWiFS data) developed at SAC (Pandya 
et al. 2015), extraction of reflectance at the sampling sites.   Five narrow band indices, viz. 
Red Edge Normalized Difference Vegetation Index (Red NDVI), Vogelmann Red Edge 
Index 1 (VOG1), Vogelmann Red Edge Index 2 (VOG2), Vogelmann Red Edge Index 
(VOG3), Gitelson, and Merzlyak index(GMI); and two broads band indices, viz. Normallized 
Difference Vegetation Index (NDVI) and Land Surface Water Index (LSWI) were computed 
from the ground reflectance data and two broad band indices, (NDVI) and LSWI) were 
computed from the LISS-III data (Table 3). Cotton mask derived from multi-temporal 
AWiFS data (Vyas et al. 2016) was applied to the NDVI and LSWI images from LISSIII to 
find out the index over cotton cropped area. 

Table 3: Vegetation indices from optical remote sensing data 

Index Formula Source 
Normalized Difference 
Vegetation Index  (NDVI ) 

(NIR-Red)/(NIR+Red) Rouse et al.,1973 
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Land Surface Water Index 
(LSWI) 

(NIR-SWIR)/(NIR+SWIR) Xiao et. al., 2002c, 2004 

Red Edge Normalized 
Difference Vegetation 
Index (Red NDVI) 

Red NDVI=(R750-
R705)/(R750+R705) 

Gitelson and Merzylak 1994 

Vogelmann Red Edge Index 
1 (VOG 1)  

R740/R720 Vogelmann et. al., 1993 

Vogelmann Red Edge Index 
2 (VOG 2)  

(R734-R747)/(R715+R726) Vogelmann et. al., 1993 

Vogelmann Red Edge Index 
3 (VOG 3)  

(R734-R747)/(R715+R720) Vogelmann et. al., 1993 

Gitelson, and Merzlyak index 
(GMI) 

R750/R700 Gitelson, and Merzlyak, 1994 

 
3.3 Radar Vegetation Index 
  
Kim and van Zyl, 2009 modified the eigen value based equation which can be used in 
polarimetric and amplitude datasets. „ȟὌὌȟὠὠȟὌὠ denotes the backscatter in like and 
cross-polarized domain. 

ὙὠὍ   
ψϽ„Ὄὠ

„ὌὌ ςϽ„Ὄὠ „ὠὠ
  ȣȢ ρ 

The modified and truncated equation for RVI after the approximation is 

ὙὠὍ   
τϽ„Ὄὠ

„ὌὌ „Ὄὠ
  ȣȢ ς 

 
It should be noted that Radar-based variables which may be related to vegetation condition 
include the polarimetric measurements and the RVI (Kim and Van Zyl., 2001). RVI generally 
ranges between 0 and 1 and is a measure of the randomness of the scattering. RVI is near 
zero for a smooth bare surface and increases as crop grows specifically the peak vegetative 
stage (Kim et al., 2012). A number of investigations that have examined the relationships 
between biophysical variables (related to crop growth) and radar parameters (Srivastava et 
al., 1991, Inoue et al., 2002, Oh et al., 2009, Haldar et al., 2016). We used these in assessing 
the levels of response pertaining to crop growth and moisture stress in the current 
investigation. High-resolution radar observations are very sensitive to the small scale 
variations in vegetation. RVI (equation 2) has been generated from the HH and HV images 
after suitably filtering (5x5), divided by 1000 to scale down the DN and calibrating the image 
with calibration constant, multiply back with the scaling factor, then compute RVI with the 
formula in equation 2. It has been assumed that the VV polarisation was nearly equal to the 
HH power for medium height crops in the agricultural domain in advanced crop growth phase 
(Kim and Van Zyl.,2001). A truncated RVI (equation 2) for dual-polarized datasets holding 
this principle applicable in the present study has been investigated.  
This approximation was validated using quad-polarised FRS-2 RISAT-1 datasets over an 
advanced crop growing scenario (Haldar et al., 2017). The actual RVI (computed using both 
HH and VV datasets) and the truncated RVI from equation 2 (where HH and VV responses 
were similar and only HH was used) for the medium to advanced crop growing phase were 
found to be close in the earlier study. The technique should attempt to minimize the impact of 
crop structure, incidence angle, and environmental conditions (i.e., soil moisture).  
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3.4 Processing of crop parameters 

