Thermal and Electrical parameter identification of a Proton Exchange Membrane fuel cell using genetic algorithm

H. Eduardo Ariza 1, Antonio Correcher 2, Carlos Sánchez 3, Ángel Navarro-Pérez 4 and Emilio García 5

Abstract: PEM fuel cell is a technology successfully used in the production of energy from hydrogen, allowing the use of hydrogen as an energy vector. It is scalable for stationary and mobile applications. However, the technology demands more research. An important research topic is fault diagnosis and condition monitoring to improve the life and the efficiency and to reduce the operation costs of PEMFC devices. Consequently, there is a need of physical models that let deep analysis. These models must be accurate enough to represent the PEMFC behavior and to allow the identification of different internal signals of a PEM fuel cell. This work presents a PEM fuel cell model that uses the output temperature in a closed loop, so it can represent the thermal and the electrical behavior. The model is used to represent a Nexa Ballard 1.2 kW; therefore it is necessary to fit the coefficients to represent the real behavior. Five optimization algorithms were tested to fit the model, three of them were taken from literature and two were proposed. Finally, the model with the parameters identified was validated with real.

Keywords: PEM fuel cell; identification; Genetic algorithm; Model; LabVIEW

1. Introduction

Proton Membrane Exchange Fuel Cell (PEMFC) is an electrochemical device, which is able to convert chemical energy (stored hydrogen) into electrical energy. PEMFC is an interesting power source solution due to its low operation temperature, its high power density, its good response to varying loads, and its easy scale-up [1]. However, the high cost of this technology makes modelling, parametric identification and fault diagnosis necessary research topics to improve the use of PEMFC [2]. PEMFCs have parameters that change from one cell to another because of different reasons: manufacturing materials, physical dimensions, aging, working conditions, etc. Adequate cell identification is necessary to know the internal cell conditions, to define the optimal working point, to estimate the supply power capacity, and to implement condition monitoring techniques or fault diagnosis algorithms. More complete, detailed and accuracy models allow the detection of small variations that can be considered as preludes of possible failures. Detecting these variations could prevent irreparable damages, it will lower replacement costs, and it will improve the reliability of the system.

There are some previous works dealing with PEMFC model identification. Each approach includes its own model structure and simplifications. Regarding the identification techniques, they
are highly dependent on the PEMFC model and they can be classified into two big subsets: static models and dynamic models.

The static model is created to identify the cell polarization curve in specific conditions of pressure and temperature. Hence, the experiment must keep as constants these variables.

Figure 1 shows a typical cell polarization curve which represents the main cell characteristics. As the current increases the voltage drops in three visible sections: the first voltage drop represents cell activation losses; the second section represents voltage losses by internal resistance, and the third section represents the voltage drop by gas transportation or concentration losses [3].

In [4] a model based on Neural Networks and used the Levenberg-Marquardt BP algorithm to identify the polarization curve characteristics is proposed. The model inputs were the airflow and the temperature, and the outputs signals were the current and voltage. The model presented good accuracy; however, the system demanded training with high computational cost, and the authors exposed as an alternative the use of other Optimization algorithms (OA).

