Type of the Paper (Article)

Array of Resonant Electromechanical Nanosystems: A Technological Breakthrough for Uncooled Infrared Imaging

Laurent Duraffourg 1,2*, Ludovic Laurent 1,2, Jean-Sébastien Moulet 1,2, Julien Arcamone 1,2 and Jean-Jacques Yon 1,2

1 Université Grenoble Alpes, F-38000 Grenoble, France
2 CEA, LETI, Minatec Campus, F-38054 Grenoble, France

Correspondence: laurent.duraffourg@cea.fr; Tel.: +33-438782915

Abstract: Microbolometer is the most common uncooled infrared technique that allows to achieve 50mK-temperature resolution on the scene. However, this approach has to struggle with both the self-heating inherent to the resistive readout principle and the 1/f noise. We present an alternative approach that consists in using micro/nanosonators vibrating according to a torsional mode, and whose resonant frequency changes with the incident IR-radiation. Dense arrays of such electromechanical structures were fabricated with a 12µm-pitch at low temperature allowing their integration on CMOS circuits according to a post-processing method. H-shape pixels with 9 µm-long nano-rods and a cross-section of 250 × 30 nm² were fabricated to provide large thermal responses, whose experimental measurements reached up to 1024 Hz/nW. These electromechanical resonators featured a noise equivalent power of 140pW for a response time of less than 1 ms. To our knowledge, these performance are unrivaled with such small dimensions. We also showed that a temperature sensitivity of 20 mK within 100ms-integration time is conceivable at a 12µm-pitch by co-integrating the resonators with their readout electronics and suggesting a new readout scheme. This sensitivity could be reached at short-term by depositing on top of the nano-rods a vanadium oxide layer having a phase-transition that could possibly enhance the thermal response by one order of magnitude.

Keywords: nano resonator; electromechanical system array; bolometer

1. Introduction

Microelectromechanical Systems (MEMS) are either used according to a static mode (accelerometers, micro-mirrors, RF switches, bimorph structures) or rather in dynamic way, when the harmonic response of the system is requested. Although quartz crystals were first studied (and continue to be widely used as time references), silicon is most likely the most widely used material for MEMS and NEMS (nano-electromechanical systems) due to its excellent mechanical properties. Indeed, advances in microelectronics on silicon wafers (increasingly large diameters - reliability and reproducibility of manufacturing methods, SOI substrates) have strongly enabled the rise of silicon-based MEMS/NEMS. Beyond silicon, alternative materials are nowadays already industrialized such as PZT and AlN, or envisaged such as GaAs, graphene, or aluminum, generally deposited on silicon substrates (in particular for economic reasons). Finally, the intrinsic compatibility of the manufacturing of silicon or silicon-based materials with a CMOS integration (“above-IC” approach or co-integration approach) is an undeniable asset in order to realize a high-SNR system including actuator/detector and compact readout circuit that is affordable and energy efficient.

The small size of NEMS makes them particularly sensitive to their external environment, while keeping very good frequency stability. In particular, silicon-based nanoresonators have already demonstrated their formidable potential in numbers of application domains. Nanoresonators are
excellent physical sensors, especially for measuring forces [1, 2] or mass [3, 4], for gas detection [5, 6]
but also for measuring the temperature [7-10]. Ultimate sensitivity of the order of the yottogram (10⁻²⁴g - mass of a proton) has even been demonstrated with single-wall carbon nanotubes (CNT) [11, 12].

More generally, nanoresonators can extend proteomics to high mass biomolecules (like complex of proteins or virus) [3, 13]. There is also an intense activity in the NEMS community related to the study of oscillators in their fundamental quantum mode using reciprocal interaction of optical micro cavity with a mechanical resonator [14-16]. Examples of mechanical resonator applications are plethoric: particle counting in fluid medium [17, 18], magnetometry [19-23], actuators [24] and RF filters [25], biology [26, 27].

The measurement principle is quite simple: it consists in monitoring the frequency shift of a NEMS kept at a given vibration (at a fixed controlled amplitude) using a closed loop circuit via a “Phase-Locked Loop” (PLL) or a self-oscillating circuit. Any change in an external physical parameter (temperature, pressure, force, acceleration ...) or on the surface of the material (adsorption of a gas, molecule, etc.) will modify its stiffness or its mass, thus inducing a change in the resonant frequency, which is continuously measured. Figure 1, adapted from [28], illustrates the measurement principle when a frequency shift is caused by a mass landing on top of a nanocantilever. In this case, a piezoresistive transduction is used to measure the mechanical oscillations of the cantilever (the actuation being purely capacitive [29]). Indeed, it was shown that piezoresistive detection is highly suitable at high frequency compared to capacitive readout in self-oscillation loop [30].

Neutral mass spectroscopy with such a system is now on-going and some papers have already demonstrated their interest for biomolecule analysis [3]. Beyond the ultra-sensitivity of NEMS, the overall analysis time has to be fast enough to make this technique a realistic solution. To tackle this key issue, the basic way consists in using a NEMS array for increasing the capture cross-section and hence speed up the analysis. In a recently published work, a NEMS array dedicated to mass sensing was realized with a frequency addressing, each NEMS having a slightly different resonance frequency labelling its position inside the array [31].

Figure 1. Principle of mass measurement (adapted from [28]) – a) example of a nanoresonator on which particles have landed; b) shift in frequency caused by the arrival of particles. Monitoring in real-time the resonance frequency allow to deduce the amount of accreted mass; c) from the spectral perspective: shift in the spectrum toward low frequencies.
Nanoresonators can also be used for thermal sensing. Resonant NEMS arrays with a suitable driving electronics could be a way to continue to decrease the pixel pitch of thermal imager keeping constant the performance. Among the various current uncooled InfraRed Focal Plane Array (IRFPA) technologies, microbolometer is the most common uncooled infrared device. It operates by converting the heating of a thin suspended membrane due to an IR absorption into a variation of the electrical resistance of a layer deposited on it. This layer is commonly made of a thin film of semiconductor, using mostly Vanadium Oxide (VOX) or amorphous silicon (a-Si), because of their high thermal sensitivity (1 / R x dR / dT), about 2-3 %/K. To reach a high thermal sensitivity, the membrane has to be insulated from the substrate and is suspended above the readout integrated circuit (ROIC) by thin and long insulation legs. Thermal insulation as high as 2 MK/W has for instance been reported for microbolometers with 12 µm-pixel pitch [32]. Such a development has achieved Noise Equivalent Temperature Differences (NETD) at a very low level around 50 mK (F/1 lens, 30 Hz frame rate, 300 K background) [33], [34]. At ultra-small pixel pitch (less than 12µm), the performances could be kept at the cost of a very high thermal insulation leading to a dramatic temperature increase of the suspended plate that can be deleterious for the electrical properties of the sensing material [35]. Both VOX and a-Si microbolometers can be affected [36]. The direct consequence is a persistent afterimage when the scene is moving [37]. This is particularly true when the microbolometer is exposed to a high temperature source such as fire, explosion or sun, and is sometime referred to as “Sun Burn” effect [38]. Although a shutter-based non-uniformity correction can mitigate this effect, latent image reappears rapidly after shutter operation and persists with a very long decay time. Thus, there is a clear need of a new transduction method that can withstand high temperature exposure. In parallel, this technique has to be compatible with a very large scale manufacturing for future consumer markets that require small pixel-pitch and high resolution.

