
 

1 

 

CONTRIBUTION TO THE JACOBIAN CONJECTURE: POLYNOMIAL MAPPING 

HAVING TWO ZEROS AT INFINITY 

Grzegorz Biernat,  Sylwia Lara-Dziembek,  Edyta Pawlak 

Institute of Mathematics, Czestochowa University of Technology,  

 Czestochowa, Poland 

grzegorz.biernat@im.pcz.pl, sylwia.lara@im.pcz.pl, edyta.pawlak@im.pcz.pl 

Abstract. This article contains the theorems concerning the algebraic dependence of polynomial mappings with 

the constant Jacobian having two zeros at infinity. The work is related to the issues of the classical Jacobian Con-

jecture. This hypothesis affirm that the polynomial mapping of two complex variables with constant  

non-zero Jacobian is invertible. The Jacobian Conjecture is equivalent to the fact that polynomial mappings with 

constant non-zero Jacobian do not have two zeros at infinity, therefore it  is equivalent to the two theorems given 

in the work. The proofs of these theorems proceeds by induction. 
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1. Introduction 

The hypothesis formulated by O.H.Keller in 1939 [1] that a polynomial mapping of constant  

Jacobian is invertible is not up to now resolved. Even in the case of two variables. This classic case is 

the subject of this work. In 1974, T.T.Moh in work [2] formulated a known condition for the invertibility 

of the mapping that additionally having one branch at infinity. A certain contribution in this topic was 

given by the co-author of this article at work [3]. Finally, in 1977 S.S. Abhyankar at work [4] proved 

that the polynomial mapping with constant Jacobian has at most two zeros at infinity. This work is 

particularly important for the authors of this article, because the theorems we prove excludes this possi-

bility. It is worth mentioning about the work [5], of which Z.Charzyński was one of the  

co-authors. In the aforementioned work [4], Abhyankar showed that the mapping of the constant  

Jacobian having one zero at infinity is inveertible. The Jacobian Conjecture was also the subject of 

articles by D. Wright [6] and A. van den Essen [7]. The article [8] by H. Bass, E. Connell and  

D. Wright is also highlighted. 

2. Algebraic dependence of polynomial mappings  

Let  fi, hj  be the complex forms of variables X, Y of degrees i, j respectively and , 1i j  .  

 

Theorem I. Let  

   2 1 2 2 2 3 1...
p

p p pf XY f f f f         (1) 

and  

   2 1 2 2 2 3 1...
q

q q qh XY h h h h         (2) 

where 1p q  .   
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If    1 1Jac , Jac ,f h const f h   then exist the form 
1ĥ  for which 

 

1

1 1 1 1 1

1 1 1ˆ ˆ ˆ...

p p

pf X Y h A X Y h A X Y h
q q q





     
           
     

 (3) 

and 

 

1

1 1 1 1 1

1 1 1ˆ ˆ ˆ...

q q

qh X Y h B X Y h B X Y h
q q q





     
           
     

 (4) 

for some constants 1 1 1 1,..., ,...,p qA A and B B  . 

 

Proof. For q = 1 the theorem is true. Indeed, when 

    2 1 2 2 2 3 1...
p

p p pf XY f f f f         (5) 

and  

  
1h XY h   (6) 

so 1 1ĥ h . 

 

For p = 1 the theorem is true, because then  f = h. 

Let 2p  . We assume that the formula (3) is true for exponents 1, ..., p – 1, and we prove that it is true 

for  p. 

Really, let  

  
1) 2) 3) 2 1)

2 1 2 2 2 3 1...
pp

p p pf XY f f f f


         (7) 

and  

  
1) 2) 3) 2 1)

1 0 0 ... 0
p

h XY h


       (8) 

 

We have 

     1 2 11) Jac , Jac ,
p

pXY h XY f   (9) 

so 

      
1

1 2 1Jac , Jac ,
p

pp XY XY h XY f


  (10) 

therefore 

  
1

1 2 1

p

pp XY h f


  (11) 

Next 

    2 1 1 2 2

1

2) Jac , Jac ,p pf h XY f   (12) 
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where 

          
1 2

2 1 1 1 1 1 11 =Jac , Jac , 1 Jac ,
p p

pf h p XY h h p p XY h XY h
 

     (13) 

and back to the previous formula, we have 

       
2

1 1 2 21 Jac , Jac ,
p

pp p XY h XY h XY f


   (14) 

so 

    
2 12

1 1 2 2
2

p p

p

p
XY h A XY f

 



 
  

 
 (15) 

Back to the coordinates f  and h, consecutively we obtain  

   
 

   
1 2 12

1 1 1 2 3 1

1
... ...

