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Abstract

In this paper, we gave an attack on RSA when ¢(N) has small multiplicative inverse modulo e and the
prime sum p + ¢ is of the form p + ¢ = 2"ko + k1 where n is a given positive integer and ko and kq are
two suitably small unknown integers using sublattice reduction techniques and Coppersmith’s methods for
finding small roots of modular polynomial equations. When we compare this method with an approach using
lattice based techniques, this procedure slightly improves the bound and reduces the lattice dimension.
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1 Introduction

RSA Cryptosystem is the first public key cryptosystem invented by Ronald Rivest, Adi Shamir and Leonard
Adalman in 1977 where the encryption and decryption are based on the fact that if N = pq, is the modulus
for RSA, p, ¢ distinct primes, if 1 < e < ¢(N) with (e, o(IN)) = 1 and d, the multiplicative inverse of e modulo
©(N), then m®® = m mod N, for any message m, an integer in Zy. The security of this system depends on
the difficulty of finding factors of a composite positive integer, that is product of two large primes. In 1990,
M.J. Wiener [20] was the first one to describe a cryptanalytic attack on the use of short RSA deciphering ex-

ponent d. This attack is based on continued fraction algorithm which finds the fraction 5, where ¢ = Zd(;)l in

a polynomial time when d is less than N°25 for N = pq and ¢ < p < 2q. Using lattice reduction approach
based on the Coppersmith techniques [7] for finding small solutions of modular bivariate integer polynomial
equations, D. Boneh and G. Durfee [4] improved the wiener result from N%25 to N%292 in 2000 and J. Blémer
and A. May [5] has given an RSA attack for d less than N°2% in 2001, that requires lattices of dimension
smaller than the approach by Boneh and Durfee. In 2006, E. Jochemsz and A. May [10], described a strategy
for finding small modular and integer roots of multivariate polynomial using lattice-based Coppersmith tech-
niques and by implementing this strategy they gave a new attack on an RSA variant called common prime RSA.

In our paper [2], first we described an attack on RSA when ¢(N) has small multiplicative inverse k of
modulo e, the public encryption exponent by using lattice and sublattice based techniques. Let N = pq,q <
p<2¢p—q=NPand e = N* > p+q As (e,p(N)) = 1, there exist unique r,s such that (p — 1)r =
1(mod e) and (¢ — 1)s = 1(mod e). For k = rs(mod e), k(p(N) = 1(m0d e) and define g(z,y) = 2(y + B) — 1
where B= N +1— [QW] Then the pair (zg,y0) = (k,—((p + q) [2\/7 is a solution for the modular
polynomial equation g(z,y) = 0(mod e). Now applying the lattice based techniques given by Boneh-Durfee in
[4] using x, y shifts and using only z shifts to the above modular polynomial equation, we get the attack bounds

for 6, |k| < N? are § < Satpm2y/PBath) W and § < O“T_ﬁ respectively. Also we improved the bound for § up to
a—+/af by implementing the sublattice based techniques given by Boneh and Durfee in [4] under the condition

0 > a— B(1+ «) and improved the bound for d up to § < 20— 60+2y 5042—a/3+452 by implementing the sublat-
tice based techniques with lower dimension given by J. Blémer and A. May in [5], this bound is slightly less
than the above bound but this method requires lattices of smaller dimension than the above method. All these
attack bounds are depending on the prime difference p—q¢ = N# and a—+/af is the maximum upper bound for §.
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Later we described that, for 5 & 0.5, the maximum bound for § may be improved if the prime sum p + ¢
is in the form of the composed sum p + ¢ = 2"k + k1 where n is a given positive integer and ko and k; are
two suitably small unknown integers. Define the polynomial congruence f(x,y,z) = 0(mode) for f(z,y,z) =

N+1 2M)xz — 1if |ko| < |k ,

( / + Dzt ay +( )xfz ! |, 0‘ < [ where 2™ is an inverse of 2" mod e. By using lattice based

2" (N + 1) +ay+ 2" xz — 2™ if |ky| < |ko|
techniques to the above polynomial congruence, the attack bound for § is such that § < %a - %71 + %672 -
+1/48(c — v1)2 + 3372 where N7, N2 are the upper bounds for max{|kol, |k1|}, min{|kol, |k1|} respectively.

