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Abstract 
 
In this paper, an icosahedral non – body centered model to simulate the periodic structure of homogeneous 
particulate composites, by predicting the particle arrangement, is presented. This model has yielded three different 
variations which correspond at three different deterministic particle configurations.  In addition, the concept of 
boundary interphase between matrix and inclusions was taken into account. Thus, the influence of particle vicinity 
was examined in parallel with the interphase concept on the thermomechanical properties of the overall material. 
Next, by the use of this model the authors derived a closed – form expression to estimate the thermal conductivity 
of this type of composites. To test the validity of the model, the theoretical values arising from the proposed 
formula were compared with other theoretical predictions obtained from several accurate formulae found in the 
literature and an adequate accordance was observed. 
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1. Introduction 
 
It is known that thermal conductivity constitutes a fundamental property of solids and the attainment of its 
theoretical predictions especially for composites (periodic or not) is a very difficult task, as the thermal conducting 
mechanism mainly depends on their microstructure.  
In the meanwhile, the prediction of the thermomechanical  properties of a composite material (fibrous or 
particulate) is evidently  an interesting  topic since given that its properties depend  on several parameters, such as 
the individual properties of constituents, the filler size and volume concentration, the adhesion efficiency between 
inclusions and matrix, the filler distribution and possible vicinity etc. 
In this framework, Hashin [1, 2] assumed that a particulate composite material is a collection of small volume 
elements of various sizes and shapes which densely fill the composite. Thus, the particulates were assumed to be 
conglomerations of spherical inclusions and shells, with the properties of the matrix, surrounding the inclusions. In 
each volume element, the content of the inclusion was equal to the total content of the dispersed phase in the 
composite. In addition, Sideridis et al [3] examined the effect of the adhesion between particles and matrix to 
determine thermal expansion coefficient by a theoretical analysis using a modified model, which includes a third 
phase, between filler and matrix (the interphase), that has different thermomechanical properties from those of the 
main phases. On the other hand, Maxwell [4]   performed a general basis for estimating the effective thermal 
conductivity of particulate composites,   whereas in Refs. [5–7] some remarkable theoretical and empirical 
approaches were presented to analyze the thermal conductivity of composites. Further, in Ref. [8] three models on 
the effective thermal conductivity of concentrated particulate composites were developed via the differential 
effective medium approach. The first one expresses the relative thermal conductivity of a particulate composite in 
terms of the thermal conductivity ratio i.e. ratio of dispersed-phase to continuous-phase conductivities and the filler 
content. The other two models define this property as a function of the above two variables along with the 
maximum packing volume fraction of particles. Besides, in Ref. [9], the particle contiguity was taken into account 
to estimate the thermal expansion coefficient for pore free homogeneous composite materials of particle structure 
while Roudini et al [10] also examined the influence of reinforcement contiguity on the thermal expansion of 
composites reinforced with alumina particles. In addition, for a detailed investigation on the thermal conductivity 
and diffusivity of a multi – scale concrete composites by means of an effective medium theory one may refer to 
Garboczi et al [11], while in Ref. [12] a considerable work to study the effect of an inhomogeneous interphase zone 
on the bulk modulus and conductivity of particulate composites containing spherical inclusions was performed. 
Moreover, in Ref. [13] the thermal conductivity of periodic particulate composites was evaluated by a body 
centered cubic model transformed into a hexaphase spherical model. This model, took into account the influence of 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 July 2018                   doi:10.20944/preprints201807.0134.v1

©  2018 by the author(s). Distributed under a Creative Commons CC BY license.

http://dx.doi.org/10.20944/preprints201807.0134.v1
http://creativecommons.org/licenses/by/4.0/


 

 

 

