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 12 

Abstract: Vitamin D (VD) is a pro-hormone essential for life in higher animals. It is present in few 13 
types of foods and is produced endogenously in the skin by a photochemical reaction. The final step 14 
of VD activation occurs in the kidneys involving a second hydroxylation reaction to generate the 15 
biologically active metabolite 1,25(OH)2-VD. Extrarenal 1α-hydroxylation has also been described 16 
to have an important role in autocrine and paracrine signaling. Vitamin D deficiency (VDD) has 17 
been in the spotlight as a major public health-care issue with an estimated prevalence of more than 18 
a billion people worldwide. Among individuals with chronic kidney disease (CKD), VDD 19 
prevalence has been reported to be as high as 80%. Classically VD plays a pivotal role in calcium 20 
and phosphorus homeostasis. Nevertheless, there is a growing body of evidence supporting the 21 
importance of VD in many vital nonskeletal biological processes such as endothelial function, renin-22 
angiotensin-aldosterone system modulation, redox balance and innate and adaptive immunity. In 23 
individuals with CKD, VDD has been associated with albuminuria, faster progression of kidney 24 
disease and increased all-cause mortality. Recent guidelines support VD supplementation in CKD 25 
based on extrapolation from cohorts conducted in the general population. In this review, we discuss 26 
new insights on the multifactorial pathophysiology of VDD in CKD as well as how it may negatively 27 
modulate different organs and systems. We also critically review the latest evidence and 28 
controversies of VD monitoring and supplementation in CKD patients. 29 

Keywords: Vitamin D; Vitamin D deficiency; Chronic Kidney Disease; Proteinuria.  30 
 31 
 32 
1. Introduction 33 

Vitamin D (VD) is a pro-hormone essential for life in higher animals. It is present in few types 34 
of foods and is produced endogenously in the skin by a photochemical reaction [1]. There are two 35 
major forms of VD, ergocalciferol (VD2) and cholecalciferol (VD3), both sharing similar metabolic 36 
pathways [2]. VD2 is most commonly found in vegetable sources and in “fortified” foods [1–3]. VD3 37 
can be found in animal-based foods but is mainly synthesized in the skin by a photolytic conversion 38 
of cutaneous 7-dehydroxycholesterol by UV sunlight to form previtamin D3 and subsequently VD3 39 
[4,5].  40 

Regardless of its source, VD2 and VD3 are transported by a VD-binding protein (VDBP) in the 41 
liver where they undergo hydroxylation at the carbon 25 position by 25-hydroxylase (also known as 42 
CYP2R1) to become 25-hydroxyvitamin D [25(OH)-VD] [6]. 25(OH)-VD is the main circulating form 43 
of VD and its plasma levels are routinely measured as a marker of VD status [2]. Although 25(OH)-44 
VD is considered the precursor of the active form 1,25(OH)2-VD, it can also bind to vitamin D receptor 45 
(VDR) generating biological responses [7].     46 
 47 
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The final step of VD activation involves a second hydroxylation in which the enzyme 1α-48 
hydroxylase (also known as CYP27B1) converts 25(OH)-VD in 1,25(OH)2-VD (Figure 1) [8]. Under 49 
physiological conditions, 1,25(OH)2-VD is mainly synthesized in the kidneys but in specific 50 
conditions, such as pregnancy, chronic renal failure, rheumatoid arthritis and granulomatous 51 
diseases, other cell types can also contribute to its circulating levels [6]. Moreover, there is an 52 
increasing body of evidence about the pivotal role of extra-renal 1α-hydroxylation for autocrine and 53 
paracrine signaling [9–11]. Numerous studies have shown 1-α-hydroxylase activity in many tissues 54 
including placenta/decidua, pancreas, colon, vasculature, breast and ovary where it may contribute 55 
to tissue function, cell proliferation and immunoregulation [9]. Therefore, the importance of VD in 56 
many biological processes transcend calcium and phosphate homeostasis. 57 

