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Abstract: PEM fuel cell is a technology successfully used in the production of energy from 14 
hydrogen, allowing the use of hydrogen as an energy vector. It is scalable for stationary and 15 
mobile applications. However, the technology demands more research. An important research 16 
topic is fault diagnosis and condition monitoring to improve the life and the efficiency and to 17 
reduce the operation costs of PEMFC devices. Consequently, there is a need of physical 18 
models that let deep analysis. These models must be accurate enough to represent the PEMFC 19 
behavior and to allow the identification of different internal signals of a PEM fuel cell. This 20 
work presents a PEM fuel cell model that uses the output temperature in a closed loop, so it 21 
can represent the thermal and the electrical behavior. The model is used to represent a NEXA 22 
Ballard 1.2 kW; therefore it is necessary to fit the coefficients to represent the real behavior. 23 
Five optimization algorithms were tested to fit the model, three of them were taken from 24 
literature and two were proposed. Finally, the model with the parameters identified was 25 
validated with real. 26 

Keywords: PEM fuel cell; identification; Genetic algorithm; Model; LabVIEW 27 
 28 

1. Introduction 29 
Proton Membrane Exchange Fuel Cell (PEMFC) is an electrochemical device, which is able to 30 

convert chemical energy (stored hydrogen) into electrical energy. PEMFC is an interesting power 31 
source solution due to its low operation temperature, its high power density, its good response to 32 
varying loads, and its easy scale-up [1] . However, the high cost of this technology makes modelling, 33 
parametric identification and fault diagnosis necessary research topics to improve the use of PEMFC 34 
[2]. PEMFCs have parameters that change from one cell to another because of different reasons: 35 
manufacturing materials, physical dimensions, aging, working conditions, etc. Adequate cell 36 
identification is necessary to know the internal cell conditions, to define the optimal working point, 37 
to estimate the supply power capacity, and to implement condition monitoring techniques or fault 38 
diagnosis algorithms. More complete, detailed and accuracy models allow the detection of small 39 
variations that can be considered as preludes of possible failures. Detecting these variations could 40 
prevent irreparable damages, it will lower replacement costs, and it will improve the reliability of 41 
the system. 42 

There are some previous works dealing with PEMFC model identification. Each approach 43 
includes its own model structure and simplifications. Regarding the identification techniques, they 44 
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are highly dependent on the PEMFC model and they can be classified into two big subsets: static 45 
models and dynamic models. 46 

The static model is created to identify the cell polarization curve in specific conditions of 47 
pressure and temperature. Hence, the experiment must keep as constants these variables. 48 

 49 
Figure 1 shows a typical cell polarization curve which represents the main cell characteristics. 50 

As the current increases the voltage drops in three visible sections: the first voltage drop represents 51 
cell activation losses; the second section represents voltage losses by internal resistance, and the 52 
third section represents the voltage drop by gas transportation or concentration losses [3]. 53 

 54 

 55 

Figure 1 Typical PEMFC polarization curve 56 

In [4] a model based on Neural Networks and used the Levenberg-Marquardt BP algorithm to 57 
identify the polarization curve characteristics is proposed. The model inputs were the airflow and 58 
the temperature, and the outputs signals were the current and voltage. The model presented good 59 
accuracy; however, the system demanded training with high computational cost, and the authors 60 
exposed as an alternative the use of other Optimization algorithms (OA). 61 