- 2 -

internal and neighboring particles, but neglected the interphase concept.  On the other hand, the effective 
thermal conductivity of a composite sphere in a continuum medium with conduct resistance was studied in Ref. 
[14], whereas in Ref. [15] thermal resistance – based bounds for the effective conductivity of composites were 
determined.  Also, Agari and Uno [16, 17] proposed a practical and useful formula to calculate thermal 
conductivity of particulate composites whilst Khan and Muliana [18] proposed a microstructural model to evaluate 
thermal conductivity and thermal expansion coefficient for particulate composites, taking into account the particle 
interaction,. Also, in Ref. [19] the thermal conductivity of homogeneous particulate composites of periodic 
microstructure was estimated by means of a non body centered model which yielded three variations: simple cubic 
model, side centered cubic model and face centered cubic model. This model took into consideration the particle 
distribution and contiguity together with the concept of interphase. Moreover, in Ref. [20] a more advanced 
polyhedral model was introduced to simulate the paricle arrangement and then to evaluate the thermal conductivity 
of periodic particulates. In the present work, we examine a periodic particulate composite in the frame of an 
icosahedral non body centered model yielding three different variations. Besides, the inclusions are encircled by an 
inhomogeneous interphase, the volume fraction of which is generally determined by heat capacity measurements.  
Next, the corresponding unit cells arising from these distinct variations are transformed in a unified manner into a 
nine – phase spherical unit cell. This topological transformation is based on the equality of volume fractions 
between the corresponding phases. In this context, via this advanced multiphase model, the contiguity amongst the 
particles, in the form of three deterministic configurations, is examined in parallel with the interphase concept, to 
estimate the thermal conductivity of the overall material by a modified form of Agari and Uno model [16]. 
 
2. Simulation of particle arrangement 
 
The majority of microstructural models aim at reproducing in space the basic cell or Representative Volume 
Element (RVE) of the periodic composite at a microscopic scale in order to obtain a solution. Such models are 
usually based on the following assumptions: 
1) A regular geometric form is generally adopted for the inclusions usually a sphere.   
2) Regular geometry and topology are applied for such simulations. Models can be plane or spatial. It is obvious 
that a three dimensional structure is synonym to the overall material periodic microstructure. 
Now, the first variation of the proposed icosahedral model of edge L appearing in Fig. 1 constitutes an advanced 
three dimensional system capable of simulating real particulate composites.  
By focusing on this model, it can be observed that 30 inclusions occupy the midpoints of all edges whereas 12 
inclusions occupy the vertices of this regular polyhedron. 

 
                     
Fig. 1 First variation of the icosahedral model 
 
It is known from Euclidean Geometry that the radii of the unique circumscribed and inscribed sphere respectively 
are given as  

L
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Moreover, since a regular icosahedron consists of 20 equilateral triangles that are obviously equal to each other, the 
surface area is given as  
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Besides the volume is given as 
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Next, the unit cell or RVE which corresponds at the above model in a unique manner may be defined as a regular 
icosahedron of edge L2 , which surrounds  the model of Fig.1 having the same centroid and is reproduced in 
space in a symmetrical manner to describe a periodic particulate composite. 
Then to facilitate the mathematical analysis, utilizing the evident structural symmetries, one may transform this 
aforementioned  unit cell   into a 5 – phase spherical model consisting of five concentric spheres of radii a, b, c, d, e 
respectively such that a<b<c<d<e 
The cross – sectional area of this model is illustrated in Fig. 2                                               
 

 
 
Fig. 2 Five – phase spherical model 
 
The structure of this multiphase unit cell, which does not contain any interphase zone, is described as follows: 
The first and third and fifth phase, (the spherical region of inner radius a, and outer radius b, the sector of inner 
radius b and outer radius c and the zone of inner radius d and outer radius e), represent the matrix.  
In addition, the second and forth layer represent the filler. In the meanwhile,   the volume of the above mentioned 
RVE  i.e. the circumscribed icosahedron of edge L2  is given as 

 a;   b;  c;   d;  e 
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Next, by assuming equal inclusions, which is not necessarily the case in reality, the volume fraction,  U f , 
of the fillers in the continuous matrix is given in terms of the filler radius as  folows   
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with fr denotes the filler radius which obviously is considered as known. 
 
