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Abstract: The eighty years old empirical Colebrook function ¢ widely used as an informal standard for
hydraulic resistance relates implicitly the unknown flow friction factor A, with the known Reynolds number
Re and the known relative roughness of a pipe inner surface €*; 1 = é(Re, €%, 1). It is based on logarithmic
law in the form that captures the unknown flow friction factor 4 in a way from which it cannot be extracted
analytically. As an alternative to the explicit approximations or to the iterative procedures that require at least
a few evaluations of computationally expensive logarithmic function or non-integer powers, this paper offers
an accurate and computationally cheap iterative algorithm based on Padé polynomials with only one log-call
in total for the whole procedure (expensive log-calls are substituted with Padé polynomials in each iteration
with the exception of the first). The proposed modification is computationally less demanding compared with
the standard approaches of engineering practice, but does not influence the accuracy or the number of
iterations required to reach the final balanced solution.

Keywords: Colebrook equation; Colebrook-White; flow friction; iterative procedure; logarithms; Padé
polynomials; hydraulic resistances; turbulent flow; pipes; computational burden

1. Introduction

The empirical Colebrook equation (Colebrook 1939) implicitly relates the unknown flow
friction factor 4 with the known Reynolds number Re and the know relative roughness of inner
pipe surface, €*; A = £(Re, ", 1), where ¢ is functional symbol, Equation (1).
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In Equation (1) Re is Reynolds number; 4000 < Re < 108, ¢* is relative roughness of inner pipe
surface; 0 < £* < 0.05, and A is Darcy flow friction factor; 0.0064 < A < 0.077 (all three quantities
are dimensionless).

The Colebrook equation is based on experiments performed by Colebrook and White in 1937
with the flow of air through a set of artificially roughened pipes (Colebrook and White 1937). The
accuracy of this eighty year old equation is disputed many times but it is still accepted in
engineering practice as an informal standard for hydraulic resistance. Therefore to repeat results and

@

for comparisons, it is required to solve the Colebrook equation accurately. Numerous evaluations of
flow friction factor such as in the case of complex networks of pipes pose extensive burden for
computers, so not only an accurate but also a simplified solution is required. Calculation of complex
water or gas distribution networks (Brki¢ 2009, Brki¢ 2011ab, Praks et al. 2015, Praks et al. 2017)
which requires few evaluations of logarithmic function for each pipe, presents a significant and
extensive burden which available computer resources hardly can easily manage (Clamond 2009,
Giustolisi et al. 2011, Danish et al. 2011, Winning and Coole 2013, Vatankhah 2018).
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The Colebrook equation is based on logarithmic law where the unknown flow friction factor 4
is given implicitly, i.e., it appears on both sides of Equation (1) in form A = &(Re, €%, 1), from which it
cannot be extracted analytically; an exception is through the Lambert W-function (Keady 1998,
Sonnad and Goudar 2004, Brki¢ 2011cd, Brki¢ 2012ab, Biberg 2017, Brki¢ 2017a). The common way to
solve it is to guess an initial value A, for friction factor and then to try to balance it using the
iterative algorithm (Brki¢ 2017b) which needs to be terminated after the certain number of iterations
when the final balanced value 4, is reached. As an alternative to the iterative procedure, numerous
approximate formulas are available (Gregory and Fogarasi 1985, Zigrang and Sylvester 1985, Brki¢
2011e, Brki¢ 2012¢, Brki¢ and Cojbaéic’ 2017, Pimenta et al. 2018). Usually, more complex
approximations are more accurate, but also more computationally expensive because they contain at
least a few logarithmic expressions and/or terms with non-integer powers which require use of
demanding algorithms (namely an evaluation of fractional exponential and natural logarithm) to be
evaluated in processor units of computers and to be stored in registers (Clamond 2009, Giustolisi et
al. 2011, Danish et al. 2011, Winning and Coole 2013, Vatankhah 2018, Sonnad and Goudar 2004).

The presented scheme for solving Colebrook equation requires only one single call of the
logarithmic function in respect to the whole iterative procedure. It is equally accurate as a standard
iterative approach and does not require additional iterations to reach the same accuracy. Instead of
computationally expensive logarithmic function, its Padé polynomial equivalent (Baker and
Graves-Morris 1996) is used in all iterations, exception the first. The Padé approximant is the
approximation of a function by a rational algebraic fraction where both the numerator and the
denominator are polynomials. Because these rational functions only use the elementary arithmetic
operations, they can be evaluated numerically very easily. In the computer environment, they
required less basic floating-point operations compared with the logarithmic function (Kropa 1978,
Rising 2007, Pineiro et al. 2004, Al-Mohy 2012).