The identification of equations based in the model [5] and using OA is a clear tendency, these models have electrical and thermodynamics equations with around seven coefficients which allow tuning the model. The coefficients are identified using an optimization function which minimizes the error between simulated and real signals. In [6] the current demand is used as input to generate de polarization curve. The identification of the coefficients was performed with an OA called Hybrid Genetic Algorithm (HGA) that avoids the premature convergence of Simple genetic algorithms (SGA). The HGA needs to be fed with parameters closer to ideal values previously identified. In [7] a similar model to the previous one was used to identify the system with a Particle swarm optimization algorithm (PSO) as an algorithm which accepts initial parameters located in a very broad range. In [8] is presented a Grouping-based global harmony search algorithm (GGHS) to surpass the limits of Harmony search algorithm (HS). This work compared the GGHS with versions of HG and PSO, and concluded that the GGHS overcomes the mentioned algorithms. The Grasshopper Optimization Algorithm (GOA) was proposed by [9] to identify the parameters of three different PEMFC. Though, GGHS and GOA require that the initial parameters fall within closer bounds. In [10] the Effective informed adaptive particle swarm optimization (EIA-PSO) as a
modification of PSO that makes the algorithm configuration be dynamic to avoid finds fake solutions is proposed. However, this modification increases the computational cost in regarding to a PSO. To overcoming the mentioned problems of PSO, in [11] a Grey Wolf Optimizer is proposed, this algorithm was tested with the classical model and five real different PEMFC. Related to differential evolution (DE) algorithm framework, some author proposed variations to improve the performance of the scaling factor F. in [12] proposed the hybrid adaptive differential evolution algorithm (HADE) and they compared it with PSO and two versions of differential evolutionary algorithms is proposed. The HADE overpasses the performance of the others OA in terms of minimization velocity. The comparison was made using test functions, but the PEMFC model and its optimization function only was carry out whit HADE. Transferred adaptive DE (TRADE) is an DE improve algorithm applied to a PEMFC and SOFC models proposed by [13]. Though, GGHS and GOA require that the initial parameters fall within closer bounds both presents attractive results. On the similar way, [14] proposed a hybridization between Teaching Learning Based Optimization method (TLBO) and DE algorithm, this application lets obtain better results with low computational cost, compared with single TLBO and DE separately. In [15] the quantum-based optimization method (QBOM) applied to the identification of three voltage drop coefficients of a NEXA 1.2 kW PEMFC model is introduced. QBOM showed good accuracy and high minimization velocity in the identification. However it was applied in the identification of three parameters versus the seven parameters identified by previously mentioned works.

The above authors demonstrated the usefulness of OAs to parameter identification of PEMFC polarization curves. Moreover, the PEMFC polarization curve only represents the cell operation at one single stack temperature value and a single stable pressure of inlet gasses.

In the second main classification are the dynamic PEMFC models. Those models represent the real behavior of a PEMFC because they show changes in the cell response when there are changes on the load current and other variables and consider the cell as a Multiple-input multiple-output system (MIMO). Each identification technique uses particular excitation inputs (such as steps, ramps or waves) and each one uses the outputs to build or to adjust transfer functions or state space models which include the fuel cell parameters. To facilitate the model identification, some PEMFC models can also be simplified by working with constant temperatures or by using linearization techniques.

A dynamic model used to test several control strategies was presented in [16]. This model included inputs such as: inlet molar flow rates of oxygen and hydrogen; inlet temperatures of anode and cathode gas; and inlet coolant flow rate. After the excitation with input steps, the authors developed an empirical identification by monitoring the average power density and the average solid temperature. In [17] the authors used transfer functions to model a PEMFC. This work used the stack current and the cathode oxygen flow rate as inputs and the stack voltage and the cathode total pressure as outputs. The model is able to predict the output signals near to the operation point. In [18], a PEMFC Hammerstein model is presented. The inputs were current, stoichiometric oxygen, and cooling water flow, and the outputs were the partial pressure of O2 and the stack temperature. The identification process used different random steps signals as inputs. In [19] a PEMFC dynamic model that included the polarization curve characteristics and a double layer charge effect is proposed. The model input was a typical current demand of a DC-DC or a DC-AC. In [20] a NARMAX model to represent the MIMO relations and to identify the coefficients satisfying the PEMFC voltage simulation is used. Also a NARMAX model is used by [21] to represent PEM and used a GA to the model identification, however, the model only represents the fuel cell temperature. Buchlozt and Krebs [22] splits the PEMFC model into a dynamic part and a static part. The static model was identified with Neural Networks whereas the dynamic model was developed with a mix of transfer functions and linear state-space models. The model inputs were: current density, oxygen stoichiometry, gas supply pressure, and gasses relative humidity; other values as stoichiometry of oxygen and stack temperature were set to constant. The model output was the sum of the dynamic and the static voltage. The authors exposed that the split model allows to reduce the computational time and to improve the accuracy. A split model was also presented in [23]. Regarding the dynamic
part, the inputs were the current and the cathode pressure. All these works get deeper in the
different relationships between input and output signals, so they model cell voltage responses to
gasses pressures and current variations. Nevertheless, PEMFC operation produces heat that changes
in the cell temperature. The temperature affects the cell performance and features as open circuit
voltage, internal gasses pressures, gas humidity, and internal resistances. Therefore, the use of
temperature as an input variable will give more accuracy to the model despite de fact that the
increment of complexity and nonlinearity.