2

p p p p

p p

p p
f XY p XY h XY h A XY f f f

  




          (16) 

          
1 2 32 3

1 1 1 1 1...
1 2 3

p p p p p p p
p p p

h XY h XY XY h XY h XY h h
       

            
     

 (17) 

so subtracting the above equations we get 

      
1 3 3

1 2 3 1 1 1 1... ...
3

p p p p

p p p

p
f h A XY f XY h f h f f

 

 

  
           

  
 (18) 

Let 
1 0A  . Denote 

       

   

1 3 3

2 3 1 1 1 1

1 1

1

2 3 1 1

1

1 1
... ...

3

1
... ...

p p p p

p p p

p

p p p

p
f f h XY f XY h f h f f

A A

XY f f f f
A

 

 



 

   
               

   

      

 
(19)

 

Using the induction assumption for exponent p – 1 we have  

 1 2

1 2...p p

pf h A h A h 

     (20) 

so 

 
1

p

f h A f   (21) 

  1 2 1 2

1 1 2 1 2 1... ...
p pp p p p

p pf h A h A h A h h A h A h A h   

            (22) 

 

If A1= 0 we continue to calculate to the form f of the rank of 2p – 4 and we get 

    
4 22

1 2 2 4
4

p p

p

p
XY h A XY f

 



 
  

 
 (23) 

Next we proceed the same way as with the constant A1. This ends the first part of the proof. 

 

Let 2p  . We assume that the formula (3) and (4) are true for exponents  

q = 1, ..., p – 1.  We will prove that for  q = p the formulas are also true. Let's save again the formulas 

(1) and (2) for q = p 
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  
1) 2) 3)

2 1 2 2 2 3 1...
p

p p pf XY f f f f         (24) 

and  

  
1) 2) 3)

2 1 2 2 2 3 1...
p

p p ph XY h h h h         (25) 

We have consecutively 

      2 1 2 11) Jac , Jac ,
p p

p pXY h XY f   (26) 

so 

        
1 1

2 1 2 1Jac , Jac ,
p p

p pp XY XY h p XY XY f
 

   (27) 

and 

    2 1 2 1Jac , Jac ,p pXY h XY f   (28) 

finally 

  
2 1 2 1p ph f   (29) 

        2 2 2 1 2 1 2 22) Jac , Jac , Jac ,
p p

p p p pXY h f h XY f      (30) 

where 

    2 1 2 1 2 1 2 1Jac , Jac , 0p p p pf h h h      (31) 

therefore 

        
1 1

2 2 2 2Jac , Jac ,
p p

p pp XY XY h p XY XY f
 

   (32) 

and 

    2 2 2 2Jac , Jac ,p pXY h XY f   (33)  

what gives 

  
1

2 2 1 2 2

p

p ph A XY f


    (34) 

We insert (28), (33) to (24) and we get 

    
1

2 1 2 2 1 2 3 1...
p p

p p pf XY h h A XY f f


          (35) 

and  

   2 1 2 2 2 3 1...
p

p p ph XY h h h h         (36) 

We subtract 

      
1

1 2 3 2 3 1 1...
p

p pf h A XY f h f h


         (37) 

Let 
1 0A  . We assume 
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         
1 1

2 3 2 3 1 1 2 3 1

1 1 1

1 1 1
... ....

p p

p p pf f h XY f h f h XY f f
A A A

 

               (38) 

Then    

    
1

1
Jac , Jac ,h f f h const

A
    (39) 

Now we apply the induction assumption for exponent p – 1, converting  f  to h and  h for f . Therefore 

 
2

2 3

p

pXY f



, which allows us to determine the form 

1f  by the formula  
2

2 3 1
ˆp

pf XY f


  . We have 

at this point 

 

1

1 1 1 1 1

1 1 1
...

