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Abstract

In this paper, we gave an attack on RSA when ϕ(N) has small multiplicative inverse modulo e and the
prime sum p + q is of the form p + q = 2nk0 + k1 where n is a given positive integer and k0 and k1 are
two suitably small unknown integers using sublattice reduction techniques and Coppersmith’s methods for
finding small roots of modular polynomial equations. When we compare this method with an approach using
lattice based techniques, this procedure slightly improves the bound and reduces the lattice dimension.
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1 Introduction

RSA Cryptosystem is the first public key cryptosystem invented by Ronald Rivest, Adi Shamir and Leonard
Adalman in 1977 where the encryption and decryption are based on the fact that if N = pq, is the modulus
for RSA, p, q distinct primes, if 1 ≤ e ≤ ϕ(N) with (e, ϕ(N)) = 1 and d, the multiplicative inverse of e modulo
ϕ(N), then med = m mod N , for any message m, an integer in ZN . The security of this system depends on
the difficulty of finding factors of a composite positive integer, that is product of two large primes. In 1990,
M.J.Wiener [20] was the first one to describe a cryptanalytic attack on the use of short RSA deciphering ex-
ponent d. This attack is based on continued fraction algorithm which finds the fraction t

d , where t = ed−1
ϕ(n) in

a polynomial time when d is less than N0.25 for N = pq and q < p < 2q. Using lattice reduction approach
based on the Coppersmith techniques [7] for finding small solutions of modular bivariate integer polynomial
equations, D. Boneh and G. Durfee [4] improved the wiener result from N0.25 to N0.292 in 2000 and J. Blömer
and A. May [5] has given an RSA attack for d less than N0.29 in 2001, that requires lattices of dimension
smaller than the approach by Boneh and Durfee. In 2006, E. Jochemsz and A. May [10], described a strategy
for finding small modular and integer roots of multivariate polynomial using lattice-based Coppersmith tech-
niques and by implementing this strategy they gave a new attack on an RSA variant called common prime RSA.

In our paper [2], first we described an attack on RSA when ϕ(N) has small multiplicative inverse k of
modulo e, the public encryption exponent by using lattice and sublattice based techniques. Let N = pq, q <
p < 2q, p − q = Nβ and e = Nα > p + q. As (e, ϕ(N)) = 1, there exist unique r, s such that (p − 1)r ≡
1(mod e) and (q − 1)s ≡ 1(mod e). For k = rs(mod e), kϕ(N) ≡ 1(mod e) and define g(x, y) = x(y + B)− 1
where B = N + 1 −

⌈
2
√
N
⌉
. Then the pair (x0, y0) = (k,−((p + q) −

⌈
2
√
N
⌉
)) is a solution for the modular

polynomial equation g(x, y) ≡ 0(mod e). Now applying the lattice based techniques given by Boneh-Durfee in
[4] using x, y shifts and using only x shifts to the above modular polynomial equation, we get the attack bounds

for δ, |k| ≤ Nδ are δ <
3α+β−2

√
β(3α+β)

3 and δ < α−β
2 respectively. Also we improved the bound for δ up to

α−
√
αβ by implementing the sublattice based techniques given by Boneh and Durfee in [4] under the condition

δ > α − β(1 + α) and improved the bound for δ up to δ <
2α−6β+2

√
α2−αβ+4β2

5 by implementing the sublat-
tice based techniques with lower dimension given by J. Blömer and A. May in [5], this bound is slightly less
than the above bound but this method requires lattices of smaller dimension than the above method. All these
attack bounds are depending on the prime difference p−q = Nβ and α−

√
αβ is the maximum upper bound for δ.
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Later we described that, for β ≈ 0.5, the maximum bound for δ may be improved if the prime sum p + q
is in the form of the composed sum p + q = 2nk0 + k1 where n is a given positive integer and k0 and k1 are
two suitably small unknown integers. Define the polynomial congruence f(x, y, z) ≡ 0(mode) for f(x, y, z) ={

(N + 1)x+ xy + (2n)xz − 1 if |k0| ≤ |k1|
2n
′
x(N + 1) + xy + 2n

′
xz − 2n

′
if |k1| ≤ |k0|

where 2n
′

is an inverse of 2n mod e. By using lattice based

techniques to the above polynomial congruence, the attack bound for δ is such that δ < 1
2α −

1
2γ1 + 1

16γ2 −
1
16

√
48(α− γ1)γ2 + 33γ2

2 where Nγ1 , Nγ2 are the upper bounds for max{|k0|, |k1|}, min{|k0|, |k1|} respectively.