Now in this paper we slightly improved the above bound by using the sub-lattice based techniques given
by J. Blomer, A. May in [5] to the above polynomial congruence and this method requires lattice of smaller
dimension than the above method.

2 Preliminaries

In this section we state basic results on lattices, described briefly lattice basis reduction, Coppersmith’s method
and Howgrave-Graham theorem that are based on lattice reduction techniques are described.

Definition 1. Let b1,bo,...,b, € R™ be a set of linearly independent vectors. The lattice L generated by
by, ba, ..., by, is the set of linear combinations of by, b, ..., b, with coefficients in Z.

A basis for L is any set of independent vectors that generates L. The dimension of L is the number of
vectors in a basis for L.

Remark 1. If L is a full rank lattice, means n = m then the determinant of L is equal to the determinant of
the n X n matrix whose rows are the basis vectors by, b, ..., by,.

In 1982, A. K. Lenstra, H. W. Lenstra, Jr. and L. Lovasz [11] invented the LLL lattice based reduction
algorithm to reduce a basis and to solve the shortest vector problem in polynomial time. The general result on
the size of individual LLL-reduced basis vectors is given in the following Theorem.

Theorem 1. Let L be a lattice and by, bs, ..., b,, be an LLL-reduction basis of L. Then
n(n—1) 1
by 11 b2 (1< .o ] b1 [[< 2767555 det(L) 77
forall 1 <¢<mn[12].

An important application of lattice reduction found by Coppersmith in 1996 [7] is finding small roots of
low-degree polynomial equations. This includes modular univariate polynomial equations and bivariate integer
equations. In 1997 Howgrave-Graham [8] reformulated Coppersmith’s techniques and proposed a result which
shows that if the coefficients of h(x,y) are sufficiently small, then the equality h(zg,yo) = 0 holds not only
modulo N, but also over integers. The generalization of Howgrave-Graham result in terms of the Euclidean
norm of a polynomial h(xq,xo,...,z,) = Zallinxlllxil" is defined by the Euclidean norm of its coefficient

vector i.e., ||h(x1, o, ..., x,)|| = (/2o aF, ;. given as follows:

Theorem 2. (Howgrave-Graham): Let h(x1,xs,...,2,) € Z[21,2a,...,2,] be an integer polynomial that
consists of at most w monomials. Suppose that

1. h (xgo)’ xgo), ...,xﬁ{”) = 0 mod e™ for some m where |x§0)| < Xi, |x§0)| <Xg... |x£LO)| < X,, and

2. ||h($1X1,$2X2,...,$an)H < %.

Then h(z1,z2,...,2,) = 0 holds over the integers.
Resultant of two polynomials:
The resultant of two polynomials f(x1,x2,...,2,) and g(x1,xe, ..., x,) with respect to the variable z; for some

1 <4 < n, is defined as the determinant of Sylvester matrix of f(z1,z2,...,2,) and g(z1,22,...,2,) when
considered as polynomials in the single indeterminate x;, for some 1 < ¢ < n.

Remark 2. The resultant of two polynomials is non-zero if and only if the polynomials are algebraically

independent .
Remark 3. If <x§0)7 méo), e xﬁ,o)) is a common solution of algebraically independent polynomials f1, fo, ..., fin
for m > n, then these polynomials yield ¢1, g2, ..., gn_1 resultants in n — 1 variables and continuing so on the

resultants yield a polynomial ¢(z;) in one variable with x; = xgo) for some i is a solution of ¢(x;). Note the
polynomials considered to compute resultants are always assumed to be algebraically independent.
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J An Attack bound Using Sublattice Reduction lechniques

In this section, an attack bound for a small multiplicative inverse k of ¢(N) modulo e when the prime sum
p+ q is of the form p 4 g = 2"ky + k1, where n is a given positive integer and kg and k; are two suitably small
unknown integers using sublattice reduction techniques is described.

