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Abstract: The eighty years old empirical Colebrook function   widely used as an informal standard for 

hydraulic resistance relates implicitly the unknown flow friction factor  , with the known Reynolds number 

   and the known relative roughness of a pipe inner surface   ;             . It is based on logarithmic 

law in the form that captures the unknown flow friction factor   in a way from which it cannot be extracted 

analytically. As an alternative to the explicit approximations or to the iterative procedures that require at least 

a few evaluations of computationally expensive logarithmic function or non-integer powers, this paper offers 

an accurate and computationally cheap iterative algorithm based on Padé polynomials with only one    -call 

in total for the whole procedure (expensive    -calls are substituted with Padé polynomials in each iteration 

with the exception of the first). The proposed modification is computationally less demanding compared with 

the standard approaches of engineering practice, but does not influence the accuracy or the number of 

iterations required to reach the final balanced solution. 

Keywords: Colebrook equation; Colebrook-White; flow friction; iterative procedure; logarithms; Padé 

polynomials; hydraulic resistances; turbulent flow; pipes; computational burden 

 

1. Introduction 

The empirical Colebrook equation (Colebrook 1939) implicitly relates the unknown flow 

friction factor   with the known Reynolds number    and the know relative roughness of inner 

pipe surface,   ;             , where   is functional symbol, Equation (1). 

 

  
          

    

  
 
 

  
 

  

    
  (1) 

In Equation (1)    is Reynolds number;            ,    is relative roughness of inner pipe 

surface;          , and   is Darcy flow friction factor;                (all three quantities 

are dimensionless). 

The Colebrook equation is based on experiments performed by Colebrook and White in 1937 

with the flow of air through a set of artificially roughened pipes (Colebrook and White 1937). The 

accuracy of this eighty year old equation is disputed many times but it is still accepted in 

engineering practice as an informal standard for hydraulic resistance. Therefore to repeat results and 

for comparisons, it is required to solve the Colebrook equation accurately. Numerous evaluations of 

flow friction factor such as in the case of complex networks of pipes pose extensive burden for 

computers, so not only an accurate but also a simplified solution is required. Calculation of complex 

water or gas distribution networks (Brkić 2009, Brkić 2011ab, Praks et al. 2015, Praks et al. 2017) 

which requires few evaluations of logarithmic function for each pipe, presents a significant and 

extensive burden which available computer resources hardly can easily manage (Clamond 2009, 

Giustolisi et al. 2011, Danish et al. 2011, Winning and Coole 2013, Vatankhah 2018). 
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The Colebrook equation is based on logarithmic law where the unknown flow friction factor   

is given implicitly, i.e., it appears on both sides of Equation (1) in form             , from which it 

cannot be extracted analytically; an exception is through the Lambert  -function (Keady 1998, 

Sonnad and Goudar 2004, Brkić 2011cd, Brkić 2012ab, Biberg 2017, Brkić 2017a). The common way to 

solve it is to guess an initial value    for friction factor and then to try to balance it using the 

iterative algorithm (Brkić 2017b) which needs to be terminated after the certain number of iterations 

when the final balanced value    is reached. As an alternative to the iterative procedure, numerous 

approximate formulas are available (Gregory and Fogarasi 1985, Zigrang and Sylvester 1985, Brkić 

2011e, Brkić 2012c, Brkić and Ćojbašić 2017, Pimenta et al. 2018). Usually, more complex 

approximations are more accurate, but also more computationally expensive because they contain at 

least a few logarithmic expressions and/or terms with non-integer powers which require use of 

demanding algorithms (namely an evaluation of fractional exponential and natural logarithm) to be 

evaluated in processor units of computers and to be stored in registers (Clamond 2009, Giustolisi et 

al. 2011, Danish et al. 2011, Winning and Coole 2013, Vatankhah 2018, Sonnad and Goudar 2004). 