Wang et al. [24] developed a dynamic equations model where the temperature is considered to
work in closed loop. The model included the electrochemical and thermal responses and the cell
double layer charge effect, and has a good response in steady state and transients. The model
characteristics are applicable in fault diagnosis and condition monitoring tasks; thus, this work was
developed for a 500 W PEMFC and is not directly usable for other devices.

One recent approach [25] used an equivalent electrical circuit model to represent a Nexa Ballard
1.2kW PEMFC. This model simulated both the output voltage and the stack temperature. The model
included fourteen electric coefficients and six thermal coefficients. They were identified with an
Evolution strategy algorithm (ES). This work showed a model that includes the stack thermal
dynamics and they applied GA to the parameter identification, however, the thermal model includes
a piecewise heuristic function to link the temperature with the current to adjust the operation of the
cooling system of the real cell. This last component and the model based on electrical circuit do not
let access to internal signals system. Salim et al. [26] use equations based model which includes the
thermal behavior of NEXA 1.2kW PEMFC. The voltage model was developed by a fitting
polynomial curve which involves the classical voltage losses. The thermal model was developed
using the sensible heat and latent heat. The identification process applies PSO with one independent
optimization function for the voltage part and other for the thermal model. The result shows high
simulation accuracy. However, the model does not take into account the temperature in a closed
loop, neither the cooling system performance of the device.

Figure 2 Block diagram of Nexa fuel cell balance of plant.

The present work is involved in a wider study related with fault diagnosis and condition
monitoring of a Nexa Ballard 1.2kW PEMFC installed in the Laboratory of Distributed Energy
Resources [27]. Figure 2 shows the block diagram of the complete Nexa system. Hydrogen is
supplied from a compressed tank at adequate pressure. Reaction air is supplied by means a
compressor and measured by a mass flow meter. Temperature is measured at the air outlet, so this is
the stack temperature. The system is cooled by a fan in order to maintain the temperature under the
upper limit. Voltage of the complete stack and the last two cells is measured in order to determine
when the hydrogen purge valve is opened to eliminate accumulated impurities. Current generated
by the fuel cell is measured for two reasons: to open the relay if current exceeds the maximum and to
act over the air compressor to maintain the correct stoichiometric relationship. Table 1 shows the
manufacturer values of the PEMFC.
Table 1 Maximum characteristics of Nexa 1200 fuel cell

<table>
<thead>
<tr>
<th>Power</th>
<th>1200 W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating voltage range</td>
<td>22 – 50 V</td>
</tr>
<tr>
<td>Current</td>
<td>55 A</td>
</tr>
<tr>
<td>Hydrogen consumption</td>
<td>18.5 slpm</td>
</tr>
<tr>
<td>Air flow</td>
<td>90 slpm</td>
</tr>
<tr>
<td>Temperature</td>
<td>80 °C</td>
</tr>
<tr>
<td>Cooling air flow</td>
<td>3600 slpm</td>
</tr>
</tbody>
</table>

The overall study requires a model able to represent the device and that uses the maximum amount of measured data. In addition, the identification process must be accurate, fast, and with the lowest computational cost as possible to make the model suitable to be used in real time applications. This paper uses the model presented by [24] to fit the NEXA 1.2kW PEMFC real data. Moreover, several GA are used and they are compared in order to look for the best strategy to fit the model.

Section 2 shows the description of the model. Section three shows the adjustment of the equations coefficients to fit the PEMFC Nexa behavior. The results of the identification and the model validation are presented in section four. Finally, we present some conclusions and future works.

2. The PEMFC model

Materials

The model presented in this paper is an extension of the dynamic model presented in [24] where explained the model in detail. This work only presents the key equations and the modifications included. The model was originally created to represent a 500W PEMFC and it was implemented with Matlab/Simulink® and Pspice®. However, the Nexa 1.2kW PEMFC software (NexaMon OEM 2.0) gives more information as inlet pressures and cooling system variables that can be taken into account to model the thermal development of the fuel cell. Figure 3 shows PEMFC model, including the in/out put signals.