Crop LAI on ground was measured using the plant canopy analyser. Number of plants per m2 
were derived using the spacing. Biomass per m2 was computed using the plant population per 
m2 and the biomass taken for three plants. Vegetation Water Content (VWC) was computed 
from dry and wet biomass for all the 100 ground collected biomass samples (Kim et al., 
2012). 

3.5 Correlation and model development 

The correlation coefficients between the Vegetation Index (Vis) and plant parameters (plant 
height, LAI, biomass and plant water content) were determined to find the best index for each 
plant parameter. The best index was used for developing a regression model for the 
respective parameter. Different linear and nonlinear equation were generated to find out the 
best fit. Best model for each parameter was then used for estimating the respective parameter 
over the image scene covering the Surendranagar district to generate the map of the same. 
The estimated parameters were validated using independent ground data set. The ground 
estimated optical VIs were correlated with the RVI of nearly same period. The overall 
methodology is presented in figure 2. 

 

Fig 2 Methodology for assessing cotton condition parameters 

4. Results and discussion 

4.1 Plant parameters 
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Plant height varied from 10 to 40 cm at different sites during July; from 30 to 75 cm at 
different sites during August and 50 to 170 cm during September. LAI varied from 1.5 to 5.5 
at different sites and stages. Wet biomass per m2 varied from 80 to 800 at different sites in 
July; from 500 to 7000 at different sites in August and 1000 to 7000 gm-2 later.  Dry biomass 
per m2 varied from 10 to 100 at different sites in July; from 300 to 1700 at different sites in 
August and 200 to 1200gm-2 in September.  Plant water content (% by weight) varied from 
80 to 90 % at different sites in July; from 60 to 85% at different sites in August and 70 to 
85% in September.  The first date corresponds to succulent leafy vegetative stage, second and 
third date corresponds to dry matter accumulation of photosynthate, partitioning to flowers 
and bolls (fruits). 

4.2 Analysis of ground spectra  
 
Ground spectra were collected from cotton plants of different types (Bt and indigenous), 
different age, with different LAI, water content and biomass. Spectra from adjacent crop and 
soil were also taken to see the possibility of discriminating cotton from other crops. The 
spectra of Bt cotton and other crops such as sesame and French bean are given in fig 3a while 
that of Bt cotton and indigenous cotton are shown in fig 3b. The spectra showing the 
difference in LAI and water content are shown in fig 3c and 3d, respectively. The spectra 
showed distinct difference between sesame and cotton. The white flower of sesame reduces 
the chlorophyll absorption in the red edge region showing no prominent green peak. 
Similarly, indigenous cotton showed lesser reflectance in the NIR region due to the lower 
growth status. Variation in LAI also resulted in difference in reflectance pattern in many 
region of the spectrum, but maximum difference was in the red edge (690-740 nm) and NIR 
(770-870 nm) region (fig 3 c). Spectra of different Bt cotton plants with different water 
content are shown in fig 3d which shows different absorption depth at 940 nm. 
 

 
 
Fig 3 Ground spectra of (a) cotton and other crops; (b) Bt vs indigenous/desi cotton; (c) Bt cotton with 
different LAI; and (d) Bt cotton with different vegetation water content (%).  
 

4.3 Correlation of VIs with the plant parameters  
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The five narrow band and two broad band indices were correlated to the plant parameters 
responsible for cotton condition assessment. The results are shown in fig 4. The LAI and 
fresh biomass are significantly correlated with all the vegetation indices except for the GMI 
and VOG c. The correlation of different vegetation indices varied from -0.4 to 0.16 for water 
content while that for dry biomass ranged from -0.32 to 0.4 (fig 4). NDVI was poorly 
correlated with dry biomass and VWC. Hence nonlinear relationships were tried for model 
development to estimate the concerned parameters. 