The above relationship can be solved for L to yield  
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According to the proposed topological transformation, the volume of the icosahedral unit cell of edge L2  reduces 
to the volume of a sphere of outer radius e . Hence one infers 
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Eqn. (6) can be combined with eqns. (5a) and (5b) to yield  
 

3

f
f U

42re                                                                                                     (7) 

Now let us denote as 20w  the midradius of the icoahedral model of Fig. 1, i.e. the distance from the centroid to the 
midpoint of an arbitrary edge. 
From Euclidean Geometry it is known that 

  L51
4
1w 20                                                                                     (8) 

Here, we may assume without violating the rigor of our mathematical formalism that the spherical sectors in the 
multiphase cell of Fig. 2 expressing the two groups of  particles in Fig. 1 (i.e. 30 and 12) are equidistantly 
distributed on both sides of the spherical surfaces defined by radii 20w  and 20R    
 Hence, these phases are developed in such a way that to be in accordance with the following equalities: 
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The solution of the above groups of equations yields the values of a,b,c,d in terms of filler radius as follows: 
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Moreover, the following geometric restrictions hold 
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Inequality (12) by the aid of eqns. (5b) and (8) yields 
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Solving for fU  one finds 
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Inequality (14) by the aid of eqns. (1a) and (5b)  yields 
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 Solving for fU one finds 
44.1U f                                                                                                                    (14c) 

 
Here, one may observe that the above inequality holds identically and thus it does not constitute a constraint for the 
first variation of the proposed icosahedral model. 
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Solving for fU  one finds  
158748.0U f                                                                                                      (15b) 
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Here we took into account eqn. (7) 
Thus it follows 
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Solving for fU  one finds 
5.5U f                                                                                                (16c)  

 
Here, one may deduce that the above constraint holds identically and hence it does not affect the validity of the first 
variation of the model.  
In continuing, let us consider the second variation of the introduced non – body centered icosahedral model [Fig.3] 
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Fig. 3 Second variation of the icosahedral model 
 
By centering on this model, one may perceive that 20 inclusions occupy the centroids of all faces whereas 12 
inclusions occupy the vertices of this platonic solid.   
Following the same reasoning as before, the RVE which corresponds at the above model in a unique manner may 
be defined as a regular icosahedron of edge L2 , which surrounds  the model of Fig. 3 having the same centroid 
and is reproduced in space in a symmetrical manner to describe the material. 
Next, one may point out that this unit cell, after the same topological transformation that we previously carried out, 
results in the same 5 – phase spherical model of Fig. 2   
 
Τhe volume of the above mentioned RVE  i.e. the circumscribed icosahedron of edge L2  is given as 
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Next, by assuming equal inclusions, which is not necessarily the case in reality, the volume fraction  U f , 
of the fillers inside the continuous matrix is given in terms of the filler radius as  folows   
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with fr denotes the filler radius which obviously is considered as known. 
 
The above relationship can be solved for L to yield  
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Taking into account the proposed geometric transformation, the volume of a square polyhedron of edge 2  reduces 
again to the volume of a sphere of radius e . Hence we infer 
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Eqn. (20) can be combined with eqn. (19) to yield  
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In addition, it is obvious that the first phase of the spherical model [Fig. 3] should surround the centroid axis of the 
square polyhedron and therefore the validity of eqn. (5) is also extended to the second prismatic model. 
Moreover, since we have already considered that in the 4 – phase model occurring in Fig. 3 the circle of radius 20w , 
lies in the middle of the circular section denoting the third phase, eqn. (7) still holds. 
Hence, in proportion with the first variation one may write out 
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Furthermore, the geometric constraints expressed by eqns. (10 a,b)  hold for this model as well. 
Now, the first restriction yields  
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Also, according to the second restriction one infers 
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Finally, let us present the third variation [Fig.4] 
 

 
Fig. 4 Third variation of icosahedral model 
 

L 
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Here, one may pinpoint that 20 inclusions occupy the centroids of all faces whereas 30 inclusions occupy the 
midpoints of the edges.   
By proceeding as before one may write out 
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In analogy to the previously examined variations of the non body centered icosahedral model  the following 
relationships hold  
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Moreover, according to the same reasoning as before one may set the following constraints concerning filler 
concentration. In this framework, one may write out  
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After the necessary algebraic manipulations one obtains  
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Next, one may observe that the following inequality holds 
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In continuing, it is evident that the following inequality holds 
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After some algebra one finds 
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Finally, it is obvious that the following inequality holds 
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After the necessary algebraic manipulations one obtains  
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Thus one may deduce that the third variation of the icosahedral model is valid at  04696.0f U and thus one 
concludes that this variation is rather impractical. For facility reasons let us summarize in Fig.7 the unified 
topological transformation of the three variations of the non body unit cells. Note that the three icosahedra  
below, are surrounded by matrix, which corresponds at the outer zone of the multilayer  spherical model. 
  