1 1 1

p p

ph XY f B XY f B XY f
p p p





     
           

       
 (40) 

and 

 

1 1

1 1 1 2 1

1 1 1
...

1 1 1

p p

pf XY f A XY f A XY f
p p p

 



     
           

       
 (41) 

for some constants 
1B , …, 

1pB 
; 1 2,..., pA A  . Moreover 

  
1

2 1 1
1

p

p

p
h XY f

p



 


 (42) 

so  
1

2 1

p

pXY h


 . This allows us to determine the form 
1ĥ  by the formula  

1

2 1 1
ˆp

ph XY h


  . From the 

formula (42) we get 

 
1 1

1 1ˆ
1

h f
p p




 (43) 

Thus 

 

1 2

1 1 1 2 1

1 1 1ˆ ˆ ˆ...

p p

pf XY h A XY h A XY h
p p p

 



     
           
     

 (44) 

and 

 

1

1 1 1 1 1

1 1 1ˆ ˆ ˆ...

p p

ph XY h B XY h B XY h
p p p





     
           
     

 (45) 

Finally 

 

   

1

1 2

1 1 1 1 2 1

1 2

1 1 1 1 1 1 1 1 1 2 1

1 1

1 1 1ˆ ˆ ˆ...

1 1 1 1ˆ ˆ ˆ ˆ

1 1ˆ

p p

p

p p p

p p

p

f h A f

h A XY h A XY h A XY h
p p p

XY h A XY h B A A XY h B A A XY h
p p p p

XY h A XY
p

 



 

 

  

      
              

       

       
                  
       

 
    
 

1 2

1 2 1 1 1

1 1ˆ ˆ ˆ
p p

ph A XY h A XY h
p p p

 



     
         

     

 (46) 

If A1= 0 we continue to calculate to the form f of the rank of 2p – 4 and we get 
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  
2

2 4 2 2 4

p

p ph A XY f


    (47) 

Then we proceed in the same way as the constant A1 and for the next constants. This completes the 

second and the last part of the proof. 

 

 

Theorem II. Let  

          11 2 1 1
... ...

p
k l

k l p k l p k l p
f X Y f f f f

      
        (48) 

          11 2 1 1
... ...

q
k l

k l q k l q k l q
h X Y h h h h

      
        (49) 

where k l   (k and l are relativity prim) and 1p q  .  

If    1 1Jac , Jac ,f h const f h   then exist the forms 1 2 1
ˆ ˆ ˆ, ,...,k l k lh h h     for which 

 

1 2 1

1

1 1 2 1

1 1 2 1

1 1 1ˆ ˆ ˆ...

1 1 1ˆ ˆ ˆ...

1 1 1ˆ ˆ ˆ...

p

k l

k l k l

p

k l

k l k l

k l

p k l k l

f X Y h h h
q q q

A X Y h h h
q q q

A X Y h h h
q q q

   



   

    

 
     
 

 
     

 

 
     

 

 (50) 

and 

 

1 2 1

1

1 1 2 1

1 1 2 1

1 1 1ˆ ˆ ˆ...

1 1 1ˆ ˆ ˆ...

1 1 1ˆ ˆ ˆ...

q

k l

k l k l

q

k l

k l k l

k l

q k l k l

h X Y h h h
q q q

B X Y h h h
q q q

B X Y h h h
q q q

   



   

    

 
     
 

 
     

 

 
     

 

 (51) 

for some constants 1 1 1 1,..., ,...,p qA A and B B    

 

In the proof we will use the following observation. 

 

Observation. Let   
 1

1 1 1

0

ˆ ˆ ˆ ˆ... ...
k p

p

k k k p kp p kp j

j

g g g g g g g


  



           (52) 

Then, for  j = 0,…,(k −1)p, we have 

  
1 1

1 2 1

1 1 0

2 ... 1 1 1
... ,

1 1

!
ˆ ...

