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Abstract: This paper examines a persuasion game between two agents with one-sided asymmetric 
information, where the informed agent can reveal her private information prior to playing a 
Battle-of-the-Sexes coordination game. We find t hat i n t he p resence o f s trategic u ncertainty in 
coordination there exists an equilibrium where there is no ‘unraveling’ of information. We provide 
a purification a rgument f or t his mixed s trategy e quilibrium t o s trengthen t he c entral r esult, which is 
robust to several extensions, including both-sided asymmetric information and imprecise information 
revelation.
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1. Introduction10

This paper examines the interaction between information revelation and coordination. To this11

end we consider a variant of the persuasion game where, following the disclosure stage, agents decide12

whether to coordinate or not. As with persuasion games, the central issue is whether agents with private13

information have an incentive to reveal their information or not. We shall find that the presence of14

strategic uncertainty regarding coordination possibilities leads to some interesting insights which add to15

the literature (in particular to the seminal contributions by [1] and [2]).16

Coordination is of course central to much of economics. Beginning with the compelling example of17

[3] on coordination among two agents, various sub-disciplines of economics has investigated coordination18

games and their applications. Examples can be drawn from fields as diverse as industrial organization,19

e.g. agents coordinating on various actions like technology, entry, mergers and joint ventures; political20

economy, e.g. lobbying, and coalitional politics; and growth and development.21

In the case of technology, standard formation in network industries is an area where issues of22

coordination have been discussed in detail ([4], [5]). In such industries standard formation is key to23

success, creating and expanding the market. In a large number of successful standards, coordination24

among competitors has driven the process, such as NTSC colour television standard (despite the vested25

interests of RCA and CBS) in the 1950s in the U.S., standardization of the CD technology with Sony26

and Philips pooling and licensing their patents, standardization of 56k modems, establishment of the27

GSM standard for mobile telecommunications, etc.28
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Joint ventures and mergers, similarly, have to contend with coordination issues such as strategic29

uncertainty and have been analyzed in detailed in the literature on antitrust. For instance, for research30

joint ventures, [6] finds that ignoring costs of coordination in the formation of joint ventures incorrectly31

inflates the value of the partnership and that competition in R&D might yield a welfare enhancing32

outcome.33

Coordination games are discussed extensively in the macroeconomics literature dealing with34

excessive aggregate responses to shocks. [7] provides a summary of macroeconomic models where strategic35

complementarities arise due to peculiarities in the production and demand functions, as well models where36

the presence of private information and search costs result in coordination failures and over-reactions to37

aggregative shocks. [8] discusses strategic complementarities in a multi-sector imperfectly competitive38

economy resulting in coordination failure.39

Turning to the formal model, we consider a framework with two agents, call them A and B, with40

both having an “idea” of her own. They obtain a payoff from their own idea, as well as an additional41

amount in case there is coordination on a single idea. Further, the type of one of the agents, say agent42

A, is private information. We consider a two stage game where, in stage 1, agent A can reveal her type,43

and then in stage 2 they play a battle-of-the sexes game where they decide on which idea to adopt. In44

line with much of the literature on persuasion games, information is taken to be hard.45

Our central result is that there exists an equilibrium where there is no revelation of private46

information. This non-revelation result is in contrast to the early literature on persuasion games which47

uses an unraveling argument to demonstrate that there would be full disclosure. Our analysis traces48

the non-revelation result to the possibility of strategic uncertainty over coordination possibilities. Thus49

this result adds to the subsequent literature that examines economic environments where the revelation50

argument needs to be qualified. One can mention, among others, [9], who finds partial revelation in the51

presence of costly revelation of private information; [10], who argue that in the presence of asymmetric52

information over the preference of the information providers there is no information revelation; and [11],53

who study sufficient conditions for complete revelation of private information, when such disclosure is a54

strategic choice. However, the latter rule out strategic uncertainty in coordination by abstracting from55

‘coordination equilibria’, whereby there can be multiple pure strategy equilibria in the stage following56

information communication.57

The intuition for the non-revelation result has to do with coordination possibilities in the second58

stage game. Why, for example, should an agent with a valuable private idea not want to reveal? We59

find that the non-revelation argument holds whenever the continuation game in the coordination stage60

involves strategic uncertainty, formalized through a mixed strategy equilibrium. An important aspect of61

the mixed strategy equilibrium in a coordination game is that, in order to keep the opponent indifferent62

between her two actions, a player has to play the action associated with a lower-payoff coordinated63

outcome with a higher probability than the action associated with a higher-payoff coordinated outcome.64

Letting θ denote the value of her own idea to agent A, if agent A reveals a relatively high θ, agent B65

becomes more aggressive in adopting her own idea, i.e.will choose B with a relatively high probability66

in the ensuing coordination game. Thus if an agent A with high valuation reveals her type, agent B will67

respond much more aggressively compared to the case when agent A does not (since in this case agent68

B’s response will be based on the expected average value of agent A’s type). Thus for such an agent A,69

non-revelation is optimal. Whereas if agent A has a relatively ‘bad’ idea, then agent A is more interested70

in coordination itself, rather than the identity of the idea on which coordination takes place. Therefore71

agent A has little to gain by revealing information and ensuring coordination on her own idea. She would72

rather ensure that coordination takes place on agent B’s idea (B), since while she loses because B is73

selected, she more than makes up for it since the probability associated with coordination on B is much74

larger. Again she would prefer not to reveal.75

Note that the non-revelation outcome involves agent B playing a completely mixed strategy in the76

coordination stage, with B’s adoption of a mixed strategy reflecting her lack of knowledge regarding both77
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A’s type, as well as action. It has been argued, most notably by [12], that in the presence of coordination78

uncertainties, mixed strategies can help capture such uncertainties. In a similar vein, [13] argues that79

randomization in mixed strategies reflects the uncertainty in the mind of a player about the opponent’s80

strategy, rather than a deliberate mixing of pure strategies.81

It is natural to ask however if the non-revelation result is critically dependent on the fact that82

agent B plays completely mixed strategies in equilibrium. To that end we adopt a purification argument83

akin to Harsanyi’s defence of mixed strategy equilibria ([14]), and examine a modified version of our84

baseline framework where agent B’s type is also private information (though agent B cannot reveal her85

type as hard information). We find that the coordination game has an equilibrium where each B-type86

plays a pure strategy, with each B-type opting for technology B iff her valuation exceeds a critical87

cut-off. Interestingly, this strategy generates the same probability distribution over agent B’s actions, as88

that under the mixed strategy equilibrium in our baseline framework. We then use this equilibrium to89

demonstrate that the non-revelation result holds in this framework as well, even though the coordination90

game does not involve any type of agent B playing mixed strategies.91

The canonical game, however, has other equilibria. In particular, there exist equilibria with full92

disclosure. We find that information revelation obtains whenever the agents either play a pure strategy93

equilibrium, or a coordinated equilibrium in the coordination stage. These results suggest that the94

presence of strategic uncertainty is critical for non-revelation to occur.95

Finally we go on to examine several extensions of the baseline model, e.g. allowing for both96

sided asymmetric information (where both agents can reveal hard information), as well as the the97

possibility of imprecise information revelation, demonstrating that the non-revelation result is robust98

to these extensions. Further, in case of mandatory disclosure of information, the overall probability of99

coordination on either A or B might be the same as, higher than or equal to that in the equilibrium with no100

information disclosure. The effect on coordination probability depends on the nature of the distribution101

of θ. The intuition for this is again driven by the property of the non-revelation equilibrium, with B102

playing a completely mixed strategy in a manner that raises the probability of achieving coordination103

for low values of θ < θ̂ while reducing the probability of coordination for values of θ ≥ θ̂.104