 58 
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Figure 1. Vitamin D activation and metabolism. Adapted from Gois et al [3]. 93 
 94 

There is no absolute consensus about the definition of VD sufficiency. According to many 95 
experts, serum 25(OH)-VD level should be equal or greater than 75 nmol/L (30 ng/mL) [12]. VD 96 
insufficiency (VDI) is defined as a serum 25(OH)-VD level between 50 and 74 nmol/L (20–29 ng/mL), 97 
whereas VD deficiency (VDD) is recognized as 25(OH)-VD levels of less than 50 nmol/L (20 ng/mL) 98 
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[12]. Despite of these definitions, many prevalence studies have employed different cut-offs for VDD, 99 
thus causing uncertainty about the magnitude of the problem [13–15].  100 

On the other hand, the upper normal limit of 25(OH)-VD has been a matter of discussion. 101 
Excessive sun exposure has never been reported as a cause of VD intoxication [12]. The highest VD 102 
level obtained by sunlight exposure was 225 nmol/L reported in a farmer in Puerto Rico [16], whilst 103 
individuals exposed to artificial UVB source showed increased VD level as high as 273.6 nmol/L [17]. 104 
VD intoxication can be defined as 25(OH)-VD > 150 ng/ml in combination with hypercalcemia, 105 
hypercalciuria and frequently hyperphosphatemia [12]. In fact, 25(OH)-VD levels above 125–150 106 
nmol/L should be avoided, as they might be associated with increased risk of intoxication [18]. 107 

In individuals with CKD, VDD is highly prevalent and has been associated with albuminuria, 108 
faster progression of kidney disease and increased all-cause mortality [19–21]. Recent guidelines 109 
support 25(OH)-VD supplementation in CKD based on extrapolation from cohorts drawn from the 110 
general population [22–25]. In this review, we discuss new insights on the multifactorial 111 
pathophysiology of VDD in CKD as well as how it may negatively modulate different organs and 112 
systems. We also critically review the latest evidence and controversies of 25(OH)-VD monitoring 113 
and supplementation in CKD patients. 114 
 115 
2. VD deficiency in CKD: prevalence and contributing factors 116 

In the general population, VDD is a well-recognized public health problem worldwide with 117 
prevalence ranging from 20% and 100% [3,26,27]. Among the most vulnerable to VDD are the elderly, 118 
people living in higher latitudes, people with darker skin, obese individuals and patients with CKD 119 
[28]. 120 

Several studies have demonstrated that individuals with CKD are at high risk of VDD [29–32]. 121 
Gonzalez et al. reported that 97% of the patients on hemodialysis presented inadequate levels of 122 
25(OH)-VD [30]. In a cross-sectional analysis of a cohort study including 1056 United States dialysis 123 
units, Bhan et al. showed that 79% and 57% out of 908 individuals on chronic hemodialysis (HD) had 124 
25(OH)-VD levels of <30 and <20 ng/mL, respectively [33]. Hypoalbuminemia, black color and 125 
dialysis initiation during the winter are strong predictors of VDD, whereas VDD was universal in 126 
patients presenting with all these three predictors [33]. Furthermore, the prevalence of VDD among 127 
patients with stage 3 and stage 4 CKD (not yet on dialysis) was studied in a multi-centre cohort from 128 
12 geographically diverse regions of the United States [34]. Strikingly, the investigators found that 129 
only 29% and 17% of patients respectively with stage 3 and stage 4 CKD had sufficient 25(OH)-VD 130 
levels [34].  131 

Although 25(OH)-VD levels start to decrease in individuals with CKD stage 2, inadequate levels 132 
can be found in all stages of CKD [30,34–36]. Many factors have been implicated in the high 133 
prevalence of VDD among CKD patients.  134 

