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Abstract. This article contains the theorems concerning the algebraic dependence of polynomial mappings with
the constant Jacobian having two zeros at infinity. The work is related to the issues of the classical Jacobian Con-
jecture. This hypothesis affirm that the polynomial mapping of two complex variables with constant
non-zero Jacobian is invertible. The Jacobian Conjecture is equivalent to the fact that polynomial mappings with
constant non-zero Jacobian do not have two zeros at infinity, therefore it is equivalent to the two theorems given
in the work. The proofs of these theorems proceeds by induction.
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1. Introduction

The hypothesis formulated by O.H.Keller in 1939 [1] that a polynomial mapping of constant
Jacobian is invertible is not up to now resolved. Even in the case of two variables. This classic case is
the subject of this work. In 1974, T.T.Moh in work [2] formulated a known condition for the invertibility
of the mapping that additionally having one branch at infinity. A certain contribution in this topic was
given by the co-author of this article at work [3]. Finally, in 1977 S.S. Abhyankar at work [4] proved
that the polynomial mapping with constant Jacobian has at most two zeros at infinity. This work is
particularly important for the authors of this article, because the theorems we prove excludes this possi-
bility. It is worth mentioning about the work [5], of which Z.Charzynski was one of the
co-authors. In the aforementioned work [4], Abhyankar showed that the mapping of the constant
Jacobian having one zero at infinity is inveertible. The Jacobian Conjecture was also the subject of
articles by D. Wright [6] and A. van den Essen [7]. The article [8] by H. Bass, E. Connell and
D. Wright is also highlighted.

2. Algebraic dependence of polynomial mappings

Let f;, h; be the complex forms of variables X, Y of degrees i, j respectively and i, j >1.

Theorem 1. Let

f=(XY) +f,+f, 4+ +f (1)

2p-1
and

h:(XY)q+h2q71+h2q72+h2q73+...+h1 (2)

where p>q=>1.
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If Jac( f, h)=const = Jac( f,, h1) then exist the form |:|1 for which

1) 1. )" 1-
f=| XY+= A XY += wH AL XY+ 3
( +thj + ( +th] +..+ ( +th] 3
and
1) 1.\ 1-
h=| XY += B,| XY +— ...+B XY +— 4
( +qnj+{ +qn} ; [ +qm] @

AL AL and B,,..., qul_

for some constants
Proof. For ¢ = 1 the theorem is true. Indeed, when

f=(XY) +f +f, 4, +.+f (5)

and
h=XY +h, (6)

For p =1 the theorem is true, because then f= 4.
Let p>2. We assume that the formula (3) is true for exponents 1, ..., p — 1, and we prove that it is true

for p.
Really, let
F=(XY)° 4 Fyp|” 4 |+ | ot £ @)
and
h=xy + hl" + o + o7+ ..+ 0 ®)
We have
1) Jac((XY)p,hl)zJac(XY,fzp_l) 9)
50
p(XY)" " Jac(XY, h,)=Jac(XY, f,, ,) (10)
therefore
p(XY) " hy =1, (11)
Next
2) Jac(f,,,, hy)=Jdac(XY, 1,,,) (12)

| S
1
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where
1 =ac( fy,4, hy)=Jac( p(XY )" hy, hy) = p(p=1)(XY)"* hdac(XY , h,) (13)

and back to the previous formula, we have

p(p-1)(XY)""hJdac(XY, h,)=Jac(XY, f,,,) (14)
SO
(;](xv)”‘z hZ+A(XY) " =1, , (15)
Back to the coordinates f and /, consecutively we obtain
f=(XY)"+p(XY)"™ h, +@(XY)"‘2 hZ+ A (XY) 4 fy bt £ 4t (16)
h" =(XY +h,)" =(xy)° +[1'O](X\()“h1 +(§j(xv)“ h? +[§j(xv)“ h?+..+h? (17)

so subtracting the above equations we get
f—h’ =A1(xv)‘”+(f2p3—(§j(xv)p3hf]+...+(fp—hf)+fp1+...+ f, (18)
Let A, #0. Denote
z 1 p -1 1 p -3
fle(f—h ):(xv)" +E{(f2p_3—{3](xv)" hfj+...+(fp—hl")+fp_l+...+fl]= (19)
a1 .
=(XY)° 1JFE(fZHJr...Jr fo+f o+t fl)

Using the induction assumption for exponent p — 1 we have

f=h*?+An*?+. +A ,h (20)

SO
f=h"+Af (21)
f=h"+A(hP*+AhP?+. +A ,h)=h"+AhP?+A NP7+ +A h (22)

If 41= 0 we continue to calculate to the form f of the rank of 2p — 4 and we get
p -4 -2
[4J(XY)" hZ+A,(XY)" " =1, (23)

Next we proceed the same way as with the constant 4. This ends the first part of the proof.

