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1. Introduction

The 2-variable Hermite-Kampé de Fériet polynomials (2VHKAFP) H,,(z,y) [3,
5] are defined as

[

] T an—2r

w3

_ yx
r=0
From (1.1) is
oo tn
S o) (12)
n=0 ’

When y = —1 and z is replaced by 2z in (1.2), the result reduces to ordinary
Hermite polynomials H,(z) (see [1]).

The generating function for degenerate Hermite polynomials are given by
, e tn
L+ X)F L+ M3 =" Hy(a,y:0)—, (see [8]). (1.3)
o n!

where A # 0. Since (1 + M)> —» e as A — 0, it is evident that (1.3) reduces to
(1.2). That is H,(z,y) limiting case of H,(z,y; \) when A — 0.

By equating coefficients of ¢” on both the sides of (1.3), the following represen-
tation of H,(x,y;\) is obtained

[
H,(z,y; \) = nl!

w3

(=) (D) (=N
ri(n — 2r)! '

(1.4)
r=0

Since limy_,0 H,(z,y; ) = Hy(x,y), (1.1) is a limiting case of (1.4).

The classical Genocchi numbers G,,, the calssical Genocchi polynomials G,,(x)
and the generalized Genocchi polynomilas Gg{x)(x) of (real or complex) order « are
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usually defined by means of the following generating functions (see for details[1], see
also [8-14] and the references cited therein):

(etﬂ) ZG (1t]<m), (1.5)
(et+1> _ZG(a (It |<m), (1.6)

and
<i>a ZGO‘) (| t]<m1% = 1) (1.7)
et+1 ’ '
with
Gh(0) = Gn(0) = Gn, (1.8)
respectively.
For A € C, Carlitz [4] introduced the degenerate Bernoulli polynomials defined
by
;(1 + AR = iﬂ (z; /\)ﬁ (1.9)
(1+ M) — =l
so that .
n x
Bue )= 3 () B (1.10)

n=0
When z =0, 8,(A) = 8,(0; A) are called the degenerate Bernoulli numbers.
From (1.10), we note that

i lim B (e \) o = Jlim ;(1—#)\0%

= x—0 "l —0 (14 At)x —
_ L et iB )" (1.11)
Tet—1 o T '

where B,,(z) are called the Bernoulli polynomials (see [7-14]).
The classical polylogarithm function Lig(2) is

z™m
Li = —.,(keZ) 6, 10-13 1.12
(2 mzzjlm €2) (see [6, 10-13) (112
so for k <1,
Lig(z) = —In(1 — 2), Lig(z) = L () = z
k - ) 0 - 1_ ) —1 - (1—2)2’
The poly-Bernoulli polynomials are given by
Lin(1 — t & tn
1’“(—6 =3 BM( —, (see [2, 10, 13]) (1.13)
n=0 n!

For k=1 in (1.13), we have

Lll(]' — e_t) t l xt 2
-1 ¢ —a—1¢ = E Bn(w)m (1.14)
From (1.13) and (1.14), we have

B (2) = By (x).
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Very recently, Khan [8] introduced the degenerate Hermite poly-Bernoulli poly-
nomials of two variables Hﬂ,(la) (z,y; \) defined by

Lix (1 eft) £( 2% (k) ( t
Note that
. —t
M( T+ A)X (14 MH)X = ZHB ) (1.16)

im T
A—0 (14 At)x —

For k =1 in (1.16), the result reduces to known result of Dattoli et al. [5].
We recall the following definition as follows:

The Stirling number of the first kind is given by
(@)p=2(x—1)---(r—n+1) ZSl n,0)z!, (n > 0). (1.17)
and the Stirling number of the second kind is defined by generating function to be
(e —1)" = n!lisg(z,n)i. (1.18)

A generalized falling factorial sum 75 (n; A) can be defined by the generating
function [14]:

(n+1)

> tk —(—(1+ X))~
kZ:OTk(n; )\)E = (1.19)

1+ (14 At)>
where limy_,0 7% (n; A) = Tk(n).