Patients with CKD, especially on HD, are likely to have less sunlight exposure [35,37]. Del Valle 135 
et al. showed that 84% percent of the HD patients with VDD had inadequate sunlight exposure [37]. 136 
Uremia may also blunt the response of plasma VD to UVB irradiation [38]. Chronic HD patients 137 
exhibited a lower VD response than normal individuals when exposed to a physiologically 138 
equivalent dose of UVB [38]. Furthermore, hyperpigmentation, one of the most common cutaneous 139 
manifestations in patients undergoing HD, may play an additional role in the impaired endogenous 140 
VD synthesis [39,35]. 141 

Nutritional factors may also contribute to suboptimal 25(OH)-VD status in CKD. Patients with 142 
CKD frequently have low food intake due numerous reasons such as reduced appetite, uremic-143 
related gastrointestinal symptoms and dietary restrictions, i.e. low protein (especially in those on 144 
conservative management) and low phosphate diet [40–42]. Uremia might be associated with 145 
impaired gastrointestinal absorption of VD. Vaziri et al. showed using an in vivo perfusion technique 146 
that uremic rats had a significantly lower rate of jejunal absorption of labeled VD3 compared to 147 
control animals [43]. Nevertheless, the authors did not provide any evidence of the potential 148 
mechanisms involved in the uremic impairment of VD gastrointestinal absorption and these results 149 
are yet to be translated to humans.  150 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 July 2018                   doi:10.20944/preprints201807.0320.v1

Peer-reviewed version available at Int. J. Environ. Res. Public Health 2018, 15, 1773; doi:10.3390/ijerph15081773

http://dx.doi.org/10.20944/preprints201807.0320.v1
http://dx.doi.org/10.3390/ijerph15081773


 4 of 15 

 

Proteinuria has also been described as a contributing factor in the pathogenesis of VDD [2,44]. 151 
The 58 kDa VDBP is an alpha globulin that carries more than 85% of the circulating 25(OH)-VD. 152 
Complexes of VDBP and 25(OH)-VD are filtered in the glomerulus allowing transport to the proximal 153 
tubule, where a receptor-mediated reabsorption occurs at the level of the brush border involving 154 
megalin and cubilin (Figure 2a) [45,46]. Patients with proteinuria usually present with increased 155 
urinary excretion of VDBP but might also show impaired megalin and cubilin mediated protein 156 
reuptake in the proximal tubules [47,48]. Leheste et al. showed that inactivation of the megalin gene 157 
in mice lead to increased urinary excretion of VDBP, VDD, hypocalcemia and osteomalacia [49].  In 158 
humans, increased urinary excretion of megalin and cubilin have been reported in diabetes and IgA 159 
nephropathy [46,48,50]. Megalin and cubilin shedding therefore might contribute to VDD in the 160 
setting of CKD and proteinuria (Figure 2b). 161 

Figure 2. Representation of the tandem function of megalin and cubilin in renal uptake of 25(OH)-162 
VD. (a) Filtered complexes of vitamin D binding protein (VDBP) and 25(OH)-VD are endocytosed by 163 
the proximal tubular epithelium via an endocytic receptor-mediated pathway recognizing VDBP. 164 
The VDBP is degraded in the lysosomes releasing 25(OH)-VD which is either secreted or 165 
hydroxylated in the mitochondria to 1,25(OH)2-VD. Both 25(OH)-VD and 1,25(OH)2-VD reenter the 166 
circulation bound to VDBP. (b) Postulated megalin and cubilin shedding in CKD perpetuating VDD 167 
with subsequent lower 25(OH)-VD reuptake and intracrine 1,25(OH)2-VD production in the renal 168 
proximal tubules.   169 

 170 
Serum levels of 25(OH)-VD were found to decline progressively with time in patients on 171 

peritoneal dialysis (PD) [51]. Some authors reported lower levels of 25(OH)-VD in PD patients 172 
compared to those on HD [52,53]. Gokal et al. reported a mean level of 2 nmol/L of 25(OH)-VD in the 173 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 July 2018                   doi:10.20944/preprints201807.0320.v1