In this context, we suggest a new transduction method based on high-frequency mechanical nanoresonators designed to be ultra-sensitive to IR radiation. In a mid-term vision, this approach intends to replace the current thermistor-based bolometers. The frequency stability of these nanoresonators should allow to reach the fundamental phonon noise and better cope with the thermal issues, while keeping a high resolution on the scene for the small pixel sizes. In principle, the excellent frequency sensitivity of nano/micro resonators makes them perfect ultra-small thermal sensors. However, two main questions must be raised: how can an efficient electrical transduction of tiny mechanical displacement be realized without any self-heating? Is the frame rate fast enough with such an approach to get a net image? This paper will provide some key insights using a CMOS-based approach.

In a first level of answer, the transduction technique has to be properly chosen. Unlike the conclusions done in previous papers [30], capacitive transduction is preferred to get rid of the self-heating that results in a background signal and additional noise. Ultra-small capacitance variation is however more delicate to read out [39], and a specific buffer circuit has to be developed as we will show later on in the paper. Many types of transductions have been suggested over the last ten years. A second level of answer lies in the use of NEMS array collectively or individually actuated and detected by a CMOS circuit that could be placed in its close vicinity. The CMOS circuit will actuate the mechanical systems at their resonance frequencies and perform the addressing of a single NEMS or a sub-array of NEMS to be addressed. The spatial proximity of the CMOS with the thermal sensors drastically limits the effects of electrical parasitic coupling and attenuation. Limiting these effects consequently maximizes at circuit input both the absolute value of the useful signal and its signal to background ratio (SBR), resulting in maximizing the SNR at the circuit output. To conclude, this juxtaposition has significant advantages, namely the compactness of the system and the unparalleled electrical transduction efficiency.

2. Design and fabrication of electromechanical resonator arrays

The basic geometry of the resonator is a suspended plate that experiences a torsional vibration around a rotation axis. Several metallic electrodes are structured underneath for electrostatic actuation and capacitive measurement of the paddle displacement. These electrodes and the paddle
form a $\lambda/4$-resonant cavity centered at 8µm for enhancing the absorption of the incident IR-radiation. Fabrication process and materials have to be temperature-compatible with monolithic integration in order to simplify the manufacturing of the imagers and their integration on a CMOS readout circuit. Thus, the materials must meet three main criteria: (i) good mechanical features, (ii) low thermal conductivity, (iii) low-temperature deposition. The critical dimensions (as the width legs ensuring the rotation and the thermal insulation of the plate) have to be well controlled during the fabrication process to have the all pixels functional inside the imager.

The low-temperature fabrication process is inherited from classical bolometers (i.e. deposition process $< 300^\circ$C and above-1C compatible). First, a 300nm thick AlCu layer is deposited on a silicon substrate and structured to form the transduction electrodes. A 2µm-deposition of a polyimide layer is then realized and will constitute the sacrificial layer. The latter is opened to build up the metal studs that will insure the mechanical support and the electrical connection with the electrical connections below. Two silicon nitride (SiN) layers of 10nm encapsulate a titanium nitride (TiN) layer which will act as an electrode as well as an absorber. The TiN thickness is defined to be impedance matched with the vacuum ($Z_0 \approx 376$ Ω) and to get a direct absorption rate close to 50%. The $\lambda/4$-optical cavity (2µm thick) between the aluminum-copper electrodes and the TiN layer allows to reach an absorption efficiency of 80% over the 8-14µm wavelength range. Figure 2g) shows the spectral absorption of such cavity with this specific SiN/TiN/SiN/a-Si tack in this wavelength range.

The encapsulation of TiN layer is performed for stress compensation reason and for protecting it during the release step. An amorphous silicon of 150nm-thick (a-Si) is deposited on the top-SiN to stiffen the plate. The plate has to be polarized through the legs via the thin TiN layer. Electrostatic actuation is possible in these conditions since no high current is required. Electrical contacts are made by opening the top layers (SiN and a-Si).

The torsional mechanical eigenmode has always been addressed in every designs of pixels so far. Indeed, the advantages of the torsional mode are threefold: (i) this mode is less sensitive to the residual axial stress that could be different from one side to the other side of an array [40], [41], (ii) the dynamic range set by the onset of nonlinearity is higher for the torsional mode compared to
flexural modes \[40\], \[42\], \[43\], since only the external fiber of the rods experiences a strain \[44\], (iii) the paddle surface remains large compared to the overall resonant body and makes easy a capacitive actuation. Resonator arrays of 666×520 pixels, with a 12µm-pitch have been fabricated. Figure 3a) shows a SEM picture of a typical array. The first electromechanical tests were achieved using polarization lines structured below the pixel. This interconnection can be observed on Fig 3a) and enables to actuate and read out an array of 96×96 electromechanical pixels. An SEM zoom-in of a typical H-shape pixel is presented in Fig 3b and c. The nano-rod length is 1.5µm for a cross-section of 250nm x 180nm (width x thickness). The insulation arm length is 8.6µm. This design is the nominal version of our electromechanical pixel. Other versions were however realized and some of them are presented in Fig 4a)-d). These alternative versions will be reviewed in the next section: they were thought to try to meet the best trade-off between an efficient thermal insulation and a large mechanical dynamic range, these two key features being antagonist.

Figure 3. SEM pictures of an array of electromechanical pixels fabricated with a low-temperature process: a) large field view of an array; only the central 96×96 array is connected to electrical pads; pixels above the connection wires have been removed to avoid any cross-talk – b) Zoom-in on the center of the array – c) SEM picture of a typical H-shape pixel; nano-rod length= 1.5µm, width= 250nm and thickness= 180nm (insulation arm length= 8.6µm)
Figure 4. SEM pictures of alternative versions derived from the nominal design: a) butterfly-shape pixel with longer rods – b) simple pixel without insulating legs – c) H-shape pixel with thinner nano rod for enhancing the thermal insulation; rod-thickness=30nm – d) Zoom of the legs (Fig 4c) attached to a stud that acts as mechanical anchor and that provides the electrical contact with the lines underneath.