Figure 3 PEMFC model

The model is grouped into electrical and thermal equation sets. The most remarkable variable in the electrical set is the cell potential \(E_{\text{cell}}(t) \) which is calculated with the Nernst's equation. Equation (1) is a simplification of the Nernst's equation which assumes: a) the Stack keeps under 100° C its temperature; b) the reaction product is in a liquid phase. The equation includes a voltage \(E_{\text{d,cell}}(t) \) which represents the electrical effect of gas pressure changes during load transients and classical voltage drops.

\[
E_{\text{cell}}(t) = E_0(t) + \left(\frac{R \cdot T(t)}{2 \cdot F} \right) \cdot \ln[p_{\text{H}_2}(t) \cdot (p_{\text{O}_2}(t))^{0.5}] - E_{\text{d,cell}}(t) \tag{1}
\]
Where $T(t)$ is the cell temperature (K); F is the Faraday constant (96487 coulombs/mol); R is the ideal gas constant (8.3143 J/mol K); $E_0(t)$ is the reference potential at standard conditions (298 K, 1 atm); $p_{\text{H}_2^*}(t)$ is the H$_2$ effective partial pressure; $p_{\text{O}_2^*}(t)$ is the O$_2$ partial pressure.

$E_{\text{d,cell}}(t)$ is initially modelled in Laplace domain as equation (2) and implemented in time domain equation (3).

$$E_{\text{d,cell}} = \lambda \cdot I(s) \cdot \frac{\tau_e S}{\tau_e S + 1}$$ \hspace{1cm} (2)

$$E_{\text{d,cell}} = d \cdot \left[\frac{\Delta I \cdot p}{\tau} \right] + I(t)$$ \hspace{1cm} (3)

Where $I(t)$ is the current (A); p is the simulation step; d, τ are delay constants related to PEMFC distribution layers.

Regarding the thermal equations set, the thermal loss equation was modified to include the cooling system of Nexa PEMFC. It is identified in the equation (4).

$$\dot{q}_{\text{loss}}(t) = h_{\text{cell}}(t) \cdot (T(t) + T_{\text{room}}(t)) \cdot N_{\text{cell}} \cdot A_{\text{cell}} \cdot A_f(t)$$ \hspace{1cm} (4)

Where, h_{cell} is the convective heat transfer coefficient (W/m2K) of the stack; N_{cell} is the number of cells in the stack; A_{cell} is the cell area (cm2). The control system of a Nexa includes the operation of a fan and cooling system, providing oxygen inlet and keeping the temperature under a limit to keep operation conditions and avoid membrane damage. $A_f(t)$ is a coefficient to adjust the temperature related to the cooling system.

The proposed model has been split into functional blocks (Figure 3), so each block can be analyzed separately for fault diagnosis purposes. Each block contains tunable coefficients to reduce the difference between the real and the simulated signals. The blocks and its respective coefficients are described below:

Active pressure block calculates the effective partial pressure in the anode and the cathode side. The block has four parameters:

- c_{APCD} is a parameter related to the cell current density.
- c_{APa} is a parameter related to the distance between the anode channel and the catalyst surface.
- c_{APc1} is a parameter related to the distance between the cathode channel and the catalyst surface.
- c_{APc2} is a parameter that fits the pressure of saturated H$_2$O curve in function of the temperature.

Voltage drop block represents the voltage losses by activation, internal resistance, and concentration. The coefficients are:

- c_{Act1} is a parameter related to the activation voltage drop that only depends on temperature.
- c_{Act2} is a parameter related to the activation voltage drop, that depends on current and temperature.
- c_{Ohm1} is the parameter related to ohmic losses that depends on current and temperature.
- c_{Ohm2} is a parameter related to ohmic losses that only depends on current.
- c_{Conc} is a parameter related to the voltage concentration drop.