The presented simplified iterative method can be profitable for future computing software in
terms of having a high level of accuracy and speed with a decreased computational burden.

2. Evaluation of Logarithmic Function through Padé Polynomials

Basic floating-point operations such as addition and multiplication are carried out directly in
the Central Processor Unit (CPU) while logarithmic functions, exponents or square roots require
expensive operations based on more complex algorithms (Kropa 1978, Rising 2007, Pineiro et al.
2004, Al-Mohy 2012). In addition to logarithms and non-integer powers, Biberg (2017) adds also
division in the group of more costly functions for evaluation; addition, subtraction and
multiplication are low-cost operations according to Biberg. Evaluated with various compilers and
executed on various platforms, integer addition, subtraction, or multiplication requires less than 1
floating-point operation, float addition, subtraction, or multiplication about 1, float division 2-6,
integer division 4-10, square root 5-20, while functions sin, cos, tan, as well log and exp
functions 10-40 floating-point operations. Winning and Coole (2015) report average time for 100
million operation in seconds and relative effort, respectively as follows: addition 23.40s and 1,
subtraction 27.50s and 1.18, division 31.70s and 1.35, multiplication 36.20s and 1.55, squared 51.10s
and 2.18, square root 53.70s and 2.29, cubed 55.58s and 2.38, natural log 63.00s and 2.69, cubed root
63.40s and 2.71, fractional exponential 77.60s and 3.32, and log to 10-base 78.80s and 3.37.

Regarding the Colebrook equation, in order to simplify the iterative procedure which is in
common use in engineering practice, the logarithmic function is replaced with its relevant Padé
polynomial equivalent in all iterations, with exception to the first. Padé polynomials can accurately
approximate logarithmic function only in a limited domain. For example, if it is known that
log10(100) = 2, calculation of for example log,,(90) can be evaluated using the fact that
log,¢(100/90) = log,,(100) —log,,(90) - log,,(90) = log,,(100) —log;,(100/90) where 100/90 =~
1.111 is close to 1. Logarithmic function can be replaced by its Padé polynomial equivalent very
accurately in a limited domain, and therefore instead of log,((1.111), already calculated
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log10(100) = 2 and Padé polynomial which is accurate around 1 for argument z = 1.1111 can be
used to calculate log,,(90).

Because of linearization of the unknown parameter 4, a more suitable form of the Colebrook

. . . 2.51-x £*
equation for computation is x = —2 - log;, (— +
Re 3.71

251% + £ where only evaluation through its native
Re = 371

logarithmic form log;,(y) need go only in the first iteration where further evaluation can go
through the appropriate Padé polynomial which is accurate for its argument z around 1, knowing

y y y y y y -
that zg; =2, Zgy = =2, Zp3 = =, etc. or zg, = =2, z;, = =, Zy3 = =%, etc. in the case of the Colebrook
Y1 Y2 V3 Y1 Y2 V3

equation it is always near 1; z = 1. Evaluation of 10-base logarithmic function in many computing

In(z) -
T (10) and where [n(10) =

2.302585093 is constant, and therefore the Padé polynomials that approximate accurately In(z) for
z=~1 are shown; Equations (2-7). Padé polynomials of different orders can be used for
approximation of In(z), here all accurate for arguments z close to 1; z = 1. As the expansion point

), where x = % The argument of logarithmic

function in the Colebrook equation is y =

languages goes through natural logarithm where log,(2) =

zy =1 is a root of In(z), the accuracy of the Padé approximant decreases. Setting the OrderMode
option in Matlab padé command to relative compensates for the decreased accuracy. Thus, here, the
(Z—Zo)-(a0+(l1'(Z—Z())+"'+a1'(Z—Zo)m)
1+ (z=20) +++B,,(z=20)"
and p are coefficients (the coefficients of the polynomials need not be rational numbers). For
example, Padé polynomial of order (2, 3) is with polynomial of order 2 in numerator and of order 3

Pade approximant of (m,n) order uses the form In(z) = , where a

in denominator; Equation (6). Of course, low order formulas are simpler, but they have larger errors
than high order formulas and vice versa. As can be seen from Figure 1, even very simple form of
Padé polynomials (1,2) and (2,1) are of high accuracy in respect of domain of interest for solving the
Colebrook equation which is z =~ 1; z € [0.9, 1.1]. Horner algorithm transforms polynomials into a
computationally efficient form and therefore, Horner nested polynomial representations of the Padé
polynomials of different orders for in(z) where z — 1 are shown here; Equations (2-7). Higher
order of Padé approximants are more accurate, but more complex.