Let p=>2. We assume that the formula (3) and (4) are true for exponents
g=1, .., p—1. We will prove that for g = p the formulas are also true. Let's save again the formulas
(1)and (2) forg=p

3
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F=(XY)P 4 fp o]+ fp|” ot £y (24)
and
h=(XY)" +h,,|” +hy, | +h,, ] +.th, (25)
We have consecutively
D Jac((XY)", hy,y ) =dac((XY)", T, ) (26)
SO
p(XY)" " Jac(XY, h,, )= p(XY)" " Jac(XY,f,, ) (27)
and
Jac(XY, h,, ,)=Jac(XY, f,, ) (28)
finally
Nyps = Tops (29)
2) Jac((XY)p, th_2)+Jac(fzp_l,th_l):Jac((XY)p, fzp_z) (30)
where
Jac( fp 4,055 ) =Jac(h, 1,05, ,) =0 (31)
therefore
p(XY)" dac(XY, h,, ,)=p(XY)" Jac(XY, f,,,) (32)
and
Jac(XY, h,, ,)=Jac(XY,f,, ) (33)
what gives
hypo +A(XY) =1, , (34)
We insert (28), (33) to (24) and we get
f=(XY) +hy+hy o +A(XY) et (35)
and
h=(XY)?+h,,,+h,, ,+h, ;+..+h (36)
We subtract
f—h=A(XY)"" +(f—h,, ) +..+(f,—h,) (37)

Let A, #0.We assume

4
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: a1 1 : .
f:——(f—M=(XYf1+zg“m4—hm4)+m+;r(ﬁ—hJ:(XYf1+f%4+“¢+n (38)

Jac(h, f)z—%\]ac(f,h)zconst (39)

Now we apply the induction assumption for exponent p — 1, converting f to 4 and /4 for f . Therefore

(XY)"|f, +_s> Which allows us to determine the form f, by the formula f, =(XY)"” f,. We have
at this point
1 Y 1 )7 1 -
h=| XY +——1 | +B;| XY +——1f | +.+B | XY +——1, (40)
p-1 p-1 p-1
and
1\ 1\ 1
fe| XY+——1f | +A[XY+——"f | +.+A,|XY+—1 (41)
p-1 p-1 p-1
for some constants B, ..., Bp—l; A,...,A,,. Moreover
p a g
th—l ZE-(XY)p fl (42)
so (XY)™ h,,_; - This allows us to determine the form h, by the formula h,,. =(XY) ", . From the
formula (42) we get
1- 1
—h=—-1 (43)
p p-1
Thus
. 1) . 1) . 1.
f =£XY+—h1j +A1[XY+—hlj +...+Ap2[XY+—hlj (44)
p p p
and
1. 1.\ 1,
h:(XY+—hlJ +Bl[XY+—hl) +...+Bpl[XY+—h1} (45)
p p p
Finally
f=h+Af=
1.\ 1) 1
=h+A [XY +—h1j +A1(XY +—h1] + +Ap_2[XY +—h1ﬂ=
p P p

(46)

If 41= 0 we continue to calculate to the form f of the rank of 2p — 4 and we get
5
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My + A (XY) =1, , (47)

Then we proceed in the same way as the constant A4; and for the next constants. This completes the
second and the last part of the proof.

