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Abstract: The province of Macerata, Italy, is a topographically complex region which has been little 11 
studied in terms of its temperature and precipitation climatology. Temperature data from 81 12 
weather stations and precipitation data from 55 rain gauges were obtained, and, following quality 13 
control procedures, were investigated on the basis of 3 standard periods: 1931-1960, 1961-1990 and 14 
1991-2014. Spatial and temporal variations in precipitation and temperature were analysed on the 15 
basis of six topographic variable (altitude, distance from the sea, latitude, distance from the closest 16 
river, aspect, and distance from the crest line). Of these, the relationship with altitude showed the 17 
strongest correlation. Use of GIS software allowed investigation of the most accurate way to 18 
present interpolations of these data and assessment of the differences between the 3 investigated 19 
periods. The results of the analyses permit a thorough evaluation of climate change spatially over 20 
the last 60 years. Generally, the amount of precipitation is diminished while the temperature is 21 
increased across the whole study area, but with significant variations within it. Temperature 22 
increased by 2 to 3°C in the central part of the study area, while near the coast and in the mountains 23 
the change is between about 0 and 1°C,  with small decreases focused in the Appennine and 24 
foothill belt (-1 to 0°C). For precipitation, the decrease is fairly uniform across the study area 25 
(between about 0-200 mm), but with some isolated areas of strong increase (200-300 mm) and only 26 
few parts of territory in which there is an increase of 0-200 mm, mainly in the southern part of the 27 
coast, to the south-west and inland immediately behind the coast. The monthly temperature trend 28 
is characterized by a constant growth, while for precipitation there is a strong decrease in the 29 
amount measured in January, February and October (between 25 and 35 mm on average).  30 

Keywords: climate change; gis; geostatistic; raster math  31 
 32 

1. Introduction 33 
Macerata is the largest of the provinces in the Marche Region of Italy, with an area of about 2800 34 

km2 (Figure 1). Macerata is bordered by the province of Perugia(Umbria Region) to the west, by the 35 
Adriatic Sea, an arm of the Mediterranean Sea, to the east, and by three other provinces in the same 36 
Region, Ancona to the north, Fermo to the south and Ascoli Piceno to the southwest.  37 
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 38 
Figure 1 - Geography of the study area. 39 

This part of Central Italy is a transition point between coastal areas with a Mediterranean 40 
climate, an inland Temperate climate and then to the west the Highland climates of the mountains 41 
(Cs, Cf and H respectively in the Kӧppen-Geiger classification [1]). In some years there is a 42 
dominance of one climate type over the other, even if this difference is only shown strongly in the 43 
coastal zone. The aim of the present study was to create a new way to analyze temperature and 44 
precipitation, through GIS software, in order to have a spatial analysis of climate variability across 45 
this topographically complex region. In the literature there are several climate reports for Italy, but 46 
not for the Marche Region. Indeed, there is only one published work, by the Experimental 47 
Geophysical Observatory of Macerata [2] which can be considered a climate report. In this, an 48 
arbitrary time interval from 1950 to 2000 is considered, which is not in line with the WMO (World 49 
Meteorological Organization) approach [3]. There are two different studies for the Marche Region 50 
focusing on climate change aspects. One considers the variations through projections until 2100 51 
using climate modeling [4] and the other investigates the extreme indexes [5], to assess whether 52 
there are any trends in the observed data. Finally there is another study for a larger area in Central 53 
Italy that analyses climatic variations in relation to land, sea, social reaction and adaptation [6], but 54 
this does not consider the Marche Region. Consequently, there is a lack of any detailed studies 55 
analyzing and mapping temperature and precipitation patterns in Macerata province which can 56 
highlight climate change. 57 

2. Materials and Methods  58 
Temperature and precipitation data were collected from 5 institutions: the former National 59 