Now in this paper we slightly improved the above bound by using the sub-lattice based techniques given
by J. Blömer, A. May in [5] to the above polynomial congruence and this method requires lattice of smaller
dimension than the above method.

2 Preliminaries

In this section we state basic results on lattices, described briefly lattice basis reduction, Coppersmith’s method
and Howgrave-Graham theorem that are based on lattice reduction techniques are described.

Definition 1. Let b1, b2, ..., bn ∈ Rm be a set of linearly independent vectors. The lattice L generated by
b1, b2, ..., bn is the set of linear combinations of b1, b2, ..., bn with coefficients in Z.

A basis for L is any set of independent vectors that generates L. The dimension of L is the number of
vectors in a basis for L.

Remark 1. If L is a full rank lattice, means n = m then the determinant of L is equal to the determinant of
the n× n matrix whose rows are the basis vectors b1, b2, ..., bn.

In 1982, A. K. Lenstra, H. W. Lenstra, Jr. and L. Lovasz [11] invented the LLL lattice based reduction
algorithm to reduce a basis and to solve the shortest vector problem in polynomial time. The general result on
the size of individual LLL-reduced basis vectors is given in the following Theorem.

Theorem 1. Let L be a lattice and b1, b2, ..., bn be an LLL-reduction basis of L. Then

‖ b1 ‖≤‖ b2 ‖≤ ... ‖ bi ‖≤ 2
n(n−1)

4(n+1−i) det(L)
1

n+1−i

for all 1 ≤ i ≤ n [12].

An important application of lattice reduction found by Coppersmith in 1996 [7] is finding small roots of
low-degree polynomial equations. This includes modular univariate polynomial equations and bivariate integer
equations. In 1997 Howgrave-Graham [8] reformulated Coppersmith’s techniques and proposed a result which
shows that if the coefficients of h(x, y) are sufficiently small, then the equality h(x0, y0) = 0 holds not only
modulo N , but also over integers. The generalization of Howgrave-Graham result in terms of the Euclidean
norm of a polynomial h(x1, x2, ..., xn) =

∑
ai1...inx

i1
1 ...x

in
n is defined by the Euclidean norm of its coefficient

vector i.e., ||h(x1, x2, ..., xn)|| =
√∑

a2
i1...in

given as follows:

Theorem 2. (Howgrave-Graham): Let h(x1, x2, ..., xn) ∈ Z[x1, x2, ..., xn] be an integer polynomial that
consists of at most ω monomials. Suppose that

1. h
(
x

(0)
1 , x

(0)
2 , ..., x

(0)
n

)
≡ 0 mod em for some m where |x(0)

1 | < X1, |x(0)
2 | < X2 . . . |x(0)

n | < Xn, and

2. ||h(x1X1, x2X2, ..., xnXn)|| < em√
ω
.

Then h(x1, x2, ..., xn) = 0 holds over the integers.

Resultant of two polynomials:
The resultant of two polynomials f(x1, x2, . . . , xn) and g(x1, x2, . . . , xn) with respect to the variable xi for some
1 ≤ i ≤ n, is defined as the determinant of Sylvester matrix of f(x1, x2, . . . , xn) and g(x1, x2, . . . , xn) when
considered as polynomials in the single indeterminate xi, for some 1 ≤ i ≤ n.

Remark 2. The resultant of two polynomials is non-zero if and only if the polynomials are algebraically
independent .

Remark 3. If
(
x

(0)
1 , x

(0)
2 , . . . , x

(0)
n

)
is a common solution of algebraically independent polynomials f1, f2, . . . , fm

for m ≥ n, then these polynomials yield g1, g2, . . . , gn−1 resultants in n− 1 variables and continuing so on the

resultants yield a polynomial t(xi) in one variable with xi = x
(0)
i for some i is a solution of t(xi). Note the

polynomials considered to compute resultants are always assumed to be algebraically independent.
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3 An Attack Bound Using Sublattice Reduction Techniques

In this section, an attack bound for a small multiplicative inverse k of ϕ(N) modulo e when the prime sum
p+ q is of the form p+ q = 2nk0 + k1, where n is a given positive integer and k0 and k1 are two suitably small
unknown integers using sublattice reduction techniques is described.

