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Abstract: A diagnostic method is presented for analysing the large-scale behaviour of the Met Office
Unified Model, which is a comprehensive atmospheric model used for weather and climate prediction.
Outside the boundary layer, on scales larger than the radius of deformation, semigeostrophic theory
will give an accurate approximation to the model evolution. In particular, the ageostrophic circulation
required to maintain geostrophic and hydrostatic balance against prescribed forcing and a rate of
change of the geostrophic pressure can be calculated. In the tropics the balance condition degenerates
to the weak temperature gradient approximation. Within the boundary layer the semigeostriptic
approximation has to be used because friction and rotation are equally important. Assuming the
calculated pressure tendency and ageotriptic circulation match the observed model behaviour, the
influence of the large-scale state and the nature of the forcing on the model response can be deduced
in a straightforward way. This process is illustrated by comparing predictions of the ageotriptic
circulation from the theory and the model. It is then used to show that the effects of latent heat release
can be included by modifying the static stability, and to show the effect of an idealised tropical heat
source on the subtropical jet. Finally the response of the ageotriptic flow to boundary layer heating
in the tropics is demonstrated. These illustrations show that the model behaviour on large scales
conforms with theoretical expectations, so that the results of the diagnostic can be used to aid the
development of further improvements to the model.
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1. Introduction

In common with most other operational weather services and climate research centres, the Met
Office uses a comprehensive atmospheric modelling system which is coupled to models of other parts
of the Earth system, called the Unified Model (UM), [3]. In common with other centres, the Office
undertakes a research programme aimed at improving the performance of the system. A particular
focus is the study of systematic errors, where the Office uses a ’seamless’ approach which exploits the
fact that many such errors are present at different model resolutions and time periods, [17]. Typically
the errors have large spatial scales. However, correcting them is not straightforward because of the
strong coupling between atmospheric variables on large scales resulting from the requirements of
geostrophic and hydrostatic balance. Near the equator, the geostrophic requirement degenerates to
the ’weak temperature gradient’ approximation (WTG), [22]. In the boundary layer, friction is also
important leading to ’geotriptic’ balance, [1]. This is particularly important in the tropics because it can
support horizontal pressure and temperature gradients. The ageotriptic flow is strongly constrained
by the need to maintain geotriptic and hydrostatic balance when the model is integrated in time. The
result is that model changes which appear to be well-suited to reducing systematic errors may not
have the intended effect.

In this paper, a diagnostic technique is proposed and illustrated which allows the geotriptic
evolution and the ageotriptic circulation of the UM to be calculated for given data. The use of a
decomposition of the UM fields into geotriptic and ageotriptic parts is only justified on scales larger
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than the deformation radius, where the potential vorticity can be well approximated by a function
of pressure. In this case, the pressure can be used as the controlling scalar variable and geotriptic
winds and hydrostatic temperatures calculated from it. In three-dimensional flow, the requirement
that the horizontal scale is greater than the deformation radius becomes a requirement that the aspect
ratio is less than the ratio of the Coriolis and Brunt-Vaisala frequencies. The Lagrangian Rossby
number also has to be small, restricting the curvature of trajectories. While these conditions appear
very restrictive, they are also the conditions under which coherent anomalise are maintained. Near
the equator, the decomposition is only justified outside the boundary layer for flows that are almost
zonally symmetric and the WTG holds. These issues are discussed fully in [7]. Within the boundary
layer, the usefulness of this method is greatly enhanced because horizontal pressure and temperature
gradients can be supported. For instance, it was shown in [5] that using a SGT rather than a SG model
allowed large-scale idealised cross-equatorial flows to be simulated.

The semi-geostrophic (SG) model was originally introduced by [11] as an alternative description
of large-scale flows to the quasi-geostrophic model of [4]. It is based on what was subsequently called
the Type II geostrophic scaling by [19] and in particular allows full variation of the static stability and
Coriolis parameter. It is reviewed with a broader perspective by [12]. The model was then reintroduced
by [14] to study frontogenesis. In that study a constant Coriolis parameter was used, which allows the
equations to be transformed to a simpler form by using the geostrophic coordinate transformation.
This version of the SG model can be solved for large times in isentropic coordinates by using optimal
transport methods, as reviewd by [7]. Once the variable Coriolis parameter is included, the equations
have to be solved in physical space. Formal arguments demonstrating how the equations can then be
solved are given by [6] and [9]. However, the only rigorous result so far is limited to short times, and
given by [10]. This result is sufficient to justify the diagnostic procedure used in this paper, where the
equations are solved for a pressure tendency and ageostrophic wind at a single time in the manner
of [20]. The extension to the semi-geostriptic (SGT) model is described by [1]. This is very important
beacuse it allows a realistic lower boundary condition. The need to use a nonlinear formulation of
vertical momentum diffusion has meant that no rigorous treatment of this set of equations is yet
available.

In the UM, the large-scale fields will be close to geotriptic and hydrostatic, so the ageotriptic
circulation required to maintain this balance against forcing will be predicted by SGT theory. Thus
if the UM forcing is diagnosed and input into the calculation of a single SGT timestep, the resulting
ageotriptic flow should form a part of the ageotriptic flow actually produced by the UM. The total UM
circulation will also contain transients, not subject to this constraint. In studying systematic UM errors,
it is useful to determine what aspects of the circulation are constrained by the balance requirement,
and which parts are evolving independently.