The identification of equations based in the model [5] and using OA is a clear tendency, these 62 
models have electrical and thermodynamics equations with around seven coefficients which allow 63 
tuning the model.  The coefficients are identified using an optimization function which minimizes 64 
the error between simulated and real signals. In [6] the current demand is used as input to generate 65 
de polarization curve. The identification of the coefficients was performed with an OA called Hybrid 66 
Genetic Algorithm (HGA) that avoids the premature convergence of Simple genetic algorithms 67 
(SGA). The HGA needs to be fed with parameters closer to ideal values previously identified. In [7] a 68 
similar model to the previous one was used to identify the system with a Particle swarm 69 
optimization algorithm (PSO) as an algorithm which accepts initial parameters located in a very 70 
broad range. In [8] is presented a Grouping-based global harmony search algorithm (GGHS) to 71 
surpass the limits of Harmony search algorithm (HS). This work compared the GGHS with versions 72 
of HG and PSO, and concluded that the GGHS overcomes the mentioned algorithms. The 73 
Grasshopper Optimization Algorithm (GOA) was proposed by [9] to identify the parameters of 74 
three different PEMFC, Though, GGHS and GOA require that the initial parameters fall within 75 
closer bounds.  In [10] the Effective informed adaptive particle swarm optimization (EIA-PSO) as a 76 
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modification of PSO that makes the algorithm configuration be dynamic to avoid finds fake 77 
solutions is proposed. However, this modification increases the computational cost in regarding to a 78 
PSO. To overcoming the mentioned problems of PSO, in [11] a Grey Wolf Optimizer is proposed, 79 
this algorithm was tested with the classical model and five real different PEMFC. Related to 80 
differential evolution (DE) algorithm framework, some author proposed variations to improve the 81 
performance of the scaling factor F. in [12] proposed the hybrid adaptive differential evolution 82 
algorithm (HADE) and they compared it with PSO and two versions of differential evolutionary 83 
algorithms is proposed. The HADE overpasses the performance of the others OA in terms of 84 
minimization velocity. The comparison was made using test functions, but the PEMFC model and its 85 
optimization function only was carry out whit HADE. Transferred adaptive DE (TRADE) is an DE 86 
improve algorithm applied to a PEMFC and SOFC models proposed by [13]. Though, GGHS and 87 
GOA require that the initial parameters fall within closer bounds both presents attractive results. On 88 
the similar way, [14] proposed a hybridization between Teaching Learning Based Optimization 89 
method (TLBO) and DE algorithm, this application lets obtain better results with low computational 90 
cost, compared with single TLBO and DE separately. In [15] the quantum-based optimization 91 
method (QBOM) applied to the identification of three voltage drop coefficients of a NEXA 1.2 kW 92 
PEMFC model is introduced. QBOM showed good accuracy and high minimization velocity in the 93 
identification. However it was applied in the identification of three parameters versus the seven 94 
parameters identified by previously mentioned works. 95 

The above authors demonstrated the usefulness of OAs to parameter identification of PEMFC 96 
polarization curves. Moreover, the PEMFC polarization curve only represents the cell operation at 97 
one single stack temperature value and a single stable pressure of inlet gasses.  98 

In the second main classification are the dynamic PEMFC models. Those models represent 99 
better the real behavior of a PEMFC because they show changes in the cell response when there are 100 
changes on the load current and other variables and consider the cell as a Multiple-input 101 
multiple-output system (MIMO). Each identification technique uses particular excitation inputs 102 
(such as steps, ramps or waves) and each one uses the outputs to build or to adjust transfer functions 103 
or state space models which include the fuel cell parameters. To facilitate the model identification, 104 
some PEMFC models can also be simplified by working with constant temperatures or by using 105 
linearization techniques. 106 

A dynamic model used to test several control strategies was presented in [16]. This model 107 
included inputs such as: inlet molar flow rates of oxygen and hydrogen; inlet temperatures of anode 108 
and cathode gas; and inlet coolant flow rate. After the excitation with input steps, the authors 109 
developed an empirical identification by monitoring the average power density and the average 110 
solid temperature. In [17] the authors used transfer functions to model a PEMFC. This work used the 111 
stack current and the cathode oxygen flow rate as inputs and the stack voltage and the cathode total 112 
pressure as outputs. The model is able to predict the output signals near to the operation point. In 113 
[18], a PEMFC Hammerstein model is presented. The inputs were current, stoichiometric oxygen, 114 
and cooling water flow, and the outputs were the partial pressure of O2 and the stack temperature. 115 
The identification process used different random steps signals as inputs. In [19] a PEMFC dynamic 116 
model that included the polarization curve characteristics and a double layer charge effect is 117 
proposed. The model input was a typical current demand of a DC-DC or a DC-AC. In [20] a 118 
NARMAX model to represent the MIMO relations and to identify the coefficients satisfying the 119 
PEMFC voltage simulation is used. Also a NARMAX model is used by [21] to represent PEM and 120 
used a GA to the model identification, however, the model only represents the fuel cell temperature. 121 
Buchlozt and Krebs [22] splits the PEMFC model into a dynamic part and a static part. The static 122 
model was identified with Neural Networks whereas the dynamic model was developed with a mix 123 
of transfer functions and linear state-space models. The model inputs were: current density, oxygen 124 
stoichiometry, gas supply pressure, and gasses relative humidity; other values as stoichiometry of 125 
oxygen and stack temperature were set to constant. The model output was the sum of the dynamic 126 
and the static voltage. The authors exposed that the split model allows to reduce the computational 127 
time and to improve the accuracy. A split model was also presented in [23]. Regarding the dynamic 128 
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part, the inputs were the current and the cathode pressure. All these works get deeper in the 129 
different relationships between input and output signals, so they model cell voltage responses to 130 
gasses pressures and current variations. Nevertheless, PEMFC operation produces heat that changes 131 
in the cell temperature. The temperature affects the cell performance and features as open circuit 132 
voltage, internal gasses pressures, gas humidity, and internal resistances. Therefore, the use of 133 
temperature as an input variable will give more accuracy to the model despite de fact that the 134 
increment of complexity and nonlinearity. 135 