For the sake of clarity, a short introduction to the key mechanisms and noise sources is presented below. We do not aim at detailing the thermo-electromechanical equations describing the overall interactions between mechanics and IR-light. We rather give key expressions for catching up this approach that may constitute a new paradigm in the field of IR-imager. The overall measurement system including a single pixel is depicted in Fig 5. The expressions of parameters shown in this figure are detailed step by step below for a comprehensive vision. The further expressions are appropriate under a small-displacement (small deflection angle) assumption. The polarization of the pixel is set to keep the angular vibration in its linear range at the chosen torsional resonance frequency. V_b is the bias voltage applied on the paddle (through the studs), and V_{AC} is the sinusoidal polarization applied on the actuation electrode through the capacitance C_{ac}. This signal can be applied with an external RF-source, in particular for the first electromechanical characterizations, but can come from the feedback loop in the case of a closed loop. The actuation frequency f is swept to measure the electromechanical response and the resonance frequency f_0.

\[V_{pol}(f) \]

\[\theta(f) \]

\[C_{ac}(\theta) \]

Electromechanical Resonator

\[V_{b} \]

\[V_{AC} \]

\[\Delta f \]

Electronics buffer

\[V_{out}(f) \]
Figure 5. Synopsis of the open-loop measurement chain: The red box corresponds to a single electromechanical pixel that translates the incident IR-radiation P_{inc} on the scene into a resonance frequency shift; the blue box corresponds to the close by electronics that converts the mechanical oscillations into an electrical signal; V_{pol} is the polarization of the pixel; $\theta(f)$ is the angular oscillation of the paddle around the rods; $C_a(f)$ is the induced capacitance variation used to read out the signal; $V_{out}(f)$ is the output signal supplied by the buffer. C_p is the total capacitance due to amplifier input capacitance and parasitic capacitances between the electrical connections and the ground.

Basically, the electromechanical pixel converts the incident IR-optical power P_{inc} into a resonance frequency shift Δf according to a sensitivity R_f, which depends on both the thermal conductance of the paddle insulation (through insulation legs between the torsional rods and the plate) and the temperature coefficient of frequency:

$$
\Delta f = \frac{\alpha_T P_{inc}}{G(\theta)} f_0 \approx \frac{\alpha_T P_{inc}}{\theta} f_0 R_f
$$

where $\tau_{th} = C/G$ is the thermal time constant of the sensor, $C = \left(\frac{\theta}{\theta f}\right)$, the thermal capacitance at constant volume, G the thermal conductance, α_T the temperature coefficient of frequency (TCF) (typically -60 ppm/°C for silicon), β the pixel fill factor, η the bolometer absorption, f_0 the resonance frequency and ν the frame rate of electronic readout. The thermal conductance is mainly due to the thermal conductance of heat through the legs. The other sources of thermal leaks – radiative and heat conductance through air are negligible.

The capacitance variations can be calculated from geometrical considerations. After cumbersome mathematical manipulation, the final expressions can be approximated as:

$$
C_a(\theta) \approx -C_0 \frac{\theta_{max}}{\theta} \ln \left(1 - \frac{\theta}{\theta_{max}}\right)
$$

(2)

$$
C_d(\theta) \approx C_0 \frac{\theta_{max}}{\theta} \ln \left(1 + \frac{\theta}{\theta_{max}}\right)
$$

(3)

$C_0 = \frac{\varepsilon_0 L_p w_p^2}{\theta}$ and $\sin(\theta_{max}) = \frac{\theta}{w_p^2}; C_0$ and θ_{max} are respectively the capacitance value at rest, and the maximum deflection angle. The deflection angle is directly computed from the dynamic equation:

$$
J \ddot{\theta} + b \dot{\theta} + \kappa \theta = T_e
$$

$$
T_e = \frac{1}{2} \frac{dC_a}{d\theta} V_{pol}^2 + \frac{1}{2} \frac{dC_d}{d\theta} V_{\theta}^2
$$

(4)

T_e is the electrostatic torque. $J = \frac{I_t w_r^2}{24 L_r \eta}$ is the moment of inertia of the paddle, assuming the inertia moment of rods is negligible. $\kappa = \frac{G}{4(1 + \nu)}$ is the rod torsional stiffness. $G = \frac{E}{2(1 + \nu)}$ is the shear modulus ν is the Poisson ratio of the stack. Under the assumption of a linear regime (and small deflection amplitude of the paddle), the angle can be rewritten in the Fourier space:

$$
\theta(f) = \frac{T_e}{f_0^2 - f^2 + j f f_0}
$$

(5)

The table 1 presents the values of the main features of equations (1)-(5) for our typical electromechanical pixel. Some parameters are compared with data from literature.

$1 \quad I_t = w_r t_r^2 \left(\frac{1}{3} - 0.21 \frac{t_r}{w_r} \left(1 - \frac{1}{12} \frac{t_r}{w_r}^2 \right) \right), w_r > t_r$
Table 1. Key parameters presented in the equations (1)-(3) for our device compared with an advanced resistive bolometer and MEMS bolometer: temperature sensitivity corresponds to \(1/f \times \partial f / \partial T\) for resonant thermal sensor and \(1/R \times \partial R / \partial T\) for resistive one.

<table>
<thead>
<tr>
<th>This work (Fig. 3c)</th>
<th>Bolometer [32]</th>
<th>Resonant MEMS [9]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximal angle (\theta_{\text{max}}) (°)</td>
<td>21</td>
<td>(N.A)</td>
</tr>
<tr>
<td>Inertial moment (J) (kg.m²)</td>
<td>(3.9 \times 10^{-25})</td>
<td>(N.A)</td>
</tr>
<tr>
<td>Stiffness (K) (N.m)</td>
<td>(1.8 \times 10^{-11})</td>
<td>(N.A)</td>
</tr>
<tr>
<td>Resonant frequency (MHz)</td>
<td>1.1</td>
<td>(N.A)</td>
</tr>
<tr>
<td>Onset of linearity (\theta_L) (°)</td>
<td>13.5</td>
<td>(N.A)</td>
</tr>
<tr>
<td>Quality Factor (Q)</td>
<td>1800</td>
<td>(N.A)</td>
</tr>
<tr>
<td>Capacitance at rest (C_0) (fF)</td>
<td>0.185</td>
<td>(N.A)</td>
</tr>
<tr>
<td>Pitch [µm]</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Thermal Conductance (G) [W/K]</td>
<td>(5 \times 10^{-9})</td>
<td>(5 \times 10^{-9})</td>
</tr>
<tr>
<td>Thermal Capacity (C) [J/K]</td>
<td>(26 \times 10^{-12})</td>
<td>(80 \times 10^{-12})</td>
</tr>
<tr>
<td>Thermal constant (\tau_{th}) [ms]</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td>Temperature sensitivity [°C]</td>
<td>0.01 %</td>
<td>3.6 %</td>
</tr>
</tbody>
</table>