In this paper we consider a new class of degenerate Hermite poly-Genocchi poly-
nomials HGn )\(a: y) and develop some elementary properties and derive some implicit
formulae and symmetric identities for the degenerate Hermite poly-Genocchi polyno-
mials by using different analytical means of their respective generating functions.

2. A new class of degenerate Hermite poly-Genocchi polynomials

For A € C, k € Z, we consider the degenerate Hermite poly-Genocchi polynomials
which are given by the generating function

2le(1 — eit) z 20\ ¥ (k)
———————(1+ A)> (1 4+ X*)> G 2.1
Tt ratas ;]H M)y (2.1)
so that
n
uG\(2,y) = ( . )Gf,’f?/\Hnm(my;)\). (2.2)

(=)

When z =y =01in (2.1), Gglkz\ = HGglkz\ (0,0) are called the degenerate poly-Genocchi
numbers. Note that
HG A\ (@,y) = #Gna(2.y),
and
hm HGn /\(3: y) = G (z,y), (ke 7). (2.3)

where HG;k)(m, y) are called the Hermite poly-Genocchi polynomials (see[12] ).
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For y =0 in (2.1), we have

2Lix(1—e?) RN
1 — " | |
(1+)\t)%+1( + A8 ;Gn,A(x)n!a()\E(Qk‘EZ) (2.4)
Theorem 2.1. For n > 0, we have
S n B,,m!

m=0

Proof. Applying Definition (2.1), we have

tn 2L1k(1 — e_t) z 2\ ¥
G® (2, y; =R T8 T anF (1 AR
ZH v (1+)\t)i+1( S )

21+ X5 (1 + X)X /t 1 /t 1 1 /f z
dz---d 2.6
(1+)\t)>\+1 0 er —1 0 ez —1 e —1 o e? — 1 z z ( )

(k—2)—times

For k =2 in (2.6), we have

> " 2(1+ M (14 MH)x 1
3 uG )y = M2 LA [y,
= ' n! (1+x)x +1 o e —1

B iBmtm 2(1 + X)X (1 4+ M)
f=m+1 (1+M)x +1

= Bpm! t™ [ tn
- (Bt (S sty

m=

Replacing n by n — m in above equation, we have
(o] n
n ) B,,m! t"
= Z Z HGn m, )\(1‘ y)) N
= (m_0< m ) m+1 n!

On equating the coefficients of the like powers of % in the above equation, we get the
result (2.5).

Theorem 2.2. For n > 0, we have

n p+1 1\l+pt1
#G\ (2,y) = Z( n > (Z( 1)+ z!SQ(erlvl)) HGnopa(z,y).  (2.7)

k
=\P pet F(p+1)

Proof. From equation (2.1), we have

) t" Lip(1 —e 8\ [ 2t(1 + M)X (1 + X)X
ZHG < t >( (1+ )% +1 ) 28)

Now
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o0
=2 T p+1

p+1 ( 1)l+p+l S2(p+ 1’1) tP
o (2.9)

o0 n 0 (ptl I+p+1 n
(k) " _ (=1 S+ 1,0)
> aienty -3 (5250 E (S ot

n=0 n: p=0 \i=1 ! p+1 p:
Replacing n by n — p in the r.h.s of above equation and comparing the coeflicients of

L7, we get the result (2.7).

Theorem 2.3. For n > 1, we have
Hfo)A(x +1,y) + HGif)A(w, Y)

—zn " p_l(*l)lﬂmz MSa(p,l+1) | H, A 2.10
- Z( ) ;W“L NSa(p, 1 +1) | Hop(z, 3 A). (2.10)

(
Proof. Using the definition (2.1), we have

ZH (k) $+1y +ZHG(k)

7

i 1_ - x v
2Lix(1 — e © )(1+At)x(1+>\t2)x
(1+X)x +1

= 2Lig (1 — e 7)1 + X)X (1 + M2)%

Liy(1 — e~ . ,
- M(l FA) (14 M) 4

(1+M)x +1

> 1—e? 41 z y
= 2;;(([1))16(1+)\t)x(1 + )%

(RS (—1)HeHl P . ’
:22(2 (1+1) Szp,z+1>p'1+Am1+At2)x
p=1 \I=0
> [Pz 1( 1)itptt
=2 (U + )] [+1) H

Replacing n by n — p in the above equation and comparing the coefficients of

tn—n!, we get the result (2.10).