Order (1,1):
. 4) -5
in) ~ L0 .
Order (1,2):
3-(z—-1)- 1
In(z) ~ Z(f - +)4)(z+ +1 ) 3)
Order (2,1):
—2z-(z-(z=9)—-9)—17
In(2) ~ — z g-zi6 : ?
Order (2,2):
z-(z-(z+18)—-9)—10
@~ — e 718 +3 ?
Order (2,3):
(z—1)-(11-22 +38-z+ 11)
mA > o 2192+ D ©
Order (3,2):
iy < 2@ ALz 427 —27) ~ 11 @)

z:(z-(3-z+27)+27)+3
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Relative error introduced by them; Equations (2-5) compared with In(z) is shown in Figure 1
and for Equation (6) in Table 1. The relative error of Padé approximants (2,2) for z = 1 of In(z) is
negligible for 0.8 < z < 1.2. Thus, relative error of the used Padé approximants (2,3) of In(z) in
the proposed iterative procedure is even more negligible and therefore it is not presented in Figure
1, but is available in Table 1.

0.01 Error Between In(z) and its Padé Approximant

Order [1,1]
=== Qrder [1,2]

Order [2,1]
—+— Order [2,2]
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Figure 1. Relative error between In(z) and its Padé approximants accurate for z = 1

Table 1: Relative error in % of Padé approximant (2,3) for z in interval [0.6; 1,6]

z In(z)  Padé approximants (2,3 Relative error %
log:0(@) = pors PP &3

0.6 -0.22184875 -0.221847398 6.1:104%
0.65 -0.187086643 -0.187086228 2.2:104%
0.7 -0.15490196 -0.154901848 7.2:10°%
0.75 -0.124938737 -0.124938712 2.0-10°%
0.8 -0.096910013 -0.096910009 4.4-10%%
0.85 -0.070581074 -0.070581074 6.6:107%
0.9 -0.045757491 -0.045757491 4.9-10%%
0.95 -0.022276395 -0.022276395 6.5-10-10%
1 0 0 0%

1.05 0.021189299 0.021189299 4.8-1019%
1.1 0.041392685 0.041392685 2.7-10%%
1.15 0.06069784 0.06069784 2.7-107%
1.2 0.079181246 0.079181245 1.3-10%
1.25 0.096910013 0.096910009 4.4-10%%
1.3 0.113943352 0.113943339 1.2:10°%
1.35 0.130333768 0.130333735 2.6:10°%
1.4 0.146128036 0.146127961 5.1-105%
1.45 0.161368002 0.161367854 9.2:105%
1.5 0.176091259 0.176090987 1.5-104%
1.55 0.190331698 0.190331231 2.5:104%
1.6 0.204119983 0.204119223 3.7-104%
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To illustrate the complexity of computing in modern computers it should be noted that even
such a relatively simple equation such as Colebrook’s can make a numerical problem in computer
registers due to overflow error. Its transformed version in term of the Lambert W-function can give
such large numbers for some pairs of the Reynolds number Re and the relative roughness of inner
pipe surface e* which are from the practical domain of applicability in engineering practice which
cannot be stored in 32- or 64-bit registers of modern computers (Sonnad and Goudar 2004, Brki¢
2012a).

3. Initial Starting Point for the Proposed Iterative Method

In case of the Colebrook equation, practical experience shows that trying to get a good initial
starting point x, has limited value until it is chosen in the domain of applicability of the equation
whichis 3.68 < x < 12.47. Every initial starting point x, chosen from the domain of applicability of
the Colebrook equation will lead to the final accurate solution surely, with the only difference that in
some cases more additional iterations would be needed. Usually, with the initial guess x, that is
close to the exact solution, the iterative procedure converges to it in five or fewer iterations. To date,
cases which lead to divergence, fluctuation, or convergence to a possible far away solution outside of
the practical domain of applicability of the Colebrook equation are not known. In of the proposed
approach, a good starting point should be chosen within the domain of applicability of the
Colebrook equation and should not contain any logarithmic function and/or non-integer power
term.