At this stage we have to struggle with a strong signal attenuation due to a capacitive bridge formed by parasitic capacitances from metallic pads, connections and input impedance of the final readout electronics board: \(V_A \Delta C/(C_0 + C_p)\). The order of magnitude of an expected capacitance variation \(\Delta C\) is around 10 aF for a \(C_0 \sim 200 \text{ aF}\) and \(C_p \sim 10 \text{ pF}\). In this condition, the output signal is divided by a factor \(\sim 10^6\). This attenuation of the signal can be deleterious to get a high-enough signal to background ratio (SBR) to initiate a self-oscillation within a closed-loop. A way to address this issue can be a use of a semitone-actuation (at \(f_o/2\)) \(V_{\text{pot}} = V_A \cos(2 \pi f t) - V_B\). In this case the electrostatic torque is proportional to \(V_A / 2\) which reduces the coupling between the actuation signal and the output signal. A differential measurement can also be added to further improve the SBR. In this scheme, two identical pixels are used to cancel out the common modes. A more complex approach based on the down-mixing method [45] can be used to get rid of the parasitic capacitances. In particular, the bias voltage is no more constant and is modulated: \(V_A = V_{B_0} \cos(2 \pi f t + \Delta f)\) where \(\Delta f \ll f\). A comparison between different readout modes is shown in Tab 2. We notice a quite strong improvement of the SBR. However, in the best cases the signal to noise ratio (SNR) was lower than 20dB, which did not guarantee a functional closed-loop.

Table 2. Preliminary measurement of the SBR for different transduction strategies (direct semitone, direct 1f, differential and down-mixed); \(V_{\text{ACO}} = 10 \text{ V}, V_{\text{DC}} = 10 \text{ V}\) and \(f_o = 1 \text{ MHz}, \Delta f = 10 \text{ kHz}\); \(V_{\text{ACO}} = 4.2\text{V}\) for semitone actuation and \(V_{\text{ACO}} = 0.5\text{V}\) for 1-f and 2f actuations.

<table>
<thead>
<tr>
<th>Transduction method</th>
<th>AC</th>
<th>DC</th>
<th>SBR (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1f-actuation</td>
<td>(V_{\text{ACO}} \cos(2 \pi f t))</td>
<td>(V_{B_0})</td>
<td>-33</td>
</tr>
<tr>
<td>(f/2)-actuation</td>
<td>(V_{\text{ACO}} \cos(\frac{2 \pi f t}{2}))</td>
<td>(V_{B_0})</td>
<td>-13</td>
</tr>
<tr>
<td>(f/2)-actuation / differential mode</td>
<td>(V_{\text{ACO}} \cos(\frac{2 \pi f t}{2}))</td>
<td>(V_{B_0})</td>
<td>2</td>
</tr>
<tr>
<td>(f/2)-actuation / down-mixing mode</td>
<td>(V_{\text{ACO}} \cos(\frac{2 \pi f t}{2}))</td>
<td>(V_{B_0} \cos(2 \pi f t + \Delta f))</td>
<td>22</td>
</tr>
<tr>
<td>(f)-actuation / down-mixing mode</td>
<td>(V_{\text{ACO}} \cos(2 \pi f t) + V_{\text{DC}})</td>
<td>(V_{B_0} \cos(2 \pi f t + \Delta f))</td>
<td>20</td>
</tr>
<tr>
<td>2f-actuation / down-mixing mode</td>
<td>(V_{\text{ACO}} \cos(4 \pi f t + \Delta f))</td>
<td>(V_{B_0} \cos(2 \pi f t + \Delta f))</td>
<td>22</td>
</tr>
</tbody>
</table>

\(^{2}\) This value is computed by solving nonlinear dynamic equation [46].
In conclusion, to reach higher SBR (40dB can be considered as a suitable value for the PLL) a dedicated off-chip buffer to cope with the tiny capacitance variation was developed and placed in the close vicinity of the pixels under test. Its schematic is presented in Fig 5. The capacitance variation is read through an intermediate circuit that measures the charge carrier variation, the applied voltage being kept constant. The current is read with a feedback capacitance C_{f} instead of a resistor to minimize the background, as shown in Fig 5. Thus, the output voltage is proportional to this feedback capacitance as $V_{\text{out}} = V_{\text{pol}} \frac{\delta C(\theta_f)}{C_{f}}$, where $\delta C(\theta_f)$ is the capacitance variation resulting from the motion of the paddle. C_{f} must be chosen as low as possible to maximize the output signal but should be high enough to avoid unwanted effects due to parasitic capacitances (and $k_{B}T/C$ noise). A 1pF feedback capacitance in parallel with a 10 GΩ resistor are set to prevent from any saturation of the output signal caused by DC current. C_d and C_p are the sensor capacitance and the total input capacitance of the amplifier, respectively. This electrical scheme corresponds to a first-order filter [47]:

$$V_{\text{out}} = V_{\text{pol}} \frac{C_d}{C_{f}} \left(\frac{1}{1 - j \frac{f}{f_{CO}}} \right) \left(1 + j \frac{f}{f_{CO}} \frac{C_{f}}{C_p} \right)$$ \hspace{1cm} (5)$$

f_{CO} is the high-pass cut-off frequency of the amplifier and $f_{C} = \frac{1}{2 \pi R_C C_{f}}$ the low-pass frequency at -3dB of the RC filter. The improvement brought by the buffer circuit is illustrated in Fig 6. With our buffer, the SBR was kept quite constant while the SNR is strongly improved growing up to 42dB (to be compared with 20dB without buffer).
Figure 6. Enhancement provided by the buffer circuit: a) Synopsis showing the set-up to characterize the pixels in a down-mixed readout scheme (in open loop or in a closed-loop: red part) – b) Comparison of the output signal between a semitone down-mixing approach with the buffer circuit and without the buffer circuit (the polarization voltages are explained in Tab 2) – c) Typical output signals for the three down-mixing approaches with the buffer circuit. At resonance the capacitance variation is close to 10 aF. The SNR is larger than 40dB for the three cases.

The output voltages at resonance were high and clean enough to embed the electromechanical pixels into a closed-loop. At this stage, the pixels of the array of 96x96 pixels (see Fig 3a & b) have been tested using an external closed-loop based on a down-mixed Phase locked loop (PLL) scheme. The latter is shown in red in Fig 6a). To do so, the output phase signal \(\Delta \phi \) (demodulated at \(\Delta f \)) is the input signal of a digital proportional–integral–derivative controller (PID). The output \(f_r \) corresponds to the frequency applied to the pixel. The PID parameters were set according to the Ziegler-Nichols method \([48]\), hence modifying the bias voltage \(V_b \) applied on the pixel. This voltage enables to control the effective stiffness \([46]\).

Next section will provide typical electromechanical results and the thermal sensitivity of our electromechanical system. The noise sources of such a system are presented. Based on these measurements, new readout schemes of large pixel arrays are suggested to achieve a compact CMOS circuit beneath the imager.