Theorem 2.4. For n > 0, d € N and k € Z, we have
d—1 n I+1 N (_1>l+p+1p!512(l + 1,]9) I+ A
d G | — ;= | -

nGA @ y) =33 > prl+1 a"a

a=0 [=0 p=1
(2.11)

Proof. From equation (2.1), we can be written as
t" 2Lip(1 — e P y
ZHG(’“) 22U = e L f (4 )k
n' (14+X)x +1

2Liy(1 — e t) ”‘i o 2
= 2 )N a4 )Y
(1+/\t)x+1a_0
L 17 t d—1
(1’“6> o (1+At) “(1+ At%)
(14 )8

Yy
A
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oo I+1 l4+p+1 I 00 d—1 .
3 Z(—l) PS4+ 1p)\ ¢ X AETIPN
= | v dn A '
<l_0 <p_1 v T a r;) ;)HG a Y d)n!

Replacing n by n — [ in above equation and comparing the coefficient of &
the result (2.11).

s we get

3. Implicit summation formulae involving degenerate Hermite poly-Genocchi
polynomials

In this section, we establish some implicit summation formulae for degenerate
Hermite poly-Genocchi polynomials HG;’TZ\ (z,y) as follows.

Theorem 3.1. The following 1mphc1t summation formula involving degenerate Her-
mite poly-Genocchi polynomials HGn )\(x y) holds true:

m

rGA @+ uy tw) =" ( " ) 1A @, y) Hon(w,wi X). (3.1)
m=0

Proof. By the definition of degenerate poly-Genocchi polynomials and the definition

(1.3), we have

2Lig(1 —e™t) 2 g tm
m(l—i—)\t) S (14+M2) (Z 1G ) (Z Hyp (u, w3 N)— )

m=0

Replacing n by n — m in above equation and comparing the coefficients of %,
we get the result (3.1).

Theorem 3.2. The following implicit summation formula involving degenerate Her-
mite poly-Genocchi polynomials HGST%\ (z,y) holds true:

T n!

(k) (_T (aynem=i Yy
HG”)‘(x y) = ; Cma /\)nfmdj( A ( /\)Jm!j!(n—2j—m)!'
(3.2)

and expanding the

2Lig(1—e™ %)

Proof. Applying the definition (2.1) to the term -
(I4+At) N +1

function (14 At)% (14 M?)% at t = 0 yields

2Lik(1 — e~ ) 2 o8 ) ) [,z ()Y [, oy, (AR
R (4R (14X = a® _I _yy (A
(1+)\t)i+1( ) ) mz::o A 7;)( )\) n! J;)( )\)J 4!
(v aw wem | [y, (AR
n=0 \m=0 =0
Replacing n by n — 2j, we have
) ¢
nz:;)HGn,)\(xvy)g
e’} n—2j [%]
n—2j ) k) , T i’ Y m
= Z Z Gm A(—*)n7m72j(—)\> '7(_7)] — -
n=0 \ m=0 j= ( A A (n —2j5)15!

(3.3)
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Equating their coefficients of %, we get the result (3.2).

Theorem 3.3. The following implicit summation formula involving degenerate Her-
mite poly-Genocchi polynomials HGST;(x, y) holds true:

NERTETIED Y (00 TS NN e YA R

m
m=0
Proof. By exploiting the generating function (2.1), we can write the equation

= t"  2Lig(1 —e7t) N
GH) ()= = =8 T4 )5 (L4 MX (1 + M3 3.5
D nChA ) oy = T E (LA T (LA LA (3.5)

_<§;ﬂmgu—awiv<§3—@f:ﬁw>
m=0

n=0

Replacing n by n — m in above equation and equating their coefficients of ’;l—n, leads to
formula (3.4).