The potential of the cell are calculated in the Potential Block which includes two coefficients:

- c_{Pot1} is a value that adjusts the internal electric potential of the cell.
- c_{Pot2} is a parameter related to the free Gibbs energy (ΔG).
The Terminal Block represents the electrical global stack behavior. This block includes the cell potential, the voltage losses, and a voltage drop by fuel and oxidant delays during load transients. The Terminal Block has the following parameters:

- \(c_{\text{TDD}} \) is the gasses delay time constant during load transients.
- \(c_{\text{TDDG}} \) represents a gain that affects the delay by load transients.

The Heat Loss block represents thermal losses that leave the stack by air convection and energy absorbed by exhaust gasses. The parameters are:

- \(c_{\text{HLh}} \) is a gain that affect the overall heat loss.
- \(c_{\text{HLaf}} \) is the parameter fitting the thermal loss associated to the cathode side. It is included in the stack thermal loss.
- \(c_{\text{HLfan}} \) is a gain associated with the cooling fan system and it is included in the stack thermal loss.

PEM Block merges the electrical and the thermal equations to represent the global PEMFC performance. This block has one parameter.

- \(c_{\text{PEMh}} \) is related to the total mass of stack and its overall specific heat capacity.

A complete set of parameters (PS) can be used to simulate the PEMFC. Therefore, the goal of this research will be the search of the set of parameters that minimizes the difference between the PEMFC real outputs and the model outputs. The notation used to define the different elements of the algorithms is presented below:

\[
\text{PS} = \{c_{\text{APCD}}, c_{\text{APa}}, c_{\text{APc1}}, c_{\text{APc2}}, c_{\text{Act1}}, c_{\text{Act2}}, c_{\text{Ohm1}}, c_{\text{Ohm2}},
\]

\[
c_{\text{Conc}}, c_{\text{Pot1}}, c_{\text{Pot2}}, c_{\text{TDD}}, c_{\text{TDDG}}, c_{\text{HLh}}, c_{\text{HLaf}}, c_{\text{HLfan}}, c_{\text{PEMh}}\}
\]

A population of parameter sets (an array of parameter sets) will be noted as:

\[
\text{PS}^k = \{PS_1^k, PS_2^k, PS_3^k, \ldots, PS_j^k\}
\]

Where \(PS^k \) is the population of \(k \)th iteration.

\[
PS_j^k = \{c_{1,j}^k, c_{2,j}^k, c_{3,j}^k, \ldots, c_{n,j}^k\}
\]

Where \(PS^k \) is \(j \)th parameter set of the \(k \)th population and the \(i \)th model parameter will be noted as \(c_{k,i} \). For example, \(c_{5,2} \) corresponds with the value of parameter 1 \(c_{\text{APCD}} \) in parameter set 2 of the 7th population.

The model was programmed and tested with initial coefficients taken from [24] and from the device manufacturer manual. This PEMFC model was simulated using real inputs signals. Figure 4 shows the predicted voltage and temperature as well as the real values. Therefore, despite the fact that there is a significant difference, the model seems to be suitable to represent the system dynamics after a suitable parameter fitting. The MSE obtained with the initial coefficients represent a challenge in the identification process because huge starting errors make it difficult to find the optimal parameter set.
Figure 4 Model test using the initial parameters: (a) stack temperature; (b) output voltage

3. Parameter identification

shows the identification process. The process begins with the generation of a randomized population.

Figure 5 Global identification process algorithm

This population is created from an initial PS_i^1 as indicated in equation (5)

$$PS_i^1 = \begin{cases} j = 1: & c_{i,1} = c_{i,1} \\ j \geq 1: & c_{i,1} = (c_{i,1} \cdot z \cdot v_d) + c_{i,1} \end{cases}$$

(5)

Where z is a random number in the range [-1, 1] and v_d is a value to generate initial dispersion. Each PS_i is simulated with real inputs and its corresponding error is shown in equation (6).

$$\epsilon_{PS_i^j} = \left(\frac{\epsilon V + \epsilon T}{2} \right)$$

(6)

