Article

Non-Invasive Detection Method for Recycled Flash Memory using Timing Characteristics

Sadman Sakib, Preeti Kumari, B. M. S. Bahar Talukder, Md Tauhidur Rahman, and Biswajit Ray*

Department of Electrical and Computer Engineering, The University of Alabama in Huntsville, AL 35899, USA; {ms0171, pk0039, bt0034, tauhidur.rahman, and biswajit.ray}@uah.edu

* Correspondence: biswajit.ray@uah.edu; Tel.: +1-256-824-5679

† This paper is an extended version of our paper published in 2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), Washington, DC, USA, 2018; pp. 89-95, DOI: https://doi.org/10.1109/HST.2018.8383895.

Abstract: Counterfeiting electronic components is a serious problem for the security and reliability of any electronic systems. Unfortunately, the number of counterfeit components has increased considerably after the introduction of horizontal semiconductor supply chain. In this paper, we propose a new method for detecting recycled Flash memory, a major target of the counterfeiters due to its ubiquitous usage. Proposed method is based on measurement of change in Flash array characteristics (such as erase time, program time, fail bit count, etc.) with its usage. We find that erase time is the best metric to distinguish a used Flash chip from a fresh one for the following reasons: (1) erase time shows minimal variation among different fresh memory blocks/chip and (2) erase time increases significantly with usage. We verify our method for a wide range of commercial off the shelf Flash chips from several vendors, technology nodes, storage density and storage type (single-bit per cell and multi-bit per cell). The minimum detectable chip usage varies from 0.05% to 3.0% of its total lifetime depending on the exact details of the chip.

Keywords: Counterfeiting; recycled Flash memory; recycled Flash memory detection

1. Introduction

Counterfeit electronics have become a significant concern in the globalized semiconductor industry where chips might be recycled, remarked, cloned, out-of-spec/defective, and tampered [1–5]. Flash memory, which is commonly used as non-volatile data storage in many electronic systems, is one of the primary targets of the counterfeiters [6]. Counterfeiting of Flash memory has the severe consequence of its reliability or lifetime due to its limited endurance. The endurance of Flash is critical in many embedded applications where Flash is used for storing the operating system or other sensitive information. Hence the failure of Flash memory essentially leads to system failure, which might have a radical impact on many critical applications including healthcare, aero-space, defense, etc. In this context, use of recycled or fake Flash memories in critical areas may cause loss, not limiting to resources but to human life as well. Therefore, it’s vital to prevent these recycled memories entering into the IC supply chain.

Identification of counterfeit Flash memory with non-invasive technique is extremely difficult as the memory chip may remain functional at the time of selling a product and hence it may pass the standard product qualification tests. In addition, there remains chip-to-chip manufacturing variation, which makes the early stage detection of counterfeit Flash memory even harder with the standard test solutions. While there are several recent research in the area of counterfeit IC detection (details given in section 3), most of the existing techniques suffer from following major limitations: (i) requires hardware modification in the design phase, (ii) requires maintenance of large database, (iii) produces a large number of false positive results, (iv) time consuming and manual labor extensive etc. In general, detection of recycled Flash memories must follow the following criteria [4,5,14]:

© 2018 by the author(s). Distributed under a Creative Commons CC BY license.
• The detection techniques of recycled memory have to be quick, non-destructive, and inexpensive.
• The techniques must support detection of mass-volume chips. The ID-based approach is complex and not suitable for mass-volume detection.
• The detection mechanism must support existing memory and new memory. Sensor-based approaches only work for newly fabricated chips.
• The detection mechanism has to be straightforward and vendor-independent. The detection techniques have to be robust to environmental variations (voltage and temperature variation).
• The detection mechanism should have no or a minimal usage of the database.
• The detection mechanisms must have a very high level of confidence.
• The proposed techniques must provide yes-no decision. These techniques need to be able to tell the exact usage of the memory too.
• The proposed techniques should be independent of the vendor, technology node, and capacity. However, the threshold of detection parameter might vary across manufacturers, technology nodes, and capacities.