In our paper [2], we proposed an attack on RSA when ¢(N) has small multiplicative inverse modulo e and
the prime sum p + q is of the form p + g = 2"ko + k1, where n is a given positive integer and k¢ and k; are two
suitably small unknown integers using lattice reduction techniques.
2V x(N + 1) + ay + 27wz — 27 if k| < |kol.

If |ko| < |k1|, then (k, —k1,—ko) is a solution and if k1| < |ko| then (k, —ko, —k1) is a solution for the modular
polynomial equation f(x,y,z) = 0(mod e).

For 2" is an inverse of 2" mod e, define flz,yy,2)=

Now define the set M, = |J {xity®22Tt|zi1y?22%is a monomial of f™ and am;#is a monomial of f™~F},
0<j<t
where [ is a leading monomial of f and define the shift polynomials as
xilyi2zi3 / k, m—k 11,92 43
gk,il,ig,ig(‘rayaz) = T(f (557@/72)) € ) for k = 07 ey, Y2 S Mk \ Mk+1

and [ = al_1 f mod e for the coefficient a; of [. For 0 < k < m, divide the above shift polynomials according
tot=0and ¢ > 1. Then for ¢t = 0, the shift polynomials g(z,y, z) are

28(f(x,y,2))kem ™k, for iy =iy =k, iz =0
ok (f(xy, 2)kemF fork<m—1,iy =k+1,...,m, ia =k, i3 =0,..., (i1 — ia).

g(x,y,z) = {

and for ¢ > 1, the shift polynomials h(z,y, z) are

i ) 23 (f(x,y,2))kemk foriy =ig =k, i3 =1,...,t
z,Y,z) = ; ; . . . . . . .

Y ek (f(zy, 2)kemk fork<m— 1,0y =k+1,...,m, ig =k, i3 = (iy —i2) + 1,..., (i1 —i2) +t.
Let L be the lattice spanned by the coefficient vectors g(zX,yY, 2Z) and h(xX,yY, 2Z) shifts with dimension
(2m3+m?+HEm+1)+ (3(m? + m)t + (m + 1)t) [2]. Let M be the matrix of L with each row is the coefficients
of the shift polynomial

e, re
fe'mfl7 xfemfl’ $Zf€m717 e mmflfemflv xmflzfemfl, . mmflszlfemflv

moxze™, x2e™, x?ze™, x22%e™, ..., " e™, xze™, ..., ™2™ e™,

)

g-shifts
fmfle’ xfmfle’ mzfmfle,
fm
)
ze™, .zte™, xZ2e™, .. xrl Tte™, L e lem gy ttem
zfem1 L atfem xR fem L wttt feml L am T lym feml L g ly(mm DAt fem—1
h-shifts

2fmle, L 2t fm e, w22 f e, Lt T e,

m tfrm
zf™ L2t f
and each column is the coefficients of each variable (in shift polynomials)
2 .2 2,2 m ,.m m.,m
lz,zz,2%, 2%z, 2727, ..., a™, x™z, ...,z 2™,

m,, ,m—1

2, .2 3, .3 3,2
Ty, Ty, Yz, 2°Y, 2°Yz, 22y, .., "y, Yz, L, Yz ,
(first (m® 4+ m? + Lm + 1) columns)
xmflymfl’ xmym717 xmymflz,
2,2t x2?, xR L e gy
Tyz, ..., xyzt, x2yz?, Lty L ey ™, L iy (M D
(remaining (3 (m? + m)t + (m + 1)t) columns)
Z.Tn—lym—lz7 o xm—lym—lzt7 mmym—1227 . xmym—lzl—i-t’
Yz, .., Ty
As zy is the leading monomial in f(z,y, z) with coefficient 1, the diagonal elements in the matrix M are
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em Xe™ XZe™, X%e™, X2 Ze™, X2 Z%e™, ..., Xme™ XM Ze™, ..., X ZMe™,
XYemr 1 X?2Yem ! X2Y Zem™ ! . X™Yem L XY Zem L L XY Zm e

g-shiftsq -

Xxm-lym—lg xmym=le xmym-1zc

xmym,

Zem, ..., Zte™, X Z%e™, ... X Z Ftem . XM gmtlem | Xmzmttem,

XY Zem Y, . XY Zte™ 1 X2Y Z2em 1 X2Y Zittem—1 XMy zmem—1 xmy gz(m-1t+tem—1
h-shifts{ :