 
Fig 4 Correlation of Vegetation index with the plant parameters (LAI, fresh biomass, dry biomass and 
vegetation water content) 

 
CƛƎ рΥ aƻŘŜƭǎ ŦƻǊ ŜǎǘƛƳŀǘƛƴƎ όŀύ [!LΤ όōύ CǊŜǎƘ ōƛƻƳŀǎǎ όCōύ ŀƴŘ 5Ǌȅ ōƛƻƳŀǎǎ ό5.ύΤ ŀƴŘ όŎύ ǾŜƎŜǘŀǘƛƻƴ ǿŀǘŜǊ 
ŎƻƴǘŜƴǘ ǳǎƛƴƎ ǾŜƎŜǘŀǘƛƻƴ ƛƴŘŜȄ όb5±L ŀƴŘ [{²Lύ 

4.4 Models for estimating different plant parameters using optical vegetation index 

Different models were developed to estimate the plant parameters (LAI, fresh and dry 
biomass, and water content) and are presented in fig 5. Only broad band indices (NDVI and 
LSWI) were considered for model development because of their applicability for estimating 
the plant parameters from satellite (LISS III) image. LAI and biomass showed exponential 
relationship while plant water content showed higher order polynomial relationship with both 
the vegetation indices (NDVI and LSWI). For fresh and dry biomass, the coefficient of 
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determination (R2) was more for NDVI (0.51 and 0.49, respectively) as compared to LSWI 
(0.11 and 0.12, respectively) while for LAI and plant water content the variability captured 
by both indices was at par (fig 5). Hence, NDVI model was used to upscale the result to the 
district level. 

4.5 Model inversion for estimating plant parameters at spatial scale over a region 

Broad band vegetation indices (NDVI and LSWI) were generated from the LISS-III image 
and the NDVI based models were applied to those images to spatially estimate the respective 
plant parameter over the study area (Fig 6). The vegetation water content (fig 6a) was found 
to vary from 43 to 85 % while LAI varied from 1.5 to 5.5 (fig 6b). Majority of pixel showed 
water content between 60-85 % (fig 6a). The fresh biomass over the study area ranged from 
0.5 to 4.0 kg m-2 while dry biomass ranged between 0.50 to 0.95 kg m-2 (fig 6c, 6d). The 
model underestimates fresh biomass but effective for dry biomass. The range of estimated 
water content (%) and LAI are within the observed value range of the respective parameters 
at sampling GT points (Table 2). 

 
Fig 6 Estimated plant parameters (a) vegetation water content (%), (b) LAI (m2m-2) (c) fresh biomass (kg m-2) 
and (d) dry biomass (kgm-2) for cotton condition assessment. 

4.6 Radar Vegetation Index (RVI)  

RVI was computed following equation 2 (section 3.1). The multi-temporal RVI of the three 
dates were used for further analysis. RVI during advanced crop stages show comparable 
magnitude when using HV with both HH and VV and only HH. This approximation holds 
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good for planophiles where HH and HV response dominates over VV as indicated by 
Macelloni et al. 2001 and thus we extended this to planophile under study, cotton. The RVI 
ranges from 0-1.0 for most of the land cover types (Haldar et al. 2017). The temporal increase 
in RVI as observed in fig. 8b corresponds to the crop growth thus resulting in multiple 
scattering due to leaves, flowers and bolls from the media. For cotton cropped area the RVI 
was found in the range of 0.2 to 0.9, lower range by the indigenous class (lesser branching 
and prolonged vegetative phase) and higher by Bt high vigoured crop. In broad leaf crops 
backscattering were found to increase with an increase in the biomass, especially at L-band 
this behaviour is typical of media in which scattering is dominant converse to the narrow leaf 
crops (Macelloni et al., 2001, Haldar et al., 2014). This trend is augmented in the study where 
the crop growth results in increase in RVI which is stronger measure than individual 
backscattering coefficients.  The fig 7a shows the RVI ranges for a variety of ground sampled 
data ranging in biomass from 1 kgm-2 to 7 kgm-2, height till 170cm (fig 7c) and age of 3 to 4 
months (fig 7d). 