We believe that our model addresses some real-life examples of coordination in the presence of105

private information, where revelation of hard evidence is of paramount importance, such as information106

sharing in standards consortia. This paper thus restricts itself to revelation of hard evidence. It therefore107

ignores equilibria with cheap talk, as well the possibility of side-payments between agents (and therefore,108

mechanism design issues). In future work we would like to extend our framework to allow for cheap talk,109

as well as hard evidence. This class of games is more relevant in the context of firm entry with underlying110

conditions of natural monopoly, as discussed in [15] and [16]. We conjecture that the equilibrium set111

would be enlarged with the introduction of cheap talk, making the selection of equilibrium a more difficult112

task.113

1.1. Literature Review114

The early literature on voluntary disclosure of private information discusses complete unraveling115

of private information. [1], for instance, demonstrates full disclosure in a persuasion game involving a116

privately informed seller and an informed buyer. Similarly, [2] finds that unraveling holds for a single117

seller with no reputational concerns and with private information facing many buyers with no prior118

experience of the good, as long as the seller makes ex post verifiable claims, or can offer warranties, and119

beliefs are skeptical.120

However, there are many environments where the incentive to reveal private information is121

limited. In the context of a buyer-seller exchange [9] shows that the unraveling result fails to hold122

in monopolistically competitive markets with costly disclosure of private information. [17] obtains a123

similar result when buyers are unsure about the existence of private information in the market. Further,124
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[18] and [19] note that competition increases the amount of private information disclosed in market125

exchange.1126

[10] on the other hand, qualifies the unraveling result in the context of an uninformed decision-maker127

who has to rely on information which is provided by interested parties. If the decision maker is128

fully informed, competition is not necessary for complete information revelation. However, in case129

the preference of the interested party is private information, competition itself is not sufficient for full130

disclosure. Finally, for accounting disclosures [22] shows that the context decides whether revelation will131

be complete, or incomplete.132

None of these papers marry the problem of information revelation to the presence of strategic133

uncertainty in coordination. This is the precise problem investigated in our paper. Our paper is closest134

in spirit to [12] and [23]. We examine an asymmetric private information version of the complete135

information committee standardization game in [12]. [23] study a related framework with symmetric136

private information among all agents in the context of a war-of-attrition game. In both these papers137

however the focus is on the issue of standardization, rather than on information revelation. We, on the138

other hand, analyze the interaction between coordination uncertainty and private information.139

Some papers, such as [24] and [25], show that even when there is a unique equilibrium in the second140

stage, unraveling fails. This paper contributes to the literature on both revelation of private information,141

as well as coordination games, the central contribution being the identification of strategic uncertainty142

in coordination as a reason for non-disclosure and the finding that complete non-revelation can obtain143

in a robust fashion. In our paper, the conditions in [24], [25] and [26] for a “worst case type” supporting144

full disclosure equilibrium is not satisfied by the continuation equilibrium payoffs of player 1, given that145

player 2 randomizes in the second stage.146

2. The Model147

Two agents A and B each have an idea/technology of their own, denoted A and B respectively.148

There is one-sided asymmetric information in that agent A has some private information regarding her149

own payoff from adopting A.2 We analyze a two stage game with an initial information revelation stage,150

where agent A may or may not reveal her private information. This is followed by a version of the151

battle-of-the sexes game, where both the agents choose, simultaneously, whether to adopt their own152

idea, or to switch to the idea of the other agent. The outcome in stage 2 of course depends on the153

information revealed earlier, if any, in stage 1.154

In case an agent adopts her own idea, she obtains a private benefit. She also obtains an additional155

coordination benefit in case the other agent coordinates on the same idea as well. In case she switches156

to the idea of the other agent, she obtains no private benefit, but will obtain the coordination benefit in157

case both choose the same idea.158

Formally, agent A’s private benefit from adopting A, denoted θ, is distributed over the compact,159

continuous type space [θl, θh] ⊂ R+ with distribution F (θ), where F (θ) is non-degenerate and strictly160

increasing. The exact realization of θ is however private information of agent A. Agent B’s benefit from161

operating B, denoted b, is however deterministic. Further, both agents obtain a coordination benefit c162

in case they both choose the same idea.163

The timing of the game is as follows:164

1 Empirical investigations regarding the effect of competition on revelation offer conflicting results [20] observe that
intermediary agents in agricultural markets with limited competition do not voluntarily reveal private information.
Further, despite competition there is no voluntary disclosure in the market for insurance plans offered by Health
Maintenance Organizations (HMOs) ([21]).

2 We focus on the case with one-sided asymmetric information as the motivating applications are for this case. We later
argue in Section 5 that the results extend qualitatively to the case with both-sided asymmetric information.
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1. Stage 1: Revelation: Agent A decides whether or not to reveal her type θ. Agent A can either165

reveal her exact type by providing hard information, or decline to offer any information. The166

message space of A is, therefore, M = [θl, θh]∪{Not Reveal θ}. Thus the set of random messages,167

∆(M), is given by ∆(M) = {m|m is a probability distribution over M}.168

2. Stage 2: Coordination: The agents play a coordination game, where agent i chooses an action169

from {Adopt i, Switch to j, i, j ∈ {A,B}, j 6= i}. If both the agents choose to adopt their own170

idea, there is no coordination, with agent A obtaining θ and agent B obtaining b. On the other171

hand, if both the agents switch to the other’s idea, then they both have a payoff of 0. If they172

coordinate on A, then the payoff vector is (θ + c, c), whereas it is (c, b+ c) if they coordinate on173

B.3174

The payoff matrix for the stage 2 game is given in Table 1 below:175

Table 1. Payoff matrix for the one-shot game

Switch to A Adopt B
Adopt A θ+ c, c θ,b

Switch to B 0,0 c, b+ c

Assumption 1 below allows us to focus on the interesting case where coordination benefits are large176

enough, so that the possibility of coordination failure is a significant strategic consideration. In Remark177

2 later, we briefly examine the outcome for other parameter values.178

Assumption 1. c > max{θH , b}.179

We need some notations:180

Agent A’s strategy in the revelation stage, i.e. stage 1, is a mapping αI from her type space to the181

space of random messages over M , i.e. αI : [θl, θh]→ ∆(M).182

We then define the strategies of the agents A and B in stage 2, i.e. the coordination stage:183

– Agent A’s strategy in the coordination stage is a mapping αC from A’s type, as well as her184

decision in stage 1, to a probability distribution over the action space {adopt A, switch to B},185

i.e. αC : [θl, θh]× [θl, θh]→ [0, 1].186

– Following a history where, in stage 1, agent A revealed her type to be θ, let qR(θ) denote a187

mixed strategy of agent B where she plays “Adopt B” with probability qR(θ).188

– Similarly, following a history where agent A played “Not Reveal θ” in stage 1, qNR denotes a189

mixed strategy of agent B where she plays “Adopt B” with probability qNR.190

Off-the-equilibrium, agent B’s belief puts probability 1 on agent A being of a particular type191

θ ∈ [θl, θh].192

Finally, agent A’s strategy in stage 2, i.e. αC , is said to be a cut-off strategy iff there is some193

θ̂ ∈ [θl, θh] such that she adopts A iff θ ≥ θ̂.194

Given these notations,the perfect Bayesian equilibria of this game can be defined in a routine fashion.195

3. The Analysis196

We next solve for the perfect Bayesian equilibria of this game. The focus is on understanding197

whether, in equilibrium, there will be information revelation or not. As we shall later argue, the198

underlying strategic uncertainty regarding coordination failure plays a central role in the analysis. For199

3 The coordination continuation game follows [12].
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most of the analysis we shall therefore examine equilibria where agent B plays a completely mixed200

strategy in the coordination stage, thus allowing for the possibility of coordination failure.4201

This focus on mixed strategy equilibria is in line with many papers investigating coordination202

problems, e.g. [27] on corporate take-overs, [28] on repeated coordination games, as well as [29]203

on international environment agreements for addressing greenhouse gas emissions (modelled as a204

participation game). [29] for example defend their investigation of mixed strategy equilibria on the205

grounds that it captures the uncertainty of countries in coordinating an effective climate change treaty.206