In this paper, we propose a method that satisfies the above detection criteria. The major contributions of this article include:

• We propose a comprehensive framework to detect used Flash memories by measuring the Flash array characteristics, such as erase time, program time, fail bit counts, etc.
• Experimental data shows that erase time is the best metric to detect recycled Flash chip. We find that erase time shows minimum variation between different memory blocks and it increases significantly with usage.
• We validate our proposed method with commercial off the shelf Flash chips from several vendors, technology nodes, memory type (SLC vs. MLC), and capacity (i.e., memory size). Measurement results show that we can detect a recycled Flash chip with high accuracy if it has been used as less as 0.05% to 3.0% of its total lifetime.
• Proposed method does not require any hardware modification or any prior database maintenance. Hence it can be implemented on many existing storage solution with system updates.

The rest of the paper is organized as follows. In Section 2, we describe the details of Flash memory and the metrics of our interest to characterize recycled Flash memory. The existing work in the area of detecting counterfeit IC is discussed in Section 3. The characterization of Flash memory and our proposed method to detect recycled Flash memory are described in Section 4. Section 5 will provide the results of our experimental test setup. We conclude our work in Section 6.

2. Background

Flash Memory Cell: The device structure of a single Flash memory cell is shown in Fig. 1 (a). It is essentially a Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) with a floating gate (FG) in the oxide layer. The floating gate can hold charge (electrons) for a long time even in the absence of any voltage on the control gate. The floating gate is typically made of poly-Si or Si-nitride (charge trap layer). As shown in Fig. 1, there are two important insulating layers in the device structure: one is called tunnel oxide which insulates the floating gate from the transistor channel. The other insulating layer is called blocking oxide which isolates the control gate from the floating gate. Information or binary bits are stored in the form of electric charges on the floating gate.

Flash Memory Array: The memory cells or FG transistors are organized in a NAND Flash chip as multiple two-dimensional arrays known as Flash blocks as shown in Fig. 1 (c). The cells in each row of a block are electrically connected through a single Word Line (WL), which acts as the control gate of individual FG transistors. Each column of cells in a block is connected to a different Bit Line (BL). The number of cells in each row defines the size of a page, which is typically 8-16k Byte in size. As shown in Fig. 1, each block consists of multiple WLs (typically 32-128 WLs per block) which correspond to different page addresses. For single-level cell (SLC) technology, each WL defines one page (or two
pages by grouping even bits and odd bits). For multi-level cell (MLC) technology, each WL defines at least two pages of data. Read and program operations are performed for one page at a time, while erase is performed on the entire block.

Flash Memory Operation: Flash memory offers three basic operations: program, erase and read. During a program operation, charges are injected into the floating gate from the transistor channel by Fowler-Nordheim tunneling through the tunnel oxide. Typically, multiple pulses of high voltage are needed on the control gate of the cell during programming. After programming, electron density or negative charges rises on the floating gate, increasing the threshold voltage of the FG-MOSFET. This programmed state of the memory cell represents the binary bit “0” in single bit per cell (SLC) technology. The cells are erased by applying a high positive voltage on the substrate of the transistors while the control gate voltage is grounded. This reverses the electric field directly across the tunnel oxide forcing the electrons tunneled out of the floating gate into the transistor channel. This erased state will have lower V_T, and it represents logic “1” in binary bit representation. Read operation in Flash memory involves sensing the threshold voltage (V_T) of floating gate transistors. As shown in Fig. 1 (b), V_T of the transistor depends on the current-voltage characteristics, where a fixed sense current (I_{sense}) is usually used to determine the exact V_T. During a read operation, a fixed “read reference voltage” (V_{REF}), which is lower than the programmed voltage, is applied to the control gate. Based on the V_T of the transistor, the cell will conduct current or not, and this will be sensed as bit “1” or “0” respectively, by the sense circuitry of the Flash memory.