! !... !

k k

k k

k k j

p p p
p p k p jkp j k k
p p p p p

k k

p
g g g g

p p p



 

 

     
   



  (53) 

 

Proof of theorem. For q = 1 the theorem is true. Indeed, let 1p  .  When 
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           11 2 1 1
... ...

p
k l

k l p k l p k l p
f X Y f f f f

      
        (54) 

and  

  
1 2 1...k l

k l k lh X Y h h h         (55) 

 

For p = 1 the theorem is true, because then  f = h. In fact, for p = 1, we have 

 

  
1) 2) 1

1 2 1...
k l

k l

k l k lf X Y f f f
 

         (56) 

  
1) 2) 1

1 2 1...
k l

k l

k l k lh X Y h h h
 

         (57) 

Because  Jac , constf h   then 

    1 11) Jac , Jac ,k l k l

k l k lX Y h X Y f     (58) 

So 

 
1 1k l k lh f     (59) 

Next 

      2 1 1 22) Jac , Jac , Jac ,k l k l

k l k l k l k lX Y h f h X Y f          (60) 

where  1 1Jac , 0k l k lf h      according  to the formula (59). Consequently 

 
2 2k l k lh f     (61) 

By analogy, in step k + l − 1, we receive  

 1 1h f  (62) 

Therefore f = h. 

Now let 2p  . We assume that the formulas (50) is true for exponents 1, ...,  

p – 1, and we prove that it is true for  p. 

Really, let  

               

 1) 2) 2) 1) 1)

11 2 1 1 1
... ...

k l k lp k l pk l

k l p k l p k l p k l p
f X Y f f f f f

     

        
         (63) 

and  

    
1) 2) 2) 1)

1 2 2 1... ... 0
k l k l

k l

k l k lh X Y h h h h
   

            (64) 

 

We have 

      1 1
1) Jac , Jac ,

p
k l k l

k l k l p
X Y h X Y f   

  (65) 

so 
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       
1

1 1
Jac , Jac ,

p
k l k l k l

k l k l p
p X Y X Y h X Y f



   
  (66) 

therefore 

    

1

1 1

p
k l

k l k l p
p X Y h f



   
  (67) 

Next 

         2 11 2

1

2) Jac , Jac , Jac ,
p

k l k l

k l k lk l p k l p
X Y h f h X Y f      

   (68) 

where 

     
       

1

1 1 11

1 2

1 1 1 1

1 =Jac , Jac ,

Jac , 1 Jac ,

p
k l

k l k l k lk l p

p p
k l k l k l

k l k l k l k l

f h p X Y h h

ph X Y h p p X Y h X Y h



      

 

       

 

  

 (69) 

and back to the previous formula, we have 

           
1 2

2 1 1 2
Jac , 1 Jac , Jac ,

p p
k l k l k l k l k l

k l k l k l k l p
p X Y X Y h p p X Y h X Y h X Y f

 

       
    

  (70) 

so 

  
 

   

1 2
2

2 1 2

1

2

p p
k l k l

k l k l k l p

p p
p X Y h X Y h f

 

     


   (71) 

Continuing calculations up to form f(k+l ) (p-1) we obtain 

        
1

11 1
ˆ p

k l

k l p k l p
f h A X Y



   
   (72) 

where e. g.  

 

I. for p k l  we have 

1. if  k + l  is odd 

     

    
 

 

 
 

1 1

1 2 1

1 1

2 ... 1 1 11
... , 0

1 1

2

1 1 1
1

2 2

!ˆ ...
! !... !

! !
...

2 !! !

k l k l

k l k l

k l k l j

p p pk l
p p k l p k l k lk l p
p p p p p

k l k l

p k l p
k l k l k l

k l k l k l

p
h X Y h h

p p p

p p
X Y h X Y h h

pp k l k l

  

   

  

         
    

  

  


     


 

  
  


 (73) 

 

2. if  k + l  is even 

 

     

    
 

 

 
 

1 1

1 2 1

1 1

2 ... 1 1 11
... , 0

1 1

2
2

1

2

!ˆ ...
! !... !

! !
...