1 Some GAs include special criteria to create this first population.
Where εV is the output voltage error, and εT is the stack temperature error calculated as:

$$\varepsilon V = \left(\frac{RMSE_V}{F_V} \right) \cdot 100$$ \hspace{1cm} (7)$$

$$\varepsilon T = \left(\frac{RMSE_T}{F_T} \right) \cdot 100$$ \hspace{1cm} (8)$$

Where RMSEV and RMSET stand for the root mean square error between real and simulated output voltage signals and stack temperature signals respectively. FSV and FST stand for the device full scales related to the output voltage signal and stack temperature signal respectively.

$$RMSE_{out} = \sqrt{\frac{1}{n} \sum_{t=1}^{n} \left(Out_{R}(t) - Out_{S}(t) \right)^2}$$ \hspace{1cm} (9)$$

Where n is the data length; $Out_{R}(t)$ and $Out_{S}(t)$ are the real and simulated output signal values at time t, respectively. So, the goal is to minimize ε_{PSO}^k. Each PSO^k_j is evaluated in the PEMFC model to obtain each error ε_{PSO}^k. There is a minimum error $Min_{\varepsilon_{PSO}^k}$ at each iteration. The optimization process ends when the stop condition is met. The stop condition can be specified as a threshold for $Min_{\varepsilon_{PSO}^k}$ or as a maximum number of iterations. If the stop condition is not fulfilled, the OA creates a new population PSO^{k+1}. This new population is evaluated again.

Each OA uses a particular policy to create the new population from the previous evaluated population. The goal is to converge to the optimal solution in the minimum number of steps. In order to perform this operation, OAs include random components to search for the global best solution which includes values of dispersion to spread or to focus the offspring near a possible solution for each iteration.

Previous works dealing with PEMFC parameters identification have tested PSO [7],[26], HADE [12] and EA [25]. HADE is an evolution in parameter identification that overpasses the PSO results and EA was tested to identify the thermal component of a PMFC. This paper tests the previous three algorithms and includes two new proposals to solve some difficulties found in the model identification.

One important feature of PSO is its ability to gradually focus the search around the minimum. However, if the algorithm falls around a local minimum, PSO loses the ability to find other possible solutions with better results. This paper proposes the introduction of periodic perturbations inside the population in order to force PSO reactivation. The perturbation will consist of a new population PSO^k based on the best global solution.

$$PSO^k_j = \{c_{i,j}^1, c_{2,j}^1, c_{3,j}^1, \ldots, c_{n,j}^1\}$$ \hspace{1cm} (10)$$

$$c_{i,j}^1 = (c_i^{GBest} \cdot z \cdot n) + c_i^{GBest}$$ \hspace{1cm} (11)$$

Where c_i^{GBest} is de i coefficient belonging to the global best solution until iteration $k-1$, z is a random number in the range $[-1; 1]$, and n is a perturbation value. This proposal is named PSOp because the use of perturbations.

The PEMFC model identification uses seventeen parameters that must be evaluated so the process has a considerable computational demand. Therefore, in order to simplify the identification process, another GA called Scout genetic algorithm (ScGA) is proposed. RGA is a minimalist GA that creates new populations based on the overall best solution found. The progeny is split into two groups the offspring and the scouts.
Where \(j \) is the population size and \(S_n \) is a value in the range \([0; 1]\) which represents the percent of scouts in the population. The offspring population is calculated as:

\[
PS_{i+1} = \left\{ \text{Offspring number} = j \cdot (1 - S_n) \right\}
\]

(12)

Where \(PS_j^{Best} \) is the coefficient set achieving the best solution until iteration \(k \), \(z_i \) is a random number in the range \([-1; 1]\) which modifies all values in one set, and \(v_{os} \) is the spread value of offspring which modifies the whole coefficient set.

The scout population is:

\[
PS_{Sc}^{i+1} = \left\{ c_i^{i+1}, c_j^{i+1}, c_k^{i+1}, \ldots, c_{(i,j,Sc)}^{i+1} \right\}
\]

(14)

Where each \(c_i^{i+1} \) is calculated as:

\[
c_i^{i+1} = (c_i^{gBest} \cdot z_i \cdot v_{Sc}) + c_i^{gBest}
\]

(15)

Where \(c_i \) is the coefficient \(i \) of the global best solution until iteration \(k \), \(z_i \) is a random number in the range \([-1; 1]\) which affect only the \(i^{th} \) coefficient, and \(v_{Sc} \) is the spread scout value.