3. Results

3.1. Electromechanical characterizations

First, the electromechanical responses of the pixels of the 96x96 array were measured in open loop. The variations of the resonance amplitude as a function of the voltages \(V_{BO} \) and \(V_{AC0} \) have been verified for the f/2 and 2f actuation schemes, up to the onset of non-linearity (i.e. \(\theta \sim 17^\circ \)). Figures 7a) and b) correspond to a f/2-actuation showing, as expected, a quadratic variation of the output voltage at resonance with \(V_{AC0} \) and a linear variation with \(V_{BO} \) respectively. Figures 7c) and d) correspond to the 2f-actuation showing a linear variation of the output voltage with \(V_{AC0} \) and a quadratic variation with \(V_{BO} \), which is expected too.
Figure 7. Electromechanical response when frequency is swept around resonance for different actuation schemes: a) Amplitude versus f and V_{AC} for a semitone actuation ($V_B = 10 V$); b) Amplitude versus f and V_B for a semitone actuation ($V_{AC} = 6.5V$); c) Amplitude versus f and V_{AC} for a 2f-actuation ($V_B = 10 V$); d) Amplitude versus f and V_B for a 2f-actuation ($V_{AC} = 1.8V$).

The main electromechanical features for the torsional mode (f_0, Q and V_{out}, the maximum output voltage corresponding to the onset of nonlinearity of the deflection angle θ_c) were measured on every pixels of a 96x96 array with the 2f-actuation scheme:

- $f_0 = [1.05 \text{ MHz} - 1.2 \text{ MHz}]$;
- $Q = [1600 - 2500]$;
- $V_{out} = [100 \mu V - 350\mu V]$

The range of resonance frequencies is coherent with the fabrication process dispersion of 10% on the torsional rod width (length and thickness variations are negligible). The variations on the quality factor and the maximum voltage are rather more sensitive to the mechanical anchoring of the insulation legs and the over-etching effect between the edge and the center of the array explains this difference.

The frequency dispersion does not impact the closed-loop performance and has a tiny impact on the thermal response (see equation 1). However, the quality factor and the dynamic range have a larger impact on the noise floor level, as we will see later in section 3.2. It means that the pixel on the
edges of the future imager will be slightly less sensitive compared to the others. To go further on this
topic, the next section will address the noise of the readout chain and the thermal performance of
such pixels.

3.2. Thermal characterizations

Let’s go back to equation 1 that gives the thermal response to an incident IR-radiation. The
frequency shift is proportional to the temperature coefficient of frequency α_T and inversely
proportional to the thermal conductance G of the material stack of rods and insulation legs.

3.2.1. TCF & G

Using the closed loop (Fig 5a)), we have implemented systematic TCF measurements on typical
devices (Fig 3c and Fig 4a to c)). In order to carry out a large number of measurements within a
reasonable time, the devices were tested on an automatic probe-station dedicated to 200mm wafers.
The latter was heated with a hotplate to have a temperature variation between 0° and 20° above the
ambient temperature. Beyond this limit, the closed-loop did not track the frequency shift anymore.
The measurements were performed with a coupled Peltier-Pt sensor controlled by a Proportional
Integral Derivative controller (PID) to know the chamber temperature (down to 0.1°C-accuracy). The
statistics are summarized in Tab 3.

| Table 3. TCF measured on different types of pixels: mean and standard deviation per wafer; Thermal conductance of rods & legs G (computed from material properties and geometry measured by SEM) |
|-----------------|-----------------|-----------------|-----------------|
| Pixel types | $\langle \alpha_T \rangle$ (ppm/°C) | σ_{α_T} | G (W/K) |
| Typical (Fig 3c)) | 55.4 | 14.6 | 5×10^{-8} | 1.11×10^9 |
| Butterfly (Fig 4a)) | 45.2 | 3.6 | 3.10×10^{-8} | 1.46×10^9 |
| Typical with thin nano-rod (Fig 4c)) | 86.2 | 16.4 | 1.8×10^{-8} | 4.79×10^9 |

The TCF of a typical pixel (55.4ppm/°C) is in good agreement with the theoretical value of 48ppm
found by Finite Element Method simulation (FEM) done on our stack. In the case of pixel with thin
nano-rods, the axial internal stress is higher and its variation with temperature reinforces the TCF
(same sign of variation). In the meantime, thermal insulation is quite enhanced. Thus a global
improvement of the thermal response should be expected with this kind of pixel.

3.2.2. Thermal response

The thermal response was measured and compared with the theoretical values computed by FEM.
Measurements were performed with the readout chain shown in Fig 5a) in closed-loop. The device
under test (a pixel array) was placed into a vacuum chamber and a blackbody source (RCN 1200 from
HGH Infrared Systems set at 1200 °C) was positioned in front of it. An 8-12 μm-filter was put between
our chamber and this source to control the incident power. The optical bench was aligned thanks to
a visible laser. The optical set-up was calibrated using a Fourier Transform Infrared instrument
(FTIR). In particular, the spectral response of the filter according to the spectral luminance of a perfect
blackbody at 1200°C was measured. A photometric computation (knowing optical apertures and
relative distances between the optical blocks) was used to determine the incident optical power. We
considered that the source is a Lambertian black body with a monochromatic luminance described
by Planck’s law. The aperture of the source and the chamber window were close enough to neglect
the atmosphere absorption in the estimation of incident power ($d = 2.5$ cm). The frequency response
of our typical pixel to IR incident pulses (17nW peaks) is presented in Fig 8a). Thermal responses up
to R_f=1050/W were extracted with the best devices ($f_0 = 1.15MHz$). Assuming a fill factor β=0.8, an
efficiency η=0.8 in the 8-12 μm window and considering the measured TCF, α_T=76 ppm/°C, a
theoretical thermal response $R_f = 950/W$ was expected, which is very close to the observed
sensitivities. In a second experiment, the incident IR flux on a pixel was changed by varying the
distance between the window and the IR-source. The frequency shift was then the measured for
optical powers varying from 2.5nW to 16nW. The experimental results and their linear fit are
presented in Fig. 8b). A thermal response of $R_f = 1350$ W is extracted from the slope considering the resonance frequency mentioned above. Above 8nW, the relationship between the IR-flux and the thermal frequency shift is no more linear. To increase the incident power, the source was moved close to the window, which turned into its heating. This effect lowers its transmittance making the estimation of the thermal response wrong (namely $R_f = 1050$ W).

Figure 8. Measurement of the thermal response: a) Resonance frequency shift induced by incident IR pulses (peaks of 17nW) – b) Frequency shift when the incident power is varied from 2 to 16nW

Similar experimental thermal responses were extracted on other pixels of a same array. From one array to another, experimental R_f varied from 700 W to 1350 W showing some dispersion attributed to the fabrication process.