Wang et al. [24] developed a dynamic equations model where the temperature is considered to 136 
work in closed loop. The model included the electrochemical and thermal responses and the cell 137 
double layer charge effect, and has a good response in steady state and transients.  The model 138 
characteristics are applicable in fault diagnosis and condition monitoring tasks; thus, this work was 139 
developed for a 500 W PEMFC and is not directly usable for other devices. 140 

One recent approach [25] used an equivalent electrical circuit model to represent a Nexa Ballard 141 
1.2Kw PEMFC. This model simulated both the output voltage and the stack temperature. The model 142 
included fourteen electric coefficients and six thermal coefficients. They were identified with an 143 
Evolution strategy algorithm (ES). This work showed a model that includes the stack thermal 144 
dynamics and they applied GA to the parameter identification, however, the thermal model includes 145 
a piecewise heuristic function to link the temperature with the current to adjust the operation of the 146 
cooling system of the real cell. This last component and the model based on electrical circuit do not 147 
let access to internal signals system. Salim et al. [26] use equations based model which includes the 148 
thermal behavior of NEXA 1.2kW PEMFC. The voltage model was developed by a fitting 149 
polynomial curve which involves the classical voltage losses. The thermal model was developed 150 
using the sensible heat and latent heat. The identification process applies PSO with one independent 151 
optimization function for the voltage part and other for the thermal model. The result shows high 152 
simulation accuracy. However, the model does not take into account the temperature in a closed 153 
loop, neither the cooling system performance of the device. 154 

 155 

Figure 2 Block diagram of Nexa fuel cell balance of plant. 156 

The present work is involved in a wider study related with fault diagnosis and condition 157 
monitoring of a Nexa Ballard 1.2kW PEMFC installed in the Laboratory of Distributed Energy 158 
Resources [27]. Figure 2 shows the block diagram of the complete Nexa system. Hydrogen is 159 
supplied from a compressed tank at adequate pressure. Reaction air is supplied by means a 160 
compressor and measured by a mass flow meter. Temperature is measured at the air outlet, so this is 161 
the stack temperature. The system is cooled by a fan in order to maintain the temperature under the 162 
upper limit. Voltage of the complete stack and the last two cells is measured in order to determine 163 
when the hydrogen purge valve is opened to eliminate accumulated impurities. Current generated 164 
by the fuel cell is measured for two reasons: to open the relay if current exceeds the maximum and to 165 
act over the air compressor to maintain the correct stoichiometric relationship. Table 1 shows the 166 
manufacturer values of the PEMFC. 167 

 168 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 July 2018                   doi:10.20944/preprints201807.0164.v1

Peer-reviewed version available at Energies 2018, 11, 2099; doi:10.3390/en11082099

http://dx.doi.org/10.20944/preprints201807.0164.v1
http://dx.doi.org/10.3390/en11082099


 5 of 15 

 

Table 1 Maximum characteristics of Nexa 1200 fuel cell 169 

Power 1200 W 
Operating voltage range 22 – 50 V 

Current 55 A 
Hydrogen consumption 18.5 slpm 

Air flow 90 slpm 
Temperature 80 oC 

Cooling air flow 3600 slpm 
 170 
The overall study requires a model able to represent the device and that uses the maximum 171 

amount of measured data. In addition, the identification process must be accurate, fast, and with the 172 
lowest computational cost as possible to make the model suitable to be used in real time 173 
applications. This paper uses the model presented by [24] to fit the NEXA 1.2kW PEMFC real data. 174 
Moreover, several GA are used and they are compared in order to look for the best strategy to fit the 175 
model. 176 