The presented scheme for solving Colebrook equation requires only one single call of the 

logarithmic function in respect to the whole iterative procedure. It is equally accurate as a standard 

iterative approach and does not require additional iterations to reach the same accuracy. Instead of 

computationally expensive logarithmic function, its Padé polynomial equivalent (Baker and 

Graves-Morris 1996) is used in all iterations, exception the first. The Padé approximant is the 

approximation of a function by a rational algebraic fraction where both the numerator and the 

denominator are polynomials. Because these rational functions only use the elementary arithmetic 

operations, they can be evaluated numerically very easily. In the computer environment, they 

required less basic floating-point operations compared with the logarithmic function (Kropa 1978, 

Rising 2007, Pineiro et al. 2004, Al-Mohy 2012). 

The presented simplified iterative method can be profitable for future computing software in 

terms of having a high level of accuracy and speed with a decreased computational burden. 

2. Evaluation of Logarithmic Function through Padé Polynomials 

Basic floating-point operations such as addition and multiplication are carried out directly in 

the Central Processor Unit (CPU) while logarithmic functions, exponents or square roots require 

expensive operations based on more complex algorithms (Kropa 1978, Rising 2007, Pineiro et al. 

2004, Al-Mohy 2012). In addition to logarithms and non-integer powers, Biberg (2017) adds also 

division in the group of more costly functions for evaluation; addition, subtraction and 

multiplication are low-cost operations according to Biberg. Evaluated with various compilers and 

executed on various platforms, integer addition, subtraction, or multiplication requires less than 1 

floating-point operation, float addition, subtraction, or multiplication about 1, float division 2–6, 

integer division 4–10, square root 5–20, while functions    ,    ,    , as well     and     

functions 10–40 floating-point operations. Winning and Coole (2015) report average time for 100 

million operation in seconds and relative effort, respectively as follows: addition 23.40s and 1, 

subtraction 27.50s and 1.18, division 31.70s and 1.35, multiplication 36.20s and 1.55, squared 51.10s 

and 2.18, square root 53.70s and 2.29, cubed 55.58s and 2.38, natural log 63.00s and 2.69, cubed root 

63.40s and 2.71, fractional exponential 77.60s and 3.32, and log to 10-base 78.80s and 3.37.  

Regarding the Colebrook equation, in order to simplify the iterative procedure which is in 

common use in engineering practice, the logarithmic function is replaced with its relevant Padé 

polynomial equivalent in all iterations, with exception to the first. Padé polynomials can accurately 

approximate logarithmic function only in a limited domain. For example, if it is known that 

            , calculation of for example           can be evaluated using the fact that 

                                                                     where        

      is close to 1. Logarithmic function can be replaced by its Padé polynomial equivalent very 

accurately in a limited domain, and therefore instead of             , already calculated 
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             and Padé polynomial which is accurate around 1 for argument          can be 

used to calculate          . 

Because of linearization of the unknown parameter  , a more suitable form of the Colebrook 

equation for computation is            
      

  
 

  

    
 , where   

 

  
. The argument of logarithmic 

function in the Colebrook equation is   
      

  
 

  

    
 where only evaluation through its native 

logarithmic form          need go only in the first iteration where further evaluation can go 

through the appropriate Padé polynomial which is accurate for its argument   around 1, knowing 

that     
  

  
,     

  

  
,     

  

  
, etc. or     

  

  
,     

  

  
,     

  

  
, etc. in the case of the Colebrook 

equation it is always near 1;      . Evaluation of 10-base logarithmic function in many computing 

languages goes through natural logarithm where          
     

      
 and where        

            is constant, and therefore the Padé polynomials that approximate accurately       for 

    are shown; Equations (2-7). Padé polynomials of different orders can be used for 

approximation of        here all accurate for arguments   close to 1;    . As the expansion point 

     is a root of        the accuracy of the Padé approximant decreases. Setting the OrderMode 

option in Matlab padé command to relative compensates for the decreased accuracy. Thus, here, the 

Pade approximant of       order uses the form       
                                

  

                       
 

, where α 

and β are coefficients (the coefficients of the polynomials need not be rational numbers). For 

example, Padé polynomial of order (2, 3) is with polynomial of order 2 in numerator and of order 3 

in denominator; Equation (6). Of course, low order formulas are simpler, but they have larger errors 

than high order formulas and vice versa. As can be seen from Figure 1, even very simple form of 

Padé polynomials (1,2) and (2,1) are of high accuracy in respect of domain of interest for solving the 

Colebrook equation which is                . Horner algorithm transforms polynomials into a 

computationally efficient form and therefore, Horner nested polynomial representations of the Padé 

polynomials of different orders for       where     are shown here; Equations (2–7). Higher 

order of Padé approximants are more accurate, but more complex. 