3.2.3. Response time

The response time was measured with a Helium Neon laser (@633 nm) from a commercial Polytec vibrometer. Since the needed integration time was too short (180 µs) compared to the PLL time constant, this experiment was performed in open loop scheme (see Fig 6a). We verified that the response time is not limited by the electrical low-pass filter from our measurement set-up by setting $\tau = 50$ µs. The optical power was set to remain in the linear dynamic range ($\pm 13.5^\circ$ for the typical design). The 10-90 % method was used to extract the fall time t_r, and the response time of the first order low-pass filter $\tau (\tau = t_r/\ln(9))$. Doing so, we extracted a response time of 430 µs, which is close to the theoretical value computed with the thermal equations (500 µs). The resonant electromechanical pixels can follow quite fast event in the scene. They have faster response than current resistive pixels.
Figure 9. Resonance frequency according to the acquisition time. A 1mW red laser is focalized onto the pixel under test (typical Fig 3c). Insert: Full data from our measurement of response time. The average frequency jump is estimated as 110Hz. Then, the response time is extracted from one event fall time (red).

3.3. Noises and temperature sensitivity

The performances of the electromechanical pixels were estimated through the Noise Equivalent Power (NEP) or the Noise Equivalent Temperature Difference (NETD). The NEP is defined as the incident power on the sensor surface with a \(\sigma_{\theta} \) of 1. This corresponds to the minimum measurable frequency shift:

\[
NEP = \frac{1}{R_f} < \delta f^2 >^{1/2} f_0 = \frac{\sigma_{\theta}}{R_f}
\] (6)

\(< \delta f^2 >^{1/2} \) is the rms frequency fluctuation for a given bandwidth and \(\sigma_{\theta} \) is the quadratic deviation of the instantaneous relative frequency.

Current “column” or “rolling-shutter” readout schemes should be implemented with our resonator array. The column readout, which is the current approach with CMOS circuit, requires a 60Hz frame rate, which sets a pixel integration bandwidth at 7kHz for 190 pixels per column, for instance [49]. However, this readout scheme may induce a lag effect leading to an image distortion when the scene moves faster than the frame rate. Single-pixel readout is a solution to remove this effect. In this case, the integration time corresponds to the full frame rate, i.e. 50Hz, increasing thereby the SNR. As the capacitive detection does not suffer from self-heating issue, it is possible to use a longer integration time without material degradation even for small pitch below 12µm. This is why the NEP of our sensor is estimated for three noise bandwidths, \(f_{BW} = 7 \) kHz, 50 Hz and 10 Hz.

Let’s get back to few computational and theoretical considerations to understand and estimate the different noise sources contributing to \(\sigma_{\theta} \). The overall \(\sigma_{\theta} \) is the quadratic sum of these noise contributions that are considered as uncorrelated: \(\sigma_{\theta} = \sqrt{\sum_i \sigma_{\theta i}^2} \), where \(i \) corresponds to: (1) the thermomechanical noise, which is due to the coupling with the ambient thermal bath, (2) the readout electronics’ noise and (3) the phonon noise.

\(\sigma_{\theta} \), whose main origin is the thermomechanical noise, is inversely proportional to the SNR [28, 50]:

\[
\sigma_{\theta}^{Th} = \frac{1}{2Q} \sqrt{\frac{\theta_0^2}{\theta_c}} = \frac{1}{2Q} \frac{1}{SNR}
\] (7)
\(\theta_s^2 \) is the thermomechanical deflection noise. The above expression shows that the linear range and
the quality factor must be as high as possible to get a stable oscillator. This noise can be estimated
through the Parseval-Plancherel theorem:
\[
\langle \theta_s^2 \rangle = \frac{1}{\Delta f} \int_{f_0}^{f_0+\Delta f} S_f(f) df.
\]
Using the dissipation-fluctuation

theorem, the power spectral density of the thermochemical noise can be written as [51]:
\[
S_f(f) = \frac{(4\pi k_B T/Q) \kappa f_0^3}{(f_0^2 - f^2)^2 + (f f_0/Q)^2},
\]
with: \(k_B \) the Boltzmann constant, and \(T \) the ambient
temperature.

When \(f \ll f_0/Q \) (i.e. when the readout bandwidth is smaller than the mechanical response time, in
other words for \(f_{BW} = 50 \text{ Hz} \)), this expression is simplified:
\[
\langle \theta_s^2 \rangle = \frac{2\pi k_B T}{\kappa f_0} \sqrt{f_{BW}}.
\]
Interestingly, at fast
integration time (i.e. \(f_{BW} = 7 \text{ kHz} \)), \(\langle \theta_s^2 \rangle = k_B T/\kappa \), which corresponds to the equipartition energy

theorem.

Similarly, \(\sigma_y \), whose origin is the readout electronics noise, is expressed as:
\[
\sigma_y^{\text{elec}} = \frac{1}{2Q} \sqrt{\frac{V_{\text{out}}}{\Delta f}}
\]
\(\langle \theta_s^2 \rangle \) is the readout electronics noise generated by the buffer circuit (see Fig. 5).

The fundamental source of noise for a thermal conductance higher than the radiation conductance
[45]) should be the phonon noise resulting from the random exchange of heat between the sensor and
the thermal bath through the mechanical anchors. At thermodynamic equilibrium, the temperature
fluctuations due to this fundamental phenomenon can be written as:
\[
\sigma_y^{\text{phonon}} = \alpha^2 <\Delta T^2>^2 = \frac{4\pi^2 k_B T^2}{C_{th}} \Delta f f_{BW} < f_{th}
\]
\(f_{th} = 1/4\tau_{th} \) the thermal cut-off frequency.

The direct phase or frequency fluctuations can be expressed according to a sum of frequency sources
with the spectral power density: \(S_f(f) = Kf^\alpha \) \((-4 < \alpha < 2) \).

The orders of magnitudes of the noises and their consequence on the frequency stability and NEP are
summarized in Tab 4 below, for the two considered bandwidths. We notice that the readout
electronics noise drastically degrades the performance of such a system. In comparison, the NEP of a
classical resistive 12µm-pitch pixel is around 30pW. This performance can be reached in principle if
the electronics noise is minimized. We also mention the NEP for another integration time \(f_{BW} =
1 \text{ Hz} \) that is rather used for gas or mass measurements. If a new readout strategy could be defined
with 1s-integration time, the performance would even be better than the current bolometers.