In the context of the present model, with strategic uncertainty and multiple Pareto-ranked pure strategy207

equilibria, any pure strategy equilibrium selects an equilibrium by fiat (as mentioned by [12] in the208

context of technology standardization), and thus ignores uncertainty over coordination.209

We thus begin with the following definition.210

Definition 1. A PBEM denotes a perfect Bayesian equilibrium where agent B plays a completely mixed211

strategy in the coordination stage, i.e. stage 2.212

We begin by examining equilibria in the coordination stage. We first examine agent A’s strategy213

following non-revelation of her type by agent A.214

Lemma 2. Consider the stage 2 continuation game where agent A does not reveal her type in stage 1.215

In any PBEM, agent A plays a cut-off strategy in stage 2.216

Proof. Consider the stage 2 subgame following non-revelation of her type by agent A in stage 1. Consider217

a PBEM where, in stage 2, agent B plays adopt B with probability qNR, 0 < qNR < 1.218

Next note that the payoff to agent A in this subgame from adopting A, call it
πA(Not Reveal and Adopt A), is increasing in her type θ. Thus

πA (Not Reveal and Adopt A) = (1− qNR)c+ θ. (1)

Similarly,
πA(Not Reveal and Switch to B) = qNRc. (2)

Let θ̂ be the minimum of all θ ∈ [θl, θh] such that πA(Not Reveal and Adopt A) ≤219

ßA(Not Reveal and Switch to B). Hence, for all types θ ≥ (<)θ̂, it is optimal to adopt A (switch220

to B) following non-revelation, given that 0 < qNR < 1.221

In Lemma 2 below we then consider the equilibrium outcome in the stage 2 subgame following222

revelation of her type by agent A in stage 1. Given that we have a standard battle of the sexes game,223

we omit the proof (which is routine).224

Lemma 3. Consider any candidate PBEM such that agent A reveals her type θ in stage 1. In stage 2,225

agent B plays “Adopt B” with probability qR(θ) = θ+c
2c , and has a payoff of b+c2 , whereas agent A of type226

θ plays “Adopt A” with probability b+c
2c and has a payoff of θ+c2 .227

From Lemma 2 note that qR(θ) is increasing in θ, so that agent B becomes more aggressive in228

adopting her own idea as θ increases. This follows from the intuition of mixed strategies itself, which229

requires the choice of qR(θ) to be such that A is indifferent between her two pure strategies.230

4 For completeness however, we shall later briefly allow for equilibria that involve pure strategies in stage 2 and examine
how this affects the non-revelation result. Further, in Section 4, we shall provide a purification argument that provides
a foundation for the mixed strategic equilibrium that we examine here.
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This suggests that if an agent A with high θ reveals her type, agent B will respond much more231

aggressively compared to the case when agent A does not (since in this case agent B’s response will be232

based on the expected average value of θ). This intuition has important implications for the coordination233

possibilities in the second stage game, and, as we shall find, plays an important role in Proposition 1 (to234

follow).235

Proposition 1 is the central result of this section, showing that in the presence of coordination issues236

there is no information revelation by agent A (except possibly by a single type). This result not only237

provides a new insight as to why ‘unraveling’ may not occur, further, as argued later, this is consistent238

with some of the anecdotal literature, e.g. on information sharing in committees in network industries.239

Proposition 4. Consider any PBEM. In stage 1, all types of agent A, with the possible exception of240

one type, strictly prefer non-revelation to revelation.241

Proof. Recall from Lemma 2 that in the event an agent A of type θ reveals her type in stage 1, then242

her payoff in any PBEM is θ+c
2 .243

Next suppose that agent A does not reveal her type. Then agent A’s payoff in stage 2 is θ+ c− qNRc
if she adopts A in stage 2, and qNRc if she switches to B in stage 2. Consequently if agent A of type θ
reveals, we must have

θ+ c

2 ≥ qnrc. (3)

If the inequality in (3) is strict, then we have, rearranging terms, that

θ+ c

2 < θ+ c− qnrc. (4)

Equation (4) however implies that agent A of type θ will be strictly better off by not revealing and
choosing to adopt. Thus, for agent A of type θ to reveal, it is necessary that

θ+ c

2 = qNRc. (5)

But, given that qNR is independent of θ, equation (5) can only hold for at most one value of θ.244

The intuition for non-revelation has to do with coordination possibilities in the second stage game.245

As argued earlier, for an agent A with a high realization of θ, non-revelation followed by choosing to246

adopt A is optimal. This follows as revelation would lead the other agent to follow extremely aggressive247

strategies.248

Whereas if θ is low, then agent A’s private benefit from adopting A itself is low compared to the249

possible coordination benefits from c. Consequently agent A is more interested in coordination itself,250

rather than the identity of the idea on which coordination takes place. Further given that b is large251

relative to θ, agent B will put a relatively ‘large’ probability on adopting B in case of information252

revelation, even if the revealed θ turns out to be small. Therefore agent A has little to gain by revealing253

information so as to encourage coordination on A. She would rather ensure that coordination takes place254

on B, since while she loses because agent B’s idea is selected, she more than makes up for it because the255

probability associated with coordination on B is larger.256

Note here that we have assumed that off-the-equilibrium path beliefs are passive. The result can257

easily be extended to show that for all off-the-equilibrium path beliefs of player 2, and for all continuation258

equilibria, at least one type of player 1 strictly benefits by deviating from full equilibrium.259

Interestingly, this non-revelation result appears to be consistent with anecdotal evidence on260

information sharing within standard-setting committees in network industries. For example, consider261

participation in patent pools associated with formal standard setting organizations (SSO), with such262

pools often involving information disclosure. In this context [30] notes that firms often choose not to263
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participate in such pools.5 In particular in their Table 1, [31] find that most pools involve only one-third264

of the total firms associated with the standard. Additionally, patents included in the pool represent265

a small fraction of the total patents declared to the related standard, ranging from 10 per cent (the266

WCDMA pool) to about 89 per cent (the MPEG-4 pool). Thus, voluntary disclosure of information267

does not appear to be common for standard setting through SSOs in network industries.268

We then characterize the equilibrium, showing that there is a ‘unique’ PBEM.6269

Proposition 5. A unique PBEM exists. In this equilibrium there is no information revelation in Stage270

1. In Stage 2:271

(i) Agent A adopts her own idea, i.e. A, if and only if θ ≥ θ̂, where θ̂ = F−1( c−b2c ) and θl < θ̂ < θh,272

and switches to B otherwise,273

(ii) Agent B adopts her own idea, i.e. B, with probability 1
2 +

F−1( c−b2c )
2c .274

(iii) In this PBEM a type θ agent A has an expected payoff of:

πA(θ) =

{
θ+ c−θ̂

2 , if θ > θ̂,
c+θ̂

2 , otherwise,

and agent B has an expected payoff of b+c2275

Proof. From Proposition 1, we know that with probability 1 there will be no revelation in the first276

stage.277

Next consider stage 2. Given Lemma 1, we know that agent A will be playing a simple cutoff
strategy where she adopts A if and only if her type is larger than some cutoff value, call it θ̂. The value
of this cutoff θ̂, given that agent B is playing a completely mixed strategy, must make agent B indifferent
between adopting B and switching to A, so that

(1− F (θ̂))c = (1− F (θ̂))b+ F (θ̂)(b+ c) = b+ F (θ̂)c. (6)

This yields θ̂ = F−1( c−b2c ), where θ̂ is well defined since 0 < c−b
2c < 1 (given that c > b). Furthermore,

given that agent B adopts B with probability qNR, the cut-off strategy of agent A in the coordination
stage will be optimal if, at θ̂, we get the following expression for qnr:

θ̂+ c

2c = qnr. (7)

Given that θ̂ = F−1( c−b2c ), the result follows.278

Figure 1 provides a graphical representation of agent A’s payoffs under the three strategic options,279

not revealing her information, revealing her information and then play “Adopt A”, and revealing her280

information and then play “Switch to B.” In order to buttress the claim that it is the possibility of281

coordination failure that generates the non-revelation result, we then examine two scenarios where there282

is no coordination failure. As we shall find, information revelation is possible in such cases.283

We first consider the case where the agents play a pure strategy equilibrium in stage 2, i.e. depending284

on θ they coordinate on either A, or B, in the second stage. Consider strategies such that in stage 1,285

agent A reveals her type irrespective of θ. Further, in case of non-revelation, let the belief of agent B286

5 Firms can decide whether or not to join the patent pool for accessing privately patented information required for
developing the standard through the offices of the SSO. Patents can be directly submitted to the SSO (mandatory
disclosure required by some SSOs), bypassing the patent pool.