This calculation is a three-dimensional generalisation of the widely used Sawyer-Eliassen equation
(SEE), e.g. [26]. An important feature of SEE is that the calculation of the ageostrophic circulation
depends strongly on the static and inertial stability of the large-scale state. The effect of moisture
on static stability can be included. Most of the applications of the SEE are in a vertical cross-section,
where it is easy to justify its use. Examples specifically exploiting SG theory are [23] and [8]. Examples
including the boundary layer using SGT theory are given by [1]. In three-dimensions, the validity of
the SEE requires SG theory to be accurate, which implies the restrictions discussed above. This has
limited its use.

In the next section the analytical formulation of the diagnostic is presented. The method works
from the pressure field, which implies geotriptic winds and hydrostatic potential temperatures. As
noted above, this is appropriate on scales where the SGT approximation is valid. However, UM data
will contain non-geotriptic motions which affect the pressure, so steps have to be taken to minimise
their effect on the diagnostic calculation. The equation for the pressure tendency is an elliptic equation,
and the solution procedure is described. The discretisation of the equation requires care over orography,
and it is essential to follow the principles of the UM scheme.
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The results section includes four examples of the application of the diagnostic. The first is a
comparison of the actual ageotriptic circulation produced by the UM in the extratropics with that
calculated using SGT theory. This shows that the procedure is viable with full UM data subject to the
extra processing noted in the previous paragraph. The second example calculates the vertical motion
required to maintain large scale balance in cloudy air assuming moist static stability, and then inferring
the latent heat release from the difference between the potential temperature increment calculated
using this vertical motion with moist and dry static stability. This should represent the ’forced’ part of
the latent heating actually calculated by the UM physics. The third example shows the effect of an
idealised tropical heat source on the extratropical flow following [15]. There is geostrophic adjustment
in the north-south direction, as illustrated by [21], which should be realistic. The diagnostic also adjusts
in the east-west direction, but except for very long forcing timescales this would in reality generate
a tropical wave as in the simulations of [15] using an idealised general circulation model. The final
example shows that thermally forced ageotroptic circulations in the boundary layer can be simulated.

2. Materials and Methods

2.1. The SG approximation to the UM equations equations

The diagnostic procedure uses the SGT and hydrostatic approximation to the deep atmosphere
compressible equations solved by the UM, [25]. No other approximations are made, so that the
diagnostic should extract the geotriptic part of the UM evolution.

We first write the equations in Lagrangian form. The equations are written in spherical polar
and terrain-following coordinates (λ, φ, η), with the true radial coordinate r. The boundary layer
momentum mixing is included, with stability dependent diffusion coefficient Km as calculated by the
UM. A derivative with respect to r is interpreted as a derivative with respect to η multipled by ∂η/∂r
with (λ, φ) constant.

Du
Dt

+ cpdθv∇π + 2Ω× u = g +
∂

∂r

(
Km

∂uh
∂r

)
+ Su,

Dθvd
Dt

= Sθvd , (1)

Dµ

Dt
= Sµ,

∂ρd
∂t

+∇ · (ρdu) = 0.

ρd =

(
p0

Rd

)
π

1−κd
κd

θvd
,

Rd = κdcpd,

µ = ΣmX , X == v, cl, c f · ··,

θv =
θvd

1 + µ
.

In these equations, u is the vector velocity field and θv the virtual potential temperature with
θvd the virtual potential temperature for dry air. ρd is the density of dry air and π the Exner pressure(

p
p0

)κd
. p0 is a reference pressure, Rd is the gas constant for dry air and cpd the specific heat of dry air

at constant pressure. κd is defined by the penultimate equation of (1). mX indicates the mixing ratio
of various moisture constituents denoted by X and µ is the sum of all these mixing ratios. Ω is the
Earth’s rotation vector and g the gravitational and centrifugal vector. Sx is a source term for variable x.
The suffix h denotes horizontal components.

The lower boundary condition is no slip. The upper boundary condition is a rigid lid.
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The semi-geotriptic approximation in spherical geometry assumes first that the shallow
atmosphere hydrostatic approximation holds, [24], so that the rotation term 2Ω × u is replaced
by its horizontal components (− f v, f u) where f = 2Ω sin φ, where φ is the latitude, and that the
gravitational vector g only has a component in the local vertical. Then the vertical momentum equation
in (1) becomes

cpdθv
∂π

∂r
= −g. (2)

In order to understand the solutions, we subtract a reference state π0(r) satisfying

cpdθ0
∂π0

∂r
= −g, (3)

where θ0 is a constant, from π giving

cpdθv
∂π′

∂r
= g

θ′

θ0
, (4)

where θ′ = θv − θ0. The Brunt-Vaisala frequency N is then given by

N2 =
g
θ0

∂θ′

∂r
. (5)

Assume typical scalings P and Θ for π′ and θ′, ignore µ and assume typical length scales L and
H in the horizontal and vertical. Then ∂π′/∂r ' P/H and the horizontal pressure gradient term
∇hφ ' P/L. In some regimes the ratio of horizontal and vertical gradients of π′ may be much less than
H/L if π′ is close to hydrostatic balance with a spatially uniform stably stratified reference profile θ(r).
This is not generally the case on large scales with real data, particularly because of large horizontal
variations of the tropopause height.