In our paper [2], we proposed an attack on RSA when ϕ(N) has small multiplicative inverse modulo e and
the prime sum p+ q is of the form p+ q = 2nk0 + k1, where n is a given positive integer and k0 and k1 are two
suitably small unknown integers using lattice reduction techniques.

For 2n
′

is an inverse of 2n mod e, define f(x, y, z)=

{
(N + 1)x+ xy + (2n)xz − 1 if |k0| ≤ |k1|
2n
′
x(N + 1) + xy + 2n

′
xz − 2n

′
if |k1| ≤ |k0|.

If |k0| ≤ |k1|, then (k,−k1,−k0) is a solution and if |k1| ≤ |k0| then (k,−k0,−k1) is a solution for the modular
polynomial equation f(x, y, z) ≡ 0(mod e).

Now define the set Mk =
⋃

0≤j≤t
{xi1yi2zi3+t|xi1yi2zi3 is a monomial of fm and xi1yi2zi3

lk
is a monomial of fm−k},

where l is a leading monomial of f and define the shift polynomials as

gk,i1,i2,i3(x, y, z) =
xi1yi2zi3

lk
(f ′(x, y, z))kem−k, for k = 0, ...,m, xi1yi2zi3 ∈Mk \Mk+1

and f ′ = a−1
l f mod e for the coefficient al of l. For 0 ≤ k ≤ m, divide the above shift polynomials according

to t = 0 and t ≥ 1. Then for t = 0, the shift polynomials g(x, y, z) are

g(x, y, z) =

{
zi3(f(x, y, z))kem−k, for i1 = i2 = k, i3 = 0

xi1−kzi3(f(x, y, z))kem−k, for k ≤ m− 1, i1 = k + 1, ...,m, i2 = k, i3 = 0, ..., (i1 − i2).

and for t ≥ 1, the shift polynomials h(x, y, z) are

h(x, y, z) =

{
zi3(f(x, y, z))kem−k, for i1 = i2 = k, i3 = 1, ..., t

xi1−kzi3(f(x, y, z))kem−k, for k ≤ m− 1, i1 = k + 1, ...,m, i2 = k, i3 = (i1 − i2) + 1, ..., (i1 − i2) + t.

Let L be the lattice spanned by the coefficient vectors g(xX, yY, zZ) and h(xX, yY, zZ) shifts with dimension
( 1

6m
3 +m2 + 11

6 m+1)+
(

1
2 (m2 +m)t+ (m+ 1)t

)
[2]. Let M be the matrix of L with each row is the coefficients

of the shift polynomial

g-shifts



em, xem, xzem, x2em, x2zem, x2z2em, ..., xmem, xmzem, ..., xmzmem,

fem−1, xfem−1, xzfem−1, ..., xm−1fem−1, xm−1zfem−1, ..., xm−1zm−1fem−1,
...

fm−1e, xfm−1e, xzfm−1e,

fm,

h-shifts



zem, ...ztem, xz2em, ..., xz1+tem, ..., xmzm+1em, ..., xmzm+tem,

zfem−1, ...ztfem−1, xz2fem−1, ..., xz1+tfem−1, ..., xm−1zmfem−1, ..., xm−1z(m−1)+tfem−1,
...

zfm−1e, ..., ztfm−1e, xz2fm−1e, ..., xz1+tfm−1e,

zfm, ..., ztfm

and each column is the coefficients of each variable (in shift polynomials)

(first ( 1
6m

3 +m2 + 11
6 m+ 1) columns)



1, x, xz, x2, x2z, x2z2, ..., xm, xmz, ..., xmzm,

xy, x2y, x2yz, x3y, x3yz, x3yz2, ..., xmy, xmyz, ..., xmyzm−1,
...

xm−1ym−1, xmym−1, xmym−1z,

xmym,

(remaining
(

1
2 (m2 +m)t+ (m+ 1)t

)
columns)



z, ..., zt, xz2, ..., xz1+t, ..., xmzm+1, ..., xmzm+t,

xyz, ..., xyzt, x2yz2, ..., x2yz1+t, ..., xmyzm, ..., xmyz(m−1)+t,
...

xm−1ym−1z, ..., xm−1ym−1zt, xmym−1z2, ..., xmym−1z1+t,

xmymz, ..., xmymzt.

As xy is the leading monomial in f(x, y, z) with coefficient 1, the diagonal elements in the matrix M are

3
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g-shifts



em, Xem, XZem, X2em, X2Zem, X2Z2em, ..., Xmem, XmZem, ..., XmZmem,

XY em−1, X2Y em−1, X2Y Zem−1, ..., XmY em−1, XmY Zem−1, ..., XmY Zm−1em−1,
...