3. Existing Work on Detecting Counterfeit IC

Over the past few years researchers have proposed several methods to detect counterfeit ICs, which can be classified into four groups: 1) physical and electrical tests, 2) track and trace, 3) data analysis, and 4) aging sensors. Physical tests are invasive in nature as they are based on probing any physical modification of counterfeit ICs. Electrical tests can be used to detect defects and anomalies like broken/missing bond wires, open/short interconnect etc. and find the defects and anomalies related to the internal structures, and logic gates [5,11]. Another test method is tracking and tracing, where IP watermarking, IC metering or hardware metering are used to detect the counterfeit ICs [25–28]. Aging sensors can be implemented to monitor and realize the aging and reliability of electronic components. The sensors usually form an odometer to exploit the degradation of aging [11–13,19]. Various methods
have been proposed to sense the age of ICs: [29] measure the beat frequency of two ring oscillators (stressed and unstressed), [30] used NBTI and defect-induced oxide breakdown effect, [31] detected the performance degradation of an aged MOSFET through threshold voltage detector. Sensor-based approaches are promising, but they need additional hardware and hence not applicable to the existing electronic chips. The image-based technique is another solution to detect counterfeit ICs but requires expensive image acquisition infrastructure and often suffers from high computational complexity. SVM has been used to identify whether a chip is authentic or not. However, it involves a collection of a set of parametric measurements and a trusted party to collect those data [21]. In [10], the path-delay fingerprinting technique is presented to differentiate recycled ICs from genuine ones through changes in their path-delay distribution caused by prior usage. However, this technique requires data from genuine ICs, which makes it impractical.

Concerning fake Flash detection, Guo et al. in [6], used partial programming concept to detect the recycled Flash memory for more than 5% of its end-of-life usage. However, their technique is time intensive and requires maintenance of extensive database, which limits its applicability for wide range of products. In [7–9], an ID-based approach was proposed to detect recycled SRAM chips. In this method, the startup values of an SRAM memory are used to create the device signatures. The signature is generated in such a way that the degradation due to aging shows up in the signature. The recycled SRAM chips can be identified by comparing the signature of fresh SRAM chip with the signature of SRAM chip under test. In this method, the high and the low temperature need to be applied to select perfect SRAM cells to generate a signature which is costly to perform and not suitable for high-volume detection. The existing works are mostly on FPGA, SRAM, DRAM etc. and they are expensive, time consuming, some of them are ineffective due to process variations and environmental variations in lower technology nodes and low confidence of identifying recycled ICs [5,11,32]. There are very few work on the detection of recycled Flash memory.

4. Recycled Flash Memory Detection

In this section, we present our framework for recycled Flash chip detection in detail by analyzing memory characteristics as a function of chip usage. Specifically, we analyze the impact of program-erase (PE) cycle count (which is the indication of chip usage) on program completion time for a page, erase completion time for a block and fail bit count (FBC) per page.

The aim of this study is to identify the appropriate Flash characteristics which can be used as the best indicator of its usage in order to distinguish a recycled memory chip from a fresh one with high accuracy. As discussed in the background section of Flash memory, both program and erase operation involves high voltage either on control gate (during the program) or on the Si substrate (during erase). Application of high voltage exerts high field stress across the tunnel oxide of the Flash memory cell and creates defects in the oxide as well as at the interface between oxide and silicon (Si) channel. The more is the PE cycle count; more is the defect creation. The key impact of the defects is the reduction of electric field across the oxide which slows down the erase operation. The program operation slightly gets faster due to the increase in the cell threshold voltage caused by defects. Even though program speed typically increases with PE cycle count, it also increases the probability of over-programming which increases the fail bit count in a page after the program. Also, the read noise increases with the creation of defects in the Si-channel interfaces which will cause fluctuation in the cell current during sensing resulting in increased FBC [24]. In subsection 5.3, we monitor erase time, program time and FBC as a function of PE cycle count to formulate a framework for recycled Flash chip detection.