Hydrographic Service (SIMN), Multiple-Risk Functional Center of the Civil Protection, Italian Air 60 
Force, Service Agency for the Agrifood Sector of the Marche Region (ASSAM), Functional Center of 61 
Umbria. Temperature data from 81 weather stations and precipitation data from 55 rain gauges were 62 
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obtained. For further analyses these were divided on the basis of 3 standard periods: 1931-1960, 63 
1961-1990 and 1991-2014. The data were validated with 5 quality controls on the basis of the WMO 64 
prescriptions [7] and through the procedures developed by Gentilucci et al. in 2018 [8]: logical and 65 
gross error check, internal consistency check, tolerance test, temporal consistency, and spatial 66 
consistency. For logical and gross error checking, temperatures outside the range (-40°C; +50°C) 67 
were removed [9]and precipitation measurements greater than 2000 mm were also excluded [8]. The 68 
internal consistency check verified the consistency of the data: for example, whether a maximum 69 
value was higher than a minimum one, for temperature, and if there were negative values for 70 
precipitation. Temporal consistency was useful to investigate errors between temporally contiguous 71 
values, for example if there is too much difference between one day and the next, by setting a limit of 72 
3 times the standard deviation added (upper limit) or subtracted (lower limit) to the mean [10]. In 73 
the case of temporal consistency, the deletion of data is not immediate, but was subject to the spatial 74 
consistency. The spatial consistency was performed taking into consideration the neighbouring 75 
weather stations, grouped on the basis of their similarity [8]. After validation, climate data were 76 
homogenized through the creation of a reference time series for each candidate weather station. 77 
There are no reference weather stations of demonstrated reliability near the study area, so to assess 78 
the suitability of the data it is necessary to reconstruct some reference time series to compare the 79 
weather stations under investigation. The creation of the reference time series was performed daily 80 
on the basis of 10 neighbouring weather stations, for all investigated periods, with empirical 81 
Bayesian kriging (EBK), after a comparison with the inverse distance weighted (IDW) and the 82 
ordinary co-kriging based on altitude, which is the most correlated independent variable [11]. An 83 
interpolation was then prepared for each day by EBK and the climate value taken in the exact 84 
coordinates of the weather station under investigation. The creation of the reference time series for 85 
each weather station is indispensable for the analysis of breakpoints, which are points where there is 86 
a sudden difference (an error) between the reading before and after the current one in the climatic 87 
values time series of the same weather station. The breakpoints were analyzed through the SNHT 88 
(Standard Normal Homogenity Test) [12], and the penalized t-test [13] was used to avoid an excess 89 
of false breakpoints near the extremes of the time series. Finally, again using the SNHT method, the 90 
time series was homogenized, multiplying it with the ratio between the mean before and after 91 
shifting, produced by the breakpoint. The aim was to homogenize the time series of the weather 92 
station with the most reliable part of it, which is mainly represented by the latest climate values (if 93 
there are no systematic errors detected in the most recent data of the time series). A GIS database 94 
was then prepared by editing a detailed Digital Elevation Model (DEM) with a cell size 5x5 m, 95 
obtained using CTR (Regional Technical Map, Regione Marche, 2000), topographical map and 96 
LIDAR reliefs [14]. The relationship of climatic variables with topographical parameters was 97 
assessed and the elevation has been found to be the most correlated factor [15]. Thus, the DEM was 98 
essential for data interpolation, in order to improve the results through the use of the geostatistical 99 
technique of ordinary co-kriging, chosen after a cross-validation assessment between kriging 100 
(ordinary and simple), empirical Bayesian kriging and Co-kriging (ordinary and simple). Co-kriging 101 
was the method that minimized the error (in terms of Mean Error, RMSE, Mean Standardized error, 102 
RMSSE, Mean standard error) more than all others, it was prepared with altitude as independent 103 
variable and precipitation or temperature as the dependent one. The interpolation maps obtained 104 
were compared between different periods (1931-1960, 1961-1990, 1991-2014) through GIS with the 105 
mathematics between rasters, in order to assess spatial climatic variations. 106 

3. Results 107 
This section may be divided by subheadings. It should provide a concise and precise 108 

description of the experimental results, their interpretation as well as the experimental conclusions 109 
that can be drawn. 110 
  111 
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3.1. Data quality control 112 