2! 2 !! !

k l k l

k l k l

k l k l j

p p pk l
p p k l p k l k lk l p
p p p p p

k l k l

p k l p
k l k l k l

k l k l

p
h X Y h h

p p p

p p
X Y h X Y h

pp k l k l

  

   

  

         
    

  

  


  

 

  
  


 (74) 

 

II. for p k l  we have 
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     

1 1

1 2 1

1 1

2 ... 1 1 11
2 2 ... 1, 0

1 1

!ˆ ...
! !... !

k l k l

k l k l

k l k l j

p p pk l
p p k l p k l k lk l p

p p p k l p
k l k l

p
h X Y h h

p p p

  

   

  

         
       

  

  (75) 

according to the above observation. 

 

On the other hand we get 

 

 

 

     
 

    

1 2 1

1 1 2
2

1 2 1 1

... ... ...

1 ˆ...
2

p
p k l

k l k l k l

p p p p
k l k l k l k l

k l k l k l k l p

h X Y h h h h h

p p
X Y p X Y h p X Y h X Y h h

   

  

       

         

  
      

 

 

  (76) 

Thus, the formulas (67), (71), (72) allow to write 

     
 

         

1 1

1 2

2 1
2

1 1 1 11 1 1

1 ˆ... ... ...
2

p p p
k l k l k l

k l k l

p p
k l k l

k l p pk l p k l p

f X Y p X Y h p X Y h

p p
X Y h h A X Y f f f f

 

   

 

      

   


         

 (77) 

Hence 

          
1

1 1 1 11 1 1 1
ˆ ... ...

p
p k l p

p pk l p k l p
f h A X Y f h f h f f



     
           (78) 

Let 
1 0A  . Denote 

 

          

    

1

1

1 1 11 1 1 1

1 1 1 1

1

1 11 1

1

1 1 1 1ˆ ... ...

... ...

p

p
k l p

p pk l p k l p

p
k l

p pk l p

f f h
A

X Y f h f h f f
A A A A

X Y f f f f



     



  

  

         

      

     (79) 

Using the induction assumption for exponent p – 1 we have  

 1 2

1 2...p p

pf h A h A h 

     (80) 

for some constants 1 2,..., pA A  . Therefore 

 

 1 2

1 1 1 2

1 2

1 1 1 1 2

1 2

1 2 1

...

...

...

p p

p

p

p p

p

p p

p

p p

p

f h A f h A h A h A h

h A h A A h A A h

h A h A h A h

 



 



 



       

     

    

 (81) 

If A1= 0 we continue to calculate to the form  f of the rank of (k + l)(p – 2) and we get 

        

2

22 2
ˆ p

k l

k l p k l p
h A X Y f



   
   (82) 

With the constant A2 we proceed the same way as with the constant A1. What ends the first part of the 

proof. 
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Let 2p  . We assume that the formula (50) and (51) are true for exponents 1 1q p   .  We will 

prove that for  q = p the formulas are also true. Then we have 

            

1) 1) ) 1)

11 1 1 1 1 1
... ...

k l k l k lp
k l

p k l p k l p k l p k l
f X Y f f f f f

    

         
         (83) 

and  

            

1) 1) ) 1)

11 1 1 1 1 1
... ...

k l k l k lp
k l

p k l p k l p k l p k l
h X Y h h h h h

    

         
         (84) 

Because  Jac , constf h  , we have consecutively 

          1 1
1) Jac , Jac ,

p p
k l k l

p k l p k l
X Y h X Y f

   
  (85) 

so 

          
1 1

1 1
Jac , Jac ,

p p
k l k l k l k l

p k l p k l
p X Y X Y h p X Y X Y f

 

   
  (86) 

and 

      1 1
Jac , Jac ,k l k l

p k l p k l
X Y h X Y f

   
  (87) 

finally 

  
   1 1p k l p k l

f h
   

  (88) 

We proceed similarly to step k + l −1 and we also receive 

 
     1 1 1 1p k l p k l

f h
     

  (89) 

In the step k + l we have 

        
1

11 1

p
k l

p k l p k l
f h A X Y



   
   (90) 

Now we subtract 

           
1

1 1 11 1 1 1
...

p
k l

p k l p k l
f h A X Y f h f h



     
        (91) 

Let 
1 0A  . We define 

 
            

    

1

1 11 1 1 1

1 1 1

1

11 1

1 1 1
...