Xm−1Y m−1e,XmY m−1e,XmY m−1Ze,

XmY m,

h-shifts



Zem, ..., Ztem, XZ2em, ..., XZ1+tem, ..., XmZm+1em, ..., XmZm+tem,

XY Zem−1, ..., XY Ztem−1, X2Y Z2em−1, ..., X2Y Z1+tem−1, ..., XmY Zmem−1, ..., XmY Z(m−1)+tem−1,
...

Xm−1Y m−1Ze, ...,Xm−1Y m−1Zte,XmY m−1Z2e, ...,XmY m−1Z1+te,

XmY mZ, ...,XmY mZt.

Note that the matrix M is lower triangular matrix. Therefore, the determinant is

det(L) = en(e)Xn(X)Y n(Y )Zn(Z)

= (((1/8)m4 + (3/4)m3 + (11/8)m2 + (3/4)m) + ((1/6)(2m3 + 3m2 +m)t+ (1/2)(m2 +m)t))+

(((1/8)m4 + (3/4)m3 + (11/8)m2 + (3/4)m) + ((1/6)(2m3 + 3m2 +m)t+ (1/2)(m2 +m)t))+

(((1/24)m4 + (1/4)m3 + (11/24)m2 + (1/4)m) + ((1/6)(m3 −m)t+ (1/2)(m2 +m)t))+

(((1/24)m4 + (1/4)m3 + (11/24)m2 + (1/4)m)+

((1/4)(m2 +m)t2 + (1/2)(m+ 1)t2 + (1/12)(2m3 + 9m2 + 7m)t+ (1/2)(m+ 1)t))

where n(e), n(X), n(Y ) and n(Z) are denotes the number of e’s, X’s, Y ’s and Z’s in all diagonal elements
respectively.
Let Nδ, Nγ1 and Nγ2 be the upper bounds for X, max{k0, k1} and min{k0, k1} respectively, then the bound
for δ in which the generalized Howgrave-Graham result holds given in the following theorem.

Theorem 3. [2] Let N = pq be an RSA modulus with q < p < 2q. Let e = Nα, X = Nδ, Y = Nγ1 ,
Z = Nγ2 and k be the multiplicative inverse of ϕ(N) modulo e. Suppose the prime sum p + q is of the form
p+ q = 2nk0 + k1, for a known positive integer n and for |k| ≤ X,max{|k0|, |k1|} ≤ Y and min{|k0|, |k1|} ≤ Z
one can factor N in polynomial time if

δ <
1

2
α− 1

2
γ1 +

1

16
γ2 −

1

16

√
48(α− γ1)γ2 + 33γ2

2 . (1)

To improve this bound in a lower dimension than the above dimension, first we construct a sublattice SL of
L and after that we apply the sublattice based techniques to the lattice SL given by J. Blömer, A. May in [5],
and are described in the following sections.

3.1 Construction of a sublattice SSSL of L

The construction of a sublattice SL of L in order to improve the bound for δ is given in the following.

• First remove some rows in M corresponding to g-shifts, are such that
em, xem, xzem, ..., xm−1em, ..., xm−1zm−1em,
fem−1, xfem−1, xzfem−1, ..., xm−2fem−1, ..., xm−2zm−2fem−1,
...
fm−2e2, xfm−2e2, xzfm−2e2,
fm−1e.

Therefore the remaining rows in M corresponding to g-shifts are
xmem, xmzem, ..., xmzmem,
xm−1fem−1, ..., xm−1zm−1fem−1,
...
xfm−1e, xzfm−1e,
fm,
and its corresponding g-shifts can be written as

gs(x, y, z) = xl1zl2(f(x, y, z))kem−k for k = 0, ...,m, l1 = m− k, l2 = 0, ..., l1.

4
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• Now remove some rows in M corresponding to h-shifts are
zem, ..., ztem, ..., xm−1zmem, ..., xm−1z(m−1)+tem,
zfem−1, ..., ztfem−1, ..., xm−2zm−1fem−1, ..., xm−2z(m−2)+tfem−1,
...
zfm−2e2, ..., ztfm−2e2, xz2fm−2e2, ..., xz1+tfm−2e2,
zfm−1e, ..., ztfm−1e.
Therefore the remaining rows in M corresponding to h-shifts are
xmzm+1em, ..., xmzm+tem,
xm−1zmfem−1, ..., xm−1z(m−1)+tfem−1,
...
xz2fm−1e, ..., xzt+1fm−1e,
zfm, ..., ztfm, and its corresponding h-shifts can be written as

hs(x, y, z) = xl1zl2(f(x, y, z))kem−k for k = 0, ...,m, l1 = m− k, l2 = l1 + 1, ..., l1 + t.