Xmolym=lge . Xm-lym-lgte xmym-1z2,  xmym-1gl+t
XY™z, .. XYzt

Note that the matrix M is lower triangular matrix. Therefore, the determinant is
n(e) xn(X)yn(Y) zn(Z)
((1/8)m* + (3/4)m?® + (11/8)m? + (3/4)m) + ((1/6)(2m> + 3m? + m)t + (1/2)(m? + m)t))+
((1/8)m* + (3/4)m> + (11/8)m? + (3/4)m) + ((1/6)(2m> + 3m? + m)t + (1/2)(m? +m)t))+
(((1/24)m* 4+ (1/4)m3 + (11/24)m? + (1/4)m) + ((1/6)(m> — m)t + (1/2)(m?* + m)t))+
(((1/24)m* + (1/4)m? + (11/24)m? + (1/4)m)+

(1/4)(m? +m)t* + (1/2)(m + 1)t? + (1/12)(2m> + 9m? + Tm)t + (1/2)(m + 1)t))

det(L) =e
= ( +
_l’_

where n(e), n(X), n(Y) and n(Z) are denotes the number of e’s, X’s, Y’s and Z’s in all diagonal elements
respectively.

Let N°, N7 and N7 be the upper bounds for X, max{ko, k1} and min{kg, k;} respectively, then the bound
for § in which the generalized Howgrave-Graham result holds given in the following theorem.

Theorem 3. [2] Let N = pg be an RSA modulus with ¢ < p < 2¢. Let e = N*, X = N° Y = N7,
Z = N7 and k be the multiplicative inverse of ¢(IN) modulo e. Suppose the prime sum p + ¢ is of the form
p+q=2"ko+ k1, for a known positive integer n and for |k| < X, max{|kol,|k1]|} <Y and min{|kol, |k1|} < Z
one can factor N in polynomial time if

1 1 1 1 \/ 5

To improve this bound in a lower dimension than the above dimension, first we construct a sublattice Sy, of
L and after that we apply the sublattice based techniques to the lattice Sz, given by J. Blomer, A. May in [5],
and are described in the following sections.

3.1 Construction of a sublattice S; of L
The construction of a sublattice Sy, of L in order to improve the bound for ¢ is given in the following.

e First remove some rows in M corresponding to g-shifts, are such that
e™, xe™, xze™, ..., e, .. Ty e,
fem L afem™ 1l xafemt . am T2 feml L gmT2ym T2 fem—l

fm—2€2’ $fm_2€2, LEme_Q@Z,
fmfle'

Therefore the remaining rows in M corresponding to g-shifts are
zme™ xmze™, ..., ™"z e™,

xm—lfem—17 . xm—lzm—lfem—l7

zfm e, zzfm e,
m,

and its corresponding g-shifts can be written as

gs(x,y, 2) = 222 (f(z,y,2))Fe™ * for k=0,....,m, 1y =m —k,ly =0,..., 1.
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e Now remove some rows in M corresponding to h-shifts are
ze™, .. Ztem . amTiymem | gmTly(m-ttem

zfem1 2t femT, L amT2yme ]l fem=l | gme2(m=2)tt fem—1

me7262, s thm72€2, ‘,Z:Zme72e2’ . $Zl+tfm72€27

2fm e, L 2t fm e,

Therefore the remaining rows in M corresponding to h-shifts are
MMt lem | gmymttem,

xm—lszem—l’ . xm—lz(m—l)—&-tfem—l,

x22fmle, L pattl fmTle,

z2f™, ..., 2t f™ and its corresponding h-shifts can be written as

he(x,y,z) = 122 (f(z,y, 2)ke™ F for k=0,....,m, L =m —k,lo =11 +1,...,1; +t.