The first important result achieved was to have reliable data after the accurate quality controls 113 
and homogeneity tests have been carried out. The validation process removed 0.02 % of the data for 114 
temperature and 1.67 % of the data for precipitation. Instead, the homogenization, performed with 115 
the SNHT and the Penalized T-test, after a long process of reference time series construction, 116 
involved only the data of 4 weather stations. The EBK [16] was compared with IDW and ordinary 117 
co-Kriging and was found that it improves the performance of IDW of about 5% (in terms of root 118 
mean square error) on the same dataset, while it is quicker and easier, even if less accurate than 119 
ordinary co-kriging (Table 1). 120 

Table 1- Comparison between 3 interpolation methods (Inverse Distance Weighting (IDW), 121 
empirical Bayesian kriging (EBK) and Ordinary Co-Kriging). 122 

Statistical quality parameters IDW  EBK Co-Kriging 
Regression function 0.6x + 6.8 0.7x + 5.7 0.9x + 1.2 

Mean 0.0119 0.0311 0.0566 
Root-mean-square 1.6870 1.6429 1.2465 
Mean standardized  -0.0002 0.0237 

Root-mean-square-standardized  0.9514 0.9890 
Mean standard error  1.7366 1.5278 

The reference time series obtained with EBK was related with the candidate time series, in order 123 
to investigate if this series (candidate) needs homogenization. The result of subsequent 124 
homogenization leads to 2 weather stations homogenized for temperature and 2 rain gauges for 125 
precipitation. In particular, the case of Civitanova Marche, a city on the Adriatic coast, is particularly 126 
evident with a growing mean, after the breakpoint, of about 300 mm (Figure 2) which is 127 
homogenized by the tests [12,13] (Figure 3). 128 

 129 
Figure 2 - Civitanova Marche rain gauge inhomogeneous. 130 

 131 
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 132 
Figure 3 - Civitanova Marche rain gauge homogeneous. 133 

3.2. Assessment of correlation between topographical and climatic variables 134 

The adjusted data were used for the creation of detailed interpolation maps, passing through an 135 
assessment of the influence of topographic co-variables on precipitation and temperature in this area 136 
for all investigated periods (1931-1960/1961-1990/1991-2014). Six different topographic variables 137 
were considered [11]: altitude, distance from the sea, latitude, distance from the closest river, aspect, 138 
and distance from the crest line. The variables were assessed using the adjusted coefficient of 139 
determination (R2) [11], with an assessment of the goodness of correlation represented by the 140 
calculation of the standard error of the mean and the F-test. These 3 parameters can explain the 141 
relation between the topographic variables and temperature or precipitation; in fact the R2 adjusted 142 
(R2adj) shows the amount of variation explained by the estimated regression line (Figure 4) [17]: 143 

ܴ௔ௗ௝ଶ = 1 − (1 − ܴଶ) ௡ିଵ
௡ି௞ିଵ

         (1)  144 

݊ = sample size 145 
݇ = number of explanatory variables (independent), in this case 6 146 

ܴ = ∑(௫ି௫̅)(௬ି௬ത)
ඥ∑(௫ି௫̅)మ∑(௬ି௬ത)మ

           (2) 147 

 148 
 ത = mean values of dependent and independent variables 149ݕ and ݔ̅
 values of dependent and independent variables 150 = ݕ	and ݔ

 151 
Figure 4 - Ratio between elevation and temperature annual mean in the period 1991-2014. 152 
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The standard error of the mean allows calculation of the dispersion of sample means around the 153 
population, and also in this case the altitude shows the better value compared to the other 154 
topographic variables both for temperature (Table 2) and precipitation (Table 3). Finally, the F-test 155 
was performed to estimate if there can be a significant difference (based on 5% of rejection 156 
probability) between the sample means of precipitation or temperature and those of the geographic 157 
variables. When the variances of the two populations are equal, the variable cannot be used as 158 
independent to obtain a correlation factor with the dependent one, because both of them would be 159 
estimators of an unknown quantity σ2. The variance is an index of variability and it's expressed by 160 
the formula: 161 