The geostrophic regime is characterised by the terms cpdθv∇hπ′ in the horizontal momentum
equations having the same magnitude as (− f v, f u). Eqs. (4) and (5) show that cpdθv∂π′/∂r ' N2H.
Defining U as a horizontal velocity scale, the geostrophic regime requires that f U ' N2H2/L. Now
define the dimensionless Rossby and Froude numbers, Ro and Fr by

Ro =
U
f L

, Fr =
U

NH
, (6)

Then geostrophic balance requires Ro = Fr2. The semi-geostrophic regime is thus characterised
by a small parameter ε = Ro = Fr2. The radius of deformation LD is defined as NH/ f , so that
L/LD = O(ε−

1
2 ).

Geotriptic balance requires that the horizontal pressure gradient is comparable to the friction term.
If K is a typical magnitude of the momentum diffusion coefficient Km, this requires that N2H2/L '
KU/h2 where h� H is a typical boundary layer depth.. This scaling is discussed in [2].

Since the aim is to apply the diagnostic procedure directly to model data, the subtraction of a
basic state as in (3) is not used. Therefore we define geotriptic and hydrostatic balance consistently
with (1) by

cpdθv∇hπ − ( f ve,− f ue) =
∂

∂r

(
Km

∂ue

∂r

)
, (7)

cpdθv
∂π

∂r
= −g.

Then the first equation of (1) can be approximated to O(ε2) outside the boundary layer by
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Due

Dt
− f (v− ve, ue − u) =

∂

∂r

(
Km

∂(ue − uh)

∂r

)
+ Su, (8)

cpdθv
∂π

∂r
= −g.

(8) is only accurate to O(ε) in the boundary layer, assuming h/H is independent of ε. As discussed
in [2], it is more typical for h/H to decrease with ε, that paper suggests h/H ' ε0.7. The SGT
approximation to (1) consists of (7), (8) and the equations of (1) after the first. The boundary conditions
are the same as for (1).

2.2. The diagnostic equations

The diagnostic equations are based on the original equations (1). The equations are written
in Eulerian form as in [20] so as to derive an Eulerian pressure tendency and an equation for the
ageotriptic winds. The first equation of (7) is written

f ve +
∂

∂r

(
Km

∂ue

∂r

)
=

cpdθv

r cos φ

(
∂π

∂λ
− ∂π

∂r
∂r
∂λ

)
, (9)

− f ue +
∂

∂r

(
Km

∂ve

∂r

)
=

cpdθv

r

(
∂π

∂φ
− ∂π

∂r
∂r
∂φ

)
.

(9) can be used to generate a single equation for ue as follows:

f 2ue +
∂

∂r

(
Km

∂2

∂r2

(
Km

∂ue

∂r

))
= (10)

∂

∂r

(
Km

∂

∂r

( cpdθv

r cos φ

(
∂π

∂λ
− ∂π

∂r
∂r
∂λ

)))
− f

cpdθv

r

(
∂π

∂φ
− ∂π

∂r
∂r
∂φ

)
.

Given values of π, (10) can be used to calculate ve. The lower boundary condition is that
ue = ve = 0 at η = 0. It is assumed that Km is zero above some η level below the upper boundary, so
that setting Km = 0 there will generate an upper boundary condition for (10). For larger values of η,
(10) can be solved independently at each level.

The first equation of (8) and the second and third equations of (1) can then be rewritten in Eulerian
form as

∂ue

∂t
+ u · ∇ue − f (v− ve) =

∂

∂r

(
Km

∂(ue − u)
∂r

)
+ Su,

∂ve

∂t
+ u · ∇ve + f (u− ue) =

∂

∂r

(
Km

∂(ve − v)
∂r

)
+ Sv, (11)

∂θv

∂t
+ u · ∇θv =

1
1 + µ

Sθvd −
θvd

(1 + µ)2 Sµ ≡ Sθv .

Eq. (11) can be rewritten as

Q

 u− ue

v− ve

w

+
∂

∂t

 ve

−ue

θv

 = H. (12)

where
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Q =


f +

1
r cos φ

∂ve

∂λ
+

ue tan φ

r
1
r

∂ve

∂φ
+

∂

∂r

(
Km

∂

∂r

)
∂ve

∂r

− 1
r cos φ

∂ue

∂λ
+

ve tan φ

r
− ∂

∂r

(
Km

∂

∂r

)
f − 1

r
∂ue

∂φ
−∂ue

∂r
1

r cos φ

∂θv

∂λ

1
r

∂θv

∂φ

∂θv

∂r

 (13)

and

H =

 −ue · ∇ve + Sv

ue · ∇ue − Su

−ue · ∇θv + Sθv

 (14)

We now derive a single equation for the pressure tendency. Differentiating the second equation of
(9) with respect to time gives

− f
∂ue

∂t
+

∂

∂r

(
Km

∂

∂r

(
∂ve

∂t

))
=

cpdθv

r
∂

∂t

(
∂π

∂φ
− ∂π

∂r
∂r
∂φ

)
+

1
r

(
∂π

∂φ
− ∂π

∂r
∂r
∂φ

)
cpd

∂θv

∂t
. (15)

Next define

B =


f − ∂

∂r

(
Km

∂
∂r

)
0

∂
∂r

(
Km

∂
∂r

)
f 0

0 0 g/θv

 . (16)