<table>
<thead>
<tr>
<th>Noise sources</th>
<th>(f_{BW} = 50 \text{ Hz})</th>
<th>(f_{BW} = 7 \text{ kHz})</th>
<th>(f_{BW} = 1 \text{ Hz})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X_n)</td>
<td>(\sigma_y)</td>
<td>(\text{NEP})</td>
<td>(X_n)</td>
</tr>
<tr>
<td>Thermodynamic</td>
<td>3.6 \times 10^{-4} \text{rad}</td>
<td>6.3 \times 10^{-9} pW</td>
<td>1.2 \times 10^{-5} \text{rad}</td>
</tr>
<tr>
<td>Electronics</td>
<td>70.7 nV</td>
<td>8.9 \times 10^{-9} pW</td>
<td>85 pW</td>
</tr>
<tr>
<td>Phonon</td>
<td>-</td>
<td>5.8 \times 10^{-9} pW</td>
<td>5.5 pW</td>
</tr>
</tbody>
</table>

Experimental measurements of the frequency stability were achieved to verify our assumption
and think about a specific readout strategy of our electromechanical array. To this end, the frequency
stability was measured in closed-loop by estimating the Allan deviation \(\sigma_A \) of the output signal
according to the integration time \(\tau \). This deviation is a usual tool to estimate the stability of oscillators
[52], in particular to characterize their long-term drift. However, the main types of noises can easily
be observed with such a mathematical tool. The frequency power spectral density was also measured on the same typical pixel.

![Graph](image)

Figure 10. Noise characterization achieved on the typical electromechanical pixel – The amplitude at resonance is set at 320µV: a) Allan deviation measurement; the red hexagon indicates the frequency deviation for \(f_{BW} = 7 \text{ kHz} \) (\(\sigma_a = 3.5 \times 10^{-6} \)) and the red disk the one for \(f_{BW} = 50 \text{ Hz} \) (\(\sigma_a = 3 \times 10^{-9} \)); a plateau is reached between 50ms and 200ms integration time (\(\sigma_a = 1.5 \times 10^{-7} \)); beyond 200ms a strong drift effect can be observed – b) Spectral power density measurement achieved on the same device. The Allan deviation has a \(\tau^{-1/2} \) slop at short integration time corresponding to the signature of a White amplitude noise. Beyond 50ms integration time, the Allan deviation presents a plateau, which shows a \(1/f \) frequency noise. These two noises can also be distinguished on the power spectral density: the slop of \(-10 \text{ dB/decade}\) corresponds to this plateau.

The Allan deviations measured in closed loop are presented in Fig 10a) for the typical pixel. Between 70 µs and 50 ms \(\sigma_a \) drops with a \(\tau^{1/2} \) slope showing that white noise is the main contributor in this interval. As shown in Tab. 4, this trend is mainly attributed to our readout electronics, whose amplitude level was measured around \(40 \text{ mV/} \sqrt{\text{Hz}} \). A plateau at \(1.5 \times 10^{-7} \), appears between 50ms and 200ms. This \(1/f \)-noise is well above the noise floor normally set by the thermomechanical white noise and phonon noises (close to few \(10^{-8} \) for the two noise sources). Supplementary experiments were achieved to try to understand the origin of this \(1/f \)-noise. In particular, the Allan deviation was measured for different actuation voltages \(V_{AC} \) to increase the maximum output voltage and improve the SNR. We had demonstrated that the plateau is independent of the SNR. We believe that this noise floor is fully inherent in pure frequency fluctuations, whose origin is not clearly identified. Similar noise signature has been reported as an anomalous phase noise (APN) for flexural nanoresonators [53]. This fundamental noise would only be relevant for small vibrating bodies, which is the case for the nano rods used in the pixel.

In first conclusion, the stability limit of our torsional resonators is set by the APN, and has to be considered as the fundamental limit of our resonant sensors. Even for a 1s integration time, the \(\text{NEP} \) would be stuck around 100 pW. In the discussion section below, we try to figure out this issue.

4. Discussion

First, for the sake of clarity, the Noise Equivalent Temperature Difference (NETD), which is basically the lowest temperature variation detectable on the scene, is computed for our devices. \(\text{NETD} \) is directly proportional to the \(\text{NEP} \) and thus to the frequency stability:
\[NETD = \frac{4F^2}{\pi A_p \Phi (\Delta L/\Delta T)_{300K_{\lambda_1-\lambda_2}}} \times \frac{\sigma_y}{R_f} \]

(10)

\(F \) is the optical aperture (usually \(F = 1 \)), \(A_p \) is the pixel area, \(\Phi \) and \((\Delta L/\Delta T) \) are the optical transmission and the luminance variation with scene temperature around 300 K, both evaluated in the \([\lambda_1;\lambda_2]\) range. In the 8-14\(\mu \)m range, \(\Phi \) is usually close to one, and \((\Delta L/\Delta T) \) is evaluated as 0.84W/m²/sr/K [34].

\textit{NETD} was computed from the experimental Allan deviations and thermal responses with equation 10. A figure of merit, \(FOM = NETD \times \tau_{th} \), is usually introduced to evaluate in a glance the quality of a microbolometer technology [55]. Actually this \(FOM \) avoids any dependence of the sensor performance to the thermal conductance. These two parameters are shown in Tab 5 for our electromechanical components and a current resistive pixel used as a reference.

Table 5. Comparison between our pixels and a classical resistive bolometer for three integration bandwidths –

<table>
<thead>
<tr>
<th>Pixel</th>
<th>(\tau_{th}) (ms)</th>
<th>(R_f) ([W/\text{inc}]</th>
<th>(f_{bw} = 10 \text{ Hz}) (nW)</th>
<th>(f_{bw} = 50 \text{ Hz}) (nW)</th>
<th>(f_{bw} = 7 \text{ kHz}) (nW)</th>
<th>(NETD (K) (FOM – \text{10Hz}))</th>
<th>(NETD (K) (FOM – \text{50Hz}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical</td>
<td>0.5</td>
<td>1050</td>
<td>0.19</td>
<td>2.4</td>
<td>1.5 (0.75)</td>
<td>2 (1)</td>
<td></td>
</tr>
<tr>
<td>Butterfly</td>
<td>0.8</td>
<td>1011</td>
<td>0.47</td>
<td>1.1</td>
<td>4.9 (3.96)</td>
<td>11.6 (9.28)</td>
<td></td>
</tr>
<tr>
<td>Thin rod</td>
<td>2.8</td>
<td>3555</td>
<td>1.3</td>
<td>3</td>
<td>13.7 (38.3)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Resistive pixel [1]</td>
<td>16</td>
<td>-</td>
<td>0.05</td>
<td>-</td>
<td>-</td>
<td>0.05 (4)</td>
<td></td>
</tr>
</tbody>
</table>

A quick insight in Tab 5 shows that the \(NETD \) of our components cannot compete with the temperature performance of a resistive pixel. Experimental \(NEP \) at 50Hz and 7kHz bandwidths are close to values obtained through equations (6), (8) and (10) considering \(R_f = 1050 /W \) and the experimental value of the electronics noise, 40 nV/\(\sqrt{Hz} \). The \(NETD \) of 2K at 50Hz and 1.5K at 100ms with a sub-millisecond response time for 8-12 \(\mu \)m incident radiation – were extracted. The usual integration times correspond to the White noise region of our resonator (see Fig 10a) and the \(NEP \) can be expressed in terms a single power density of 30 pW/\(\sqrt{Hz} \). At long integration time (at 10Hz), the \(NETD \) is set by the APN. In principle, improvement of the electronics or thermomechanical noises will not positively influence this limit for long integration times. This analysis tells us that the readout scheme per column at 7 kHz currently used for resistive bolometer is not suitable for our approach.