Peer-reviewed version available at Int. J. Environ. Res. Public Health 2018, 15, 1773; doi:10.3390/ijerph15081773

http://dx.doi.org/10.20944/preprints201807.0320.v1
http://dx.doi.org/10.3390/ijerph15081773


 5 of 15 

 

PD effluent [51]. VDBP has been also detected in peritoneal dialysate [54,55]. Therefore, patients on 174 
PD are at particularly high risk for VDD given the increased loss of both 25(OH)-VD and VDBP 175 
through the peritoneal effluent [54–56].  176 

 177 
3. VD: non-classical effects 178 

There is a growing body of evidence supporting the importance of VD in many vital nonskeletal 179 
biological processes, such as endothelial function, renin-angiotensin-aldosterone system regulation, 180 
redox balance, innate and adaptive immunity (Figure 3). These are known as the non-classical effects 181 
of the VD.  182 

Figure 3.  Schematic model of the classical and nonclassical effects of vitamin D. 25(OH)-VD and 183 
1,25(OH)2-VD circulate mainly bound to the vitamin D binding protein (VDBP). 1,25(OH)2-VD 184 
endocrine effects are represented on the right. Different types of cells can present the machinery for 185 
25(OH)-VD activation (left). 1,25(OH)2-VD in an autocrine and paracrine fashion regulate the 186 
transcription of pivotal proteins involved in several biological processes (left). 187 

 188 
3.1. VD and endothelial function  189 

A number of studies have described an association between low 25(OH)-VD levels and 190 
endothelial dysfunction [57–60]. Carrara et al. prospectively compared 33 patients with essential 191 
hypertension and normal 25(OH)-VD levels to 33 patients with essential hypertension and VDD who 192 
underwent 8 weeks of VD supplementation. The VDD subgroup had a significant increase in flow-193 
mediated dilation (FMD) of the brachial artery, an important research tool for assessment of 194 
endothelial function in vivo [58]. However, in a systematic review only two out of ten randomized 195 
clinical trials (RCTs) reported that VD supplementation ameliorated FMD [60]. 196 

 197 
3.2. VD and the renin-angiotensin-aldosterone system  198 
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Vitamin D has also been implicated as an agent which can modulate the renin-angiotensin-199 
aldosterone system (RAAS), and therefore which may influence blood pressure and cardiovascular 200 
disease. Evidence for this interaction comes from animal models, molecular studies and clinical data.  201 

In one animal study vitamin D receptor null mice were generated, and demonstrated 202 
upregulation of renin and angiotensin II, as well as significant hypertension, increased water intake 203 
and increased left ventricular mass compared to wild type animals [61]. Further supporting these 204 
findings 1,25(OH)2-VD supplementation suppressed renin production in a separate group of wild 205 
type animals. Other studies have also demonstrated that paricalcitol supplementation decreases 206 
renin and renin receptor expression in animal models of CKD [62]. The mechanism by which this 207 
interaction occurs is not yet completely elucidated, but the VDR appears to be able to interact directly 208 
with elements of the intracellular complex which promotes pro-renin transcription when in a 209 
1,25(OH)2-VD ligand bound form [63]. The interaction has the effect of suppressing renin gene 210 
expression, thus suggesting a plausible mechanism.  211 

Whilst these data suggest a role for VD in RAAS regulation, human data linking VDD with 212 
hypertension as an end-point of RAAS activation have been mixed. Seasonal and regional blood 213 
pressure trends suggest a relationship between UV exposure and hypertension, and cross-sectional 214 
studies have demonstrated that VD levels correlate with hypertension prevalence, supporting a VD-215 
RAAS link [64]. However, the largest meta-analysis summarized 46 prospective trials and suggested 216 
no effects of 25(OH)-VD supplementation on blood pressure [65]. This does not completely exclude 217 
a role for VD in modulation of the RAAS but suggests that the effect may be small and possibly 218 
subclinical. Concerns about heterogeneous methods of 25(OH)-VD supplementation, variable 219 
achieved 25(OH)-VD levels and variable levels of baseline VDD in the existing trials have caused 220 
some uncertainty however and several trials are ongoing. 221 
 222 
3.3. VD and redox balance 223 