Theorem II. Let

p
F= (XY + s+ frpe + oo Fanpapn + o+ i (48)

q
h=(X*Y ")+ Do+ Neanyac + o+ Ncyquaa -+ s (49)

where K > (k and [l are relativity prim) and p=>q=1.
If Jac( f, h)=const = Jac( f., hl) then exist the forms N, Ny, N, for which

p
f (X Ky +lﬁk+,_1 +1ﬁk+, , + +—ﬁlj
q q
1 o
+Al[x Y'+=h,,, +ahk+| s Fot hl] (50)
+Ap_1[x “Y'+=h,, +£ﬁk+, , + +lﬁlj
q q
and
1. 1Y
h-[X Y ' Zh L, =, +—h1J
q q
1 1 1. )"
+Bl(x ky ! +ahk+| L Jrahkﬂf2 +...+ah1j (51)
ky | 1. o
+Bql(x Y +=h,,+=h_ , + +—h1j
q
for some constants Avre Apy and B,,..., By
In the proof we will use the following observation.
b A A A (k=1)p .
Observation. Let (g, + 9, +..+0;) =0y, + G+t G, = D Gy (52)
j=0
Then, for j=0,...,(k—1)p, we have
!
Q kp—j = Z Py +2Py o+ H(K-1)p;=] #I 9 Ek g E:_l gfl (53)

Pk+Prat+P1=P: Pjxo K ! pk—l L. pl .

Proof of theorem. For ¢ = 1 the theorem is true. Indeed, let p>1. When
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f=(XY') +f + f +o.4f +o4 £ (54)

(k+1)p-1 (k+1)p-2 (k+)(p-1)+1 " **

and
h=X*Y'+h,,, ,+h. ,+..+h (55)

For p = 1 the theorem is true, because then f'= 4. In fact, for p =1, we have

F= XY )+ f et £ (56)
h=X*"'+ hk+,71|1) + hk+,72|2) +oth [ (57)
Because Jac( f, h)=const then
D Jac(X* ' hy, ) =dac(X Y T, ) (58)
So
hes="Fa (59)
Next
2) Jac(XY', hy,,)+dac( fop, hy)=dac(X Y f,, ) (60)
where Jac( fa hk+,71) =0 according to the formula (59). Consequently
heoo="Trus (61)
By analogy, in step £+ [/ — 1, we receive
h =1, (62)

Therefore f = h.

Now let p=>2. We assume that the formulas (50) is true for exponents 1, ..,
p — 1, and we prove that it is true for p.

Really, let
f =(X ky ! )p + oy " f(kH)p_z‘Z) oot Fro i S Fatomt L+ f1|(k+')p71) (63)
and
h=X* " wh "+ h” e +h,|"? "+ +0 (64)
We have
1) Jac((x o hk+,_1) = Jac(X Y f ) (65)
SO
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p(X ") Jac(X V! by, ) =dac(X Y, fyn ) (66)
therefore
-1
p(X v )p s = f(k+|)p—l (67)
Next
2) Jac((x Yy hk+l_2)+Jac( fhnpss hk+,_1) =Jac(x ky ! f(k+l)p_2) (68)
N
where
-1
1 :Jac( ficyo-rs hk+,7l)=Jac(p(x ky ! )P yoias hk+,,1)= (69)
69
=Pheiy Jac((X ‘v )P—l, hk+|—1) = p( p _1)(X v )P—Z Pt Jac(X v, hk+|—1)
and back to the previous formula, we have
-1 -2
p(X*Y')" Jac( X Y! by o)+ p(P-1)(XY') hy Jac( XY by ) =dac(X Y )
(70)
SO
. -1 .
p(x kYI)p lhk+|—2 + p(p2 )(X kY I)p i hzk-v-l—l = f(k+l)p—2 (71)
Continuing calculations up to form f1) -1 We obtain
~ -1
f(k+|)(p—l) = h(k+|)( p-1) + Al(x kY ! )p (72)
where e. g.
I. for p>k +I1we have
1. if k+1 isodd
" — pl ky 1\ Pt ) Prais Py _
T WO I B -
p! kg 1Y P=(KH) gy p! Ky 1\P2
= XY N+t XY Neas N
(p—(k+|))!(k+|)!( ) B (p—2)!( ) ol Tl
2. if k+1 iseven
" — p' ky/ 1\PR 1 Praia Pr
Mo =2 Tt ) e o
p! kg 1\ PR p! ky 1 \P2 12
= XY h et —————( XY h
(p—(k+|))!(k+|)!( ) ot ¥ +2!(p—2)!( ) e

Il. for p<k+Iwehave

d0i:10.20944/preprints201807.0311.v1
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~

p' Pt k-1 1
h(k+|)( p-1) = Z Prsta +2 Prat_z +ot(K+H=1) py=k+1 (X kY : ) h5+|_1... hlp (75)

2S5 Py +2 P+t Pr<k L 20 Py ! pk+|71!...p1!

according to the above observation.