From these first conclusions, and if we look at the equation (10), few clear improvement ways can be proposed:

- Frequency stability and matrix readout strategy

50Hz integration bandwidth requires an improvement of the noise amplitude of our buffer electronics close to the pixel. Lower amplitude noise level can be reached by using a self-oscillating electronics requiring only few transistors unlike PLL circuits. Moreover, our electronics was realized close to the pixel but was not done through an ASIC fabricated underneath the electromechanical pixels. The low-temperature fabrication process presented above has already been used to manufacture resistive bolometer imagers on top of CMOS circuits (ROIC) by post-process [37, 56] and it should be straightforward to reuse this approach in our case. As mentioned in the introductive section of the paper, a co-integration of the readout electronics at pixel level will reduce the parasitic capacitance down to a few F and will decrease the electrical noise down to a theoretical level of 10nV/\(\sqrt{Hz} \) or even 5nV/\(\sqrt{Hz} \). This approach makes the down-mixing detection scheme unnecessary, leading to a much simpler measurement chain than the strategy presented here. \(\sigma_y \) will be decreased by a factor 8 with a self-oscillating IC (gain of a factor 4 on the absolute noise, and gain of a factor 2 on the output voltage with a the direct detection (see equation (8)). Thus the electronics noise will get lower than the
540 fundamental APN ($\sigma_{APN} = 1.5 \times 10^{-7}$) for a 700Hz integration bandwidth. This conclusion leads
541 us to suggest a new readout scheme consisting of reading 700/50=14 pixels during a 50Hz frame
542 rate which allows a larger area for the co-integrated readout. These two straightforward
543 improvements allow to get at a FOM close to 0.75 for a $f_{BW} = 50Hz$ (global shutter approach),
544 which is an encouraging element.
545
546 • Thermal response
547 At the end, the noise floor level will be set by the APN, whatever the electronics and the readout
548 strategy. An improvement of the signal through the thermal insulation $1/C$ is much trickier in
549 our case. Indeed this would require long and thin rods / insulations legs, and would lower the
550 onset of nonlinearity of θ_c (see equation (7)), leading to a degradation of the SNRs and thereby
551 of the frequency stability σ_{θ}.
552 A simple look at equation (10) demonstrates that the thermal response R_f has to be increased
553 through the TCF (the temperature coefficient of resistance of a resistive pixel is around 2\%, to be
554 compared to 50ppm in our case). To date, we did not observe a major difference of the
555 experimental TCF values ranging from -35 ppm/°C to -100 ppm/°C. Unfortunately, the highest
556 TCF occurs with soft devices, which were not suitable for IR sensing as explained above.
557 We will thus focus the discussion on increasing the TCF of our devices. Some interesting
558 works have already shown a TCF up to 1000 ppm/°C, improving thereby the TCF by a factor 20
559 [57], [58]. In particular, the 1st order phase transition of diverse materials has been used to obtain
560 Young’s Modulus that are highly sensitive to temperature [59], [60]. Following this line, we are
561 manufacturing similar 12\µm-pitch electromechanical pixels including VO$_2$ material on top of
562 our pixel. This material was deposited in its amorphous state by reactive deposition (Ion Beam
563 Deposition) and annealed at 400°C to get the crystalline state. The process temperature is kept
564 low enough to be used in a post-process of a CMOS circuit. Raman characterizations were done
565 to verify the crystallization obtained with this method. The resonators were designed to keep
566 the mechanical features of our current typical pixel (Fig 3c)). Nano-indentation measurements
567 were performed on full layer to extract the Young's modulus of our VO$_2$ layer (177GPa for the
568 crystalline state and 80 GPa for the amorphous state). A thickness of 80nm was then chosen with
569 1.5\µm long and 300nm wide torsional rods. In a first version, both the rods and the plate are
570 covered with the VO$_2$ layer, and in a second version the VO$_2$ layer is only left on the rods. An
571 example of fabricated devices is shown in Fig 11. The TCF measurements and then the frequency
572 stability are on-going. We expect an improvement of one order of magnitude in the thermal
573 response (the mechanical features and the thermal insulation being kept constant compared to
574 the standard pixel).
575
576 5. Conclusion
577 Our electro-optical measurements show that our current electromechanical resonant pixels cannot
578 compete with the best 12\µm pitch resistive bolometer in terms of NETD. Three major straightforward
579 improvement can be done: 1) the buffer and the electronics readout including the addressing circuit
580 has to be included into a ROIC directly beneath the imager as the bolometer. Doing so, the electronics
581 noise and the parasitic capacitance will get negligible regarding the other sources of noises. The noise
582 level will be set by the APN that is the fundamental limit of such an approach. This limitation can be
583 overcome by increasing by a factor 10 or 100 the frequency response. We showed in this paper one of
584 the more promising way to reach this goal by integrating phase transition material on top of the rods.
585 The first realizations demonstrated that we were able to reproduce the same device without thermal
586 features degradations. The optimizations of the pixel is on-going. With both the improvements of the
587 frequency response of a factor 10, and a pixel wise readout or at least a readout of 14 in a same frame
588 rate, the NEP would be lower than 20 pW (i.e. $NETD < 180 \text{ mK}$). The FOM would drop to 0.09, value
589 to be compared with the current technology ($FOM=0.05$). Based on this projection, we believe that the
590 uncooled IR sensors based on nanomechanical resonators will experience a new interest for small
591 pitches below 12 \µm.
Figure 11. Torsional resonator design: a) Schematics of the design – b) SEM image of a typical pixel with VO$_2$ layer on top of both the plate and torsional rods, plus partially on the insulation legs.

Supplementary Materials: None

Author Contributions: Conceptualization, L. Duraffourg and J.-J. Yon; Methodology: L. Laurent & J.-S. Moulet; Validation: L. Laurent; Formal Analysis & Investigation: L. Laurent; Writing-Original Draft Preparation: L Duraffourg; Writing-Review & Editing: J. Arcamone; Supervision: L. Duraffourg and J.-J. Yon; Project Administration: J.-J. Yon; Funding Acquisition: J.-J. Yon & L Duraffourg.

Funding: This research was funded by the LETI Carnot Institute’s MOTION project.

Acknowledgments: The authors thank P. Imperinetti, M. Sansa and G. Jourdan for their helpful supports with the component fabrication and characterizations.

Conflicts of Interest: The authors declare no conflict of interest

References