Now let SL be the sub-lattice of L spanned by the coefficients of the vectors gs(xX, yY, zZ) and hs(xX, yY, zZ)
shifts and Ms be the matrix of the lattice SL.
Note that the matrix Ms is not square. So apply the sublattice based techniques to the basis of SL or the rows
of Ms to get a square matrix. Using that square matrix, the attack bound can be found and is given in the
following section.

3.2 Applying sub-lattice based techniques to get an attack bound

In [5], J. Blomer, A. May proposed a method to find an attack bound for low deciphering exponent in a smaller
dimension than the approach by Boneh and Durfee’s attack in [4]. Apply their method based on sublattice
reduction techniques to our lattice SL to get an attack bound and is described in the following.

In order to apply the Howgrave-Graham’s theorem by using Theorem 1, we need three short vectors in SL
as our polynomial consists three variables. But note that Ms is not a square matrix. So, first construct a square
matrix Msl by removing some columns in Ms, which are small linear combination of non-removing columns in
Ms. Then the short vector in Msl lead to short reconstruction vector in SL.

Construction of a square sub-matrix Msl of Ms.

Columns in M and Ms are same and each column in M is nothing but the coefficients of a variable, which
is a leading monomial of the polynomial g or h-shifts. The first ( 1

6m
3 + m2 + 11

6 m + 1) and remaining(
1
2 (m2 +m)t+ (m+ 1)t

)
columns are corresponding to the leading monomial of the polynomials g and h-shifts

respectively. Therefore,

1. the first ( 1
6m

3+m2+ 11
6 m+1) columns are the coefficients of the each variable xi1yi2zi3 for i1 = i2 = k, i3 =

0 and i1 = k + 1, ...,m, i2 = k, i3 = 0, ..., (i1 − i2) and remaining
(

1
2 (m2 +m)t+ (m+ 1)t

)
columns are

the coefficients of the each variable xi1yi2zi3 for i1 = i2 = k, i3 = 1, ..., t and i1 = k + 1, ...,m, i2 = k, i3 =
(i1− i2) + 1, ..., (i1− i2) + t. So the variable xi1yi2zi3 corresponds a column in first ( 1

6m
3 +m2 + 11

6 m+ 1)
columns if i1 ≥ i2 + i3 and corresponds a column in remaining

(
1
2 (m2 +m)t+ (m+ 1)t

)
columns if

i1 < i2 + i3.

2. As 1, x, xy, xz are the monomials of f , the set of all monomials of fm for m ≥ 0 is {xi1yi2zi3 ; i1 =
0, ...,m, i2 = 0, ..., i1, i3 = 0, ..., i1 − i2}. Therefore, the coefficient of the variable xi1yi2zi3 in fm is
non-zero if and only if i3 ≤ i1 − i2, i.e., i1 ≥ i2 + i3.

Remove columns in Ms corresponding to the coefficients of the variable xaybzc for all 0 ≤ a ≤ m − 1 and

note that every such column is
(
m−(a−b)
(m−a)!b!

)
· 1
Xm−aYm−a multiple of a non-removed column, corresponding to the

coefficients of xmym−(a−b)zc and is proved in the following theorem.

Theorem 4. Each column in Ms corresponding to the coefficients of the variable xaybzc, a leading monomial

of the polynomial g or h-shifts, for all 0 ≤ a ≤ m − 1 is
(
m−(a−b)
(m−a)!b!

)
· 1
Xm−aYm−a multiple of a non-removed

column, represents the coefficients of the variable xmym−(a−b)zc.

Proof. For n = 0, ...,m, k1 = m − n, k2 = 0, ..., k1 , the gs-shifts xk1zk2fnek1 corresponds first ( 1
6m

3 + m2 +
11
6 m+1) rows in Ms and for n = 0, ...,m, k1 = m−n, k2 = k1+1, ..., k1+t, the hs-shifts xk1zk2fnek1 corresponds
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remaining rows in Ms. We prove this theorem in two cases.