Order (1,1): 

      
         

     
 (2) 

Order (1,2): 

      
             

         
 (3) 

Order (2,1): 

      
                 

      
 (4) 

Order (2,2): 

      
                 

            
 (5) 

Order (2,3): 

      
                     

                 
 (6) 

Order (3,2): 

      
                     

                   
 (7) 
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In Equations (2-7),   is from     
  

  
,     

  

  
 ,     

  

  
, etc., or     

  

  
,     

  

  
 ,     

  

  
, 

etc.; and   
      

  
 

  

    
. 

Relative error introduced by them; Equations (2-5) compared with       is shown in Figure 1 

and for Equation (6) in Table 1. The relative error of Padé approximants (2,2) for     of       is 

negligible for              . Thus, relative error of the used Padé approximants (2,3) of       in 

the proposed iterative procedure is even more negligible and therefore it is not presented in Figure 

1, but is available in Table 1.  

 

Figure 1. Relative error between ln(z) and its Padé approximants accurate for     

Table 1: Relative error in % of Padé approximant (2,3) for z in interval [0.6; 1,6] 

   
         

     

      
 

Padé approximants (2,3) Relative error % 

0.6 -0.22184875 -0.221847398 6.1·10-4% 

0.65 -0.187086643 -0.187086228 2.2·10-4% 

0.7 -0.15490196 -0.154901848 7.2·10-5% 

0.75 -0.124938737 -0.124938712 2.0·10-5% 

0.8 -0.096910013 -0.096910009 4.4·10-6% 

0.85 -0.070581074 -0.070581074 6.6·10-7% 

0.9 -0.045757491 -0.045757491 4.9·10-8% 

0.95 -0.022276395 -0.022276395 6.5·10-10% 

1 0 0 0% 

1.05 0.021189299 0.021189299 4.8·10-10% 

1.1 0.041392685 0.041392685 2.7·10-8% 

1.15 0.06069784 0.06069784 2.7·10-7% 

1.2 0.079181246 0.079181245 1.3·10-6% 

1.25 0.096910013 0.096910009 4.4·10-6% 

1.3 0.113943352 0.113943339 1.2·10-5% 

1.35 0.130333768 0.130333735 2.6·10-5% 

1.4 0.146128036 0.146127961 5.1·10-5% 

1.45 0.161368002 0.161367854 9.2·10-5% 

1.5 0.176091259 0.176090987 1.5·10-4% 

1.55 0.190331698 0.190331231 2.5·10-4% 

1.6 0.204119983 0.204119223 3.7·10-4% 
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To illustrate the complexity of computing in modern computers it should be noted that even 

such a relatively simple equation such as Colebrook’s can make a numerical problem in computer 

registers due to overflow error. Its transformed version in term of the Lambert  -function can give 

such large numbers for some pairs of the Reynolds number Re and the relative roughness of inner 

pipe surface    which are from the practical domain of applicability in engineering practice which 

cannot be stored in 32- or 64-bit registers of modern computers (Sonnad and Goudar 2004, Brkić 

2012a). 

3. Initial Starting Point for the Proposed Iterative Method 

In case of the Colebrook equation, practical experience shows that trying to get a good initial 

starting point    has limited value until it is chosen in the domain of applicability of the equation 

which is             . Every initial starting point    chosen from the domain of applicability of 

the Colebrook equation will lead to the final accurate solution surely, with the only difference that in 

some cases more additional iterations would be needed. Usually, with the initial guess    that is 

close to the exact solution, the iterative procedure converges to it in five or fewer iterations. To date, 

cases which lead to divergence, fluctuation, or convergence to a possible far away solution outside of 

the practical domain of applicability of the Colebrook equation are not known. In of the proposed 

approach, a good starting point should be chosen within the domain of applicability of the 

Colebrook equation and should not contain any logarithmic function and/or non-integer power 

term. 

A number of options to choose an optimal starting point    are considered: 1) special case of 

the Colebrook equation when     , 2) integration of the Colebrook equation, 3) explicit 

approximations of the Colebrook equation, and 4) fixed value. 