 162 

௫ଶߪ =
∑ (௫೔ି௫̅)మ೔

௡
           (2) 163 

whilst the F-test is obtained from the ratio between major and minor sampling variances. 164 

ܨ = ൫௦೘ೌೣ
మ ൯

൫௦೘೔೙
మ ൯

           (3) 165 

As demonstrated in Gentilucci et al., 2018 [11] for precipitation (Table 3), even for temperatures 166 
the most correlated variable for the whole period (1931-2014) is the altitude (Table 2). 167 

Table 2 - Comparison between topographic variables and mean annual temperature 1931-2014. 168 
Regr. stats 

for T 
Alt.-yrs T 
1931-2014 

Dist. sea-yrs 
T 1931-2014 

Lat.-yrs T 
1931-2014 

Dist. river-yrs 
T 1931-2014 

Aspect-yrs 
T1931-2014 

Dist. cre.-yrs 
T 1931-2014 

R2adj. 0.84 0.46 0.44 0.06 -0.01 -0.02 
Std error 0.76 1.40 1.43 1.86 1.92 1.93 
Sign. F 8.31 E-18 4.29 E-07 9.03 E-07 0.07 0.49 0.84 

Table 3 - Comparison between topographic variables and mean annual precipitation 1931-2014. 169 
Regr.stats 

for P 
Alt.-yrs 

P1931-2014 
Dist. sea-yrs 
P 1931-2014 

Lat.-yrs P 
1931-2014 

Dist.river-yrs 
P 1931-2014 

Aspect-yrs 
P 1931-2014 

Dist. cre.-yrs 
P 1931-2014 

R2adj. лΦтл 0.69 0,26 0.07 -0.02 -0.02 
Std error млнΦон млоΦрл мрфΦул мтуΦпл мутΦоо мутΦоф 
Sign. F 6.92E-13 1.14E-12 нΦнп9πп 0.04 0.75 0.79 

Thus, Tables 2 and 3 highlight the goodness of the correlation between altitude and 170 
temperature or precipitation, in order to have a reliable independent variable for interpolation by 171 
cokriging methods. 172 

3.3. Interpolation and climate change analysis  173 

Interpolation was performed by analysing three different types of cokriging, in order to identify 174 
the most suitable for the available data: 175 
�x�� Ordinary co-kriging, [18] a particular case of the universal cokriging, in which the residuals 176 

mean is assumed constant and unknown. 177 

ܼை஼௄(ݑ) = ∑ ఈభߣ
ை஼௄(ݑ)ܼଵ൫ݑఈభ൯ +

௡భ(௨)
ఈభୀଵ

∑ ఈమߣ
ை஼௄(ݑ)ܼଵ൫ݑఈమ൯

௡మ(௨)
ఈమୀଵ     (4) 178 

ఈభߣ
ை஼௄(ݑ)	ܽ݊݀	ߣఈమ

ை஼௄(ݑ)= weights of the data assigned to ܼଵ൫ݑఈభ൯	ܽ݊݀	ܼଵ൫ݑఈమ൯ and varies between 179 
0 and 100%. 180 

ܼଵ൫ݑఈభ൯	ܽ݊݀	ܼଵ൫ݑఈమ൯ = regionalized data at a given location,primary and secondary data. 181 
�x�� Simple co-kriging, [18] is used when the mean is stationary and the residuals mean is 182 

considered a global constant and known in the whole study area, this method can be good only 183 
if there are a large number of sample points.  184 

ܼௌ஼௄(ݑ) − ଵߤ = ∑ ఈభߣ
ௌ஼௄(ݑ)ൣܼଵ൫ݑఈభ൯ −݉ଵ൧ +

௡భ(௨)
ఈభୀଵ

∑ ఈమߣ
ௌ஼௄(ݑ)ൣܼଵ൫ݑఈమ൯ + ݉ଶ൧

௡మ(௨)
ఈమୀଵ  (5) 185 
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݉ଵ	݁	݉ଶ = mean of the primary and secondary data 186 
�x�� Universal Co-Kriging, [19] a generalization of the ordinary cokriging, is used when the mean 187 

isn't stationary, i.e. if there is a trend, and the residual isn't correlated to the trend (stationarity 188 
of the residuals). 189 