6 In fact, we can prove that the non-revelation result is unique in the class of revelation strategies, where A reveals its
type over finite unions of disjoint sets of the type space. The proof is in Appendix 2.
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Figure 1. Expected payoff for A with information revelation dominated by non-revelation payoffs

be that agent A is of type θh. In stage 2, the agents coordinate on A if θ ≥ θ′, and on B if θ < θ′,287

where θ′ ∈ (θl, θh) is exogenously given. It is straightforward to check that these strategies constitute a288

perfect Bayesian equilibrium. Note that the equilibrium involves complete information revelation, thus289

corroborating our central intuition that non-revelation is intimately tied to the possibility of coordination290

failure7. A distinct feature of this coordination game is that not only are the pure strategy equilibria291

strict, they are also not dominance solvable. As all values of θ and b are greater than zero and less than292

c in our game, there does not exist regions where one of the two strategies (adopt or switch) strictly293

dominates the other. Hence, we cannot use the method of global games for selecting any one of the pure294

strategy equilibria over the other. Full disclosure can also happen in case the agents play a correlated295

equilibrium in the coordination subgame. In the Appendix, we argue that some correlated equilibria296

with full disclosure can indeed be sustained as an equilibrium.297

Remark 1. We find that the non-revelation results in Propositions 1-2, together with the preceding298

results on revelation, jointly suggest that it is the presence, or absence of strategic uncertainty that299

determines whether there is information non-revelation or not. Thus both the non-revelation, as well as300

the revelation results are of interest. Even so, in future work we plan to examine if one can use some301

selection mechanism to isolate the non-revelation equilibrium. One strand of the literature on equilibrium302

selection considers global games and the role of higher order beliefs. The global games framework, as303

proposed by [32], has been extensively used to study, among others, equilibrium selection in coordination304

games arising in the pricing of debt ([33]), and to problems of stochastic common learning ([34]). In305

7 Of course there exist equilibria where the agents coordinate on either A or B in stage 2, but there is no information
revelation in the first stage.
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this context, [35] examines the role of higher order beliefs and the precision of signals about private vs.306

public information in equilibrium selection.307

Remark 2. We next examine scenarios where the parameter values do not satisfy Assumption 1.308

Note that if b > c, then adopting B is a dominant strategy for agent B. Similarly, if c < θl, then adopting309

A is a dominant strategy for agent A. In either of these cases, the coordination problem disappears,310

and agent A’s payoff is the same irrespective of whether she reveals her own type in stage 1, or not.311

Thus the interesting case is if b < c and θl < c < θh. In this case there is an equilibrium with partial312

information revelation. Let F̃ (θ) denote the probability distribution derived from F (θ) conditional on313

θ being less than c. It is now straightforward to construct an equilibrium where all A agents with θ ≥ c314

reveal their type, and choose A in the coordination stage, whereas the other A agents do not reveal315

their type. In particular, we can mimic the argument in Propositions 1-2 (replacing F (θ) with F̃ (θ)),316

to construct equilibrium strategies for all A agents with θ < c. Interestingly, as discussed earlier in the317

introduction, [9] also demonstrates the existence of equilibrium with partial disclosure in the presence of318

hard information.319

3.1. Efficiency under PBEM320

Turning to the efficiency aspects, we say that a perfect Bayesian equilibrium is efficient if the321

outcome involves both agents choosing A when θ ≥ b, and both agents choosing B otherwise.322

Proposition 6. The PBEM discussed in Propositions 1 and 2 is inefficient.323

Proof. Since agent B plays a completely mixed strategy, there is a positive probability that agent B324

will choose B even when θ ≥ b, as well as choose A even when θ < b.325

Remark 3. Note that there exist equilibria that are both efficient, as well as involve complete326

information revelation in the first stage. In consonance with our theme, however, these involve no327

strategic uncertainty in coordination. Consider strategies where in stage 2, both the agents coordinate328

on A if θ ≥ b, and on B otherwise. Further, following non-revelation by agent A, let agent B’s belief be329

that A is of type θh. Then the outcome where agent A reveals her type in stage 1 can be sustained as330

an equilibrium. Further, coordination on A happens iff θ ≥ b, so that the outcome is efficient.331

4. Purification of agent B’s mixed strategies332

The non-revelation result in Propositions 1 and 2 are open to the critique that we examine equilibria333

where agent B plays a completely mixed strategy whenever A reveals her private information about her334

own type. In an effort to address this issue, we next argue that there exists some natural extension of335

our framework such that sustaining the non-revelation result does not require the B agent to play mixed336

strategies in the coordination stage.337

To this end, we extend the baseline framework to allow for a unit mass of B-agents with different338

realizations over their private benefit b, where the exact realization of b for any given B agent is private339

information. We then argue that a version of Harsanyi’s purification theorem goes through, in that,340

following type revelation by the A agent, the continuation pure strategy equilibrium played by the B-type341

agents generates the same probability distribution as the mixed strategy equilibrium in the baseline342

model (see Lemma 3 later). We next use this result to demonstrate (in Proposition 4 later on), that the343

non-revelation results goes through under this re-formulation. Formally, the B agents’ private benefit344

from adopting B is distributed over the compact, continuous type space Ξ, where Ξ = [bl, bh] ⊂ R+,345

with distribution G(b), where bl < bh, and G(b) is non-degenerate and strictly increasing. Further, for346

this section we assume that an analogue of Assumption 1 goes through, i.e. c > max{θh, bh}.347
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We next turn to modelling the coordination benefits in this setup. The coordination benefit on348

technology i, i ∈ {A,B}, arises if and only if the A agent, as well as a positive measure of B-agents349

adopt this technology. Thus conditional on the A agent adopting technology i, the total coordination350

benefit from i is given by c.x, where x denotes the fraction of B-agents opting for this technology. Thus351

the payoff matrix in this new game is given by:352

Table 2. Modified payoff matrix for the one-shot game

Switch Adopt B
Adopt A θ+ c(1− l), c(1− l) θ+ c(1− l),b
Switch cl,0 cl, b+ cl

We next introduce some definitions that we need for the analysis:353

Agent A’s strategy in stage 1, βI , maps from her type space Θ to the set of probability distributions354

over M , i.e. ∆(M). Hence βI : Θ→ ∆(M).355

We then define the strategies of the agents in stage 2, i.e. the coordination stage:356

– In stage 2, agent A’s strategy βCA maps from her type space Θ, as well as her message is stage357

1, to the set of probability distributions over her action space. Hence βCA : Θ×M → [0, 1].358

– In stage 2, agent B’s strategy is a mapping from her own type space Ξ, and the disclosure359

made by A in stage 1, to the set probability distributions over her own actions. Hence360

βCB : Ξ×M → [0, 1].361

– Agent A’s strategy in Stage 2, βCA , is said to be a cut-off strategy if there exists θ̂ ∈ Θ such362

that A adopts A iff θ ≥ θ̂.363

– Agent B’s strategy in Stage 2, βCB , is said to be a cut-off strategy if there exists b̂ ∈ Ξ such364

that B adopts B iff b ≥ b̂.365

Off-the-equilibrium, every b-type B agent’s belief puts probability 1 on agent A being of a particular366

type θ, where θ ∈ [θl, θh].367

One can define a perfect Bayesian equilibrium of this game in the usual manner.368