Then using (9), the similar equation for ∂π/∂λ and the relation

cpdθv
∂

∂t

(
∂π

∂r

)
= − g

θv

∂θv

∂t
, (17)

obtained by differentiating the second equation of (8) with respect to time, we can write

B


∂ve
∂t
− ∂ue

∂t
− ∂θv

∂t

 = cpdθv
∂

∂t


1

r cos φ

(
∂π

∂λ
− ∂π

∂r
∂r
∂λ

)
1
r

(
∂π

∂φ
− ∂π

∂r
∂r
∂φ

)
∂π

∂r

+


1

r cos φ

(
∂π

∂λ
− ∂π

∂r
∂r
∂λ

)
1
r

(
∂π

∂φ
− ∂π

∂r
∂r
∂φ

)
0

 cpd
∂θv

∂t
. (18)

Using (9), the second term on the right hand side can be replaced by

B


ve

θv

∂θv

∂t

−ue

θv

∂θv

∂t
0


and so this term can be amalgamated with the left hand side giving

B


∂ve

∂t
− ve

θv

∂θv

∂t

−∂ue

∂t
+

ue

θv

∂θv

∂t

−∂θv

∂t

 or B


θv

∂

∂t

(
ve

θv

)
−θv

∂

∂t

(
ue

θv

)
−∂θv

∂t
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Using the third equation of (11), we can then rewrite (12)-(14) as

BQ′

 u− ue

v− ve

w

+ cpdθv
∂

∂t


1

r cos φ

(
∂π

∂λ
− ∂π

∂r
∂r
∂λ

)
1
r

(
∂π

∂φ
− ∂π

∂r
∂r
∂φ

)
∂π

∂r

 = BH′ (19)

where

Q′ =


f +

θv

r cos φ

∂

∂λ

(
ve

θv

)
+

ue tan φ

r
θv

r
∂

∂φ

(
ve

θv

)
+

∂

∂r

(
Km

∂

∂r

)
θv

∂

∂r

(
ve

θv

)
− θv

r cos φ

∂

∂λ

(
ue

θv

)
+

ve tan φ

r
− ∂

∂r

(
Km

∂

∂r

)
f − θv

r
∂

∂φ

(
ue

θv

)
−θv

∂

∂r

(
ue

θv

)
1

r cos φ

∂θv

∂λ

1
r

∂θv

∂φ

∂θv

∂r


(20)

and

H′ =


−(ueθv) · ∇

(
ve

θv

)
+ Sv −

veSθv

θv

(ueθv) · ∇
(

ue

θv

)
− Su +

ueSθv

θv
−ue · ∇θv + Sθv

 (21)

We can then write BH′ as G where

G =


− f

ueθv

r cos φ

∂

∂λ

ve

θv
− f u2

e tan φ

r
− f

veθv

r
∂

∂φ

ve

θv
+ f Sv −

f veSθv

θv
− ∂

∂r

(
Km

∂

∂r

(
ueSθv

θv

))
f

ueθv

r cos φ

∂

∂λ

ue

θv
− f ueve tan φ

r
+ f

veθv

r
∂

∂φ

ue

θv
− f Su +

f ueSθv

θv
− ∂

∂r

(
Km

∂

∂r

(
veSθv

θv

))
− ue

r cos φ

∂θv

∂λ
− ve

r
∂θv

∂φ
+

gSθv

θv

 .

(22)
Since B and Q involve values at adjacent levels, it is impractical to eliminate u directly from (19)

in order to solve for ∂π
∂t . In order to solve (19) reasonably accurately, a preconditioning is required. In

order to invert BQ′. We therefore approximate BQ′ by an invertible matrix P, so that (19) is replaced
by

P

 u− ue

v− ve

w

+ cpdθv
∂

∂t


1

r cos φ

(
∂π

∂λ
− ∂π

∂r
∂r
∂λ

)
1
r

(
∂π

∂φ
− ∂π

∂r
∂r
∂φ

)
∂π

∂r

 = G, (23)

where P = P1P2P3. P1 is given by

P1 =


f 2 + ∂

∂r

(
Km

∂2

∂r2

(
Km

∂
∂r

))
0 0

0 f 2 + ∂
∂r

(
Km

∂2

∂r2

(
Km

∂
∂r

))
0

0 0 1

 (24)

P2 is given by

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 July 2018                   doi:10.20944/preprints201807.0386.v1

Peer-reviewed version available at Fluids 2018, 3, 72; doi:10.3390/fluids3040072

http://dx.doi.org/10.20944/preprints201807.0386.v1
http://dx.doi.org/10.3390/fluids3040072


8 of 18

P2 =


f 2 +

f θv

r cos φ

∂

∂λ

ve

θv
+

f ue tan φ

r
f θv

r
∂

∂φ

ve

θv
f θv

∂

∂r
ve

θv

− f θv

r cos φ

∂

∂λ

ue

θv
+

f ve tan φ

r
f 2 − f θv

r
∂

∂φ

ue

θv
− f θv

∂

∂r
ue

θv
g

r cos φθv

∂θv

∂λ

g
rθv

∂θv

∂φ

g
θv

∂θv

∂r

 , (25)

and

P3 =

 f−2 0 0
0 f−2 0
0 0 1

 (26)

We next have to eliminate u using the continuity equation and equation of state, which are the
fourth and fifth equations of (1). In (λ, φ, η) coordinates we have u = (u, v, η̇) and

η̇
∂r
∂η

= w− u
r cos φ

∂r
∂λ
− v

r
∂r
∂φ

. (27)

This can be rewritten as

R

 u
v
w

 =

 u
v
η̇

 .