Now let Sy, be the sub-lattice of L spanned by the coefficients of the vectors gs(xX,yY, 22) and hy(2X,yY, 22)
shifts and M, be the matrix of the lattice Sp.

Note that the matrix M is not square. So apply the sublattice based techniques to the basis of Sy, or the rows
of M to get a square matrix. Using that square matrix, the attack bound can be found and is given in the
following section.

3.2 Applying sub-lattice based techniques to get an attack bound

In [5], J. Blomer, A. May proposed a method to find an attack bound for low deciphering exponent in a smaller
dimension than the approach by Boneh and Durfee’s attack in [4]. Apply their method based on sublattice
reduction techniques to our lattice Sy, to get an attack bound and is described in the following.

In order to apply the Howgrave-Graham’s theorem by using Theorem 1, we need three short vectors in Sp,
as our polynomial consists three variables. But note that M, is not a square matrix. So, first construct a square
matrix Mg by removing some columns in M, which are small linear combination of non-removing columns in
M. Then the short vector in M; lead to short reconstruction vector in Sy.

Construction of a square sub-matrix M of M,.

Columns in M and M, are same and each column in M is nothing but the coefficients of a variable, which
is a leading monomial of the polynomial g or h-shifts. The first (%m?’ +m? + %m + 1) and remaining
(%(m2 +m)t+ (m+ l)t) columns are corresponding to the leading monomial of the polynomials g and h-shifts
respectively. Therefore,

1. the first (%mg’—l—mz—i—%m—&—l) columns are the coefficients of the each variable 2132 2% for i} = iy = k, i3 =
0and iy = k+1,..,m, iz = k,ig = 0,..., (i1 — i2) and remaining (3(m? + m)t + (m + 1)t) columns are
the coefficients of the each variable z'1y*22' for i1 =iy =k,i3=1,...,tand iy =k +1,...,m,is = k,iz3 =
(iy —i2) 4+ 1, ..., (iy —i2) + t. So the variable "1y 2" corresponds a column in first (:m? +m?+ Hm+1)
columns if 41 > i + i3 and corresponds a column in remaining (3(m?+ m)t+ (m+ 1)t) columns if

11 < o + 3.
2. As 1,z,2y,xz are the monomials of f, the set of all monomials of f™ for m > 0 is {z%1y®22%;i; =

0,..,m,ig = 0,....31,i3 = 0,...,i; — ia}. Therefore, the coefficient of the variable x"1yi22% in f™ is
non-zero if and only if i3 < i1 —i9, i.e., 47 > io + i3.

Remove columns in M, corresponding to the coefficients of the variable z%4°2¢ for all 0 < a < m — 1 and

note that every such column is (7(':;_(‘52,)

m—(a—b)

) . mealymfa multiple of a non-removed column, corresponding to the

coefficients of ™y z¢ and is proved in the following theorem.

Theorem 4. Each column in M, corresponding to the coefficients of the variable x%4°z¢, a leading monomial
m—(a—b) 1
(mfa)lbl) " Xm—aym-a

column, represents the coefficients of the variable 2y~ (¢=0) ¢,

of the polynomial g or h-shifts, for all 0 < a < m —1is ( multiple of a non-removed

Proof. For n = 0,....m,k; = m —n,ky = 0,....k; , the ge-shifts 2*12%2 fmeF1 corresponds first (%m3 +m? +

%m—i—l) rows in My and forn =0, ...,m, k1 = m—n, ko = k1 +1, ..., k1 +t, the hy-shifts 251 2% freF1 corresponds
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remaining rows in M,. We prove this theorem in two cases.

Case(i): Any column in first (3m3 + m? + &m + 1) columns of M,. i.e., a column corresponding coeffi-
cients of a variable z%y°2¢ with a > b+ ¢, from the above analysis in (1).