Case(i): Any column in first ( 1
6m

3 + m2 + 11
6 m + 1) columns of Ms. i.e., a column corresponding coeffi-

cients of a variable xaybzc with a ≥ b+ c, from the above analysis in (1).

Given that 0 ≤ a ≤ m − 1. From the above analysis in (1) and (2), the coefficient of xaybzc is non-zero
in gs-shifts xk1zk2fnek1 if and only if a ≥ k1, b ≤ m− k1, c ≥ k2 and a− k1 ≥ b+ (c− k2). As k1 ≥ k2, k2 ≥ 0
and a − k1 ≥ b + (c − k2), max{0, k1 − (a − (b + c))} ≤ k2 ≤ min{k1, c} and also as a − k1 < b + (c − k2) for
k1 > a− b, k1 is such that 0 ≤ k1 ≤ a− b.

Therefore, the coefficient of xaybzc is non-zero in gs-shifts xk1zk2fnek1 if and only if a ≥ k1, b ≤ m−k1, c ≥ k2

and k1 = 0, ..., a− b, k2 = max{0, k1 − (a− (b+ c))}, ...,min{k1, c}.

Similarly we can prove that, the coefficient of xaybzc is non-zero in hs-shifts xk1zk2fnek1 if and only if
a ≥ k1, b ≤ m−k1, c ≥ k2 and k1 = 0, ..., c, k2 = k1+1, ...,min{c, k1+t} using the inequalities k1+1 ≤ k2 ≤ k1+t,
a ≥ b+ c and analysis in (1) and (2), and say min{c, k1 + t} = lt
The formula for finding a coefficient of a variable xl1yl2zl3 = (1)n−l1xl1−(l2+l3)(xz)l3(xy)l2 for l1 ≤ n− 1 in fn

is
n!

(n− l1)!(l1 − (l2 + l3))!l2!l3!)
(−1)n−l1(N + 1)l1−(l2+l3)(2n)l3

and coefficient of xaybzc in xk1yk2fnek1 is nothing but a coefficient of xa−k1ybzc−k2 in fn.

Note that a column corresponding to a variable xmym−azc is in the non-removing columns in Ms and co-
efficient of xmym−azc is zero for k1 > a − b in gs-shifts , k1 > c in hs-shifts. The columns corresponding to a
variable xaybzc and a variable xmym−azc only with non-zero terms is depicted in Table 1.
Therefore, from Table 1 the result holds in this case.

Case(ii): Any column in remaining
(

1
2 (m2 +m)t+ (m+ 1)t

)
columns of Ms, i.e.,a column corresponding

coefficients of a variable xaybzc with a < b+ c, from the above analysis in (1).

The coefficient of xaybzc is non-zero in gs-shifts xk1zk2fnek1 if and only if a ≥ k1, b ≤ m − k1, c ≥ k2,
a− k1 ≥ b+ (c− k2) and note for a < b+ c, a− k1 < b+ (c− k2) as k1 ≥ k2 in gs-shifts. So the coefficient of
xaybzc is zero in all rows corresponding to gs-shifts.

The coefficient of xaybzc is non-zero in hs-shifts xk1zk2fnek1 if and only if a ≥ k1, b ≤ m − k1, c ≥ k2 and
a − k1 ≥ b + (c − k2). For k1 > a − b, a − k1 < b + (c − k2) and from the inequalities k1 + 1 ≤ k2 ≤ k1 + t,
a − k1 ≥ b + (c − k2), we have the coefficient of xaybzc is non-zero in hs-shifts xk1zk2fnek1 if and only if
a ≥ k1, b ≤ m − k1, c ≥ k2 and k1 = 0, ..., a − b, k2 = max{k1 + 1, k1 + (b + c) − a}, ...,min{c, k1 + t}. Take
lt = min{c, k1 + t}.

Note that coefficient of xmym−azc is zero in all gs-shifts as a > c and for k1 > a − b in hs-shifts. The
columns corresponding to a variable xaybzc and a variable xmym−azc only with non-zero terms is depicted in
Table 2. Therefore, from Table 2 the result holds in this case.
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From the above theorem, all columns corresponding to a variable xaybzc for all 0 ≤ a ≤ m−1 are depending
on a non-removed column, corresponding to a variable xmym−(a−b)zc in Ms. Let Msl be a matrix formed by
removing all above columns from the matrix Ms and Sl be a lattice spanned by rows of Msl. Then the short
vector in Sl lead to short reconstruction vector in SL, i.e., if u =

∑
b∈B

cbb is a short vector in Sl then this lead to

a short vector ū =
∑
b∈B̄

cbb (same coefficients cb) in SL where B and B̄ are the basis for Sl and SL respectively.