Low levels of 25(OH)-VD have been associated with increased markers of oxidative stress. In 224 
different experimental models, VD deficient animals showed increased thiobarbituric acid reactive 225 
substances (TBARS) and decreased glutathione (GSH) levels, respectively a biomarker of oxidative 226 
stress and a major endogenous antioxidant [66–68]. Furthermore, human observational studies have 227 
shown an inverse relationship between 25(OH)-VD levels and reactive oxygen species [57,69]. 228 
Despite these promising results, further clinical studies need to be undertaken to verify whether there 229 
is a beneficial effect of VD supplementation on redox balance in subjects with low 25(OH)-VD levels. 230 

   231 
3.4. VD and the immune system 232 

Previous in vitro studies highlighted the monocytes and macrophages as one of the first non-233 
renal cells with the ability not only to synthesize 1,25(OH)2-VD but also to upregulate the expression 234 
of 1α-hydroxylase [9,10]. Once in the monocytes, 25(OH)-VD is converted to active 1,25(OH)2-VD by 235 
mitochondrial 1-α-hydroxylase and binds to cytoplasmic VDR, thereby acting as a transcription 236 
factor for antibacterial peptides such as cathelicidin and beta-defensin 4A. [3,70,71]. More recently, 237 
the machinery for VD activation was also observed in other antigen-presenting cells such as dendritic 238 
cells [10,72]. 239 

1,25(OH)2-VD may also have an anti-inflammatory effect in human T cells [73]. 1,25(OH)2-VD 240 
has been reported to reduce the expression of the nuclear factor κB (NFκB). In addition, 1,25(OH)2-241 
VD may promote a shift in the T helper (Th) cell response from Th1 to Th2, subsequently reducing 242 
Th1-mediated tissue damage and increasing the production of Th2 immunomodulatory cytokines 243 
[74,75]. Moreover, some studies have reported expression of VDR, 1α-hydroxylase and 24-244 
hydroxylase in human B cells [75,76]. 1,25(OH)2-VD may inhibit the differentiation of B cells into 245 
plasma cells, thus modulating the production of antibodies [74,75]. 246 

 247 
4. VD and CKD: human studies 248 
4.1. Bone mineral disease 249 
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The inverse correlation between 25(OH)-VD levels and parathyroid hormone (PTH) has been 250 
demonstrated across virtually all stages of CKD [20,77,78]. The prevalence of secondary 251 
hyperparathyroidism almost doubled when non-dialysis patients presented with 25(OH)-VD ≤ 20 252 
ng/ml compared to those with levels > 20 ng/ml [29]. In addition, PTH levels seem to plateau when 253 
25(OH)-VD is greater than 30 ng/ml [29]. 254 

A systematic review with meta-analysis of observational and randomized studies showed a 255 
significant decline in PTH levels with 25(OH)-VD supplementation [79]. Similar results were 256 
obtained when patients with CKD received active VD analogs [80,81]. Indeed, treatment with either 257 
25(OH)-VD or active VD analogs induced similar responses on PTH in patients with CKD stage 3-4 258 
and hyperparathyroidism [82]. These results suggest a potential additive effect of 25(OH)-VD and 259 
active VD analogs on renal hyperparathyroidism [82].  260 