Given that 0 < @ < m — 1. From the above analysis in (1) and (2), the coefficient of z%y’z¢ is non-zero
in g,-shifts 2¥12%2 fmeF if and only if a > ky,b < m — ky,c > kg and a — k; > b+ (c — ko). As ky > ko, by >0
and a — k1 > b+ (¢ — ko), max{0,k; — (a — (b+¢))} < ko < min{ky,c} and also as a — k1 < b+ (¢ — kz) for
k1 > a —b, ky is such that 0 < ky < a —b.

Therefore, the coefficient of %y?2¢ is non-zero in g,-shifts £*12%2 f?e*t if and only if @ > k1,b < m—kq, ¢ > ko
and k1 =0,...,a — b, ke = max{0,k1 — (a — (b+¢))},...,min{kq, c}.

Similarly we can prove that, the coefficient of 2%?z¢ is non-zero in hg-shifts z*12z%2 frefr if and only if
a>ki,b<m—kj,c>kyand ks =0,...,¢,ky = k1+1, ..., min{c, k1 +t} using the inequalities k1 +1 < ko < k1 +t,
a > b+ c and analysis in (1) and (2), and say min{c, k1 +t} =,

The formula for finding a coefficient of a variable z!1y!2 2 = (1)»~high—U2Hls) (22)s (29)!2 for [} <n — 1 in f°

1S
n!

(TL — ll)'(ll — (ZQ + 13))'12'13')

and coefficient of z%y?2¢ in a*1y*2 f7eF1 is nothing but a coefficient of x* *1ybz¢=k2 in 7.

(_1)71—11 (N + 1)l1—(12+l3)(2n)l3

Note that a column corresponding to a variable x™y™~%z¢ is in the non-removing columns in M, and co-

m,m—a ,C

efficient of 2™y z¢ is zero for k1 > a — b in g,-shifts , k1 > ¢ in hg-shifts. The columns corresponding to a
m,,m—a

variable x%y%2¢ and a variable 2™y z¢ only with non-zero terms is depicted in Table 1.
Therefore, from Table 1 the result holds in this case.

Case(ii): Any column in remaining (%(m?+m)t+ (m+1)t) columns of Mj, i.e.,a column corresponding
coefficients of a variable 2%y°z¢ with a < b + ¢, from the above analysis in (1).

The coefficient of z%y%2¢ is non-zero in g,-shifts x*12%2 freF if and only if a > ki,b < m — ki,¢c > ko,
a—ky >b+ (c— ko) and note for a < b+c¢, a— k1 < b+ (c— ko) as k1 > ko in g,-shifts. So the coefficient of
2%y’ 2¢ is zero in all rows corresponding to g,-shifts.

The coefficient of x%4°2¢ is non-zero in hg-shifts x*12%2 fref if and only if a > ki,b < m — ky,¢ > ko and
a—ki >b+ (¢c—ke). Fork; >a—0b,a— ki <b+ (c— kz) and from the inequalities k1 + 1 < ko < k1 +1,
a—k > b+ (c— ky), we have the coefficient of 2%y’2¢ is non-zero in h,-shifts x%1 2%z frefr if and only if
a>ki,b<m-—ky,c>kyand ky =0,...,a — b, kg = max{k; + 1,k; + (b+¢) — a},...,min{c, k1 + t}. Take
ly = min{c, k1 +t}.

Note that coefficient of a™y™~?2¢ is zero in all g,-shifts as @ > ¢ and for k&3 > a — b in hg-shifts. The
columns corresponding to a variable z%y%2¢ and a variable ™y™ %z¢ only with non-zero terms is depicted in
Table 2. Therefore, from Table 2 the result holds in this case.
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From the above theorem, all columns corresponding to a variable z%y°z¢ for all 0 < a < m — 1 are depending
on a non-removed column, corresponding to a variable z™y™~(@=%)2¢ in M,. Let M, be a matrix formed by
removing all above columns from the matrix My and S; be a lattice spanned by rows of M. Then the short

vector in S; lead to short reconstruction vector in S, i.e., if u = Y ¢b is a short vector in \S; then this lead to
beEB

a short vector & = Y b (same coefficients ¢;) in Sz, where B and B are the basis for S; and Sy, respectively.
beB

As we removed all depending columns in M to form a matrix My, apply the lattice based techniques to S;
instead of Sy, to get an attack bound and this lattice reduction techniques gives a required short vectors in Sy,
for a given bound.