Theorem 3.4. The following implicit summation formula involving degenerate Her-
mite poly-Genocchi polynomials HGgfg\(x, y) holds true:

k ~ n 1
HG;L;\(IJr Ly) = Z ( , > (*X)T(— )" HGn T/\(:v Y). (3.6)
r=0
Proof. By the definition of degenerate Hermite poly-Genocchi polynomials, we have
> t” 2Lix(1 —e™?) - Y 1
G (a1, a\ =TT )T 1A R (14+M) 3 —1
> G @ +L) ZH Vi = Taagt TR R (hnF-)

(ZHGM x,y) n) (i(—}\ ) Z nG\ (@ y

r=0
(k) 1 ot O
_nE:OTz:OHGn A ‘T y)( )\)T(_)‘) m_gHGn,)\(x’y)m‘

Finally, equating the coefficients of the like powers of %, we get (3.6).

o

4. General symmetry identities for degenerate Hermite poly-Genocchi
polynomials

In this section, we give general symmetry identities for the degenerate poly-
Genocchi polynomials Gglkz\ (z) and the degenerate Hermite poly-Genocchi polynomi-

als HGik;(;my) by applying the generating function(2.1) and (2.4).

Theorem 4.1. Let a,b > 0 and a # b. For x,y € R and n > 0, the following identity
holds true:

- n m , n—m
S (0 ) G, PGl ()

= Z ( :”L )amb”mHGELk_)m’)\(ax,azy)Hngj))\(bx,bzy). (4.1)
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Proof. Let
2Lis (1 — e~ *)2Lij (1 — e abs
gt = e = e = 7)) gy 4 a2 (4.2)
(L+ X)X +D)((L+X)x +1)
Then the expression for g(t) is symmetric in @ and b and we can expand g¢(t) into
series in two ways to obtain
N o) 2 (@) o~ ) 2 (D)™
t) = ;HGTM(WJ? y) | mZZOHGm,)‘(ax,a y) -
- Z (Z ( m ) b Gglk)m /\(bm,b2y)HG£f?/\(ax,a2y)> "k
n=0 \m=0 ’
Similarly, we can show that
(bt)" k (at)™
> nGih (b by)

ZHGn/\ (az,a’y) -
m=0
mpn—m k) k
= Z (Z ( ) b sz m)\(ax,azy)Han’))\(bx,be)) ]
Comparmg the coefficients of £+ on the right hand sides of the last two equations, we

m=0

arrive the desired result.
1 in Theorem 4.1, we get the following result

Remark 1. On setting b
n n—m
)G, G )

mzi:o(m

=Y (1 )aruci,,

m=0
Theorem 4.2. For all integers a > 0,b > 0, and n > 0, the following identity holds

(az,a®y) n G\ (2, y) (4.3)

( ) Ti(a —1; )\)Ggrlf) i )\(ay)

(bx, b?2) Z

true:
- <n>nmbm e
1=0

( m >Ti(b— LAGE |\ (by). (4.4)

NER

0
= ( n > ampnTm Gilk A (az,a’z)
m=0 i=0
where generalized falling factorial sum 74 (n; \) is given by (1.19)
Proof. We now use
oty — 2Lk e 2Lin(1 = )1 — (=1 + A1+ M) 5 (1 4 a2) K
(L4 A)F +1)((1 4 M)% +1)2
to find that
2Lij(1 — e~ ab w22 (11— (—(1+ )%
o) = (OS] ) e s (10200
1+ X)x +1 (1+A)X +1
S (1 _ bt .
2Lig (1 be ) (1+ )\t)%
(1 + )\t)i +1
(bt)"

z a =10 5 69 (ay) 20
n=0

=3 nG\ (b, bz)
n=0 =
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— i a®) (b b*2) (at)™ i i m b r(a — 1; /\)G(k) (a )ﬁ
— _OH n,A ’ n' — = 7 7 N m—i\ Y m'
oo n . m tn
= z—:o <2_:0 < :1 ) A HGEALk_)m,A (b, b°2) Z; < Zn ) Ti(a —1; A)nyfli,A(ay)) o
. : (4.5)

By using a similar plan, we get

oo n e m tn
FOESS (Z (o )amr et a3 ()t - 1;A>G£’?i,k<by>> -
n=0 \m=0 1=0
(4.6)

L on the right hand sides of the last two equa-

After comparing the coefficients of 7
tions, we arrive at the desired result.
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