VWC varies from few hundreds of grams to 5.5 kgm-2 (fig 7b) as against increasing above 
ground crop biomass till 7kgm-2. A significant relationship was found for cotton, with R2 
between 0.5-0.6 and RMSE 0.3-0.7kgm-2. These results suggested that RVI is correlated with 
VWC for vegetation types having a large dynamic range. High correlation of RVI with crop 
age, vegetation water content and crop biomass (R2 0.55) were observed. VWC and biomass 
follow a close linear relationship with each other, but as the vegetation water content was 
found to be more sensitive to the radar response, it is being used for a basic relationship 
development. Thereafter biomass is estimated from RVI using a linear relation between 
VWC and crop biomass. Polynomial relationship was established for the natural and diffused 
target response as shown in fig.7a-e. 

The low biomass zones corresponded to lower RVI (fig 8 a- c) in the indigenous cotton inside 
the blue circle in comparison to the higher dynamic RVI range in the Bt cotton zone in red 
circle (fig 8 a-c). The temporal increase in RVI for both Bt and indigenous cotton for any 
particular site was observed in fig. 8b and c where the crop growth has direct correspondence 
to increase in RVI. The variations are due to time of sowing as well as the inherent genetical 
differences in the two types of cotton. Exponential relation was found between age of cotton 
crop and biomass. The field measured versus retrieved VWC for the lower to medium VWC 
region was found to have robust validity.  
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Fig.7 Relationship of various plant biophysical parameters (a) RVI vs Biomass, (b) RVI vs VWC, (c) RVI vs 
Plant height, (d) RVI vs Plant age (e) VWC vs biomass. 
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Fig. 8(a-c) Temporal RVI in Surendranagar and surrounding area for three dates of 
the year 2016. Red circle represents the Bt Cotton dominating area and Blue circle 
represents the indigenous cotton area  

4.7. Inversion of plant parameters from RVI 

The result of inversion of VWC from RVI was achieved with 25-35% error. The retrieved 
results for height, VWC and biomass are shown in fig. 9-11 for the three temporal 
acquisitions. The mean height of most of the fields was within 50 cm (fig 9a) during early 
July to 100-125 cm (fig 9c) during 20th August. Similarly mean VWC increased from within 
1000 to 2000 gm-2 from 1st July to 20th August (fig.10 a-c).  High error was observed above 4 
kgm-2 biomass which may be attributed to the saturation limits of C-band. Therefore for 
inversion the range till 4 kgm-2 is worked out. In an earlier study by Englhart et al., 2011, 
overall ALOS PALSAR backscatter was found to be more sensitive to AGB than TerraSAR-
X, especially in the higher biomass range (100 t/ha) which equates to 10kgm-2. Our finding 
also emphasises the intermediate range of 4-8 kgm-2 may be assessed with S or L-band. 
Nevertheless this higher limit of biomass will be encountered only in very high biomass crops 
like fruiting stage in cotton, sugarcane etc. Other medium biomass crops generally have 
around 5kgm-2 as the peak biomass. 
 The temporal biomass maps show increase from within 1000 gm-2 (fig. 11a) to 3000 gm-2 or 
above during August (fig. 11c). For higher biomass ranges accurate inversion will be possible 
with higher wavelength, using the datasets from future missions. 

 1st July                 a 26th July              b 20th August         c 

 
 

 

 

Fig.9(a-c) Temporal Height map in Surendranagar and surrounding area for 
three dates of the year 2016. 
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Fig.10(a-c) Temporal VWC map in Surendranagar and surrounding area for 
2016. 

  

 

  

 

Fig. 11(a-c) Temporal Biomass map in Surendranagar and surrounding area 
for 2016. 