Section 2 shows the description of the model. Section three shows the adjustment of the 177 
equations coefficients to fit the PEMFC Nexa behavior. The results of the identification and the 178 
model validation are presented in section four. Finally, we present some conclusions and future 179 
works. 180 

2. The PEMFC model 181 
Materials The model presented in this paper is an extension of the dynamic model 182 

presented in [24] where explained the model in detail. This work only presents the key 183 
equations and the modifications included. The model was originally created to represent a 184 
500W PEMFC and it was implemented with Matlab/Simulink® and Pspice®. However, the 185 
Nexa 1.2kW PEMFC software (NexaMon OEM 2.0) gives more information as inlet pressures 186 
and cooling system variables that can be taken into account to model the thermal development 187 
of the fuel cell. Figure 3 shows PEMFC model, including the in/out put signals. 188 

 189 

Figure 3 PEMFC model 190 

The model is grouped into electrical and thermal equation sets. The most remarkable 191 
variable in the electrical set is the cell potential Ecell(t) which is calculated with the Nernst’s 192 
equation. Equation (1) is a simplification of the Nernst’s equation which assumes: a) the Stack 193 
keeps under 100º C its temperature; b) the reaction product is in a liquid phase. The equation 194 
includes a voltage Ed,cell(t) which represents the electrical effect of gas pressure changes during 195 
load transients and classical voltage drops. 196 

 197 

Eୡୣ୪୪(t) = E଴(t) + ൬
R · T(t)

2 · F
൰ · ln[pୌଶ

∗ (t) · (p୓ଶ
∗ (t))଴.ହ] − Eୢ,ୡୣ୪୪(t) (1)
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Where T(t) is the cell temperature (K); F is the Faraday constant (96487 coulombs/mol); R is 198 
the ideal gas constant (8.3143 J/mol K); E0(t) is the reference potential at standard conditions 199 
(298 K, 1 atm); pH2*(t) is the H2 effective partial pressure; pO2*(t) is the O2 partial pressure.  200 
Ed,cell(t) is initially modelled in Laplace domain as equation (2) and implemented in time 201 
domain equation (3). 202 

ௗ,௖௘௟௟ܧ = ߣ · (ݏ)ܫ ·
߬௘ݏ

߬௘ݏ + 1 (2)

ௗ,௖௘௟௟ܧ = ݀ · ൤൬
ܫ߂ · ݌

߬
൰ + ൨ (3)(ݐ)ܫ

 203 
Where I(t) is the current (A); p is the simulation step; d, τ are a delay constants related to 204 

PEMFC distribution layers. 205 
Regarding the thermal equations set, the thermal loss equation was modified to include the 206 

cooling system of Nexa PEMFC. It is identified in the equation (4). 207 
 208 

(ݐ)௟௢௦௦ݍ̇ = ℎ௖௘௟௟(ݐ) · ൫ܶ(ݐ) + ௥ܶ௢௢௠(ݐ)൯ · ௖ܰ௘௟௟ · ௖௘௟௟ܣ · (4) (ݐ)௙ܣ

Where, hcell is the convective heat transfer coefficient (W/m2·K) of the stack; Ncell is the 209 
number of cells in the stack; Acell is the cell area (cm2). The control system of a Nexa includes the 210 
operation of a fan and cooling system, providing oxygen inlet and keeping the temperature 211 
under a limit to keep operation conditions and avoid membrane damage. Af (t) is a coefficient to 212 
adjust the temperature related to the cooling system. 213 

The proposed model has been split into functional blocks (Figure 3), so each block can be 214 
analyzed separately for fault diagnosis purposes. Each block contains tunable coefficients to 215 
reduce the difference between the real and the simulated signals. The blocks and its respective 216 
coefficients are described bellow: 217 