As we removed all depending columns in Ms to form a matrix Msl, apply the lattice based techniques to Sl
instead of SL to get an attack bound and this lattice reduction techniques gives a required short vectors in SL
for a given bound.

The matrix Msl is lower triangular with rows same as in Ms and each column corresponding to coefficients
of one of the variables ( leading monomials of gs and hs-shifts)

gs-shift



xm, xmz, ..., xmzm,

xmy, ..., xmyzm−1,
...

xmym−1, xmym−1z,

xmym,

hs-shift



xmzm+1, ..., xmzm+t,

xmyzm, ..., xmyz(m−1)+t,
...

xmym−1z2, ..., xmym−1z1+t,

xmymz, .., xmymzt.

Therefore Sl is a lattice spanned by coefficient vectors of the shift polynomials gsl(xX, yY, zZ) and hsl(xX, yY, zZ)
where

gsl(x, y, z) = xl1zl2fnel1 for n = 0, ...,m, l1 = m− n, l2 = 0, ..., l1 and

hsl(x, y, z) = xl1zl2fnel1 for n = 0, ...,m, l1 = m− n, l2 = l1 + 1, ..., l1 + t.

Since Sl is full-rank lattice, detSl = detMsl = en(e)Xn(X)Y n(Y )Zn(Z) where n(e), n(X), n(Y ), n(Z) are
denotes the number of e′s,X ′s, Y ′s, Z ′s in all the diagonal elements of Msl respectively. As xnyn is a leading
monomial of fn with coefficient 1, we have

n(e) =

m∑
n=0

∑
l1=m−n

l1∑
l2=0

l1 +

m∑
n=0

∑
l1=m−n

l1+t∑
l2=l1+1

l1

= (1/3)m3 +m2 + (1/2)(m2 +m)t+ (2/3)m,

n(X) =

m∑
n=0

∑
l1=m−n

l1∑
l2=0

n+ l1 +

m∑
n=0

∑
l1=m−n

l1+t∑
l2=l1+1

n+ l1

= (1/2)m3 + (3/2)m2 + (m2 +m)t+m,

n(Y ) =

m∑
n=0

∑
l1=m−n

l1∑
l2=0

n+

m∑
n=0

∑
l1=m−n

l1+t∑
l2=l1+1

n

= (1/6)m3 + (1/2)m2 + (1/2)(m2 +m)t+ (1/3)m,

n(Z) =

m∑
n=0

∑
l1=m−n

l1∑
l2=0

l2 +

m∑
n=0

∑
l1=m−n

l1+t∑
l2=l1+1

l2

= (1/6)m3 + (1/2)(m+ 1)t2 + (1/2)m2 + (1/2)(m2 + 2m+ 1)t+ (1/3)m

and dim(Sl) = ω =

m∑
n=0

∑
l1=m−n

l1∑
l2=0

1 +

m∑
n=0

∑
l1=m−n

l1+t∑
l2=l1+1

1

= (1/2)m2 + (m+ 1)t+ (3/2)m+ 1.
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Take t = τm, then for sufficiently large m, the exponents n(e), n(X), n(Y ), n(Z) and the dimension ω reduce to

ω =

(
1

2
+ τ

)
m2 + o(m),

n(e) =

(
1

3
+

1

2
τ

)
m3 + o(m2),

n(X) =

(
1

2
+ τ

)
m3 + o(m2),

n(Y ) =

(
1

6
+

1

2
τ

)
m3 + (m2),

n(Z) =

(
1

6
+

1

2
τ +

1

2
τ2

)
m3 + o(m2).

Applying the LLL algorithm to the basis vectors of the lattice Sl, i.e., coefficient vectors of the shift polynomials,
we get a LLL-reduced basis say {v1, v2, ..., vω} and from the Theorem 1 we have

||v1|| ≤ ||v2|| ≤ ||v3|| ≤ 2
ω(ω−1)
4(ω−2) det(Sl)

1
ω−2 .

In order to apply the generalization of Howgrave-Graham result in Theorem 2, we need the following inequality

2
ω(ω−1)
4(ω−2) det(Sl)

1
ω−2 <

em√
ω
.

from this, we deduce

det(Sl) <
1(

2
ω(ω−1)
4(ω−2)

√
ω
)ω−2 e

m(ω−2) <
1(

2
ω(ω−1)
4(ω−2)

√
ω
)ω−2 e

mω.