1. The common approach is to choose an initial starting point from the zone of fully developed 

turbulent rough hydraulic flow             
  

    
 , because in this special case of the 

Colebrook equation where     , the equation is in explicit form with respect to  ;    

     , where   is functional symbol (Brkić 2017). Here the goal is to avoid use of logarithmic 

functions and therefore, this starting point is not suitable. 

2. An efficient procedure for finding a sufficiently good initial starting point    is proposed by 

Yun (2008) in the integral form; Equation (8):  

   
 

 
                             

 

 

  (8) 

In Equation (8),           ,   represents the Colebrook equation,   is the lower while   

is the upper limit from which an initial starting point    should be chosen;   = 3.68 and   = 

12.47 because the domain of applicability of the Colebrook equation that is between 3.68 and 

12.47 in respect to  ,     is signum function: if                   ,        

           , and                    , while      is hyperbolic tangent which is 

defined through the exponential function    with non-integer power   the use of which is as 

computationally expensive as the use of the logarithmic function and which therefore cannot be 

recommended. 

3. Every explicit approximation of the Colebrook equation (Gregory and Fogarasi 1985, Zigrang 

and Sylvester 1985, Brkić 2011, Brkić and Ćojbašić 2017, Pimenta et al. 2018);           , 

where   is the functional symbol, can be used to choose an initial starting point   . On the other 

hand, almost all available approximations contain logarithmic or/and terms with non-integer 

powers, which makes them unsuitable for use in the developed approach. On the other hand, 

having previous experience with training Artificial Neural Networks (ANN) to simulate the 

Colebrook equation (Özger and Yıldırım 2009, Brkić and Ćojbašić 2016, Bardestani et al. 2017), 

i.e. to use ability of artificial intelligence to simulate the Colebrook equation not knowing its 

logarithmic nature but only knowing raw input and corresponding output datasets         

   , a computationally cheap explicit approximation of the Colebrook equation is developed 
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through genetic programming (Giustolisi and Savić 2006, Ćojbašić and Brkić 2013, Brkić 2014, 

Brkić and Ćojbašić 2016). The developed approximation is computationally efficient because of 

its polynomial structure; Equation (9): 

                 
       

   

        

           
   

         
 
      

      

 (9) 

Eureqa [computer software] by Nutonian, Inc., Boston, MA. (Schmidt and Lipson 2009, 

Dubčáková 2011) is used to generate Equation (9). The Eureqa-polynomial approximation; 

Equation (9) has up to 40% relative error, but it is very cheap and sufficiently accurate to serve as 

an initial starting point   . 

4. Extensive tests over the domain of applicability of the Colebrook equation shows that one fixed 

value also can be used as the initial starting point    for the iterative procedure in all cases. 

Results indicate that the proposed Padé approach works in all cases, as the argument z of ln(z) is 

always close to one. When Equation (9) is used, values of z are within the range 0.91-1.05. 

Moreover, for the most pairs of the Reynolds number    and the relative roughness of inner 

pipe surfaces    which are in the domain of applicability, the initial starting point    

             requires the least number of iterations. 

To avoid using a computationally expensive logarithmic function in the initial stage of the 

iterative procedure, the recommendation is to start calculation with fixed-value starting point 

               or to use a polynomial expression; Equation (9). Power-law formulas from 

Russian practice which do not contain non-integer powers also can be used (Альтшуль 1982). 

4. Proposed Iterative Method 

The Colebrook equation is usually solved iteratively using the Newton-Raphson method 

(Ypma 1995, Abbasbandy 2003) or even more using a simplified Newton-Raphson method known as 

the fixed-point method (Brkić 2017b). Recently, hybrid three-point methods have been proposed 

(Brkić and Praks 201x).  

Here is presented an adjusted very accurate, fast and computationally cheap version of the 

Newton-Raphson method suitable for the Colebrook equation in which the logarithmic function is 

replaced after the first iteration with the Padé approximant in polynomial form (Baker and 

Graves-Morris 1996). 

Knowing that the Colebrook equation is based on logarithmic law (Colebrook and White 1937, 

Colebrook 1939), the achievement with this simplified approach is more significant. Numerical 

examples are shown in Section 5 of this paper. 