 218 
Active pressure block calculates the effective partial pressure in the anode and the cathode 219 

side. The block has four parameters 220 
 c_APCD is a parameter related to the cell current density. 221 
 c_APa is a parameter related to the distance between the anode channel and the catalyst 222 

surface. 223 
 c_APc1 is a parameter related to the distance between the cathode channel and the catalyst 224 

surface. 225 
 c_APc2 is a parameter that fits the pressure of saturated H2O curve in function of the 226 

temperature. 227 
 228 
Voltage drop block represents the voltage losses by activation, internal resistance, and 229 

concentration. The coefficients are: 230 
 c_Act1 is a parameter related to the activation voltage drop that only depends on temperature. 231 
 c_Act2 is a parameter related to the activation voltage drop, that depends on current and 232 

temperature. 233 
 c_Ohm1 is the parameter related to ohmic losses that depends on current and temperature. 234 
 c_Ohm2 is a parameter related to ohmic losses that only depends on cur- rent. 235 
 c_Conc is a parameter related to the voltage concentration drop. 236 
 237 

The potential of the cell are calculated in the Potential Block which includes two coefficients: 238 
 c_Pot1 is a value that adjusts the internal electric potential of the cell. 239 
 c_Pot2 is a parameter related to the free Gibbs energy (∆G). 240 

 241 
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The Terminal Block represents the electrical global stack behavior. This block includes the cell 242 
potential, the voltage losses, and a voltage drop by fuel and oxidant delays during load transients. 243 
The Terminal Block has the following parameters: 244 
 c_TDD is the gasses delay time constant during load transients. 245 
 c_TDDG represents a gain that affects the delay by load transients. 246 

 247 
The Heat Loss block represents thermal losses that leave the stack by air convection and energy 248 

absorbed by exhaust gasses. The parameters are: 249 
 c_HLh is a gain that affect the overall heat loss. 250 
 c_HLaf is the parameter fitting the thermal loss associated to the cathode side. It is included in 251 

the stack thermal loss. 252 
 c_HLfan is a gain associated with the cooling fan system and it is included in the stack thermal 253 

loss. 254 
 255 
PEM Block merges the electrical and the thermal equations to represent the global PEMFC 256 

performance. This block has one parameter. 257 
 c_PEMh is related to the total mass of stack and its overall specific heat capacity. 258 

 259 
A complete set of parameters (PS) can be used to simulate the PEMFC. Therefore, the goal of 260 

this research will be the search of the set of parameters that minimizes the difference between the 261 
PEMFC real outputs and the model outputs. The notation used to define the different elements of 262 
the algorithms is presented below: 263 

 264 
PS = {c_APCD, c_APa, c_APc1, c_APc2, c_Act1, c_Act2, c_Ohm1, c_Ohm2, 265 
c_Conc, c_Pot1, c_Pot2, c_TDD, c_TDDG, c_HLh, c_HLaf, c_HLfan, c_PEMh} 266 

 267 
A population of parameter sets (an array of parameter sets) will be noted as: 268 
 269 

PS୩ = ൛PSଵ
୩, PSଶ

୩, PSଷ
୩, … , PS୨

୩ൟ 270 

Where PSk is the population of kth iteration. 271 
 272 

PS୨
୩ = ൛cଵ,୨

୩ , cଶ,୨
୩ , cଷ,୨

୩ , … , c୬,୨
୩ ൟ 273 

Where PSjk is jth parameter set of the kth population and the ith model parameter will be noted as 274 
c ki,j. For example, c71,2 corresponds with the value of parameter 1 c_APCD in parameter set 2 of the 275 
7th population. 276 

The model was programmed and tested with initial coefficients taken from [24] and from the 277 
device manufacturer manual. This PEMFC model was simulated using real inputs signals. Figure 4 278 
shows the predicted voltage and temperature as well as the real values. Therefore, despite the fact 279 
that there is a significant difference, the model seems to be suitable to represent the system dynamics 280 
after a suitable parameter fitting. The MSE obtained with the initial coefficients represent a challenge 281 
in the identification process because huge starting errors make it difficult to find the optimal 282 
parameter set. 283 

 284 
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(a) 

 
(b) 

Figure 4 Model test using the initial parameters: (a) stack temperature; (b) output voltage 285 

 286 

3. Parameter identification 287 
 288 
 shows the identification process. The process begins with the generation of a randomized 289 

population.  290 
 291 

 292 
Figure 5 Global identification process algorithm 293 

This population is created from an initial PS11 as indicated in equation (5) 294 
 295 