One of the main challenges for the recycled Flash chip detection is to account for the manufacturing variation existing between the different chip of the same technology as well as variation existing among different blocks of the same chip itself. For accurate identification of recycled chip, we need to ensure that there is no overlap in the distribution of the identified device property between a fresh chip and a used chip. Thus we need to identify an appropriate memory characteristic, which is easily measurable and has a distinguishable change in its value with PE cycling.
Fig. 2 shows our recycled Flash identification approach. We measure several Flash characteristics (such as erase time) on different memory location of a chip in order to plot the variation of that parameter within a chip. Then, we compare the same Flash characteristics as a function of memory usage as shown in Fig. 2 (a). The figure shows that the upper tail (CDF) of Usage-0% intersects the lower tail (CDF) of Usage-\(u_1\)% at \(\alpha_1\), so the confidence level to detect \(u_1\)% usage is \((1 - \alpha_1) \times 100\). Whereas, the intersection point \((\alpha_2)\) for Usage-0% and Usage-\(u_2\)%, is \(\alpha_2 = 0\) and so, the confidence level to detect a recycled Flash memory is \(\sim 100\%\), when the Flash memory is used for \(u_2\)% of their lifetime. Here, Alpha \((\alpha)\) defines the cumulative probability of the used chip to fall below the threshold of detection (Flash) parameter. From the value of \(\alpha\), we can compute the confidence level, which measures whether we can detect a recycled memory accurately. Fig. 2 (b) shows the confidence level which can be obtained from Equation (1).

\[
\text{Confidence level} = (1 - \alpha) \times 100\% \tag{1}
\]

A 100% confidence means that a counterfeit Flash memory is identified as a counterfeit one. From Fig. 2 (b), we can conclude that we can only detect those used chips which have been used for \(u_2\)% of their lifetime where the confidence level is 100%. If the chip has been used for less than \(u_2\)% of endurance then we cannot decide whether the chip is used or fresh. Fig. 3 (a) shows our experimental result for erase time distribution on MLC chip. We find that, there is no overlap in the distribution between fresh and used chip (50 times PE cycled). This means, 50 times cycled chip can be detected with high accuracy by monitoring erase time. The increase in erase time is monotonic with PE cycle count as verified from the data discussed in the next section. In general, there should not be any overlap between the fresh CDF and the used CDF of PE cycle for the high confidence level. However, there might be an overlap between the distributions (i.e., fresh vs. used CDF) because of low usage of a chip, which can reduce the confidence level. Therefore, in our experiment, \(\geq 98\%\) confidence level is considered as an acceptable confidence level to conclude whether the chip under test is recycled or authentic; mainly because of the limited number of samples.
5. Results and Analysis

5.1. Experimental Set-up

Results reported here are based on data collected from off the shelf Flash chips (see Table 2 for the specifications). We use a custom design board to program, erase, and read the Flash chips. The board contains a socket to hold a Flash chip under test, an ARM microprocessor to issue commands and receive data from the Flash chip and a serial interface. A summary of steps followed for data collection in our experiment is explained below:

- Initially a block is selected on which we want to perform program erase function.
- The selected block is then erased, or in other words, all the bits of that block are “1”.
- Then the block is programmed with All “0” data pattern.
- Read operation is then performed on one page at a time.
- Program time, Erase time and FBC are then recorded.
- Process is then continued for other blocks of the chip.
- Finally different plots are obtained by analyzing the recorded data.

In our experiment, we used 100 blocks per chip and performed the same analysis as a function of PE cycle count. All the blocks after programming should have all bits “0”, but it is observed that few bits flip and those are called as fail bits. We count the number of fail bits per page which we call FBC (fail bit count). The behavior of erase and program time are analyzed for different PE cycle count. We perform our analysis on the different type of Flash chips (SLC and MLC) from various manufacturers of different technology nodes.

5.2. Measurement Procedure for Flash Timing

To measure the Flash timing characteristics such as erase time, we first measure the time \(t_{\text{start}} \) at which the erase command is issued by a microcontroller. We again measure the time \(t_{\text{end}} \) after completion of erase operation. The time difference between \(t_{\text{end}} \) and \(t_{\text{start}} \) is the erase time \(t_{\text{end}} - t_{\text{start}} \) used in this work.

\[
\text{Erase time} (t_{\text{erase}}) = t_{\text{end}} - t_{\text{start}}
\]