ܼ௎஼௄(ݑ) = ଵߝ + ଶߝ + ∑ ఈభߣ
௎஼௄(ݑ)ܼଵ൫ݑఈభ൯ +

௡భ(௨)
ఈభୀଵ

∑ ఈమߣ
௎஼௄(ݑ)ܼଵ൫ݑఈమ൯

௡మ(௨)
ఈమୀଵ    (6)  190 

ଶߝ	݀݊ܽ	ଵߝ  = mean of the residuals in the primary and secondary variable.   191 
Ordinary cokriging has been chosen by an iterative process through many tests of 192 

cross-validation performed within the ArcGis extension, Geostatistical Analyst. In the interpolations 193 
the independent variable was elevation, whereas the dependent variable was temperature or 194 
precipitation [20]. All interpolations were verified through 4 statistical indicators [21], which 195 
allowed selection of the correct parameters for the semivariogram setting: 196 
1.�� Root Mean Square Error (RMSE) - the standard deviation between observed and predicted 197 

values: this parameter allows an assessment of the prediction errors for different weather 198 
stations. However, RMSE isn't an absolute parameter, since it's impossible to compare different 199 
variables with the RMSE; anyhow it can be anuseful to compare within the same data set. The 200 
value of RMSE should be the smallest possible and similar to the ASE (mean standard error): in 201 
this way when it is predicting a value in a point without observation points, it has only the ASE 202 
to assess the uncertainty of the prediction.  203 

     ට∑ [௓෠೙
೔సభ (௦೔)ି௭(௦೔)]మ

௡
        (7) 204 

መܼ(ݏ௜) = measured value at position ݏ௜;  205 
 ௜;  206ݏ predicted value at position = (௜ݏ)ݖ
݊= number of weather stations; 207 
 ො=standard deviation of the population. 208ߪ

2.�� Mean Standard Error (ASE) - this statistical tool is known from the mean and it is used to 209 
estimate the standard deviation of a sampling distribution. The ASE is an estimator of the bias 210 
of the RMSE (i.e. the standard deviation of the estimation error). A value close to zero and 211 
similar to RMSE represents a very low error in the estimation of the variability of the sampling 212 
distribution.    213 

       ට∑ ఙෝమ(௦೔)೙
೔సభ

௡
         (8) 214 

3.�� Mean Standardized Error (MSE) - It's similar to the mean error and calculates the difference 215 
between measured and predicted values; however MSE values aren't related to single variables, 216 
but it can be used to compare different variables. The standardization procedure leads a 217 
variable with mean x and variance σ2, to another with mean zero and variance equal to 1, in 218 
order to allow comparison between different variables. The mean standardized error is 219 
represented by the ratio between the mean absolute error and the standard deviation of the 220 
estimation error.    221 

      
∑ [௓෠෠೙		
೔సభ (௦೔)ି௭(௦೔)]/ఙෝ(௦೔)

௡
        (9) 222 

4.�� Root Mean Square Standardized Error (RMSSE) - allows assessment of the goodness of 223 
prediction models. It is desirable to have a value close to 1. If the value of RMSSE is lower than 1 224 
the variability is overestimated, otherwise it is underestimated. This is a dimensionless 225 
statistical tool, independent from the considered variable; it is the most significant instrument 226 
to evaluate the interpolative model with other variables.    227 

 ට∑ [௓෠೙		
೔సభ (௦೔)ି௭(௦೔)/ఙෝ(௦೔)]మ

௡
        (10) 228 

The results of this cross-validation were represented by a table (for example Table 4) for each 229 
investigated period (1931-1960/1961-1990/1991-2014), in which it is possible to assess the goodness of 230 
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interpolations for temperatures (maximum, mean, minimum) [22] and precipitation, on a monthly 231 
and annual basis. 232 