A number of options to choose an optimal starting point x, are considered: 1) special case of
the Colebrook equation when Re — oo, 2) integration of the Colebrook equation, 3) explicit
approximations of the Colebrook equation, and 4) fixed value.

1. The common approach is to choose an initial starting point from the zone of fully developed

turbulent rough hydraulic flow x, = =2 -log;, (ﬁ), because in this special case of the
Colebrook equation where Re — o, the equation is in explicit form with respect to x; x, =
£(e"), where ¢ is functional symbol (Brki¢ 2017). Here the goal is to avoid use of logarithmic
functions and therefore, this starting point is not suitable.

2. An efficient procedure for finding a sufficiently good initial starting point x, is proposed by

Yun (2008) in the integral form; Equation (8):

1 b
Xo=75" {a +b+sgn(F(a)) - J tanh(F(x)) dx} 8)
a

In Equation (8), F = x — &(x) = 0, ¢ represents the Colebrook equation, a is the lower while b
is the upper limit from which an initial starting point x, should be chosen; a = 3.68 and b =
12.47 because the domain of applicability of the Colebrook equation that is between 3.68 and
12.47 in respect to x, sgn is signum function: if F(a) >0 - sgn(F(a)) =1, Fla)=0-
sgn(F (a)) =0, and F(a) <0 - sgn(F (a)) = —1, while tanh is hyperbolic tangent which is
defined through the exponential function e* with non-integer power x the use of which is as
computationally expensive as the use of the logarithmic function and which therefore cannot be
recommended.

3. Every explicit approximation of the Colebrook equation (Gregory and Fogarasi 1985, Zigrang
and Sylvester 1985, Brki¢ 2011, Brki¢ and Cojbaéic’ 2017, Pimenta et al. 2018); x = ¢(Re, "),
where ¢ is the functional symbol, can be used to choose an initial starting point x,. On the other
hand, almost all available approximations contain logarithmic or/and terms with non-integer
powers, which makes them unsuitable for use in the developed approach. On the other hand,
having previous experience with training Artificial Neural Networks (ANN) to simulate the
Colebrook equation (Ozger and Yildirim 2009, Brki¢ and Cojbasi¢ 2016, Bardestani et al. 2017),
i.e. to use ability of artificial intelligence to simulate the Colebrook equation not knowing its
logarithmic nature but only knowing raw input and corresponding output datasets {Re,&*} -
{x}, a computationally cheap explicit approximation of the Colebrook equation is developed

5
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through genetic programming (Giustolisi and Savi¢ 2006, Cojbasi¢ and Brki¢ 2013, Brki¢ 2014,
Brki¢ and Cojbasi¢ 2016). The developed approximation is computationally efficient because of
its polynomial structure; Equation (9):

Re?

469647.7
e? &* - Re? ©)

R +
3250657.6 ' 515.25

34 -Re+
X9 =5.05—-30.73-¢" +

46137.9 + Re +

Eureqa [computer software] by Nutonian, Inc., Boston, MA. (Schmidt and Lipson 2009,
Dubc¢ékova 2011) is used to generate Equation (9). The Eureqa-polynomial approximation;
Equation (9) has up to 40% relative error, but it is very cheap and sufficiently accurate to serve as
an initial starting point x,.

4. Extensive tests over the domain of applicability of the Colebrook equation shows that one fixed
value also can be used as the initial starting point x, for the iterative procedure in all cases.
Results indicate that the proposed Padé approach works in all cases, as the argument z of In(z) is
always close to one. When Equation (9) is used, values of z are within the range 0.91-1.05.
Moreover, for the most pairs of the Reynolds number Re and the relative roughness of inner
pipe surfaces £* which are in the domain of applicability, the initial starting point x, =
7.273124147 requires the least number of iterations.

To avoid using a computationally expensive logarithmic function in the initial stage of the
iterative procedure, the recommendation is to start calculation with fixed-value starting point
Xo = 7.273124147 or to use a polynomial expression; Equation (9). Power-law formulas from
Russian practice which do not contain non-integer powers also can be used (Aaprryas 1982).