Iteration 0: 

In order to avoid use of computationally expensive logarithmic functions or functions with 

non-integer powers, a required initial starting point    should be chosen using recommendations 

from Section 3 of this paper; points 3 or 4. 

Iteration 1: 

Having provided an initial starting point   , new value    can be calculated using Equation 

(10): 

      
     

      
 (10) 

In Equation (10),      represents the Colebrook equation          which needs to be in 

suitable form,               ; Equation (11): 

                       (11) 
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In Equation (11),    
       

  
 

  

    
 which will be used also in the next iteration (in an additional 

variant of the proposed method    is used in all subsequent iterations), while in Equation (10), the 

first derivative of   in respect to  ;       is from Equation (12): 

         
      

                
      

   
 
       

  
 
 

(12) 

In Equation (12),                      is with constant value, and therefore only           

from Equation (11) requires evaluation of the logarithmic function. 

In many programming languages evaluation of logarithmic function of any base is processed by 

natural logarithm (Vatankhah 2018). Change of 10-base logarithm from the Colebrook equation to 

e-based natural logarithm where           and where                    is implemented as 

         
     

      
. 

Iteration 2: 

New value    should be calculated using Equation (13): 

      
     

      
 (13) 

In Equation (13),       is not calculated by          , where    
       

  
 

  

    
, but using Padé 

polynomial replacement for logarithmic function which is accurate for     and using the already 

calculated value of           from the previous iteration; Equation (14): 

                     
               

            

                  
       

          
 (14) 

In Equation (14),           
               

            

                  
       

          
          ,                   , 

and     
  

  
. In the first iteration,           is already known; Equation (11). The Padé polynomial 

used in Equation (14) is of order (2,3) which means that the polynomial in the numerator is of the 

order of 2 while in the denominator of order 3. The Padé polynomials are also known as Padé 

approximants and here the maximal relative error of the polynomial expression term in Equation 

(14) in domain            ;     is minor as shown in Table 1. Value of z for the procedure shown 

in practice is              and therefore the error of the used Padé approximant can be neglected in 

the case shown. 

The first derivative        does not contain any logarithmic functions and should be evaluated 

using Equation (12), where    should be replaced with the new value    or knowing that the value 

of the derivative does not change significantly between two iterations,        can be reused in all 

subsequent iterative cycles. Even knowing that the value of the first derivate in the procedure shown 

is always near 1; for rough calculations it can be assumed that         which gives the fixed-point 

method as a special case of the Newton-Raphson scheme. 

Iteration 3: 

New value    is again evaluated in the same way using Equation (15): 

      
     

      
 (15) 

In Equation (15),        can be calculated or        or        can be reused. Also,       can 

be calculated using     
  

  
, where    

       

  
 

  

    
. Input parameter for Padé polynomial     here 

refers to    from the first iteration; Equation (16). It can be evaluated also using     
  

  
, always 

with the reference to the preceding iteration (here to the second iteration); Equation (17). 

                     
               

            

                  
       

          
 (16) 
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In Equation (16),           
               

            

                  
       

          
          . 

The Padé polynomial is a very accurate approximation of logarithmic function, so knowing that 

   is evaluated directly through the logarithmic function, while   ,   ,   , etc. is based on its Padé 

polynomial equivalent, it is obvious that the sequence     
  

  
,     

  

  
,     

  

  
, etc. is slightly 

more accurate compared with the sequence     
  

  
,     

  

  
,     

  

  
, etc. which accumulates error 

introduced with Padé approximations. On the other hand, the error is minimized when the 

argument   is closer to 1 which is case for the second sequence     
  

  
,     

  

  
,     

  

  
, etc. In 

both cases, the introduced error can be neglected. 

                     
               

            

                  
       

          
 

               
               

            

                  
       

          
 

               
            

                  
       

          
  

(17) 

In Equation (17),           
               

            

                  
       

          
           and, 

           
               

            

                  
       

          
           

Iteration i: 

All indexes   in respect the third iteration should be updated as       with exemption of 

index 0 in Equation (16). The calculation is finished when        . 

The algorithm for the proposed improved procedure is given in Figure 2. 