ܲ ௝ܵ
ଵ = ቈ

݆ = 1: ܿ௜,ଵ = ܿ௜,ଵ

݆ ≥ 1: ܿ௜,ଵ = ൫ܿ௜,ଵ · ݖ · ௗ൯ݒ + ܿ௜,ଵ
቉ (5)

 296 
Where z is a random number in the range [-1, 1] and vd is a value to generate initial dispersion1. 297 

Each PSk is simulated with real inputs and its corresponding error is shown in equation (6). 298 
 299 

ܲߝ ௝ܵ
ଵ = ൬

ܸߝ + ܶߝ
2

൰ (6)

 300 

                                                
1 Some GAs include special criteria to create this first population. 
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Where εV is the output voltage error, and εT is the stack temperature error calculates as: 301 
 302 

ܸߝ = ൬
௏ܧܵܯܴ

௏ܨ
· 100൰ (7)

 303 
 304 

ܶߝ = ൬
்ܧܵܯܴ

்ܨ
· 100൰ (8)

Where RMSEV and RMSET stand for the root mean square error between real and simulated 305 
output voltage signals and stack temperature signals respectively. FSV and FST stand for the device 306 
full scales related to the output voltage signal and stack temperature signal respectively. 307 

 308 

௢௨௧ܧܵܯܴ = ටଵ
௡

·෍ ൫ை௨௧ೃ (௧)ିை௨௧ೄ (௧)൯మ೙

೟సభ
 (9)

 309 
Where n is the data length; OutR (t) and OutS (t) are the real and simulated output signal values 310 

at time t, respectively. So, the goal is to minimize ܲߝ ௝ܵ
௞ . 311 

Each ܲ ௝ܵ
௞ is evaluated in the PEMFC model to obtain each error ܲߝ ௝ܵ

௞. There is a minimum 312 
error ݊݅ܯఌ௉ௌೕ

ೖ at each iteration. The optimization process ends when the stop condition is met. The 313 
stop condition can be specified as a threshold for ݊݅ܯఌ௉ௌೕ

ೖ or as a maximum number of iterations. If 314 
the stop condition is not fulfilled, the OA creates a new population ܲ ௝ܵ

௜ାଵ. This new population is 315 
evaluated again. 316 

Each OA uses a particular policy to create the new population form the previous evaluated 317 
population. The goal is to converge to the optimal solution in the minimum number of steps. In 318 
order to perform this operation, OAs include random components to search for the global best 319 
solution which include values of dispersion to spread or to focus the offspring near a possible 320 
solution for each iteration. 321 

Previous works dealing with PEMFC parameters identification have tested PSO [7],[26], HADE 322 
[12] and EA [25]. HADE is an evolution in parameter identification that overpasses the PSO results 323 
and EA was tested to identify the thermal component of a PMFC. This paper tests the previous three 324 
algorithms and includes two new proposals to solve some difficulties found in the model 325 
identification. 326 

One important feature of PSO is its ability to gradually focus the search around the minimum. 327 
However, if the algorithm falls around a local minimum, PSO losses the ability to found other 328 
possible solutions with better results. This paper proposes the introduction of periodic perturbations 329 
inside the population in order to force PSO reactivation. The perturbation will consist of a new 330 
population ܲ ௝ܵ

௟ based on the best global solution. 331 

ܲ ௝ܵ
௟ = ൛ܿଵ,௝

௟ , ܿଶ,௝
௟ , ܿଷ,௝

௟ , … , ܿ௡,௝
௟ ൟ (10) 

ܿ௜,௝
௟ = (ܿ௜

ீ஻௘௦௧ · ݖ · ݊) + ܿ௜
ீ஻௘௦௧  (11) 

Where CiGBest is de i coefficient belonging to the global best solution until iteration k-1, z is a 332 
random number in the range [-1; 1], and n is a perturbation value. This proposal is named PSOp 333 
because the use of perturbations. 334 

The PEMFC model identification uses seventeen parameters that must be evaluated so the 335 
process has a considerable computational demand.  Therefore, in order to simplify the 336 
identification process, another GA called Scout genetic algorithm (ScGA) is proposed. RGA is a 337 
minimalist GA that creates new populations based on the overall best solution found. The progeny is 338 
split into two groups the offspring and the scouts. 339 