Erase operation (Fig. 3 (b)) in Flash memories happens in multiple pulses (pulse width \(\sim 1 \) ms). After every pulse, a verify operation is applied to check the state of all the cells. If the cells are not erased, then another pulse and verify operation is applied. This process will continue until all the cells get erased. Such type of pulse by pulse erasing is the reason for the step-wise increase in erase time. Fig. 4 (a) shows that the erase time increases in steps.
In this section, we provide data for different memory performance parameters (erase time per block, program time per page, fail bit count per page, etc.) as a function of PE cycling. Fig. 4 (a) shows the erase time dependence on PE cycle count. Note that erase time increases with cycling in discrete steps. Such step by step increase of erase time is a result of pulse by pulse erase operation as described in Fig. 3 (b). Fig. 4 (a) also shows an overlap region, where two different erase time is observed for a given PE cycle count. This is due to the block to block variation in erase time degradation with cycling. In our experiment we choose 100 blocks for every PE cycle count and the overlap region shows that different block has different erase time. Block to block variability is more clearly illustrated in Fig. 4 (b), where the cumulative distribution of erase time is plotted for a given PE cycle condition. Interestingly, we find that erase time has a very sharp distribution (or minimal variation) for fresh condition (red). However, with few PE cycle erase time distribution widens (blue). This imposes a constrain on minimum usage detection threshold, since for accurate detection of cycled condition there should not be any overlap between fresh and cycled distribution. With the Micron MLC chip we find that for PE cycle count = 16, erase time distribution has no overlap with fresh (black curve) condition. Thus, minimum usage that can be detected with erase time for this chip = 0.32% (end of life PE cycle count = 5000). In Fig. 4 (c) we show the erase time dependence on PE cycling for 3 different chips of the same part number, which shows minimal chip-to-chip variation and hence the applicability of the erase time based detection method.

In Fig. 5 (a), we show the program time dependence on PE cycle count. The results show that the value of program time is decreasing with the number of program-erase cycle. The reduction of program time is expected from a Flash memory chip, as with higher PE cycles the threshold voltage of the individual cells slightly increases due to decreasing in the cell current caused by defect creation in the Si-oxide interfaces. However, as shown in Fig. 5 (b), the cumulative distribution of program time is wider, and it overlaps with the program time distribution of cycled blocks. Thus, program time alone cannot distinguish fresh and cycled blocks with ~ 100% accuracy. To confirm the identical behavior from different chips, we plot the similar program time data from three other chips in Fig. 5 (c) and the plot shows identical behaviors among the chip.

In Fig. 6 (a), we plot the FBC of a page just after programming that page as a function of PE cycle count. We took 100 blocks and program-erase them for 1000 cycles, and plotted the scatter plots for all the values of FBC per page. As expected, the value of FBC is increasing with the number of program-erase cycle. However, the CDF plot for the FBC shows wider distribution and strong overlap between fresh and cycled block. Thus FBC alone cannot be used for determining the age condition of a
Figure 5. (a) Scatter plot of program time (Y-axis) with respect to program erase cycles (X-axis). This is the scatter plot for the output of program time of 100 blocks, program-erased for 1000 cycles. (b) Cumulative Distribution Function (CDF) of program time for cycle 0, 10, 100, and 1000. (c) Median program time per page (Y-axis) with respect to PE cycle count (X-axis).

Figure 6. (a) Scatter plot of fail bit count (Y-axis) with respect to program-erase cycles (X-axis). This is the scatter plot for the output of fail bits of 100 blocks, program-erased for 1000 cycles, (b) Cumulative Distribution Function (CDF) of FBC for different PE cycle counts, and (c) Median FBC per page (Y-axis) with respect to PE cycle count (X-axis).

chip. To confirm the identical behavior among different chip of the same part number, we plot the similar FBC data from three other chips in Fig. 6 (c) and the plot shows identical behaviors among the chip.