The continuity equation then takes the form

∂

∂t

(
r2ρd

∂r
∂η

)
+

1
cos φ

(
∂

∂λ

(
rρdu

∂r
∂η

)
+

∂

∂φ

(
rρdv cos φ

∂r
∂η

)
+

∂

∂η

(
r2ρdη̇

∂r
∂η

))
= 0 (28)

Now, applying the operator

∇ · r2ρd
∂r
∂η

R

to (23) and using (28) gives

− ∂

∂t

(
r2ρd

∂r
∂η

)
+∇ ·

(
r2ρdcpdθv

∂r
∂η

RP−1 ∂

∂t
(∇rπ)

)
= (29)

∇ ·
(

r2ρd
∂r
∂η

RP−1G
)
+

1
cos φ

(
∂

∂λ

(
rρdue

∂r
∂η

)
+

∂

∂φ

(
rρdve cos φ

∂r
∂η

))
Next, differentiating the equation of state with respect to time gives

κd − 1
κd

π
− 1

κd
∂π

∂t
ρdθvd + π

κd−1
κd

∂ρd
∂t

θvd + π
κd−1

κd ρd
∂θvd
∂t

= 0. (30)

Removing common factors, and using equations (17) and the third equation of (1) to evaluate the
final term gives

κd − 1
κd

∂π

∂t
ρdθvd + π

∂ρd
∂t

θvd − πρd
cpdθ2

v

g
∂

∂t

(
1

(1 + µ)

∂π

∂r

)
= 0. (31)

We now substitute (31) into (29) to give
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κd − 1
κd

ρd
π

r2 ∂r
∂η

∂π

∂t
+ r2 ∂r

∂η

ρdcpdθ2
v

gθvd

∂

∂t

(
1

(1 + µ)

∂π

∂r

)
+

∇ ·
(

r2ρdcpdθv
∂r
∂η

RP−1 ∂

∂t
(∇rπ)

)
= ∇ ·

(
r2ρd

∂r
∂η

RP−1G
)
+ (32)

1
cos φ

(
∂

∂λ

(
rρdue

∂r
∂η

)
+

∂

∂φ

(
rρdve cos φ

∂r
∂η

))
.

Apart from the small term ∂
∂t

1
(1+µ)

, which needs to be diagnosed separately, this is an elliptic
equation for ∂π/∂t, which can be solved. Boundary conditions are required at the top and bottom.
The boundary conditions inherited from (1) imply that η̇ = 0 at the top and bottom, which implies a
zero gradient of

r2ρdcpdθv
∂r
∂η

RP−1 ∂

∂t
(∇rπ) . (33)

Eq. (27) and the no slip lower boundary condition then implies that w = 0 at the lower boundary
also. Then (19) and (21 reduce to

cpdθv
∂π

∂r
= Sθv . (34)

We can then calculate u− ue, v− ve and w from (23).

2.3. Application

The right hand side of (32) shows that the evolution is driven by the divergence of the forcing
vector G and the divergence of the geotriptic wind (ue, ve). Changes to the forcing with zero divergence,
in the sense of the first term on the right hand side of (32), will not affect the evolution. Such
changes will simply alter the ageostrophic wind vector (u− ue, v− ve, w) so that (19) is satisfied. This
demonstrates that changes to the forcing in the UM may have a much smaller effect on the large-scale
evolution than might be expected.

Using the definition of G in (22), we see that the first term on the right hand side of (32) includes
geotriptic advection of the momentum and potential temperature, the dynamical forcing, together with
the external forcing terms S which are generated by the UM physics. The second term on the right hand
side would be just the divergence of the geostrophic wind if the boundary later were not included. This
would be zero in pressure coordinates with a constant Coriolis parameter. There is a contribution from
variations in the Coriolis parameter, which gives the effect of Rossby wave propagation on the pressure
tendency. Since the divergence calculation used to derive (32) is in terrain-following coordinates, the
orography will also contribute to this term through the horizontal variations of ∂r

∂η . This shows how
the orography can have a strong effect on the large-scale flow.

Moisture will interact strongly with the diagnostic procedure through the reduction of the effective
static stability by latent heat release. In the UM, the thermodynamic equation, which is the second
equation of (1), includes the terms

w
∂θvd
∂r

= SLH ,

where SLH is the part of the forcing term resulting from latent heat release. This term is dominated
by the term Dqsat

Dt , where qsat is the saturated mixing ratio which is largely a function of temperature.
In a simple form, this can be represented by calculating a cloud fraction weighted static stability,
where ∂θvd/∂r is the dry stability and ∂θe/∂z is the moist stability, where θe is the equivalent potential
temperature calculated assuming saturation. w is not known in advance, so the idea that latent heating
only occurs with upward motion cannot be used as the problem becomes nonlinear in w. The use
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of cloud fraction weighting avoids this problem, as evaporation will occur if w is negative in cloudy
regions. If α is the cloud fraction, we set(

∂θv

∂r

)
e f f

=
∂(αθe + (1− α)θ))

∂r
, (35)

A more sophisticated approach would be to use a formula set out in [13] for wave propagation in
inhomogeneous media. Applying this to a wet/dry mixture gives a modified Brunt-Vaisala frequency
as

N2
e f f =

(
αN2

d + (1− α)N2
w

N2
wN2

d

)−1

, (36)

where

N2
w =

g
θ

∂θe

∂r
, N2

d =
g

θvd

∂θvd
∂r

. (37)

We thus replace ∂θv
∂r in Q′, eq. (20), by

(
∂θvd
∂r

)
e f f

=

(
α ∂θvd

∂r + (1− α) ∂θe
∂r

∂θe
∂z

∂θvd
∂r

)−1

. (38)

The model value of cloud fraction α can be used, provided again that small space and time scales
are excluded.