....

p
k l

p k l p k l

p
k l

p k l

f f h X Y f h f h
A A A

X Y f f



     



  

        

   

 (92) 

Then    

      
1 1

1 1
Jac , Jac , Jac , consth f h f h h f

A A
      (93)  

wherein 

             11 2 1 1 1
... ...

p
k l

k l p k l p k l p k l p
h X Y h h h h h

        
         (94) 
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and 

        

1

11 1 1 2
....

p
k l

p k l p k l
f X Y f f f



     
      (95) 

We receive the assumption for exponent q = p – 1. When exist the forms 
1 1 1

ˆ ˆ ˆ, ,...,k l k lf f f   
 for which 

1

1 1 1 1 1

1 1 1 1ˆ ˆ ˆ ˆ... ... ...
1 1 1 1

p p

k l k l

k l k lh X Y f f B X Y f f
p p p p



   

   
           

      
 (96) 

and 

       

1 2

1 1 1 1 1

1 1 1 1ˆ ˆ ˆ ˆ... ... ...
1 1 1 1

p p

k l k l

k l k lf X Y f f A X Y f f
p p p p

 

   

   
           

      
 (97) 

The first term in (96) after development give the formulas for successive homogeneous  components of 

the polynomial  h  in (94). So 

    

1

1 1
ˆ

1

p
k l

k l k l p

p
X Y f h

p



   



 (98) 

Therefore    

1

1

p
k l

k l p
X Y h



 
 and  we have the formula for the form 1

ˆ
k lh    

 
   

1

11
ˆp

k l

k lk l p
h X Y h



  
  (99) 

Furthermore 

 
1 1

1 1ˆ ˆ
1

k l k lf h
p p

   


 (100) 

Therefore now 

1

1 2 1 1 1 2 1

1 1 1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ... ... ...
1 1 1 1

p p

k l k l

k l k l k l k lh X Y h f f B X Y h f f
p p p p p p



       

   
             

      
 

  (101) 

and 

 
1 2

1 2 1 1 1 2 1

1 1 1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ... ... ...
1 1 1 1

p p

k l k l

k l k l k l k lf X Y h f f A X Y h f f
p p p p p p

 

       

   
             

      

    (102) 

 

Next homogeneous  component of the polynomial  h  in (94) is equal now 

      

1 2
2

2 1 2

1ˆ ˆ
1 2

p p
k l k l

k l k l k l p

p p
X Y f X Y h h

p p

 

     


 

  (103) 

Therefore 

        

1 2
2

2 12 2

1ˆ ˆ
1 2

p p
k l k l

k l k lk l p k l p

p p
X Y f h X Y h h

p p

 

      


  

  (104) 

and    

1

1

p
k l

k l p
X Y h



 
 so the formula for the form 2

ˆ
k lh    is ready 
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    
1

22
ˆp

k l

k lk l p
h X Y h



  
  (105) 

We get the same 

 
2 2

1 1ˆ ˆ
1

k l k lf h
p p

   


 (106) 

After  k+l−2  steps we receive 

 
1 2 2 1

1

1 1 2 2 1

1 1 1 1ˆ ˆ ˆ ˆ...
1

1 1 1 1ˆ ˆ ˆ ˆ... ...
1

p

k l

k l k l

p

k l

k l k l

h X Y h h h f
p p p p

B X Y h h h f
p p p p

   



   

 
      

 

 
       

 

 (107) 

and 

 

1

1 2 2 1

2

1 1 2 2 1

1 1 1 1ˆ ˆ ˆ ˆ...
1

1 1 1 1ˆ ˆ ˆ ˆ... ...
1

p

k l

k l k l

p

k l

k l k l

f X Y h h h f
p p p p

A X Y h h h f
p p p p



   



   

 
      

 

 
       

 

 (108) 

The homogeneous  component of the polynomial  h  of degree (k+l)(p−1)+1 in (94) is equal now 

 
 

   