4. Results

The identification process was carried out with the five OA explained in the previous section: PSO, HADE and EA as previous approaches; PSOp and ScGA as proposed new approaches. For all OAs, the population size \(j \) was set to 100 individuals starting from the same initial \(PS_1 \). The initial population dispersion \(v_{o} \) was set to 0.5 to create enough diversity. The maximum iteration number \(k \) was set to 200 in order to give the same opportunity to each OA.

Figure 6 shows the global best error reached by each OA. The figure shows fast responses for all the algorithms. However, HADE, EA, and PSO early became stuck in high errors. PSOp and ScGA reached lowest errors.

Table 2 shows that ScGA is the best option to identify the PEMFC model regarding the precision, velocity and computational cost. In the second place, the PSOp is the most accuracy algorithm, but its computational cost and velocity are not the best. The EA shows middle-level of precision and good computational time that places it in the third position. PSO presents the known phenomena of getting stuck around fake local minimal. Finally, HADE is placed in the last position.

The optimization velocity of HADE, EA, and PSOp algorithms indicates that an increment in the iteration’s number could give better results if the simulation time is despicable in the parameter identification process.
Table 2 OA Comparison

<table>
<thead>
<tr>
<th>Criteria/algorithm</th>
<th>PSO</th>
<th>PSOp</th>
<th>HADE</th>
<th>EA</th>
<th>ScGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision (%)</td>
<td>Value</td>
<td>7.96</td>
<td>2.68</td>
<td>10.9</td>
<td>5.95</td>
</tr>
<tr>
<td></td>
<td>Score</td>
<td>2.97</td>
<td>1</td>
<td>4.07</td>
<td>2.22</td>
</tr>
<tr>
<td>Optimization velocity (iteration)</td>
<td>Value</td>
<td>42</td>
<td>190</td>
<td>194</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>Score</td>
<td>1</td>
<td>4.52</td>
<td>4.62</td>
<td>4.60</td>
</tr>
<tr>
<td>Computational time (ms)</td>
<td>Value</td>
<td>18.9</td>
<td>19.1</td>
<td>22.8</td>
<td>11.6</td>
</tr>
<tr>
<td></td>
<td>Score</td>
<td>1.75</td>
<td>1.77</td>
<td>2.11</td>
<td>1.07</td>
</tr>
<tr>
<td>Total score</td>
<td></td>
<td>5.72</td>
<td>7.29</td>
<td>10.8</td>
<td>7.89</td>
</tr>
</tbody>
</table>

Table 3 shows the found values in the identification process, these values were used to validate the model identified.
Table 3: Initial and identified coefficients

<table>
<thead>
<tr>
<th>#</th>
<th>COEFFICIENT</th>
<th>INITIAL VALUE</th>
<th>IDENTIFIED VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>c_APCD</td>
<td>5.00E-1</td>
<td>6.46E-1</td>
</tr>
<tr>
<td>2</td>
<td>c_APA</td>
<td>1.65E+0</td>
<td>3.39E+0</td>
</tr>
<tr>
<td>3</td>
<td>c_APC1</td>
<td>4.19E+0</td>
<td>2.46E+0</td>
</tr>
<tr>
<td>4</td>
<td>c_APC2</td>
<td>1.00E+2</td>
<td>4.39E+1</td>
</tr>
<tr>
<td>5</td>
<td>c_Act1</td>
<td>1.30E+0</td>
<td>9.37E-1</td>
</tr>
<tr>
<td>6</td>
<td>c_Act2</td>
<td>1.30E+0</td>
<td>7.76E-1</td>
</tr>
<tr>
<td>7</td>
<td>c_OHM1</td>
<td>-1.30E+0</td>
<td>-1.13E+0</td>
</tr>
<tr>
<td>8</td>
<td>c_OHM2</td>
<td>3.00E-5</td>
<td>7.58E-6</td>
</tr>
<tr>
<td>9</td>
<td>c_CONC</td>
<td>-2.60E+0</td>
<td>-3.87E+0</td>
</tr>
<tr>
<td>10</td>
<td>c_Pot1</td>
<td>1.58E-2</td>
<td>4.50E-3</td>
</tr>
<tr>
<td>11</td>
<td>c_Pot2</td>
<td>1.63E-1</td>
<td>5.24E-2</td>
</tr>
<tr>
<td>12</td>
<td>c_TDDG</td>
<td>1.60E-1</td>
<td>1.26E-1</td>
</tr>
<tr>
<td>13</td>
<td>c_TDD</td>
<td>8.00E+1</td>
<td>3.13E+1</td>
</tr>
<tr>
<td>14</td>
<td>c_HLH</td>
<td>9.50E+0</td>
<td>2.25E+0</td>
</tr>
<tr>
<td>15</td>
<td>c_HLAF</td>
<td>5.16E+0</td>
<td>1.14E+0</td>
</tr>
<tr>
<td>16</td>
<td>c_HLFAN</td>
<td>7.67E+0</td>
<td>5.22E-3</td>
</tr>
<tr>
<td>17</td>
<td>c_PEMH</td>
<td>3.42E+4</td>
<td>2.09E+4</td>
</tr>
</tbody>
</table>