Low 25(OH)-VD has been linked with increased bone turnover and decreased bone mineral 261 
density (BMD) in patients with CKD. In a cohort study including 1,026 non-dialysis patients across 262 
all CKD stages, Ureña-Torres et al. showed that 25(OH)-VD ≤ 15 ng/ml was associated with high 263 
serum bone-specific alkaline phosphatase (BALP) and C-terminal cross-linked collagen type I 264 
telopeptides (CTX), both circulating bone remodeling biomarkers [83]. Similar results were reported 265 
by Yadav et al. who found that 25(OH)-VD supplementation reduced PTH, BAP and CTX in a 266 
randomized, double blind, placebo-controlled trial including 117 patients with CKD 3-4 [84]. 25(OH)-267 
VD levels ≤ 20 ng/ml were also associated with lower BMD at the femur neck and total hip in 268 
individuals with CKD stages 3-4 in a Korean populational cohort [85].  269 

25(OH)-VD may hold a direct and independent role on bone formation and mineralization. Coen 270 
et al. retrospectively analyzed bone hystomorphometry and histodynamic for different levels of 271 
25(OH)-VD in a cohort of 104 patients on hemodialysis for more than 12 months [86]. The 272 
investigators found that 25(OH)-VD < 20 ng/mL was associated with relatively lower bone turnover, 273 
whereas histologic evidence of a mineralization defect was only found when VDD was accompanied 274 
by elevated PTH [86]. Moreover, patients on HD have twice the risk of symptomatic bone fracture 275 
compared to renal transplant patients [87]. Low 25(OH)-VD has also been associated with muscle 276 
weakness and risk of falls in patients with end stage renal failure but the evidence to support these 277 
associations is still limited to small observational studies [88,89].  278 

Overall, despite the potential benefits of 25(OH)-VD on biochemical markers of mineral 279 
metabolism, there is insufficient RCT data available showing unequivocal benefits of 280 
supplementation on muscle strength, risk of falls and prevention of fractures in individuals with 281 
CKD. 282 

 283 
4.2. Albuminuria 284 

Several recent observational studies have highlighted the importance of 25(OH)-VD in areas 285 
outside of traditional bone and mineral metabolism. A cross-sectional analysis of the Third National 286 
Health and Nutrition Examination Survey (NHANES III) revealed a progressively higher prevalence 287 
of albuminuria with decreasing 25(OH)-VD levels in a representative sample of the US population 288 
[19]. These results supported the findings of previous studies enrolling diabetic patients in Italy and 289 
Japan [90,91]. In Australia, Damasiewicz et al. conducted a prospective study including 6,180 adults 290 
with normal renal function at baseline from the Australian Diabetes, Obesity and Lifestyle (AusDiab) 291 
study [92]. This large population-based cohort with two follow up phases (at baseline and 5-year) 292 
showed that individuals with 25(OH)-VD levels < 15 ng/mL had increased incidence of albuminuria 293 
defined as spot urine albumin-creatinine ratio ≥ 2.5 mg/mmol for men and ≥ 3.5 mg/mmol for women 294 
[92]. There was a consensus among these studies around the stepwise increase in the prevalence of 295 
albuminuria with decreasing 25(OH)-VD levels, however, a clear cutoff point could not be 296 
determined.  297 

VD has been shown to suppress the transcription of renin, inhibiting the RAAS and ultimately 298 
leading to a reduction in proteinuria through hemodynamic and non-hemodynamic pathways 299 
[61,93–95]. VD may also modulate oxidative stress and inflammation reducing fibroblast activation 300 
and interstitial inflammation [66,67,69,96] Moreover, CKD progression and lower expression of 301 
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megalin have been associated with lower 25(OH)-VD reuptake and therefore reducing intracrine 302 
1,25(OH)2-VD production in the renal proximal tubules (Figure 2b) [47,48,97]. On the other hand, 303 
increasing levels of proteinuria may perpetuate VDD. Altogether, there seems to be a synergistic 304 
interplay between VDD and CKD leading to a vicious cycle for progressive deterioration of renal 305 
function.  306 