1 2 1

1 2 1

1 1

1 2 1

2 ... 1 1 1 1
... , 0

1

1 1

1 2

! 1 1 1ˆ ˆ ˆ...
! !... ! 1

! 1ˆ ˆ
1 ! !... !

k l

k l

k l k l

k l k l j

k

k l

p p p
p

k l

k l

p p k l p k l k l k l
p p p p p

p
p p

k l k l

k l

k l k l

p
X Y h h f

p p p p p p

p p
X Y f X Y h

p p p p p

 



   

  



 

          
    



 

  

     
     

     

 
   

  



 

  

1 2

1 2 2

1 2

2

2 ... 2 1

... , 0

1 1

1 ˆ...

l

k l k l

k l k l j

p

p p k l p k l

p p p p p

k l p

h
p

h

 

   

  

       

    

  

 
 
 



   

(109) 

So 

 

  

 
 

  

1 2

1 2 2

1 2

1

1

1 2

1 1 1 2
2 ... 2 1

... , 0

1 1

ˆ
1

! 1 1ˆ ˆ...
! !... !

k l

k l

k l k l

k l k l j

p
k l

p p
p

k l

k l

k l p k l k l
p p k l p k l

p p p p p

k l p

p
X Y f

p

p
X Y h h

h p p p p p

h

 



   

  



 

     
       

    

  




   
        



   (110) 

and the formula for the form 1ĥ  is ready 

     
1

11 1
ˆp

k l

k l p
h X Y h



  


 (111) 

Therefore 

 
1 1

1 1ˆ ˆ
1

f h
p p




  (112) 

 We get finally 
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1

1 2 2 1 1 1 2 2 1

1 1 1 1 1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ... ... ...

p p

k l k l

k l k l k l k lh X Y h h h h B X Y h h h h
p p p p p p p p



       

   
               
   

 

  (113) 

and
1 2

1 2 2 1 1 1 2 2 1

1 1 1 1 1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ... ... ...

p p

k l k l

k l k l k l k lf X Y h h h h A X Y h h h h
p p p p p p p p

 

       

   
               
   

 (114) 

So 

  

1

1 1 1 2 2 1

2

1 1 1 2 2 1

1 2 2 1

1 1 1

1 1 1 1ˆ ˆ ˆ ˆ...

1 1 1 1ˆ ˆ ˆ ˆ... ...

1 1 1 1ˆ ˆ ˆ ˆ...

1 1ˆ ˆ( )

p

k l

k l k l

p

k l

k l k l

p

k l

k l k l

k l

k l k l

f h A f h A X Y h h h h
p p p p

A A X Y h h h h
p p p p

X Y h h h h
p p p p

B A X Y h h
p p



   



   

   

  

 
          

 

 
       

 

 
       
 

  

 

1

2 2 1

2

2 1 1 1 2 2 1

1 2 2 1

1

1 1 2 2 1

2

1 1ˆ ˆ...

1 1 1 1ˆ ˆ ˆ ˆ... ...

1 1 1 1ˆ ˆ ˆ ˆ...

1 1 1 1ˆ ˆ ˆ ˆ...

p

p

k l

k l k l

p

k l

k l k l

p

k l

k l k l

k l

h h
p p

B A A X Y h h h h
p p p p

X Y h h h h
p p p p

A X Y h h h h
p p p p

A X Y







   

   



   

 
    

 

 
        

 

 
       
 

 
       

 

 

2

1 2 2 1

1 1 1 1ˆ ˆ ˆ ˆ... ...

p

k l k lh h h h
p p p p



   

 
     

 

 

(115)

 

The formulas (113) and (115) give the result where 
1 0A  . 

If A1= 0 we continue to calculate to the form  f of the rank of (k + l)(p – 2) and we get 

        

2

22 2

p
k l

k l p k l p
h A X Y f



   
   (116) 

With the constant A2 we proceed the same way as with the constant A1. What ends the final part of the 

proof. 
 

Corollary 1. Under the assumptions of both theorems the polynomials f  and h  are algebraically de-

pending.  
 

Corollary 2. Not exist invertible polynomial mappings which have two zeros at infinity. 
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