To validate the model, it was configured with the identified parameters and tested against two real data files under different load profiles. Figure 7 shows the current load profiles which force different dynamical PEMFC behaviors. The current profiles are loaded in the model with the other inputs signals.

![Figure 7 Current load profiles used in validation. (a) Profile 1; (b) Profiles 2.](image)

Figure 8 shows the model validation performed with the current profile 1. In the stack temperature graphic (left) the simulated plot is ahead, but close following real plot. The output voltage graphic shows that the simulated voltage follows the real data, but has slow response respect to the changes of load.
Figure 8: Simulation with the identified parameters using the profile of current 1. (a) stack temperature; (b) output voltage.

Figure 9: Simulation with the identified parameters using the profile of current 2. Left, stack temperature; right, output voltage.

Figure 9 shows the profile 2 validation. Both graphics confirm the behavior above mentioned. However, it is remarkable that the temperature simulated cannot decrease in the first section of the profile.

Table 4 shows the errors achieved in the signals of voltage, temperature and the mean of voltage-temperature using equations (7) and (8).

Table 4 Simulation Results

<table>
<thead>
<tr>
<th>Current Profile</th>
<th>εV (%)</th>
<th>εT (%)</th>
<th>ε(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.21</td>
<td>1.97</td>
<td>2.09</td>
</tr>
<tr>
<td>2</td>
<td>2.75</td>
<td>2.22</td>
<td>2.48</td>
</tr>
</tbody>
</table>

5. Conclusions

This paper presents a non-linear model able to represent the real performance of a PEMFC, which includes not only the electrical behavior but also the thermal behavior. The model has been fit to represent a real NEXA 1.2kW PEMFC behavior with the aid of GA. The initial coefficients extracted from other papers produced an initial error above 30%.

This fact created an interesting challenge because the literature about PEMFC parameter fitting identification process starts with values close to the expected target. This research compares five different GA algorithms to explore the best approach. Three of this GAs were taken from literature.
and two more were proposed. It is shown that the proposed PSOp and ScGA are remarkable algorithms because of its good precision and low computational cost.

The identified model was tested with real data and it showed good results with overall errors under 3%. Despite the fact that the identification process reaches low errors, the accuracy improvement of the model will be always needed. Therefore, the work related to the model precision must continue focused on analyzing the dynamic model behavior.

The PEMFC block model is behaving as a white box model because the internal signals are accessible. It is a useful feature to apply condition monitoring and fault diagnosis techniques. The use of the identified model for the real PEMFC fault diagnosis and condition monitoring will be the next step of the research. The application of this complex and well fit mathematical model will improve the diagnosis power of the standard procedures.

6. Acknowledgment

This work was carried out with the support of the COLCIENCIAS (Administrative department of science, technology and innovation of Colombia) scholarship program PDBCEx, COLDOC 586, and the support provided by the Corporación Universitaria Comfacauna, Popayán – Colombia.

References