The matrix My is lower triangular with rows same as in M, and each column corresponding to coefficients
of one of the variables ( leading monomials of g, and hg-shifts)

AR S N L AL

™y, .,y
gs-shift

m,m—1 ,.m, m—1
Ty Yy LY 2,

xmym

ZL’mZerl

m m-+t

s, oMM
—1)+t

xmyzm7’xmyz(m )+ ,

hs-shift

—1,2 1,1+t
My 2 gyt

Yz, ., oMyt
Therefore S; is a lattice spanned by coefficient vectors of the shift polynomials g4 (X, yY, 2Z) and hg (2 X, yY, 27)

where
ger(x,y, 2) = 222 freh for n =0, ...,m,ly =m —n,ly =0,....1; and

ho(z,y,z) =z 22 fre forn=0,...,m, L =m—n,lo =1 +1,...,1; +t.
Since S is full-rank lattice, det S; = det My = e™(&) XXy (V) Z77(Z2) where n(e),n(X),n(Y),n(Z) are

denotes the number of €’s, X’s,Y’s, Z's in all the diagonal elements of M, respectively. As x"y" is a leading
monomial of f™ with coefficient 1, we have

11+t

Y Y Yy Y Yo

n=0101=m—nly=0 n=0101=m—-nlo=l1+1
= (1/3)m3 +m? + (1/2)(m? + m)t + (2/3)m,
l1+t

S 3 S5 WETES SID DD SN

n=0101=m—nly=0 n=010;=m—-nls=l;+1
= (1/2)m3 + (3/2)m2 + (m? + m)t +m,
1+t

Y YaY Y S

n=011=m—nly=0 n=010=m—nls=l1+1
= (1/6)m® + (1/2)m2 + (1/2)(m* + m)t + (1/3)m,
m 1+t

EY YEY Y S

n=011=m—nly=0 n=010l1=m—-nls=l1+1
= (1/6)m3 + (1/2)(m + D% 4 (1/2)m? + (1/2)(m? + 2m + 1)t + (1/3)m
i+t

and dim(S;) = Z Z ZI+Z Z Z 1

n=01;=m—nly=0 n=010l1=m—-nls=l1+1

= (1/2)m?® + (m + 1)t + (3/2)m + 1.


http://dx.doi.org/10.20944/preprints201807.0379.v1
http://dx.doi.org/10.3390/cryptography2040036

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2018 d0i:10.20944/preprints201807.0379.v1

Take t = 7m, then for sufficiently large m, the exponents n(e),n(X),n(Y),n(Z) and the dimension w reduce to
1 2
w=\3 + 7 ) m* +o(m),
_ (1,1 3 2
n(e) = (3 + 27’) m” + o(m?),
L 3 2
n(X) = 5—&—7‘ m°® 4+ o(m?),

n(Y) = (é - ;T> m® + (m?),
n(Z) = (é + %T + ;#) m® + o(m?).

Applying the LLL algorithm to the basis vectors of the lattice S, i.e., coefficient vectors of the shift polynomials,
we get a LLL-reduced basis say {v1, v, ..., v, } and from the Theorem 1 we have

w(w—1)
lJoa] < ool < |lvs| < 27— det(S;)==.