If the temperature increment SL from the large scale precipitation scheme is added to S, the
solution of (19) will become

BQ′

 u− ue

v− ve

w

+ cpdθv
∂

∂t


1

r cos φ

(
∂π

∂λ
− ∂π

∂r
∂r
∂λ

)
1
r

(
∂π

∂φ
− ∂π

∂r
∂r
∂φ

)
∂π

∂r

 = B

H′ +

 0
0

SL


 . (39)

The solution of (39) for ∂π
∂t is identical to that of (19) if the element ∂θv

∂r in Q′ in that equation is

replaced by
(

∂θ
∂r

)
e f f

as in (38) and

SL = w

(
∂θ

∂z
−
(

∂θ

∂z

)
e f f

)
. (40)

This will be approximately true if the latent heat release is dominated by the effects of vertical
motion. This is illustrated in section 3.3.

2.4. Computational aspects

The elliptic equation (32) is solved by a preconditioned generalised conjugate residual method
which requires explicit evaluation of the elliptic operator on the left hand side for a given estimate
of ∂π/∂t, and an evaluation of the right hand side. The preconditioning is done by a vertical matrix
inversion, which uses a tridiagonal solver, and a horizontal smoother.

Given π, Km from model data, solve (10) and (9) for (ue, ve). Care has to be taken in calculating
the right hand side of (9) because the two terms cancel strongly over orography. The scheme, based on
that used in the UM and exploiting hydrostatic balance, is

cpdθv

r cos φ

(
∂π

∂λ
− ∂π

∂r
∂r
∂λ

)
' cpdθv

λ
δλπ + gδλr, (41)
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where δλ indicates a central difference in the λ direction divided by 2r cos φδλ. A similar scheme
is used in the φ direction. Solving (10) then involves inverting a N × N pentadiagonal matrix at each
horizontal gridpoint. where N is the number of model levels where Km is nonzero.

Next use (ue, ve) to evaluate the components of P2, (25). Central differencing has to be used
because the upwind direction is not known in advance. The vertical stability is evaluated more
accurately as a vertical second difference of π. The values are filtered towards a zonal mean close to
the equator in order to remain within the validity of the theory. If equations (35) or (38) are used, the
relative humidity, moisture content and cloud fraction are used to calculate the effective static stability.

Next calculate the eigenvalues of P2 at each point. Modify P2 as necessary to remove negative
eigenvalues. This can be done by first replacing any negative diagonal terms by suuitable reference
values, such as 10−10 in the first two rows and 10−6 in the third, and then.rescaling the off-diagonal
terms as required.

Next construct the vertical preconditioner. If P2ij is the value of the (i, j) component of P2,
calculate the rms value PIrms of P−1

233 as a function of model level. Then at each horizontal gridpoint
we precondition eq. (32) by replacing the left hand side by

A
∂π

∂t
≡ C1 ∗

κd − 1
κd

ρd
π

r2 ∂r
∂η

∂π

∂t
+∇ ·

(
r2ρdcpdθv

∂r
∂η

RPIv
∂

∂t
(∇rπ)

)
. (42)

C1 is set to 100 in the examples illustrated. PIv is a tridiagonal matrix at each gridpoint defined as

PIv = C2PIrms + (P−1
211 + P−1

222). (43)

C2 is a matrix

 1 0 0
0 C2 0
0 0 1

, with C2 set to 1.5 in the examples illustrated.

Now solve (32) for ∂π
∂t preconditioned with A−1 as defined in (42) using a generalised conjugate

residual method. Back substitute in (32) with the left hand side modified to

κd − 1
κd

ρd
π

r2 ∂r
∂η

∂π

∂t
+ r2 ∂r

∂η

ρdcpdθ2
v

gθvd

∂

∂t

(
1

(1 + µ)

∂π

∂r

)
+ (44)

C3∇ ·
(

r2ρdcpdθv
∂r
∂η

RP−1 ∂

∂t
(∇rπ)

)
.

C3 is a constant set to 1.2 in the examples illustrated. Carry out iterations till the convergence
slows (25 in the examples illustrated).

Now back substitute in (32) and calculate a residual. Repeat the inner iterations. This outer
iteration was run 10 times in the examples illustrated. Finally use (23) to obtain u. It is not currently
practical to iterate this procedure further to solve (19) exactly

3. Results

3.1. Experimental setup

The diagnostic can be calculated from UM data with whatever resolution is to be studied. In the
examples quoted here, this was on a latitude longitude grid with 640× 480 points, with a north-south
gridlength of about 40km. The data has 70 levels extending to 80km. The diagnostic is run on a grid of
160× 120 points, giving a north-south gridlength of about 125km, but the same levels as the UM. The
illustrations use a single case from February 2014.