4. Proposed Iterative Method

The Colebrook equation is usually solved iteratively using the Newton-Raphson method
(Ypma 1995, Abbasbandy 2003) or even more using a simplified Newton-Raphson method known as
the fixed-point method (Brki¢ 2017b). Recently, hybrid three-point methods have been proposed
(Brki¢ and Praks 201x).

Here is presented an adjusted very accurate, fast and computationally cheap version of the
Newton-Raphson method suitable for the Colebrook equation in which the logarithmic function is
replaced after the first iteration with the Padé approximant in polynomial form (Baker and
Graves-Morris 1996).

Knowing that the Colebrook equation is based on logarithmic law (Colebrook and White 1937,
Colebrook 1939), the achievement with this simplified approach is more significant. Numerical
examples are shown in Section 5 of this paper.

Iteration 0:

In order to avoid use of computationally expensive logarithmic functions or functions with
non-integer powers, a required initial starting point x, should be chosen using recommendations
from Section 3 of this paper; points 3 or 4.

Iteration 1:

Having provided an initial starting point x,, new value x; can be calculated using Equation
(10):

F(x,)

X1 = Xo — Fl(xo)

(10)

In Equation (10), F(x) represents the Colebrook equation x = ¢(x) which needs to be in
suitable form, F = x — &(x) = 0; Equation (11):

F(xg) = xo +2-log1o(y0) =0 (11)
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= 2'1% + % which will be used also in the next iteration (in an additional

variant of the proposed method y, is used in all subsequent iterations), while in Equation (10), the
first derivative of F in respect to x; F’(x) is from Equation (12):

In Equation (11), y,

FI( ) 1+ 2'2.51
xO =
100- &7 | 251 -x (12)
2.302585093-Re-< S+ 22 )

In Equation (12), In(10) =~ 2.302585093 is with constant value, and therefore only log;,(y,)
from Equation (11) requires evaluation of the logarithmic function.

In many programming languages evaluation of logarithmic function of any base is processed by
natural logarithm (Vatankhah 2018). Change of 10-base logarithm from the Colebrook equation to
e-based natural logarithm where e = 2.718 and where [n(10) = 2.302585093 is implemented as

In(z)
logio(2) = n(10)"

Iteration 2:
New value x, should be calculated using Equation (13):

F(xy)
=X — 13
X3 X1 F’(xl) ( )
In Equation (13), F(x;) is not calculated by log;,(y;), where y; = 2.5;::1 + 38;1, but using Padé

polynomial replacement for logarithmic function which is accurate for z —» 1 and using the already
calculated value of logy,(yy) from the previous iteration; Equation (14):

(ZOI - 1) * (11 * Zgl + 38 * ZOl + 11)
2.302585093 - (323, + 922, + 9 - zg, + 1)

F(x;) = x; +2-log1o(¥o) - (14)

- . . 2 .
(Zo1-D-(1126,+38201%11) 00 (1) 2302585093 ~ In(10),

2.302585093+(3-23,+9-23,+9-291+1) —_
and z,;, = i}ﬂ In the first iteration, log,o(y,) is already known; Equation (11). The Padé polynomial
1

In Equation (14), logio(¥o) -

used in Equation (14) is of order (2,3) which means that the polynomial in the numerator is of the
order of 2 while in the denominator of order 3. The Padé polynomials are also known as Padé
approximants and here the maximal relative error of the polynomial expression term in Equation
(14) in domain z€[0.6,1.6]; z — 1 is minor as shown in Table 1. Value of z for the procedure shown
in practice is z €[0.9,1.1] and therefore the error of the used Padé approximant can be neglected in
the case shown.

The first derivative F'(x;) does not contain any logarithmic functions and should be evaluated
using Equation (12), where x, should be replaced with the new value x; or knowing that the value
of the derivative does not change significantly between two iterations, F'(x,) can be reused in all
subsequent iterative cycles. Even knowing that the value of the first derivate in the procedure shown
is always near 1; for rough calculations it can be assumed that F'(x) ~ 1 which gives the fixed-point
method as a special case of the Newton-Raphson scheme.

Iteration 3:

New value x; is again evaluated in the same way using Equation (15):

F(x,)
=X, — 15
X3 X2 Fl(xz) ( )
In Equation (15), F'(x;) can be calculated or F'(x;) or F'(x,) can be reused. Also, F(x;) can
be calculated using zy, = %’ where y, = 2.5R1€~x2 + % Input parameter for Padé polynomial z,, here

refers to y, from the first iteration; Equation (16). It can be evaluated also using z;, = ;ﬁ, always
2
with the reference to the preceding iteration (here to the second iteration); Equation (17).