Molina et al. published a well-designed single-centre, controlled trial enrolling individuals with 307 
CKD 3-4 and persistent albuminuria. Patients were assigned to receive 666 IU of VD3 daily, regardless 308 
of the 25(OH)-VD levels, when the PTH was above the expected range for the stage of CKD. Fifty 309 
patients were allocated to the intervention group and 51 patients received no intervention. Despite 310 
of the small dose of VD3, the authors found a 53% reduction in the urine albumin:creatinine ratio after 311 
six months of VD3 treatment [98]. Similarly, Kim et al. reported an anti-proteinuric effect of VD3 in 312 
patients with concomitant diabetes, CKD stage 2-4 and low 25(OH)-VD in a small observational study 313 
[99]. Nevertheless, no RCT assessing the effects of 25(OH)-VD supplementation on albuminuria has 314 
been published thus far. We identified one ongoing study (ClinicalTrials.gov identifier 315 
NCT01029002) enrolling 75 patients with CKD stages 3-4 to receive either VD2 or placebo for the 316 
primary outcome change in the proteinuria status. 317 
 318 
4.3. CKD Progression and Mortality 319 

Recently many observational studies have examined the association between lower 25(OH)-VD 320 
effects, CKD progression and mortality. Ravani et al. followed up 168 consecutive new referrals to a 321 
CKD clinic over a period of 6 years. CKD stages ranged from 2 to 5 pre-dialysis and most patients 322 
had stage 3 and stage 4 CKD. 25(OH)-VD levels predicted progression to dialysis and death in crude 323 
analysis and in multiple regression models [20]. Similarly, Barreto et al. conducted a prospective 324 
study including 140 CKD patients from stage 2 to 5. The authors aimed to investigate the association 325 
between VD levels, vascular calcification, endothelial function and mortality. Although there was an 326 
association between 25(OH)-VD levels and mortality, the investigators did not find significant 327 
correlation between 25(OH)-VD, aortic calcification and pulse wave velocity – a surrogate marker of 328 
endothelial function [36]. Moreover, Wolf et al. performed a cross-sectional analysis of 825 329 
consecutive incident hemodialysis patients across 569 hemodialysis centres in 37 states in the USA 330 
[21].  Patients who died within 90 days of initiating dialysis and where compared with those who 331 
survived for at least 90 days. Individuals presenting with 25(OH)-VD < 10 ng/mL were at significantly 332 
increased risk of all-cause and cardio-vascular mortality compared to subjects with 25(OH)-VD > 30 333 
ng/mL, whilst subjects with 25(OH)-VD levels 10-30 ng/mL showed mixed results after multivariate 334 
adjustments [21].  335 

Altogether, despite the observational studies highlighting the role of VDD as a potential risk 336 
factor for progression of CKD and mortality, we did not identify any RCT aiming to verify whether 337 
there is a beneficial effect of 25(OH)-VD supplementation on these outcomes.   338 
 339 
5. VD and CKD: current guidelines  340 

Both the Kidney Disease Outcomes Quality Initiative (KDOQI) and Kidney Disease Improving 341 
Global Outcomes (KDIGO) experts recommend checking and supplementing low serum 25(OH)-VD 342 
levels in CKD and dialysis patients [22,23]. In the most recent update of the KDIGO guidelines on 343 
bone mineral disorder, it is suggested based on low quality evidence that patients with CKD Stage 1-344 
5 have 25(OH)-VD levels measured, and repeated testing should be individualized according to 345 
baseline values and interventions [22]. Nevertheless, there was no clear suggestion on how frequent 346 
25(OH)-VD levels should be reviewed [22].  347 