This procedure allows reasonable computational accuracy in computing scales of 500km or greater.
However, it will still capture variability on scales smaller than where the SGT approximation is valid.
Therefore the forcing fields are further smoothed. The coefficients of the Q′ matrix calculated from the
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data wil also emphasise smaller scales because of the derivatives used to define the coefficients. These
are also smoothed. Near the equator an additional filter is applied to the geostrophic winds which
relaxes them towards the zonal mean. This is needed beacse of the severe restrictions on the validity of
SGT in the tropics outside the boundary layer.

3.2. Comparison of diagnostic and model-derived ageotriptic winds

Root mean square values of the geotriptic wind are about 21ms−1 for this data, and root mean
square values of the ageotriptic wind are about 6.3 ms−1, giving a global averaged Rossby number of
about 0.3. This would suggest a 10% expected error in the difference between the model wind and
the total wind deduced from (19). The actual global rms difference between the diagnosed wind and
the model wind is 9.7ms−1 in a overall rms wind of 22ms−1. The global rms difference between the
calculated geostrophic wind and the model wind is 7.3ms−1.

To illustrate this, Figure 1 shows a mid-tropospheric zonal geotriptic wind calculated using (9) and
(10) from UM pressure and potential temperature fields. The area illustrated is the extratropical North
Atlantic, so away from significant topography. It would be reasonable to expect the ageotriptic wind to
be accurate over such an area. Fig. 1 shows the ageotriptic wind calculated from (19) and the difference
between the UM wind and the geotriptic wind deduced from the pressure and temperature. There
is a reasonable match between the two estimates of the ageotroptic wind, indicating that SGT theory
is working reasonably accurately for the UM fields over the area chosen. The correlation coefficient
between the two estimates of the ageotriptic wind is 0.69 over the area and level illustrated. This both
illustrates the applicability of the theory and the ability of the UM to reproduce it.

The rms difference between the diagnosed wind and the model wind over the area and level
shown in Fig. 1 is 4.5ms−1 in a overall rms wind of 22ms−1, so the proportional error is 20% rather
than 45% globally..The rms difference between the calculated geotriptic wind and the model wind
is also about 4.5ms−1. Fig. 1 shows that the diagnosed ageotriptic wind is larger than the model
value in some regions. This is typical of situations where the space or time scale is becoming too
small for SGT theory to be accurate, and leads to the rms difference between the diagnosed wind and
the model wind being no smaller than that between the calculated geotriptic wind and the model wind.
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Figure 1. Zonal component of wind at 4000m, units ms−1. (a) Geotriptic wind calculated from (9), ((b)
ageotriptic wind from (19), (c) ageotriptic wind from UM output.

3.3. Use of a modified static stability to represent latent heat release

In section 2.3 it is shown that the latent heating resulting from maintenance of geotriptic balance
in cloudy ait can be deduced by solving (19) with a modified static stability as in (38). The resulting
w can then be used in (40) to deduce the latent heating. This can be compared with the temperature
increments from the schemes representing cloud and preciptation, both convective and dynamic, in
the UM.

The results are shown in Fig 2. The area chosen is again the extratropical North Atlantic, so
it can be expected that the vertical motion required to maintain geotriptic balance will be similar
to that generated by the UM, and that precipitation processes, which generate most of the latent
heating, will be strongly linked to the vertical velocity. In the first two panels the vertical velocity
w diagnosed from (19) with (38) is compared with that directly output from the UM. As in the
comparison of ageotriptic winds in Fig 1, there is reasonable agreement. In the second pair of
panels, the latent heating deduced from (40) is compared with the temperature increments from the
large-scale cloud scheme and the convection scheme combined. There is a strong correspondence
between the diagnosed latent heating and the diagnosed vertical motion, as would be expected
from (38). The correspondence between the model vertical motion and the model latent heating
does not look as strong. However, the correlation coefficient between them for the plotted area and
level is again 0.69. The visual mismatch is primarily because there is no latent heating in areas of
downward motion. The diagnostic procedure will generate latent cooling in cloudy air, but this
would result in rapid dissipation of the cloud and not correspond to significant latent cooling in the UM.
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Figure 2. Vertical velocity at 4000m, units ms−1:(a) directly output from UM, (b) calculated from (19).
Heating rates at 4000m, units ◦K day−1: (c) combined heating from precipitation schemes in UM, (d)
latent heating deduced as in section 2.3 (see text).

3.4. Effect of tropical heating on the subtropical jet

The diagnostic procedure can be applied using artificial physical forcing as well as that derived
from the model. There has been considerable interest in the effect of tropical heating on the extratropical
circulation. An example is the paper by Matthews et al. [18], where time dependent heating deduced
from reanalyses is used to determine the response to forcing of a simple general circulation model
(GCM) using a climatological mean state. This is compared with the observed evolution deduced from
satellite data.

The diagnostic presented here calculates the ’instant’ response of the geostrophic flow to forcing at
a particular time. It is thus easiest to compare it with the earlier study of [15]. In that paper, the forcing
was maintained over a long timescale, and an actual atmospheric state as well as a climatological state
could be used to determine the response to the forcing. The atmospheric state was maintained in
time by using an artificial forcing term. We apply a forcing similar to [15] and calculate the instant
geostrophic response to this forcing using the atmospheric state illustrated in the rest of the paper. In
[15], Fig. 17c shows the divergent response to the forcing, which is set up very quickly. This should be
reproduced by the diagnostic. Fig. 18c also shows a significant downstream response at about 30◦N in
the subtropical jet after 5 days. Since Fig. 17c shows that the divergent response does not propagate
much downstream, the formula for the source term plotted in Fig. 18c shows that this must represent a
perturbation vorticity. Thus in our diagnostic we look for a localised perturbation to the geotriptic
flow in the subtropical jet, which would then propagate downstream over the 5 day period illustrated
by [15].