4.1. Analysis: Non-revelation by the A agent in stage 1369

Given the complementarities inherent in this game, cut-off strategies arise naturally for the A, as370

well as the B agents. In the subgame following type revelation by the A agent, we therefore focus on371

equilibria where the B agents play a cut-off strategy with a cut-off of b̂. Next consider the subgame372

following non-revelation by agent A. Let θ̂NR denote the cut-off for the A agent, and b̂NR denote the373

cut-off for the B agents in the subsequent coordination stage.374

Definition 2. A PBEC for the modified game is a perfect Bayesian equilibrium where, in every375

subgame, the B agents play cut-off strategies with strictly interior cut-offs in the coordination stage of376

the game.377

We first argue that in the unique PBEC for the continuation game following type revelation by the378

A agent, the probability that the B agents adopt B is the same as that under the PBEM equilibrium379

where agent B plays a completely mixed strategy (see Lemma 1).380

Lemma 7. Consider the stage 2 subgame where agent A reveals her type θ in stage 1.381
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(a) In any PBEC of this subgame, the cut-off for agent B, b̂(θ), and the probability that agent A adopts382

A, i.e. α(θ), solves:383

b̂(θ) = (α− c+ θ

2c )c,

α(θ) =
(c+ θ)

2c +
G−1((c− θ)/2c)

c
.

(b) A θ-type A agent’s payoff from revealing her type is c+θ
2 .384

(c) The equilibrium cut-off for the B-types is unique and interior, i.e. 0 < b̂ < 1. Moreover, it385

generates the same probability distribution over the two choices, i.e. A and B, as that under the386

PBEM equilibrium following type revelation by the A agent in the baseline model.387

Proof. (a) Consider the subgame following the A agent revealing her type to be θ. In this subgame, let388

the B agents adopt a cutoff strategy involving a cutoff of b̂(θ). Thus defining l(θ) as the fraction of B389

agents that adopt B, l(θ) ≡ 1−G(b̂(θ)). Let α(θ) be the probability that the A agent adopts A.390

First consider the decision problem facing a B agent with private valuation b. Note that the expected
payoff for agent B, when she switches to B, is:

πB(B) = (1− α).(b+ cl) + α.b, (8)

whereas her expected payoff when she adopts A, is:

πB(A) = α.c(1− l). (9)

For the indifferent type b̂, equating (8) and (9), we get:

b̂ = (α− l)c. (10)

Next consider the decision problem facing the A agent with private valuation θ. Agent A’s expected
payoff from adopting A:

πA(A) = θ+ c(1− l), (11)

whereas agent A’s expected payoff from switching to B:

πA(B) = c.l. (12)

For the A agent of type θ to be indifferent between A and B, from (11) and (12) we find that:

l(θ) =
c+ θ

2c . (13)

Given that c > θh ≥ θ, it is straightforward to check that 0 < l(θ) < 1. Therefore, b̂(θ) = (α− c+θ
2c )c.391

Solving (10) and (13) simultaneously, we find that:

α = l(θ) +
b̂

c
=

(c+ θ)

2c +
G−1((c− θ)/2c)

c
> 0, (14)
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using the fact that l(θ) = c+θ
2 (from (13)), and G(b̂(θ)) = 1− l(θ) = c−θ

2c .8392

(b) Using (12), the A agent’s expected payoff is given by cl(θ). Next, using (13), we find that393

cl(θ) = c+θ
2 .394

(c) Note that G(b̂) = 1− l(θ) = c−θ
2c . Given that G(b) is strictly increasing, b̂ is unique. Given that395

c > θh ≥ θ, it is straightforward to check that 0 < G(b̂) < 1, so that bl < b̂ < bh.396

Next observe that the fraction of B agents adopting B, i.e. l(θ) = 1−G(b̂) = θ+c
2c (from (13)).397

From Lemma 1, recall that qR(θ) = θ+c
2c , where qR(θ) is the probability with which B adopts B in the398

our baseline model for the subgame where agent A reveals her type to be θ. Thus l(θ) = qR(θ).399

Proposition 4 below is the central result in this section. We find that in the revelation stage of the400

modified game, agent A does not reveal her type, showing that the non-revelation result is robust to this401

modification.402

Proposition 8. Consider any PBEC of the modified game.403

(a) Consider the stage 2 subgame where agent A does not reveal her type in stage 1. In any PBEC,404

agent A plays a cut-off strategy in stage 2.405

(b) In stage 1, all types of agent A, with the possible exception of one type, strictly prefer non-revelation406

to revelation.407

(c) If F (θ) + θ
2c +

G−1((c−θ)/2c)
c is monotonic in θ, then this game has a unique PBEC.408

Proof. (a) The proof mimics that of Lemma 1 earlier.409

(b) Given Proposition 4(a), we restrict attention to PBEC where, following non-revelation the A
agent plays a cutoff strategy. Let the cutoffs following non-revelation be θ̂NR for the A, and b̂NR for the
B agents. Equating the payoffs from switching to A and adopting B for the indifferent B agent, i.e. of
type b̂NR, we have that

b̂NR = (G(b̂NR)− F (θ̂NR))c. (15)

Similarly, equating the payoffs from A and B for the indifferent A agent, i.e. of type θ̂NR, we have that

G(b̂NR) =
c− θ̂NR

2c . (16)

Given that c > θh ≥ θ̂, it follows that 0 < G(b̂NR) < 1, so that bl < b̂NR < bh.410

Next, from (15) and (16), we have that

F (θ̂NR) =
(c− θ̂NR)

2c − G−1((c− θ̂NR)/2c)
c

. (17)

It is straightforward to check that F (θ̂NR) < 1, so that θ̂NR < θh.9 Given θ̂NR, b̂NR can then be solved411

using (15). Further, if θ̂NR = θl, then from (15), b̂NR = cG(b̂NR). In all cases, for all θ ≥ θ̂NR, A adopts412

A and for all θ < θ̂NR, A switches to B upon non-revelation of θ in stage 1.413

8 Can one provide sufficient conditions such that α < 1? This is equivalent to showing that G−1((c−θ)/2c)
(c−θ)/2c < c. Clearly,

one sufficient condition is that G(b) satisfies both (a) G−1(x)
x

be increasing in x, and (b) G−1(x)
x

≤ 1, ∀x. Note that
this is satisfied whenever G(b) is uniform.

9 Can one provide sufficient conditions such that θ̂NR > θl? This is equivalent to showing that G−1((c−θ̂NR)/2c)
(c−θ̂NR)/2c < c.

Clearly, one sufficient condition is that G(b) satisfies both that (a) G−1(x)
x

is increasing in x, and (b) G−1(x)
x

≤ 1, ∀x.
Note that this is satisfied whenever G(b) is uniform.
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Note that for θ̂NR > θl, the expected payoff for A, denoted πA(NR), is:

πA(NR) =

{
θ+ c.G(b̂NR), if θ ≥ θ̂,
c[1−G(b̂NR)], if θ < θ̂.