The procedure was established during 2014-15 but robustness of this methodology has been   
tested and validated for datasets of 2016 across around 100 points spreading across low to 
high vigour zones encompassing both indigenous and Bt cotton. The validation exercise for 
both VWC and crop height was carried out vis a vis ground data as shown in fig. 12 and 13 
with R2 of 0.68-0.84. As observed in the height validation fig. (R2 0.68) better retrieval is 
observed above 30-40 cm. In the lower ranges, ridges induced roughness as well as uneven 
plant population may attribute to RVI. The VWC retrieval was stronger (R2 0.84) than height 
due to higher correlation of the former with RVI and it being solely the plant water. This goes 
with the findings of earlier researchers (Wigneron, 2001) for Soyabean crop that retrieved 
water content in soyabean. Though there is some discrepancy in absolute water term but the 
approach seems promising as it estimates useful temporal information on crop growth. 

This methodology will be useful to discriminate cotton crop condition varying in vigour and 
biomass and synergistically with the optical indices and parameters will complement in better 
and timely monitoring. 
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Fig12. Validation of VWC model with 
ground data 

Fig13. Validation of plant height model with 
ground data 

4.7 Relationship between SAR index (RVI) and optical index (ground and satellite) 

The ground estimated VIs (NDVI, Rededge_Gyout, VOGa, VOGb, VOGc, GMI and LSWI) 
were correlated with the RVI of same period (20 August). The VIs from LISS III (NDVI and 
LSWI) of 3 September were correlated with the RV of 20 August. The negative correlation 
was observed in case of Red NDVI, VOG1 and VOG 3 while other four has shown positive 
correlation with RVI. Highest correlation was obtained for VOG3 (r=-0.54). LSWI was found 
to be better correlated with RVI (r=0.44) as compared to NDVI (r=0.23). The correlation 
between optical vegetation index from ground and RVI are shown in fig 14. Linear 
relationship between RVI and broadband VI (NDVI and LSWI) from LISS III data was found 
to be poor and hence not shown. Both NDVI and LSWI from LISS III showed polynomial 
relationship with RVI (fig 15). Here also LSWI showed better correlation (R2=0.49) with 
RVI as compared to NDVI (R2=0.38). Multiple linear regression model using both optical 
VIs (NDVI and LSWI) and SAR index (RVI) were developed to assess the LAI, biomass and 
plant water content. The accuracy improved when RVI was used as an input parameter along 
with the optical VIs (NDVI and LSWI). The model for LAI estimation with NDVI and LSWI 
resulted in a R2 of 0.39 while when RVI was used as another independent variable, the model 
showed a R2 of 0.5 (fig 16). This indicates RVI may be used along with the optical VIs for 
improving accuracy of cotton LAI prediction.  

 

Fig.14 Correlation of ground estimated optical vegetation index and RVI  
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5. Conclusion  

The study aimed at using both optical and microwave remote sensing for cotton condition 
assessment.  The usability of Radar Vegetation Index has been demonstrated for studying 
crop growth and assessing the cotton crop condition and health. It demonstrates the efficacy 
and potential application of using the truncated equation of RVI to the wider swath MRS data 
for crop condition monitoring at regional level. The direct response of SAR to vegetation 
water content helped us in monitoring the various crop vigour regions. The biophysical 
parameter empirical models crop-specific SAR response may go a long way in monitoring 
the crop status in varying zones of water stress.  

The work has shown the degree of correlation of spectral indices with the crop parameter 
responsible for cotton condition such as plant height, LAI, water content and biomass. The 
study shown the ability of optical remote sensing for estimating LAI, biomass and water 
content with R2 of 0.42, 0.51 and 0.52, respectively. This study also showed the improvement 
in LAI estimation with the conjunctive use of RVI and optical VIs (NDVI and LSWI).  

Hence it is concluded that, the conjunctive use of the C-band SAR and optical data with 
moderate resolution in monitoring the condition in terms of RVI, NDVI and LSWI is a 
potential tool and will prove to be quite helpful and efficient at times of the overcast sky in 
the monsoon/ rainy season in the tropical regions. However, such results need to be 
reproduced over time and space to prove its efficacy and hence, similar kind of research in 
other places and for other crops especially for rainy season crops is suggested for improving 
the accuracy in crop condition assessment. 
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