On the other hand we get

h? =(X “Y'+h, ,+h ,+..+h +..+h +...+hl)p =

-1 =) p(p-1 -2 ~

=(X YY) 4 p(XY) hs | p(XY) hy, +¥(X YT et R
(76)

Thus, the formulas (67), (71), (72) allow to write

F=(XS) 4 p(X ) hy, +p(XY) Ry,
77)

p(p-1 -2 ~ 1 (
+ ( 5 )(X kY')p e N + A, (X kY')p + fpnpn ot fpt fpy ot fy
Hence
-1 N
f=h? = A YY) 4 (fps P ) £ (=N D)+ forot (78)

Let A, #0. Denote

f:Ai(f—h"):

1

1 1 ~ 1 1 1
:(X"Y') +X(f(k+l)(p1)1_h(k+l)(pl)l)+"'+x( fp_hlp)+x foto+—"f= (79)
1

1 1

1= s oz
:(X Y ') + fnpna Tt fr fr )
Using the induction assumption for exponent p — 1 we have
f=h**+Ah"?+. .+A ,h (80)
for some constants A,,..., A _,. Therefore
f=h"+Af=h"+A (" +Ah""+. +A ,h)=
=h" + AN+ A AN+ +AA ,h= (81)
=h" +Ah** +A,h"? +.+A_h
If 41= 0 we continue to calculate to the form f of the rank of (k + /)(p — 2) and we get
h A (X)) =1 (82)

(k+1)(p-2) (k+1)(p-2)

With the constant 4, we proceed the same way as with the constant 4;. What ends the first part of the
proof.
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Let p>2. We assume that the formula (50) and (51) are true for exponents 1< < p—1. We will
prove that for g = p the formulas are also true. Then we have

K 1) k+1-1) k+1) k+1+1)
f =(X Y ) + f O I f (ke + f(p—l)(k+|) + f oy +.o.+ 1 (83)
and
K 1) k+1-1) k+l) k+1+1)
h :(X Y ) +h ‘ +eot Ny +hogwen] TN eymea +oth (84)
Because Jac( f, h)=const , we have consecutively
p
1) Jac((x Y B ) Jac((x v fp(k+,)_1) (85)
SO
p-1 p-1
p(X*Y")" Jac( XY by s )= p(XY ) dae( XY ) (86)
and
Jac(X MY ) =dae(X Y F ) (87)
finally
fp(k+|)—1 = hp(k+l)—1 (88)
We proceed similarly to step k + | =1 and we also receive
f p-1)(k+)1 — h(p—l)(k+|)+1 (89)
In the step k + | we have
p-1
ot = Moo + A1 (X YY) (90)

Now we subtract

p-1
f—h=A(X"Y") +( f e —h(pfl)(k+l)7l)+...+( f,—h,) (91)
Let A, #0. We define

z 1 kns | p-1 1 1
fle(f—h)z(x Y') +E(f(p_l)(k+,)_l—h(p_l)(k+|)_l)+...+xl(fl—hl)z o
1z =
=(X ')+ fronenya tet fo
Then
-1 1
Jac(h, f)=-Jdac(h, f —h)=-Jac(h, f ) = const (93)
A A
wherein
p
h=(X*Y") +h s N o+ Do + Ncyos + -+ s (94)

10
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and

F=(X YY" 7+ f

(p-1)(k+1)-1

+ oy Fot (95)

A

We receive the assumption for exponent q = p — 1. When exist the forms f,, ,, f ., f, for which

Kl-1res
1 1 .Y 1 1\
h=(X"Y'+—1fk+,_l+...+—1 1] +Bl[XkY'+—1fk+,_1+...+—1fl] +... (96)
p- p- p- p-
and
p-1 p-2
f_(XkY'+pi_1fAk+,_l+...+ﬁﬂ] +A(XkY'+pi_1fAk+,_l+...+pi_lfA1] +... (97)

The first term in (96) after development give the formulas for successive homogeneous components of
the polynomial % in (94). So

P12

0 Fil( X! ) fieis =Pganpa (98)

Therefore (X Ky )p_l h(k+l) o1 and we have the formula for the form ﬁ,HH

1 A
h(k+|)p—1 = ( X"y )p Peis (99)
Furthermore
1 ; 1nx

p-1 k+1-1 E k-+1-1 (100)