In summary, experimental data shows that erase time is the best metric in order to distinguish a recycled Flash chip from the fresh one for the following reasons: 1) Erase time has very tight distribution (or minimal variation) on a fresh chip. Thus, the median erase time typically specified in the product data sheet is a good representation of erase time value for that class of Flash ICs, 2) With program erase cycling, erase time increases in discrete but large steps (~ 1 ms). The large increase in erase time with usage and the initial tight distribution ensures that there is no overlap of erase time distribution of a fresh chip vs used chip, 3) The minimum usage level for accurate detection of used chip using erase time will depend on the exact technology and chip details, however, the general methodology will hold for any Flash chip.

5.4. Validation on Different Technology Nodes

We find that the proposed method works for different technology nodes. We validated our proposed technique with two 8GB SLC Flash memory chips from the same manufacturer of different technology nodes (34nm and 25nm). Fig. 7 (a) and 7 (b) present that the erase time CDF for 34nm and...
5.5. Validation on Flash Chip from Different Manufacturers

Another important criterion of a detection methodology is that it has to be independent of manufacturers. Here we validate our method using two SLC Flash memories from two important manufacturers, Micron and Toshiba. Fig. 8 (a) and 8 (b) show the CDF plot for the erase time for Micron and Toshiba respectively at different PE cycles. The experimental data shows that Micron and Toshiba recycled chips can be detected after 2.7% (Fig. 8 (a)) and 2% (Fig. 8 (b)) usage respectively. Fig. 8 (c)
Figure 9. (a) CDF of erase time for PE cycle 0, 50, 1100, 1500, 2000 and 2700 for Micron 8GB SLC (34nm). (b) CDF of erase time for PE cycle 0, 33, 41, 47, 58 and 70 for Micron 32GB MLC (20nm). (c) The confidence level for two types Flash chips – SLC and MLC.

shows the usage vs. confidence level plot for Micron and Toshiba Flash chips. The results conclude that our proposed method can detect whether a Flash chip is recycled or not with an acceptable confidence level. Table 2 shows more results and comparison from the major manufacturer.

5.6. Validation on SLC and MLC Flash Chips

We applied our proposed method on both SLC and MLC Flash types from the same manufacturer. Fig. 9 (a) and 9 (b) shows the same trend for the erase operation (i.e., increase in erase time with the number of PE cycles). The erase time increasing rate is much faster in MLC Flash chip than the SLC Flash chip. From Fig. 9, we can see that the SLC Flash chip can be identified after 2700 PE cycles, whereas the counterfeit MLC Flash chip requires only 70 PE cycles. The density of MLC is much higher than SLC because of MLC store two or more bits per cell, whereas SLC stores only one bit per cell. Also, the MLC Flash chip has a wider range of voltage, typically 0V to 6V, while the SLC has lower voltage range (0V to 3V). Hence, the MLC degrades faster and offer very early age detection compared to SLC.

5.7. Usage vs. Confidence Level

Table 1 shows that the confidence level or the accuracy of detecting recycled Flash chips increases with usage. We can see the same trend for various Flash chips from different manufacturers, different technology nodes, types, etc. The results show that we can not conclude whether the chip is recycled or not for all three vendors when the chips are used for 1% and 1.4% of their lifetime. However, vendor 1 and vendor 2 can be detected if the chip is used for 2% of their lifetime. We can not make any conclusion for the 3rd vendor because the confidence level is not acceptable at 2% of usage. For usage of 2.7%, we can identify recycled chips for all three vendors. We can conclude that a recycled Flash chip can be detected with a better confidence level if that particular chip degrades faster.

Table 1. The confidence level for different types of Flash chips from various manufacturers

<table>
<thead>
<tr>
<th>Usage (%)</th>
<th>Vendor 1</th>
<th>Vendor 2</th>
<th>Vendor 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>Not Acceptable</td>
<td>Not Acceptable</td>
<td>Not Acceptable</td>
</tr>
<tr>
<td>1.4%</td>
<td>Acceptable</td>
<td>Not Acceptable</td>
<td>Not Acceptable</td>
</tr>
<tr>
<td>2%</td>
<td>Acceptable</td>
<td>Acceptable</td>
<td>Not Acceptable</td>
</tr>
<tr>
<td>2.7%</td>
<td>Acceptable</td>
<td>Acceptable</td>
<td>Acceptable</td>
</tr>
</tbody>
</table>