(18)

Whereas if θ̂NR = θl, then from (16) and (18), the expected payoff for A is:

πA(NR) = θ+
c− θl

2 , ∀ θ. (19)

We first consider θ̂NR > θl:414

1. At θ = θ̂NR, πA(NR) = θ̂NR + c.G(b̂NR) = θ̂NR + c.( c−θ̂NR2c ) = θ̂NR+c
2 = πA(R).415

2. For all types of θ > θ̂NR, πA(NR)− πA(R) = θ
2 − c[

1
2 −G(b̂NR)]. Note that ∂[πA(NR)−πA(R)]

∂θNR
=416

1/2 > 0, and at θ = θh, this difference πA(NR)− πA(R) = θh
2 − c[

1
2 −G(b̂NR)]. This expression417

is positive, iff b̂NR > G−1( c−θh2c ). Finally, from (16), b̂NR = G−1( c−θ̂NR2c ) > G−1( c−θh2 ), since418

θ̂NR < θh and G(B) is strictly increasing. Next recall that As discussed earlier, πA(R) = πA(NR)419

at θ = θ̂NR.Therefore, in the range (θ̂NR, θh], πA(R) < πA(NR).420

3. Next consider θ in the range [θl, θ̂). Over this range πA(NR) is independent of θ, whereas πA(R)421

is strictly decreasing in θ. Given that πA(NR) equals πA(R) at θ̂NR, it follows that πA(NR) >422

πA(R),∀θ ∈ [θl, θ̂NR).423

Therefore, whenever θ̂NR > θl, A’s expected payoff from non-revelation is greater than that from424

revelation ∀θ ∈ [θl, θh], except for θ = θ̂NR, where these payoffs are equal. Finally consider the case425

where θ̂NR = θl in the non-revelation equilibrium. Note that for any θ ∈ Θ, πA(R) = θ+c
2 < θ+ c−θl

2 =426

πA(NR). (c) Given that F (θ) + θ
2c +

g−1((c−θ)/2c)
c is monotonic in θ, from (17) it follows that θ̂NR is427

unique. This in turn ensures that b̂NR is unique.428

5. Extensions429

In this section we argue that the non-revelation result is robust to three extensions, viz. both sided430

asymmetric information, imprecise information disclosure and mandatory disclosure of information.431

5.1. Both-sided Asymmetric Information432

Consider the case where both the agents have private information about their own types, with433

agent A’s (respectively B’s) type being denoted by θA (respectively θB). For simplicity, let θA and θB434

be identically and independently distributed with distribution function F (θ) (assumed to be strictly435

monotonic), and support [θl, θh]. While agent i, i ∈ {A,B}, knows her own type, she only knows the436

distribution of agent j 6= i, i.e. F (θ). Consider a simple modification of the earlier game whereby,437

in stage 1, both the agents simultaneously choose an element from M = [θl, θh] ∪ {Not Reveal θ}, i.e.438

whether to reveal, or not.439

Let πi(i = X, j = Y ) denote the payoff of agent i in case in stage 1 she selects X and agent j selects440

Y , where X,Y ∈Mi = [θl, θh] ∪ {Not Reveal θi}. We then show that even with both-sided asymmetric441

information, a version of the earlier no revelation result in Proposition 1 goes through.442

Proposition 9. Consider any perfect Bayesian equilibria where, in stage 2, an agent uses cutoff443

strategies in case she has not revealed her type, and completely mixed strategies in case she has. In444

any such equilibrium, all θ types lower than a cutoff θ̂ are indifferent between revealing and not revealing445

her type. All types higher than this cutoff type prefer not to reveal. Thus there exists a PBEM where446

there is no information revelation.447
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Proof. Step (i). We first prove that in case agent j reveals her type, at most one type of agent i, i 6= j,448

will reveal her type. We know from our earlier results that if both the agents reveal their types, then449

the expected payoff for agent i in the completely mixed strategy equilibrium is θi+c
2c .450

Suppose that agent i decides not to reveal her type, given that j has revealed her type. Clearly,451

the mixed strategy equilibrium in the second stage game is identical to that under the unique PBEM452

characterized in Propositions 1 and 2. Thus the payoff of agent i is:453

πi(i = Not reveal θi|j = Reveal θj) =
{

θi + (1− c+θ̂
2c )c, if θi > θ̂,

c+θ̂
2c c, otherwise.

The difference between the expected equilibrium payoff to i from not revealing and revealing, given454

that j reveals, is strictly positive for all values of θ as shown below:455

πi(i = Not Reveal θi|j = Reveal θj) − πi(i = Reveal θi|j = Reveal θj) ={
θi−θ̂

2 > 0, if θi > θ̂,
θ̂−θi

2 > 0, otherwise.

Given that j reveals, i would therefore prefer to not reveal and adopt for θi > θ̂ and not reveal and456

switch for θ < θ̂. Only the type θ̂ is indifferent.457

Step (ii) We then argue that in case agent j does not reveal her type, all types lower than θ̂ are458

indifferent between revelation and non-revelation, whereas all types higher than this cutoff strictly prefer459

non-revelation to revelation.460

In this case, if agent i does not reveal, the coordination cutoff θ̂ ensures that she is indifferent
between adopting and switching, so that

θ̂+ F (θ̂)c = (1− F (θ̂))c. (20)

As F (θ) is strictly monotonic, θ̂ exists in the interior of the type space and is unique. The expected
payoff of agent i from not revealing, given that j has not revealed her type is:

πi(i = Not Reveal θi|j = Not Reveal θj) =
{

θi +
c−θ̂

2 , if θi > θ̂,
c+θ̂

2 , otherwise

where F (θ̂) = c−θ̂
2c .461

Now consider the case where agent i reveals her information, given that j does not. From our earlier462

analysis of one-sided asymmetric information case, the expected mixed strategy payoff for agent i is c+θ̂
2 .463

Hence, we have:464

πi(i = Not Reveal θi|j = Not Reveal θj)− πi(i = Reveal θi|j = Not Reveal θj)

=

{
θi − θ̂ > 0, if θi > θ̂,
0, otherwise.

Thus all types with θ ≤ θ̂ are indifferent about revealing or not revealing, if j does not reveal. All types465

strictly greater than θ̂ prefer non-revelation to revelation.466

Finally, taking steps (i) and (ii) together, the proposition follows.10467

10 It is straightforward to show that there exists an equilibrium where neither agent reveals in stage 1, and, in stage 2,
switches if and only if θi ≤ θ̂.
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Remark 4. The characterization of this equilibrium, in terms of θ̂, is as follows: In Stage 1, there468

is no information revelation. In Stage 2: agent i adopts her own idea, θi, if and only if θi ≥ θ̂, where469

θ̂ = F−1( c−θ̂2c ) and θl < θ̂ < θh, and switches to the other agent’s idea otherwise.470

5.2. Imprecise Information Revelation471

Note that the informed agent can either reveal her own type truthfully, or can refuse to reveal. This472

message space does not allow for imprecise disclosures, unlike e.g. [11] who not only allow for imprecise473

revelation, but also cheap talk.474

Given that strategic uncertainty in coordination is at the heart of this paper, in this sub-section we475

allow for imprecise information revelation though in the presence of strategic uncertainty, showing that476

the non-revelation equilibrium does survive.477

Consider a scenario where agent A is allowed to report that her type lies within a set, rather than478

the exact value. Information is still assumed to be hard however, so that agent A can only make truthful479

claims11. For technical reasons we restrict attention to disclosures within closed sets only. In stage480

1, agent A chooses an element from Θ, where Θ is the set of all closed subsets of [θl, θh]. However481

information is hard in the sense that if an agent of type θ chooses Θ(θ) ∈ Θ in stage 1, then it must be482

the case that θ ∈ Θ(θ). Note that since [θl, θh] ∈ Θ, revealing no information is also an option.483

Consider the PBEM of the baseline model described in Propositions 1 and 2. Define q∗NR
(respectively q∗R(θ)) to be the probability that agent B adopts B in the second stage, given that agent
A chooses not to reveal any information (respectively reveals her type θ). Recall that

q∗NR =
1
2 +

F−1( c−b2c )

2c , and q∗R(θ) =
1
2 +

θ

2c .