In order to apply the generalization of Howgrave-Graham result in Theorem 2, we need the following inequality

w(w—1) 1 em
27— det(S)) w2 < —=

B

from this, we deduce

1 1
det(S)) < em@=2) < em.

w(w—1) w—2 w(w—1) w—2
(2 I(w—2) ﬁ) (2 (w=—2) \/@)

1

) —— is a fixed constant,
24(w—2) \/5)

As the dimension w is not depending on the public encryption exponent e,

so we need the inequality det(S;) < €™, i.e., ™€) XXy n(Y) zn(2) < gmw,

Substitute all values and taking logarithms, neglecting the lower order terms and after simplifying by m?
we get
(=1 =3m)a+ (3+67)6 + (14 37)y + (1 437 + 37%)72 < 0.

a—(20+71+72)

The left hand side inequality is minimized at 7 = 57

we get

and putting this value in the above inequality

1 1

1
o< ST oM~ 6\/6((1771)72 + 373.

From the first three short vectors vi,vs and v3 in LLL reduced basis of a basis B in S; we consider three
polynomials g1 (z,y, 2), g2(%,y, z) and g3 (=, y, 2) over Z such that g1 (o, Yo, 20) = 92(Z0, Yo, 20) = ga(0, Yo, 20) =
0. These short vectors vy, v2 and vs lead to a short vector 01,72 and v3 respectively and ¢i(z,v, 2), g2(x,y, 2)
and g3(z,y, z) its corresponding polynomials. Apply the same analysis in paper [2] to the above polynomials to
get the factors p and ¢ of RSA modulus N.

Theorem 5. Let N = pg be an RSA modulus with ¢ < p < 2¢. Let e = N*, X = N°,Y = N7, Z = N7 and
k be the multiplicative inverse of ¢(IN) modulo e. Suppose the prime sum p+ ¢ is of the form p+q = 2"kg + k1,
for a known positive integer n and for |k| < X, max{|ko|, |k1|} <Y and min{|ko|, |k1|} < Z one can factor N in
polynomial time if

1 1 1
5<504*5’71*6\/6(0*71)72+3’Y§- (2)
Proof. Follows from the above argument and the LLL lattice basis reduction algorithm operates in polynomial
time [11]. O

Note that for any given primes p and ¢ with ¢ < p < 2¢, we can always find a positive integer n such that
p+q = 2"ko + k1 where 0 < |ko|, |k1| <~ 0.25. A typical example is 2" ~ %NO'% asp+gq< %N‘m [14]. So
take 1 and 9 in the range (0,0.25).

Let 0z, and ds be the bounds for § in inequalities (1) and (2) respectively. Then note that dg is slightly larger
than 0, and is depicted in Figure 1 for o = 0.51,0.55,0.750 and 1.

10
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0.50
0.38
0.34
0.23 z
Z 0.18
0.09 0.00
0.00
0.12 0.12
0.12 0.12 X . y
X ¥y 025 0.00
025 000
(¢) a=0.75 (da=1

Figure 1: The region of d4 and d;, for o = 0.501,0.55,0.75, 1.

In the Figure 1, z,y, z-axis represents 7, v2, bound for ¢ respectively and yellow, red regions represents
ds1, 0p receptively. From this figure, it is noted that the yellow region is slightly above the red region, i.e., dg
is slightly grater than é; and this improvement increases when the values of « increases.

As the dimension of L is (1/6)m? + (1/2)m?(t +2) + (1/6)m(9t + 11) + (£ + 1) for ¢ = (w) m (2]

372
and S is (1/2)m? + (m + 1)t + (3/2)m + 1 for t = (%) m, note the dimension of S is (1/6)m> +
(1/3)t(m? — 1) + (1/2)m? + (1/3)m, for t = (%) smaller than the dimension of L.

4 Conclusion

In this paper, an another attack bound for k, a small multiplicative inverse of ¢(N) modulo e is given when
the prime sum p + ¢ is of the form p + ¢ = 2"k + k1 where n is a given positive integer and kg and k; are two
suitably small unknown integers using sublattice reduction techniques and Coppersmith’s methods for finding
small roots of modular polynomial equations. This attack bound is slightly larger than the bound, in the
approach using lattice based techniques and requires lattice of smaller dimension than the approach given by
using lattice based techniques.
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