With respect to the recommended dietary allowance of VD in the general population, the 348 
institute of medicine from the US and Canada recommended that adults up to the age of 70 years 349 
require 600 IU/d of VD, whereas adults 71 years and older require 800 IU/d [100]. These 350 
recommendations cover the needs of >97.5% of population and assume minimal or no sun exposure, 351 
thus providing further safety for individuals with lower endogenous synthesis of VD [100].  352 
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Current guidelines suggest that patients with CKD Stages 1-5 and VDD or VDI should receive 353 
supplementation using the same strategies as recommended for the general population [22,23,101]. 354 
However, even for the general population the optimal dosage of supplementation varies among the 355 
main guidelines. The KDOQI suggests 1,000-2,000 IU/d of VD3 for VD repletion but acknowledges 356 
that patients with CKD may require a more aggressive therapeutic plan [23]. The National Institute 357 
for Clinical Excellence (NICE) in the UK suggests that people aged ≥ 65 years who are not exposed to 358 
much sun should take 400 IU of VD3 daily, nevertheless, this guideline did not address VD 359 
supplementation in individuals with VDD or VDI [24]. In Australia and New Zealand, the Kidney 360 
Health Australia-Caring for Australasians with Renal Impairment (KHA-CARI) do not suggest any 361 
specific dosage for VD repletion [101]. 362 

Another matter of debate is around which form of VD should be used. VD2 and VD3 undergo 363 
identical hydroxylation processes and in theory are equally used by the body to generate 1,25(OH)2-364 
VD [102]. In fact, their chemical structure only differs in the side chains (Figure 1) [103]. Armas et al. 365 
compared the potency of a single dose of 50,000 IU VD2 and VD3 in 30 healthy subjects. Both VD 366 
analogues produced similar initial increments in serum 25(OH)-VD but individuals treated with VD3 367 
had a more sustained response with a 3-fold difference in the area under the curve on the 28th day 368 
[104]. Several theories have been proposed to explain the difference between the two calciferols. VD3 369 
might have a higher affinity to both VDR and 25-hydroxylase [105,106]. Other studies have suggested 370 
a lesser affinity of VD2 for DBP compared to VD3 resulting in higher clearance and subsequently a 371 
shorter circulating half-life [107–109]. Recently, a meta-analysis including seven heterogeneous 372 
studies indicated that regardless of the dosage, frequency or administration (oral or intramuscular), 373 
VD3 was more effective at raising serum 25(OH)-VD concentrations compared to VD2 [110]. Four 374 
studies that applied bolus doses also favored VD3 over VD2, whereas there was no statistical 375 
difference between VD3 and VD2 in the pulled data from studies that used daily supplementation 376 
[110]. Although VD3 may be more effective than VD2, clinicians should ultimately use the 377 
presentation commercially available in the context of their clinical practice. For instance, VD2 is 378 
mostly used in the United States, whilst in other countries, such as Australia and Brazil, VD3 is the 379 
most common presentation. 380 

 381 
6. Conclusions 382 

In summary, the studies reviewed here highlight the potential role of VD beyond bone mineral 383 
disease in patients with CKD. Currently the strongest available evidence supports 25(OH)-VD 384 
supplementation aiming to control secondary hyperparathyroidism in CKD patients. Despite of the 385 
striking observational data showing the association between lower levels of 25(OH)-VD and various 386 
deleterious outcomes (such as low bone turnover, risk of falls and factures, albuminuria, progression 387 
of CKD and mortality), there is still a lack of RCTs supporting the potential beneficial effects of 388 
supplementation. Many questions remain unanswered regarding the dosing, timing of 389 
administration and type of VD analogues in patients with CKD. In addition, the current guidelines 390 
are subject to criticism for being mainly opinion-based and derived from observational data. 391 
However, given the low-cost and high safety profile, patients with CKD might benefit from 25(OH)-392 
VD supplementation in the setting of VDD and VDI. Although doses of up to 4,000 IU of VD3 are 393 
considered safe for the general population [111], we recommend caution in renal patients specially 394 
in those who are on calcium-containing phosphate binder and/or on active VD analogues. 395 
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