(ZOZ - 1) : (11 : Zgz + 38 * ZOZ + 11)
2.302585093 - (323, + 9 - 22, + 9 - 2, + 1)

F(xz) = %3+ 2+ log,0(yo) - (16)

7
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Z02—1)-(11-28,+38-29,+11
2.30(250;509)3(-(3-Z§22+9-Z§2042—9-202+1) = 10g10(y2)-
The Padé polynomial is a very accurate approximation of logarithmic function, so knowing that
Yo is evaluated directly through the logarithmic function, while y;, y,, y3, etc. is based on its Padé
polynomial equivalent, it is obvious that the sequence z,; = f, Zoy = %, Zgz = ﬁ, etc. is slightly
y

more accurate compared with the sequence z;; = %, Zip = %, Zy3 = y—z, etc. which accumulates error
1 2 3

introduced with Padé approximations. On the other hand, the error is minimized when the

. . . Y % y;
argument z is closer to 1 which is case for the second sequence zy; = =2, z;, ==, z;3 = =, etc. In
Y1 Y2 3

In Equation (16), logio(¥o) -

both cases, the introduced error can be neglected.

(21,-1)-(11-22,+38-2,,+11)
F(xz) = %, + 2 10910(V1) - 505555003 (23,1922 =

. {(3:27,+9:27,+9-21,+1) 17
(291—1)-(11-23,+3829; +11) (212—-1)-(11-2%,+38-21,+11) ( )

X, +2-lo - -
2 910(¥o) 2.302585093-(3-23,+9-22,+9-29; +1)  2.302585093-(3-23,49-22,4+9-21,+1)

(z12-1)-(11-22,+38-21,+11)
=lo and
2.302585093-(3-23,49-22,4+9-215+1) 910(r2) ¢

(z01-1)-(11-23,+38291+11)  _
1223 2992 490 = log1o(1)
2.302585093+(3:23,+9-2%,+9-291+1)

In Equation (17), log;o(y1) -

log10(¥o) -
Iteration i:
All indexes i in respect the third iteration should be updated as i =i + 1 with exemption of
index 0 in Equation (16). The calculation is finished when x;,; = x;.
The algorithm for the proposed improved procedure is given in Figure 2.

input

. Re, ¥ Re-Reynolds number, e*-relative roughness
[% = 7273124147 or Equation ) 5 DJ] o
X feration1 - s M+ &*
e aolowg . B e B
Re 3.71
J] Zoi = .
Yi

F(xo) = xo +2+logio (o)
A

(zo; —1) - (11- 2% + 38 - zg; + 11)

F(x))=x;+2-A-

( 2251 2.302585093- (325, + 925 + 9 -2y + 1)
Flar=ts = : 10g10(yi)
2.302585093 - Re - (103071E i %)
% F'(x;) = F'(xo) — reused
2-251
X =X —F(XO) e b 100 ¢ 251 x;
= %o~ 2302585093 - Re - Zol-x
T Fo) ¢ ( 371 T Re )
, v !
Iteration 2 2 51 cx g' F(x)
) : ;
S Xit1 = Xi —
="Re 371 F'(x)
Pl Yo v
01 ="
Y1
(Zor— 1) - (11- 23, + 38 - 29, + 11) < He
F(x))=x +2-4 o o s e
2302585093 - (3 - 23, + 9 - 22, + 9 - Zg, + 1)
10g50(y1)
F'(x,) = F'(x,) —reused _—
R 2-2.51
or X1) = — -
2302585093 - Re - (1030716 g 2'5;8 A1)
$ - output
o = x F(x,)
2= "ol F;(xl)

!

Figure 2. Algorithm for the proposed one log-call improved procedure.
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Only a one-off evaluation of the logarithmic function is needed in the proposed algorithm from
Figure 2, which is clearly marked in red; A = log;,(¥,). On the other hand, y, calculated in iteration

1 is reused in all next steps and it is marked in green in Figure 2.
The proposed procedure can be simplified assuming that F'(x;) = 1 which gives the simple
fixed-point procedure (Brkic¢ 2017b) instead of the Newton-Raphson.