 340 
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ܲ ௝ܵ
௟ାଵ = ൜ܱ݂݂ݎܾ݁݉ݑ݊ ݃݊݅ݎ݌ݏ = ݆ · (1 − ܵ௡)

ݎܾ݁݉ݑ݊ ݐݑ݋ܿܵ = ݆ · ܵ௡
ൠ (12) 

Where j is the population size and Sn is a value in the range [0; 1] which represents the 341 
percent of scouts in the population. The offspring population is calculated as: 342 

ܲܵ௢௦
௟ାଵ = ൫ܲ ௝ܵ

ீ஻௘௦௧ · ௢௦ݒ · ௝൯ݖ + ܲ ௝ܵ
ீ஻௘௦௧  (13) 

Where PSjGBest is the coefficient set achieving the best solution until iteration k, zj is a random 343 
number in the range [-1; 1] which modifies all values in one set, and vos is the spread value of 344 
offspring which modifies the whole coefficient set. 345 

The scout population is: 346 
ܲ ௌܵ௖

௟ାଵ = ൛ܿଵ,௝
௟ାଵ , ܿଶ,௝

௟ାଵ , ܿଷ,௝
௟ାଵ, … , ܿ௜,(௝.ௌ௖ )

௟ାଵ ൟ (14) 

Where each ܿ௜,௝
௟ାଵ is calculated as: 347 

ܿ௜,௝
௟ାଵ = (ܿ௜

ீ஻௘௦௧ · ௜ݖ · (௦௖ݒ + ܿ௜
ீ஻௘௦௧  (15) 

Where ci GBest is the coefficient i of the global best solution until iteration k. zi is a random 348 
number in the range [-1; 1] which affect only the ith coefficient, and vSc is the spread scout value. 349 

 350 

4. Results 351 
The identification process was carried out with the five OA explained in the previous section: 352 

PSO, HADE and EA as previous approaches; PSOp and ScGA as proposed new approaches. For all 353 
OAs, the population size (j) was set to 100 individuals starting from the same initial PS1·.The initial 354 
population dispersion (vd) was set to 0.5 to create enough diversity. The maximum iteration number 355 
(k) was set to 200 in order to give the same opportunity to each OA. 356 

Figure 6 shows the global best error reached by each OA. The figure shows fast responses 357 
for all the algorithms. However, HADE, EA, and PSO early became stuck in high errors. PSOp 358 
and ScGA reached lowest errors. 359 

 360 
Figure 6 Optimization algorithms behaviours (Global best result) 361 

Table 2 shows that ScGA is the best option to identify the PEMFC model regarding the 362 
precision, velocity and computational cost. In the second place, the PSOp is the most accuracy 363 
algorithm, but its computational cost and velocity are not the best. The EA shows middle-level of 364 
precision and good computational time that places it in the third position. PSO presents the known 365 
phenomena of getting stuck around fake local minimal. Finally, HADE is placed in the last position. 366 

The optimization velocity of HADE, EA, and PSOp algorithms indicates that an increment in 367 
the iteration’s number could give better results if the simulation time is despicable in the parameter 368 
identification process. 369 

 370 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 July 2018                   doi:10.20944/preprints201807.0164.v1

Peer-reviewed version available at Energies 2018, 11, 2099; doi:10.3390/en11082099

http://dx.doi.org/10.20944/preprints201807.0164.v1
http://dx.doi.org/10.3390/en11082099


 11 of 15 

 

Table 2 OA Comparison 371 

Criteria/algorithm PSO PSOp HADE EA ScGA 

Precision (%) Value 7,96 2,68 10,9 5,95 3,08 
Score 2,97 1 4,07 2,22 1,15 

Optimization velocity (iteration) Value 42 190 194 193 63 
Score 1 4,52 4,62 4,60 1,50 

Computational time (ms) Value 18,9 19,1 22,8 11,6 10,8 
Score 1,75 1,77 2,11 1,07 1 

Total score 5.72 7.29 10.80 7.89 3.65 
 372 
Table 3 shows the found values in the identification process, these values were used to validate 373 

the model identified. 374 
  375 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 July 2018                   doi:10.20944/preprints201807.0164.v1