Further, (a) q∗NR > q∗R(θ) if and only if θ < θ̂, and (b) q∗R(θ) intersects q∗NR from below at the484

coordination cutoff point θ̂.485

We then prove that there exists an equilibrium where there is no information revelation by agent486

A.487

Proposition 10. There exists an equilibrium where there is no information revelation by agent A in488

stage 1 (except possibly by a single type).489

Proof. The argument is by construction. Consider the following strategies:490

In stage 1, agent A reveals no information. In case agent A selects any other Θ′ ∈ Θ̄ instead, then491

agent B believes that A’s type is sup Θ′.492

In stage 2, the agents play a completely mixed strategy equilibrium where agent B’s beliefs are as493

described above.494

It remains to check if any type A agent has an incentive to deviate and reveal her type in stage 1.495

Suppose an agent of type θ′ deviates and chooses Θ′ ∈ θ, where θ′ ∈ Θ′. Let θ′′ = sup Θ′. Recall that496

agent A’s payoff from selecting Θ′, is θ′ + c− q∗R(θ′′)c, where q∗R(θ′′) =
1
2 + θ′′

2c . Given agent B’s belief,497

and the fact that agent A’s payoff is decreasing in q∗R(θ), agent A cannot do any better than to announce498

θ′ itself (more generally announce a set with θ′ as its supremeum). But if θ′ > θ̂, then agent A would499

prefer not to reveal and adopt, rather than reveal, since (θ′ + c)− q∗NRc > (θ′ + c)− q∗R(θ′)c. This is500

because q∗NR < q∗R(θ) for all θ > θ̂. If θ′ < θ̂, then type θ′ would prefer not to reveal and switch, getting501

a payoff of q∗NRc, as opposed to q∗R(θ)c if she revealed her type, since qNR∗ > q∗R(θ) for all θ < θ̂.502

11 Such imprecise revelation may be attractive in scenarios where the technologies may possibly be copied if revealed.
Note however that while we model the possibility of imprecise information revelation, it is not assumed to yield any
gain in utility.
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5.3. Mandatory Disclosure: Coordination in Standards Committee503

We now compare the coordination probability under the PBEM vis-a-vis that under mandatory504

information revelation followed by a completely mixed strategy. This issue has policy relevance505

for standards committees that are interested in fostering coordination, the question being whether506

mandatory disclosure necessarily increases coordination probabilities in the presence of strategic507

uncertainty in coordination. Effective coordination increases the reputation of a standardization508

organization such as the IEEE as an impartial arbiter in the standards process and indirectly increases509

its payoffs.12 These organizations highlight the number of successful standards recorded through their510

offices in detail.511

Fixing θ, let ψR(θ) denote the coordination probability on either one of the two technologies, either
A or B, under mandatory disclosure (full revelation) followed by mixed strategies in the coordination
phase. Similarly, let φNR denote the coordination probabilities under the unique PBEM. With complete
revelation, the coordination probability in the completely mixed strategy equilibrium

R(θ) = (1− pR)qR + (1− qR)pR =
c2 − bθ

2c2 , (21)

where pR and qR are the probabilities with which agents A and B adopt their own ideas respectively,
0 < pR, qR < 1. Whereas the coordination probability under the unique PBEM

NR = (1− F (θ̂))(1− qNR) + F (θ̂)qNR =
c2 − bθ̂

2c2 , (22)

where recall that qNR is the probability with which B adopts and A plays a simple cutoff strategy at θ̂.
Thus, the difference in expected probability of coordination:∫ θh

θl

ψd(F (θ)) =

∫ θh

θl

[ψR(θ)−ψNR]d(F (θ)) =
b

2c2 (θ̄− θ̂), (23)

where θ̄ is the average value of θ.512

Proposition 11. The overall expected coordination probability through mandatory information513

disclosure is greater than or equal to that with the non-revelation equilibrium iff θ̄ ≥ θ̂.514

It is interesting to note, therefore, that mandatory disclosure need not improve coordination515

probability in the game. This follows directly from the fact that revelation makes the opponent more516

aggressive. Recall that qR(θ) is increasing in θ, whereas qNR is independent of θ. For all types θ higher517

than θ̂, qNR is greater than qR(θ), consequently agent B is more aggressive without mandated disclosure518

than with mandated disclosure. For all types lower than θ̂, agent B is less aggressive without mandated519

disclosure and the converse holds.520

Example. If θ is uniformly distributed over [0, 1], c = 2 and b = 1, with θ̂ = c−b
2c = 1

4 and521

θ̄ = 1
2 ,

∫ θh
θl
ψd(F (θ)) = 1

4 > 0 leading to lower overall expected coordination probability with mandated522

disclosure in comparison with the no disclosure equilibrium. On the other hand, if the support of523

the distribution changes to [0, 1
2 ], mandated disclosure and no disclosure equilibria achieve the same524

expected probability of coordination, as θ̄ = θ̂ = 1
4 . If we change the support of the distribution to525

12 Many, but not all, patent pools linked to standard setting organizations have mandatory disclosure rules as noted in
[36], [37].
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[0, 1
4 ], expected coordination probability is higher with mandated disclosure than no disclosure, as the526

mean of the distribution falls to 1
8 < θ̂.527

6. Application528

The benchmark model with one-sided asymmetric information analyzed in this paper finds529

applications in many economic environments. In this section, we highlight one such example.530

6.1. Standardization in Network Industries531

Consider technology standardization in a network industry. In these industries, e.g.532

telecommunication, computer software, hardware and gaming devices, coordination among incompatible533

technologies is a key component for success.13 In such cases consumers mostly purchase unitary amounts534

of the relevant products that use some particular technology standard. Consequently, consumers are535

locked into that particular technology and would be left stranded in case this technology is superseded536

by a competing one. Fearing this, the consumers may be unwilling to purchase the good at all until537

a standard emerges. Hence, compatibility/standardization among incompatible technologies is central538

to developing and expanding such markets. Of course, splintering and inertia are important features of539

technology adoption in this context ([38]).540

In our framework such benefits are captured via the parameter c, i.e. the exogenous benefit from541

coordination. At the same time agents have vested interests in selecting their own technology (i.e.542

“idea”). This gives rise to the private benefits θ and b for the two agents.14543

Note that the game form adopted in this paper has a natural interpretation in this context, that of544

standardization via committees. Such committees are actually a commonly used coordinating device545

in such industries. The GSM (Group Sociale Mobile) standard, for example, was developed by a546

very large committee (involving 14 EU countries, handset providers, chip manufacturers and service547

providers), which deliberated over the features of the standard. The third generation UMTS protocol,548

the successor to GSM, was developed by the Electronics Communications Committee of the CEPT. At549

present GSM and its successors are deployed in 82 percent of mobile phone networks worldwide.15 In550

telecommunications standards were commonly developed through official standards bodies, such as the551

ITU.552

Further, our assumption of one-sided asymmetric information seems an appropriate one in this553

context. This is because as in most technology driven fields, in network industries also there are only554

a finite number of new ideas that emanate from research and development, and it is rare that many555

participants in a coordination game have private information regarding the technology.16556

Finally our central result, i.e. the possibility of non-revelation, is consistent with anecdotal evidence557

on information sharing in standard-setting committees in network industries, such as the development558

13 The GSM (Group Sociale Mobile) standard in mobile technology was a key element behind the phenomenal success
of mobile telephony. For example, the mobile sector in India has grown from around 10 million subscribers in 2002,
to over 684 million subscribers around 2016 (www.statista.com). Similarly the e-mail owes a lot of its popularity
to the successful SMTP (Simple Mail Transfer Protocol). Historically as well, evolution of standards has played an
important role in many areas. To name a few, the development of the metric system, standardization of railroad gauges,
the development of standardized equipment and organisms for laboratory experiments, all played prominent roles at
various points of history.

14 Such conflict of interest have led to well known standard wars, e.g. Betamax versus VHS in videocassette recorders in
the 1980s, QWERTY versus DVORAK in typewriting keyboards, Schick versus Gillette among razor blades, etc.

15 GSM was established in 1987 with nearly 800 of the world’s mobile operators as well as more than 200 companies in the
broader mobile ecosystem, including handset makers, internet providers, etc. Committees are of course not universal.
For example, the SMTP protocol in e-mail was a market driven one.