 

 

Figure 2. Algorithm for the proposed one    -call improved procedure. 
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Only a one-off evaluation of the logarithmic function is needed in the proposed algorithm from 

Figure 2, which is clearly marked in red;            . On the other hand,    calculated in iteration 

1 is reused in all next steps and it is marked in green in Figure 2.  

The proposed procedure can be simplified assuming that          which gives the simple 

fixed-point procedure (Brkić 2017b) instead of the Newton-Raphson. 

5. Numerical examples 

Here are shown two numerical examples:  

Example 1:        Example 2: 

           ,                         ,           

 

Iteration 0 

                                         (9) 

 

Iteration 1 

                                    

                                                  

                                              (11) 

                                               (12) 

                                          (10) 

 

Iteration 2 

                                    

    
  

  
                      

  

  
             

0.034617535        -0.001790646   Padé approximant (6) 

                                              (14) 

                                           

                                         (13) 

 

Iteration 3 

                                   

    
  

  
                      

  

  
             

0.033493733        -0.001778995   Padé approximant (6) 

                                              (16) 

                                           

                                         (15) 

 

Final value: 

 =4.22204103         =7.873172814 

6. Conclusions 

An efficient algorithm for the iterative calculation of the Colebrook equation by both an 

accurate and computationally efficient Padé approximation is presented in this paper. It requires 

only one evaluation of the logarithmic function in respect to the whole iterative procedure and more 

specifically only in the first iteration, while the common procedures from current engineering 

practice require at least one evaluation of logarithmic function for every single iteration. The 

logarithmic function in the proposed procedure is replaced in all iterations (except the first), with 

simple, accurate and efficient Padé polynomials (Baker and Graves-Morris 1996). In this way the 

same accuracy is reached through the proposed less demanding procedure, after the same number 

of iterations as in the standard algorithm which uses    -call in each iterative step. This is a good 
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achievement knowing that the nature of the Colebrook equation is logarithmic. For their evaluation 

in the Central Processor Unit (CPU) of computers, Padé polynomials require a lower number of 

floating-point operations to be executed compared with the logarithmic function (Clamond 2009, 

Giustolisi et al. 2011, Danish et al. 2011, Winning and Coole 2013, Vatankhah 2018, Sonnad and 

Goudar 2004, Brkić 2012a, Winning and Coole 2015). 

The here presented iterative approach only introduces a computationally cheaper alternative to 

the standard iterative procedure. It does not reduce the number of required iterations to reach the 

final desired accuracy nor provide more accurate results. The proposed method reduces the burden 

for the Central Processing Unit (CPU) as less floating-point operations need to be executed. In that 

way, the presented approach also increases speed of computation. On the other hand, many explicit 

non-iterative approximations to the Colebrook equation are available in literature (Gregory and 

Fogarasi 1985, Zigrang and Sylvester 1985, Brkić 2011e, Pimenta et al. 2018) which initially appear 

simple for computation, but are not. They are widely used, but although some of them are very 

accurate, they contain relatively complex internal iterative steps and also a number of 

computationally demanding functions. For example, the widely used Haaland approximation 

introduces relative error up to 1.5% (Haaland 1983, Wood and Haaland 1983), but with the cost of 

evaluation of one logarithmic expression and one non-integer power. Also, the approximation by 

Romeo et al. (2002) reaches extremely high accuracy with the relative error of up to 0.14%, but with a 

cost of evaluation of even three logarithmic expressions and two non-integer powers. Regarding 

alternative iterative procedures, Clamond (2009) provides an accurate iterative approach using   

function, but this algorithm requires at least two    -calls; one for initialization and one in the first 

iteration, which is more expensive compared with the here presented approach. 

The procedure proposed in this paper can significantly reduce the computational burden for 

evaluating complex distribution networks with various applications (water, gas) (Brkić 2009, Brkić 

2011a, Praks et al. 2015, Praks et al. 2017, Brkić 2016, Brkić 2018). For example, a probabilistic 

approach using time dependent modeling of distribution or transmission networks requires many 

millions of evaluations of Colebrook’s equation, which means that it is not a computationally cheap 

task at all. For such kinds of computations is always good to have a cheaper but still accurate 

approach in order to speed up the process. 
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