Peer-reviewed version available at Energies 2018, 11, 2099; doi:10.3390/en11082099

http://dx.doi.org/10.20944/preprints201807.0164.v1
http://dx.doi.org/10.3390/en11082099


 12 of 15 

 

Table 3 Initial and identified coefficients 376 

# COEFFICIENT INITIAL VALUE IDENTIFIED VALUE 

1 C_APCD 5,00E-1 6,46E-1 

2 C_APA 1,65E+0 3,39E+0 

3 C_APC1 4,19E+0 2,46E+0 

4 C_APC2 1,00E+2 4,39E+1 

5 C_ACT1 1,30E+0 9,37E-1 

6 C_ACT2 1,30E+0 7,76E-1 

7 C_OHM1 -1,30E+0 -1,13E+0 

8 C_OHM2 3,00E-5 7,58E-6 

9 C_CONC -2,60E+0 -3,87E-1 

10 C_POT1 1,58E-2 4,50E-3 

11 C_POT2 1,63E-1 5,24E-2 

12 C_TDDG 1,60E-1 1.26E-1 

13 C_TDD 8,00E+1 3,13E+1 

14 C_HLH 9,50E+0 2,25E+0 

15 C_HLAF 5,16E+0 1,14E+0 

16 C_HLFAN 7.67E+0 5,22E-3 

17 C_PEMH 3,42E+4 2,09E+4 

 377 
To validate the model, it was configured with the identified parameters and tested against 378 

two real data files under different load profiles. Figure 7 shows the current load profiles which 379 
force different dynamical PEMFC behaviors. The current profi les are loaded in the model 380 
with the other inputs signals. 381 

 382 

 
(a) 

 
(b) 

Figure 7 Current load profiles used in de Validation. (a) Profile 1; (b) Profiles 2. 383 

Figure 8 shows the model validation performed with the current profile 1. In the stack 384 
temperature graphic (left) the simulated plot is ahead, but close following real plot. The output 385 
voltage graphic shows that the simulated voltage follows the real data, but has slow response 386 
respect to the changes of load. 387 

 388 
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(a) 

 
(b) 

Figure 8 Simulation with the identified parameters using the profile of current 1. (a) stack 389 
temperature; (b) output voltage. 390 

 
(a) 

 
(b) 

Figure 9: Simulation with the identified parameters using the profile of current 2. Left, stack 391 
temperature; right, output voltage. 392 

Figure 9 shows the profile 2 validation. Both graphics confirm the behavior above mentioned. 393 
However, it is remarkable that the temperature simulated cannot decrease in the first section of the 394 
profile. 395 

Table 4 shows the errors achieved in the signals of voltage, temperature and the mean of 396 
voltage-temperature using de equations (7) and (8)Error! Reference source not found.respectively. 397 

Table 4 Simulation Results 398 

Current Profile εV (%) εT (%) ε(%) 
1 2,21 1,97 2,09 

2 2,75 2,22 2,48 

5. Conclusions 399 
This paper presents a non-linear model able to represent the real performance of a PEMFC, 400 

which includes not only the electrical behavior but also the thermal behavior. The model has been fit 401 
to represent a real NEXA 1.2kW PEMFC behavior with the aid of GA. The initial coefficients 402 
extracted from other papers produced an initial error above 30%. 403 

This fact created an interesting challenge because the literature about PEMFC parameter fitting 404 
identification process starts with values close to the expected target. This research compares five 405 
different GA algorithms to explore the best approach. Three of this GAs were taken from literature 406 
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and two more were proposed. It is shown that the proposed PSOp and ScGA are remarkable 407 
algorithms because of its good precision and low computational cost. 408 

The identified model was tested with real data and it showed good results with overall errors 409 
under 3%. Despite the fact that the identification process reaches low errors, the accuracy 410 
improvement of the model will be al- ways needed. Therefore, the work related to the model 411 
precision must continue focused on analyzing the dynamic model behavior. 412 

The PEMFC block model is behaving as a white box model because the internal signals are 413 
accessible. It is a useful feature to apply condition monitoring and fault diagnosis techniques. The 414 
use of the identified model for the real PEMFC fault diagnosis and condition monitoring will be the 415 
next step of the research. The application of this complex and well fit mathematical model will 416 
improve the diagnosis power of the standard procedures. 417 
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