Table 4 - Period 1961-1990, statistical indicators for interpolations of maximum, mean and minimum 233 
temperatures 234 

P. 1961-1990  RMSE MSE RMSSE ASE P. 1961-1990  RMSE MSE RMSSE ASE 
Annual mean 1,89 -0,15 1,14 2,05 Av. January 1,36 -0,13 1,01 1,62 
Av. February 1,71 -0,14 1,13 1,89 Av. March 1,91 -0,17 1,16 2,01 

Av. April 2,19 -0,16 1,17 2,25 Av. May 2,39 -0,16 1,21 2,58 
Av. June 2,21 -0,17 1,16 2,31 Av. July 2,17 -0,17 1,16 2,31 

Av. August 2,00 -0,17 1,17 2,03 Av. September 2,38 -0,14 1,13 2,62 
Av. October 1,83 -0,15 1,08 1,95 Av. November 1,55 -0,13 1,04 1,71 

Av. December 1,54 -0,11 1,02 1,91      
Max ann. mean 3,05 -0,18 1,14 3,04 Max January 2,15 -0,17 1,09 2,22 
Max February 2,70 -0,19 1,12 2,70 Max March 3,05 -0,20 1,23 2,95 

Max April 3,23 -0,18 1,17 3,16 Max May 3,54 -0,18 1,23 3,54 
Max June 3,44 -0,20 1,22 3,30 Max July 3,56 -0,20 1,20 3,43 

Max August 3,51 -0,19 1,18 3,31 Max September 3,77 -0,17 1,17 3,75 
Max October 2,97 -0,19 1,12 2,83 Max November 2,42 -0,17 1,09 2,38 

Max December 2,35 -0,16 1,04 2,57      
Min ann. mean 1,30 -0,04 1,08 1,44 Min January 0,88 -0,05 0,87 1,18 
Min February 0,97 -0,03 0,93 1,33 Min March 1,15 -0,07 0,99 1,32 

Min April 1,40 -0,06 1,15 1,53 Min May 1,68 -0,07 1,09 1,87 
Min June 1,60 -0,05 1,14 1,61 Min July 1,86 -0,05 1,18 1,69 

Min August 1,66 0,11 1,20 1,46 Min September 1,67 -0,03 1,14 1,79 
Min October 1,36 -0,01 1,17 1,41 Min November 1,20 -0,01 1,12 1,28 

Min December 1,03 -0,05 0,97 1,31      

The table (Table 3) highlights the quality of interpolation, with the statistical indicators always close 235 
to the optimum value of the 4 statistical indicators. In fact, the value of the root mean square error 236 
standardized is about 1 in all interpolations and the mean standardized error is close to 0. In this way 237 
65 maps were created, in order to observe the distribution of temperature maximum, mean, 238 
minimum and of precipitation, in the area of study. The varied climate condition of Macerata 239 
Province is shown in     (a)           240 
 (b) 241 

Figure 5: there is a decrease of temperature and an increase of precipitation going from east 242 
(Adriatic Coast) to west (Appennine Mountains). 243 
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 244 
    (a)            (b) 245 

Figure 5 - Mean annual temperature (a) and mean annual precipitation (b) in the period 1991-2014 246 
for Macerata province. 247 

The interpolation maps were averaged with the raster math tool, in order to compare different 248 
periods of the same parameter. A positive trend from the past to the present is evident for 249 
temperature, and a negative one for precipitation (       (a)     250 
        (b) 251 

Figure 6). 252 

 253 
       (a)             (b) 254 

Figure 6 - Interpolation annual mean of the 3 periods (1931-1960/1961-1990/1991-2014) for 255 
temperature (a) and precipitation (b). 256 