*Acceptable (i.e., ≥ 98% confidence level)
Table 2. Summary of results for the different type of Flash chips

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Manufacturer and Chip Description</th>
<th>Endurance (P/E cycle)</th>
<th>Chip Count</th>
<th>Acceptable Confidence Level @ Acceptable (i.e., ≥ 98% confidence level)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT29F64G08CBAWF:B TR</td>
<td>Micron 64Gb MLC (20 nm node)</td>
<td>5000</td>
<td>3</td>
<td>≥ 0.25% usage</td>
</tr>
<tr>
<td>MT 29F32G08CBAWF:D</td>
<td>Micron 32Gb MLC (20 nm node)</td>
<td>5000</td>
<td>3</td>
<td>≥ 1.4% usage</td>
</tr>
<tr>
<td>TC58NVG3580FTA00-ND</td>
<td>Toshiba 8Gb SLC (32 nm node)</td>
<td>100,000</td>
<td>3</td>
<td>≥ 2% usage</td>
</tr>
<tr>
<td>MT29F8G08ABABAWF:B</td>
<td>Micron 8Gb SLC (34 nm node)</td>
<td>100,000</td>
<td>3</td>
<td>≥ 2.7% usage</td>
</tr>
<tr>
<td>MT29F8G08ABACAWF:C</td>
<td>Micron 8Gb SLC (25 nm node)</td>
<td>100,000</td>
<td>3</td>
<td>≥ 0.05% usage</td>
</tr>
<tr>
<td>MT29F4G08ABADAWF:D TR</td>
<td>Micron 4Gb SLC (34 nm node)</td>
<td>100,000</td>
<td>3</td>
<td>≥ 3% usage</td>
</tr>
</tbody>
</table>

Summary of results for the different type of Flash chips: Table 2, Fig. 7, 8, and 9 present the summary of results for the different type of Flash chips from various manufacturers of different technology nodes, types (SLC vs. MLC), and capacities. The results show that MLC Flash chips can be detected much earlier than SLC Flash chips from the same manufacturer. In general, the degradation of MLC chips is quicker than SLC because the operating voltage of MLC is higher. In another case, the Flash chips from different technology nodes from the same manufacturer degrade at different rates. The result shows that a Flash chip of lower technology node can be detected earlier than the older technology node. The reason for such trend is mostly due to the smaller size and lower gate oxide thickness of the memory cells in lower technology nodes. The results also conclude that the proposed detection methodology works for different manufacturers and recycled Flash chip can be detected with acceptable confidence level.

Summary of Results:
- Timing analysis confirms that erase time distribution can be used to distinguish between a fresh and recycled chip at acceptable accuracy.
- How early a Flash chip can be detected (i.e., the ‘usage’) with acceptable confidence depends on manufacturers, technology nodes, memory types (SLC vs. MLC), and capacity.
- Erase time is the best Flash parameters to detect a used chip as early as possible (i.e., with minimal usage). FBC and program time also show changes over time but not good enough to detect recycled Flash chip with minimal usage.

Limitations and Scopes of Future Work:
- Impact of Testing on Wear-out: Our technique involves one erase operation per block, which have minimal impact on aging (typical erase count for a chip is ~ 100,000).
- Test Time: Testing entire chip can take few seconds because typical erase operation take 1 to 10 milliseconds per block and a chip can contain more than 1000 blocks.
- Temperature Effect: Our methodology works for all different temperature, however the exact detection threshold depends on operating temperature.

6. Conclusion
Recycled Flash memory is a major threat to any electronic systems, from critical (e.g., military applications) to non-critical consumer electronic systems. In this paper, we proposed a non-invasive framework to detect used Flash memories from the fresh ones, with the help of timing characteristics of memory (Program time, Erase time) and the number of faulty bits. Experimental results show that our framework performs with high accuracy without requiring any prior database. We find that the minimum detectable usage depends on the manufacturers, technology nodes, types (SLC vs. MLC), and capacity. Our proposed methodology is inexpensive, non-destructive, and does not require any hardware modification or maintenance of extensive database apart from the standard product data-sheet.
References