5. Numerical examples

Here are shown two numerical examples:
Example 1:
Re =8.31-103, ¢ =0.024

Iteration 0

Example 2:
Re =25-10°% e*=4-10"*

Xy = 6.279860788 Xy = 7.401979091 9)
Iteration 1
¥o = 0.008365808 Yo = 0.000115248
log,0(y9) = —2.077492116 log;0(vo) = —3.938365477
F(x,) = 2.124876556 F(x,) = —0.474751864 (11)
F'(xy) = 1.001337518 F'(x,) = 1.001024781 (12)
x; = 4.157822498 x, = 7.876244936 (10)
Iteration 2
y; = 0.007724855 y; = 0.000115724
Zpy = ? = 1082972765 Zpy = i—" = 0.995885374

1 1
0.034617535 -0.001790646 Padé approximant (6)
F(x;) = —0.066396805 F(x;) = 0.003095273 (14)
F'(x,) = 1.001986711 F'(x;) = 1.000970478
x, = 4.224087653 x, = 7.873152664 (13)
Iteration 3
y, = 0.00774487 y, = 0.000115721
Zop = 3;—0 = 1.080174034 Zop = i—" = 0.995912092

2 2
0.033493733 -0.001778995 Padé approximant (6)
F(x,) = 0.002115955 F(x,) = —2.03017 - 1075 (16)
F'(x,) = 1.001957048 F'(x,) = 1.000970813
x5 = 4.221975832 X3 = 7.873172946 (15)

Final value:
x=4.22204103

6. Conclusions

x=7.873172814

An efficient algorithm for the iterative calculation of the Colebrook equation by both an

accurate and computationally efficient Padé approximation is presented in this paper. It requires
only one evaluation of the logarithmic function in respect to the whole iterative procedure and more
specifically only in the first iteration, while the common procedures from current engineering
practice require at least one evaluation of logarithmic function for every single iteration. The
logarithmic function in the proposed procedure is replaced in all iterations (except the first), with
simple, accurate and efficient Padé polynomials (Baker and Graves-Morris 1996). In this way the
same accuracy is reached through the proposed less demanding procedure, after the same number
of iterations as in the standard algorithm which uses log-call in each iterative step. This is a good
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achievement knowing that the nature of the Colebrook equation is logarithmic. For their evaluation
in the Central Processor Unit (CPU) of computers, Padé polynomials require a lower number of
floating-point operations to be executed compared with the logarithmic function (Clamond 2009,
Giustolisi et al. 2011, Danish et al. 2011, Winning and Coole 2013, Vatankhah 2018, Sonnad and
Goudar 2004, Brki¢ 2012a, Winning and Coole 2015).

The here presented iterative approach only introduces a computationally cheaper alternative to
the standard iterative procedure. It does not reduce the number of required iterations to reach the
final desired accuracy nor provide more accurate results. The proposed method reduces the burden
for the Central Processing Unit (CPU) as less floating-point operations need to be executed. In that
way, the presented approach also increases speed of computation. On the other hand, many explicit
non-iterative approximations to the Colebrook equation are available in literature (Gregory and
Fogarasi 1985, Zigrang and Sylvester 1985, Brki¢ 2011e, Pimenta et al. 2018) which initially appear
simple for computation, but are not. They are widely used, but although some of them are very
accurate, they contain relatively complex internal iterative steps and also a number of
computationally demanding functions. For example, the widely used Haaland approximation
introduces relative error up to 1.5% (Haaland 1983, Wood and Haaland 1983), but with the cost of
evaluation of one logarithmic expression and one non-integer power. Also, the approximation by
Romeo et al. (2002) reaches extremely high accuracy with the relative error of up to 0.14%, but with a
cost of evaluation of even three logarithmic expressions and two non-integer powers. Regarding
alternative iterative procedures, Clamond (2009) provides an accurate iterative approach using 2
function, but this algorithm requires at least two log-calls; one for initialization and one in the first
iteration, which is more expensive compared with the here presented approach.

The procedure proposed in this paper can significantly reduce the computational burden for
evaluating complex distribution networks with various applications (water, gas) (Brki¢ 2009, Brki¢
2011a, Praks et al. 2015, Praks et al. 2017, Brki¢ 2016, Brki¢ 2018). For example, a probabilistic
approach using time dependent modeling of distribution or transmission networks requires many
millions of evaluations of Colebrook’s equation, which means that it is not a computationally cheap
task at all. For such kinds of computations is always good to have a cheaper but still accurate
approach in order to speed up the process.
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