Finally, the most important part of this research is represented by the comparison between the 257 
interpolation maps of 1931-1960 and those of 1991-2014, to assess climate change in the last 60 years. 258 
These variation maps (Figure 7) were obtained through the raster math tool, by subtracting to the 259 
values of 1991-2014 from those of 1931-1960. 260 
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 261 
Figure 7- Variations of mean annual temperature between 1991-2014 and 1931-1960. 262 

 263 
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Figure 8 - Variations of mean annual rainfall between 1991-2014 and 1931-1960. 264 

The variation map of mean temperature (Figure 7) shows a strong increase in the hilly zone, the 265 
central part of the study area, while there is a slight decrease of temperature in the mountainous 266 
region (west). For mean annual rainfall, the variation map (Figure 8) highlights a decrease in 267 
precipitation over the whole province overall, but with small localized parts in which there is an 268 
increase. 269 

 270 

 271 
Figure 9 - Monthly temperature variations (maximum, mean and minimum) between the periods 272 
1991-2014 and 1931-1960. 273 

The graphs (Figure 9) records the differences on average in the whole territory between the 274 
periods 1991-2014 and 1931-1960; it highlights, for each parameter, a bell-shaped trend strongly 275 
increasing in spring and summer months, with a drop during winter and autumn. In February and 276 
September, minimum temperatures are in a counter trend because there is no trend a strong 277 
temperature increase in these two months. 278 

 279 
Figure 10 - Trend of monthly variations in precipitation between the periods 1991-2014 and 280 
1931-1960 for precipitations. 281 

Precipitation has a reverse trend compared with temperatures (Figure 10) in that there is an 282 
absence or even an augmentation of precipitation in spring and summer, while the decreasing peak 283 
is focused on January, February and October, with significant amount between 25 mm and 35 mm. 284 
December is an exception, because it shows the highest augmentation of rainfall (about 15 mm). 285 

4. Discussion 286 
This analysis has achieved some important goals for understanding and mapping the climate of 287 

Macerata Province, Italy. Firstly, it has described the conditions of temperature and precipitation of 288 
Macerata province in 3 different standard periods 1931-1960, 1961-1990, 1991-2014. The GIS software 289 
allowed creation of maps, in order to comprehend the spatial distribution of temperature and 290 
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precipitation. Furthermore, a strong relationship with altitude has been identified. In fact,there is a 291 
differentiation that follows the altitudinal trend quite well, from the coast with high temperature, 292 
even if the highest temperatures are located in the hilly belt behind the coast, to the lowest 293 
temperatures in the Appennine Mountains (west). For precipitation, the smallest amount occurs on 294 
the southern part of the coast, while the highest quantity is in the Appennine Mountains to the 295 
south-west.  296 

The second and most important result is represented by the study of climate change, with GIS 297 
software in order to assess the variations through algebraic operations between rasters. The 298 
differences between the period 1991-2014 and 1931-1960 were investigated in order to assess the 299 
climatic change in the last 60 years. Generally, the amount of precipitation from 1931-1960 to 300 
1991-2014 is diminished while the temperature is increased. However, spatially the situation is more 301 
complex. In fact there is a central part of the study area in which temperature increased strongly by 2 302 
to 3°C, while near the coast and in the mountains the change is about 0-1°C,  with small decreases 303 
focused in the Appennine and foothill belt (-1 to 0°C). For precipitation, the decrease is fairly 304 
uniform across the study area (between about 0-200 mm), but with some isolated areas of strong 305 
increase (200-300 mm) and only few parts of territory in which there is an increase of 0-200 mm, 306 
mainly in the southern part of the coast, to the south-west and inland immediately behind the coast. 307 
The monthly temperature trend is characterized by a constant growth, while for precipitation there 308 
is a strong decrease in the amount measured in January, February and October (between 25 and 35 309 
mm on average). This analysis, unlike previous studies, allows consideration of thespatial climate 310 
change, which is moderately strong and unequivocal, but with some important counter-trends. In 311 
future it would be interesting to investigate the variations between the different areas within the 312 
province. Furthermore, to improve analysis, it would be desirable to install more reliable weather 313 
stations, especially in the Appennine area (as this is under sampled). 314 
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