16 As one example among many, consider a GSM (Groupe Sociale Mobile) meeting for increasing the throughput of data
over GPRS system in mobile phones. Here Ericsson proposed Enhanced Data Rates over GSM Evolution (EDGE).
While other committee members were aware of this idea, Ericsson shared private information that only it had. Refer
to: http : //www.ericsson.com/res/docs/whitepapers/evolution−to−edge.pdf.
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of the international MPEG-2 standard (ISO/IEC 13818) for broadcasting digital television signals by559

terrestrial, cable, and direct broadcast satellite TV systems was developed by the Moving Pictures560

Expert Group (MPEG).17 As mentioned earlier, our result is consistent with [31] who establishes limited561

voluntary revelation of private information through patent pools linked to standard setting through562

SSOs. [40] also establishes non-participation in patent pools for R& D agents for the standard setting563

process, given equal sharing of licence fees from patents. In this context our analysis suggests that564

the potential benefit from committee-driven standards need not be information transfer, even if it is565

allowed for. Interestingly, it is the very uncertainty over coordination that may lead to non-revelation of566

information.567

7. Conclusion568

We demonstrate non-revelation of private information in an asymmetric information569

Battle-of-the-Sexes game with one-sided asymmetric information. The result holds despite information570

revelation being costless, and for a large class of disclosure rules, as long as there is truthful reporting.571

This result is robust to several extensions, including both-sided asymmetric information. Thus our results572

unearth a link between strategic uncertainty in coordination and information (non-)revelation, which is573

new in the literature. Further, in the context of standardization in network industries, the non-revelation574

result suggests that information revelation is unlikely to result from standardization committees. This,575

in turn, suggests avenues for further research in terms of optimal design of mandatory disclosure rules,576

and patent pools. We also plan to extend the basic model to address problems of commitment and577

externalities such as coordination benefits correlated with private benefits.578

17 [39] notes that some hours prior to the formation of the MPEG-2 patent pool for forming this standard, Lucent opted
out of the pool. This is evidence of a agent choosing not to share her private information for standard formation.
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Appendix 1: Correlated Equilibrium583

We demonstrate that there is full revelation of private information in the correlated equilibrium584

of the one-shot game discussed in section 2. This bolsters our intuition that non-revelation is driven585

by uncertainty in coordination. Had there been an impartial third party acting as a correlating device,586

there would have been complete information revelation in our one-shot game.587

Suppose that following complete information revelation in Stage 1, a third party tosses an unbiased588

coin at the beginning of Stage 2. In case of Heads, the third part instructs each agent to select technology589

A, and to play B otherwise. Consider strategies whereby in Stage 1, agent A reveals her type for all θ.590

Subsequently in Stage 2, both agents follow the recommendations made by the third party. Whereas in591

case of no information revelation, the agents play the completely mixed strategy Stage 2 equilibrium.592

In the equilibrium following information revelation, agent A gets [ (θ+c)2 + c
2 ] = c+ θ

2 while agent B
gets [ (b+c)2 + c

2 ] = c+ b
2 . This payoff for agent A is strictly greater than the non-revelation payoff from

Stage 2, as c > θ.

πA(correlated)− πA(NR) =
{

c+ θ
2 − [θ+ c−θ̂

2 ] > 0, if θ > θ̂,
c+ θ

2 − [ c+θ̂2 ] > 0, otherwise.

Note that any correlated equilibrium which randomizes among the strict pure strategy equilibria (A,A)593

and (B,B) with a probability greater than or equal to 1
2 on (A,A) will be consistent with full disclosure594

in stage 1, as this will give agent A an expected payoff greater than the non-revelation payoff.595

Appendix 2: Uniqueness of the non-revletion PBEM over a larger class of disclosure596

strategies597

We now establish that no information revelation is unique in the class of disclosure strategies, where598

A reveals its type over finite unions of disjoint sets of A’s type space. This is a very large class of disclosure599

strategies, over which we show non-revelation to hold uniquely in equilibrium.600

Consider the possible disclosure set of A to be R, where R is either a continuous interval or a finite
union of disjoint intervals. Therefore,

R = ∪ns=1[θ
′
s, θ′′s ].

Let Rc be the set (either an interval or a finite union of disjoint intervals in the type space Θ) over which601

no type of firm A reveal their type. Note that θ̂ is the cut-off type of A in Rc which is indifferent between602

adopting A and switching to B.603

Lemma 12. The completely mixed strategy of firm B, qR (if firm A reveals) or qnr (if firm A does604

not reveal) obeys a single crossing property in the type space of firm A, so that qnr > qR ∀ θ < θ̂ and605

qnr < qR ∀ θ > θ̂.606

1. 0 < qnr < 1 is constant. qR increases linearly with θ.607

2. qR intersects qnr from below at the coordination cutoff point θ̂.608

3. qnr increases linearly in θ̂.609

Proof. 1. The proof follows from equations the fact that qnr = θ̂+c
2c whereas qR = θ+c

2c , as discussed610

in the PBEM of the one-shot game.611

2. Note that qnr = 1
2 + θ̂

2c and qR = 1
2 + θ

2c . Therefore, qnr = qR at θ̂. As qnr is constant and qR612

increases with θ, for all θ > θ̂, qnr < qR. Therefore, qR has to intersect qnr from below at θ̂.613
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3. As qnr = θ̂+c
2c , we get that ∂qnr

∂θ̂
= 1

2c > 0. Thus, qnr increases linearly in θ̂.614

615

Lemma 13. θh ∈ Rc, i.e. the highest type in the type space will never reveal.616

Proof. Firm A of type θh will not deviate and reveal, as firm B’s strategy would become qR = θh+c
2c upon617

revelation as discussed earlier in the PBEM. By not revealing and adopting its technology, firm A’s payoff618

would be (θh+ c)− qnrc which is strictly greater than the revelation payoff of (θh+ c)− qRc = θh+c
2 .Thus,619

type θh would not reveal.620

We have thus shown that the non-revelation set Rc contains θh. Consider the subset Rh of Rc which621

contains θh. So Rh = [θ′, θh] ⊂ Rc. No type in this subset reveals in their type in equilibrium. Now,622

suppose Rh is contiguous with a revelation range. Therefore, θ′, the infimum of the set Rh, has to be623

indifferent between revelation and non-revelation.624

Lemma 14. If a revelation range is contiguous with Rc, then the infimum of the set containing θh must625

coincide with θ̂, i.e. θ′ = θ̂.626

Proof. If θ′ > θ̂, then firm A would prefer not to reveal and adopt rather than reveal as (θ′+ c)− qnrc >627

(θ′ + c)− qRc. This is because qnr < qR for all θ > θ̂. If θ′ < θ̂, then type θ′ would prefer not to reveal628

and switch getting a payoff of qnrc as opposed to qRc if it revealed, where qnr > qR for all θ < θ̂.629

It is only for θ̂ = θ′ that qR = qnr and the payoffs from revelation and non-revelation are the same,630

making θ′ indifferent between these strategies.631

Lemma 15. There cannot be a contiguous revelation range with Rh. Rc is an continuous interval with632

θh in it.633

Proof. Consider any θ̃ = θ′− ε, where ε is vanishingly small. Whereas θ′ is indifferent between revealing634

and not revealing (it is the infimum of Rh), θ̃ reveals its type as it is in the contiguous revelation range.635

However, for all θ < θ̂ = θ′, qnr > qR ensuring that by deviating from revelation, θ̃ can get a higher636

payoff (switching without revealing will give a payoff qnrc > qRc). Thus, θ̃ will not reveal. This proves637

that there cannot be any contiguous range of revelation with Rh ⊂ Rc. As we can show deviations from638

revelation for any θ̃ contiguous with the non-revelation set which contains θh, the non-revelation set Rc639

is a continuous interval and not a finite union of disjoint intervals.640

Proposition 16. Non-revelation is unique in the class of disclosure strategies where A reveals its type641

over R (either a continuous interval or a finite union of disjoint intervals).642

Proof. Lemma 4 proves that as long as θh is an element of the non-revelation interval, no type below643

it will reveal in equilibrium. Lemma 2 proves that θh will never reveal and will always belong to Rc.644

Hence, the only equilibrium over the disclosure set R involves no information revelation.645
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