Therefore now

p—1 " p-1 p-1 " p—1
(102)
Next homogeneous component of the polynomial h in (94) is equal now
pi_l(x Y p2_—pl(x V)R =g (103)
Therefore
XY = = SOV R R (00

and (X ky! )p_l ﬁ(k+|)p—1 so the formula for the form ﬁ“,fz is ready

11
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oy ky\PR
(k+1)p-2 _(X Y ) hk+|—2 (105)

We get the same

_1q (106)
p
After k+1-2 steps we receive

p
h:[X ky! +£ﬁk+,_l+lﬁk+l_2+...+1 A2+L Alj
p p p

-1
P . (107)
1~ 1~ 1
+Bl(XkY'+ hk+,1+5hk+,2+ +6h2+p—_1f1] +
and
p-1
fz(XkY'+1ﬁk+,l+1ﬁk+,_2+ +1ﬁ2+ilJ
-1
p p PP (108)

The homogeneous component of the polynomial h of degree (k+I)(p—1)+1 in (94) is equal now

| R Pt . P2 . Py
> e G R CL e Y N EET
Pt +2 Pyt +oot(K+1-1) pr=k+1-1 P ! pk+|—1!"' pl' p p p -1

Pyt +Pysta++P1=p, P;=0

1 A 1 b 1 ~ P11 1 P2
=—"F (Xky f,+ : XY —h.,, o =h,
p ( kl)p Z p ( K I)M(p j [p j

p-1 D+ 2Pt o (ke1=2)py=ket-1 Pt PPyiig Py
Pist T Pysta e+ Po=p, P;=0
= h(k+|)(p—1)+1
(109)
So
p ky1\PL 2
XY f, =
p_]_( ) 1
Pr+11 P2
p' k |pk+l[1" j (1"]
_ (XYY —h.,_ ..] =h
:h(k+l)(p—l)+1_ Z pk+l!pk+l—1!"'p2!( ) p p° (110)
Prrta+2Pysrg+otH(K+1-2) po=k+1-1
Piit+Pisratet Po=p, p;j=0
= h(k+|)(p—1)+1
and the formula for the form ﬁl is ready
~ (kg PR
Aoy =(XY') (111)
Therefore
1 , 1~
- f== (112)
p-1" |oh1
We get finally

12
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1. 1. 1. 1. 1. 1. 1p 1)
h:(XkYI +6hk+| 1+6hk+| 2+ +Ehz +Emj +B [X kY +Bhk+| . Bth 2+ +E Ehlj "
(113)
and
. 1 1. 1. 1.\ 1. 1. 1, 1.\~
f:(XkY'+ hk+|1+6hk+l_2+ +Ehz+Bhl] +A1(X“Y +Ehk+ll Ehk+l2+ +Bh Ehl] +
(114)
So
i, Lp 1- ~ 1n P
f=h+Af=h+A| XY +=h ,+—Nh, ,+.+=h+=h | +
p p p
+A1A1[XkY'+1ﬁ TS +EA+lﬁl]p2+
p k+1-1 p k+1-2 p 2 p
1. 1. 1, 1Y
= X'+ =h =N, et =h = j +
( p k+1-1 p k+1-2 p 2 phl
p-1
(B +A1)[ Ky +£ﬁk+,_l+lﬁk+,_2+ +lﬁ2+lA] +
p p p p ~ (115)
1~ 1~ 1, 1-
B, + 'y Zhe,+=h, et =h += +
( AiAl)[ pkll kaZ pz phi]
1, 1, 1.Y
[XkY'+ hk+,1+Ehk+,_2+...+5h2+5hlj +
+A1(XKY B I P ¥ +lﬁljp_1+
p k+|1 p k+1-2 p 2 p
+A2( AR N Y T X +lﬁljp2+
p k+1-1 p k+1-2 p 2 p
The formulas (113) and (115) give the result where A, #0.
If 41= 0 we continue to calculate to the form f of the rank of (k + /)(p — 2) and we get
p-2
h(k+')(p—2)+A2(Xle) :f(k+l)(p—2) (116)

With the constant 4, we proceed the same way as with the constant 4. What ends the final part of the
proof.

Corollary 1. Under the assumptions of both theorems the polynomials f and h are algebraically de-
pending.

Corollary 2. Not exist invertible polynomial mappings which have two zeros at infinity.
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