The heating in the mid troposphere is illustrated in Fig 3a. It is centred on the dateline as in [15],
Fig. 17c. The heating extends through the troposphere. The zonal geostrophic wind is shown in Fig.
3b in the upper troposphere, noting that strong filtering has been applied near the equator to eliminate
values for which SGT theory is inappropriate. The diagnosed zonal geostrophic wind tendency is
shown in Fig. 3c. This peaks at the same longitude as the forcing, so would propagate the jet forwards.
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The values peak at about 0.5◦K day−1. If this is applied over 15 days, this gives a similar impact to
that shown in Fig. 12a of [15]. There are also impacts at lower latitudes, but these are not likely to be
physically correct as they are outside the validity of SGT.

The reason for the strong interaction with the subtropical jet can be seen in Fig. 3d. This plots the
second diagonal element of the matrix BQ′ defined in (16) and (20). In the absence of the non-trivial
model state this would take the value f 2, about 0.510 − 8 at 30◦N. It can be seen that on the southern
flank of the jet, where there is strong anticyclonic shear, the values drop to well below this. The effect
can be seen from (19). If the matrix Q′ has a small eigenvalue, there will be a very strong response to
forcing in this direction, so that in the present case there is a very efficient transfer of information from
the heating to the subtropical jet. Comparing Figs. 3a and c shows that the largest impact is to the west
of the forcing longitude, where the matrix coefficient is smallest. The diagnostic can thus pick up
sensitivity of the response to forcing to the structure of the basic state, whic is a topic of wide interest..

Figure 3. (a) Heating rate at 4000m, units ◦K day−1. (b) Zonal geostrophic wind units ms−1 at 11500m.
(c) Diagnosed zonal geostrophic wind tendency at 11500m, units ms−2. (d) (22) coefficient of BQ’
matrix, eq. 20, at 11500m, units 108×s−2.

3.5. Effect of boundary layer heating

A feature of the diagnostic procedure is the inclusion of a proper treatment of the boundary layer.
As shown in (34), the boundary layer heating projects strongly onto the temperature, as the vertical
motion is suppressed near the surface. This heating will also allow a horizontal temperature gradient
to develop in the boundary layer. Since there is no horizontal pressure gradient above the boundary
layer, hydrostatic balance will generate a heat low near the surface, resulting in convergence of the
geotriptic wind which flows down the pressure gradient. Hence upward motion will be generated at
the top of the boundary layer.

This is particularly important in the tropics, where it allows representation of the return
circulation consistent with the upward motion in the deep tropics. The example shown illustrates the
response to boundary layer heating over Borneo. The local time is around 1000 (0200UTC). There is
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strong convergence over both Borneo and Celebes to the east, leading to upward motion (not shown),
and also anticyclonic rotation..

Figure 4. Diagnostics calculated over a region 10◦S to 10◦N and 100◦E to 130◦E at 80m height above
the surface. (a) Boundary layer heating, units ◦K day−1: (b) total zonal wind calculated from (19), (c)
total meridional wind calculated from (19).

4. Discussion

The paper has developed a diagnostic procedure based on semi-geotriptic theory that can be
applied successfully to data from a comprehensive global model. It is necessary to filter the data to
large horizontal scales, particularly in the tropics, as expected. This means that it can be used to extract
the ’balanced’ rsponse to forcing, either by the model dynamics and physics, or artificially imposed
forcing. The firat example show that the SGT approximation gives results which match the large-scale
behaviour of the UM sufficiently closely to be useful. In particular, the predicted ageostrophic flow
correlates quite well with the UM’s ageostrophic flow. Greater accuracy cannot realistically be expected
given the wide range of scales and forcing mechanisms present in real and model-simulated flow.
An alternative view is to say that the UM appears to reproduce the balanced response to forcing as
calculated by the diagnostic.

The diagnostic should be able to aid the study of systematic errors, which usually have a
large-scale signal. The predicted circulation is strongly dependent on the model state, so that errors in
the resulting circulation can come from errors in the model state as well as errors in the forcing. In this
application, the results of the diagnostic procedure would need to be averaged over a large number
of cases, so that the noise created by using data on the borderline for applicability of SGT would be
filtered out. The second example supports this by showing that much of the extratropical precipitation
signal can be reproduced using the diagnosed vertical motion and the cloud fraction. This will help in
identifying the causes of systematic errors in precipitation. The third example shows that the effect of
tropical-extratropical interaction is strongly dependent on the background state assumed, the causes
of errors in this could be distinguished by replacing the model state with a reanalysis, while still using
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the same forcing. The final example shows the leading order effect of boundary layer forcing on the
circulation, again allowing the causes of systematic errors to be identified.
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Abbreviations

The following abbreviations are used in this manuscript:

GCM General Circulation Model
SEE Sawyer-Eliassen equation
SG semi-geostrophic
SGT semi-geotriptic
UM Unified Model
WTG Weak Temperature Gradient
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