As the dimension ω is not depending on the public encryption exponent e, 1(
2

ω(ω−1)
4(ω−2)

√
ω

)ω−2 is a fixed constant,

so we need the inequality det(Sl) < emω, i.e., en(e)Xn(X)Y n(Y )Zn(Z) < emω.

Substitute all values and taking logarithms, neglecting the lower order terms and after simplifying by m3

we get
(−1− 3τ)α+ (3 + 6τ)δ + (1 + 3τ)γ1 + (1 + 3τ + 3τ2)γ2 < 0.

The left hand side inequality is minimized at τ = α−(2δ+γ1+γ2)
2γ2

and putting this value in the above inequality
we get

δ <
1

2
α− 1

2
γ1 −

1

6

√
6(α− γ1)γ2 + 3γ2

2 .

From the first three short vectors v1, v2 and v3 in LLL reduced basis of a basis B in Sl we consider three
polynomials g1(x, y, z), g2(x, y, z) and g3(x, y, z) over Z such that g1(x0, y0, z0) = g2(x0, y0, z0) = g3(x0, y0, z0) =
0. These short vectors v1, v2 and v3 lead to a short vector v̄1, v̄2 and v̄3 respectively and ḡ1(x, y, z), ḡ2(x, y, z)
and ḡ3(x, y, z) its corresponding polynomials. Apply the same analysis in paper [2] to the above polynomials to
get the factors p and q of RSA modulus N .

Theorem 5. Let N = pq be an RSA modulus with q < p < 2q. Let e = Nα, X = Nδ, Y = Nγ1 , Z = Nγ2 and
k be the multiplicative inverse of ϕ(N) modulo e. Suppose the prime sum p+ q is of the form p+ q = 2nk0 +k1,
for a known positive integer n and for |k| ≤ X,max{|k0|, |k1|} ≤ Y and min{|k0|, |k1|} ≤ Z one can factor N in
polynomial time if

δ <
1

2
α− 1

2
γ1 −

1

6

√
6(α− γ1)γ2 + 3γ2

2 . (2)

Proof. Follows from the above argument and the LLL lattice basis reduction algorithm operates in polynomial
time [11].

Note that for any given primes p and q with q < p < 2q, we can always find a positive integer n such that
p+ q = 2nk0 + k1 where 0 ≤ |k0|, |k1| ≤≈ 0.25. A typical example is 2n ≈ 3√

2
N0.25 as p+ q < 3√

2
N0.5 [14]. So

take γ1 and γ2 in the range (0,0.25).
Let δL and δsl be the bounds for δ in inequalities (1) and (2) respectively. Then note that δsl is slightly larger
than δL and is depicted in Figure 1 for α = 0.51, 0.55, 0.750 and 1.
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(a) α = 0.501
(b) α = 0.55

(c) α = 0.75 (d) α = 1

Figure 1: The region of δsl and δL for α = 0.501, 0.55, 0.75, 1.

In the Figure 1, x, y, z-axis represents γ1, γ2, bound for δ respectively and yellow, red regions represents
δsl, δL receptively. From this figure, it is noted that the yellow region is slightly above the red region, i.e., δsl
is slightly grater than δL and this improvement increases when the values of α increases.

As the dimension of L is (1/6)m3 + (1/2)m2(t+ 2) + (1/6)m(9t+ 11) + (t+ 1) for t =
(
α−(2δ+γ1+γ2)

3γ2

)
m [2]

and Sl is (1/2)m2 + (m + 1)t + (3/2)m + 1 for t =
(
α−(2δ+γ1+γ2)

2γ2

)
m, note the dimension of Sl is (1/6)m3 +

(1/3)t(m2 − 1) + (1/2)m2 + (1/3)m, for t =
(
α−(2δ+γ1+γ2)

2γ2

)
smaller than the dimension of L.

4 Conclusion

In this paper, an another attack bound for k, a small multiplicative inverse of ϕ(N) modulo e is given when
the prime sum p+ q is of the form p+ q = 2nk0 + k1 where n is a given positive integer and k0 and k1 are two
suitably small unknown integers using sublattice reduction techniques and Coppersmith’s methods for finding
small roots of modular polynomial equations. This attack bound is slightly larger than the bound, in the
approach using lattice based techniques and requires lattice of smaller dimension than the approach given by
using lattice based techniques.
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