 
Fig. 5 Transformation of all phases 
 
 
 
3. The concept of interphase – Towards a 9 - phase spherical model    
 
As we have mentioned before initiating our previous analysis, we are going to simulate the periodic microstructure 
of a homogeneous particulate composite material by means of unit cells based on icosahedral body centered 
models, when the inclusions are also encircled by an inhomogeneous interphase region.  In this context, in order to 
perform a more refined analysis, according to the same reasoning as before, the three basic icosahedral  body 
centered models of Fig. (1,3,4), which are enhanced now by the existence of an inhomogeneous interphase zone 
around the particles, are transformed into an nine – phase spherical model. 
Evidently, this multiphase model can be interpreted in the sense of the nine – phase model of Fig. 8 since the 
interphase regions are developed at the interfaces between filler and matrix.  
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Fig. 6 Transformation of the new unit cells into a 9 – phase spherical RVE 
 

Evidently, the following relationships hold  
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Besides, since that the interphase is considered somewhat as an altered matrix and its proportion is constant as 
developed in the interfaces of the two basic constituents of the composite, one may suppose without violating the 
generality that 
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 First zone: Matrix 

 Second zone: Interphase 

 Third zone: Filler 

 Fourth zone: Interphase 

 Fifth zone: Matrix 

 Sixth zone: Interphase 

Seventh zone: Filler 

Eighth zone: Interphase 

 Ninth zone: Matrix 
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In this context, one may evaluate the radii of the interphase layers developed around the concentric spheres of the 
proposed nine – layer coaxial spherical model by means of the following procedure  
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In continuing, one may obtain the volume fractions of the nine phases as follows 
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Hence, the volume fractions of all phases have been expressed in terms of the radii of the concentric embedded 
spheres which constitute the proposed 9 – phase model. 
 
Estimation of thermal conductivities  
 
As we have emphasized, the concept of interphase has been considered together with the influence of particle 
contiguity on the thermomechanical properties of the composite.  
Generally, the coefficient of thermal conductivity of this phase i  can be expressed as an n – degree polynomial 
with a single independent variable the radius r [21]. 
For facility reasons, let us assume a parabolic variation of thermal conductivity with respect to the radius r : 

Hence the following equality holds: 

CBrArri  2)(                                                                                                (57)                                                                             

with irrr f  

The following boundary conditions hold 

ff )(  rrr i                                                                                     (58) 
)()( rrrr

mii                                                                                    (59) 
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The indicator   designates the influence of interphase of the thermomechanical properties  of composite and its 
rates  belong to the interval ]1,0( .  Yet, one may suppose the maximum influence of interphase both on the thermal 
conductivity of this intermediate zone and the overall material by supposing that this indicator equals unity [19, 20] 
 
Now, to estimate the terms A ,B and C  which depend on the radii as well as the thermal conductivities of 
constituents of the composite, one may   apply the previous boundary conditions and in addition,  may suppose that 
all the parabolas which represent graphically this aforementioned variation should have global minima at the 
critical values ir . The corresponding mathematical expression of this requirement, can be formulated as follows 
At irr    

0
dr
d i                                                                                      (60)                                                                                                                  

02

2



dr
d i                                                                             (61) 

Therefore, after the necessary algebraic manipulation, the following relationship arises 
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 Next, by taking into consideration a rephrased form Agari – Uno formula [16], one infers 
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Here,  1C   denotes the effect of particles on the secondary structure of the composite whilst 2C  is a constant 
related to when the particles begin to form conductive chains.  This parameter is introduced in order to modify the 
assumption that both the matrix phase and particles are all continuous. Evidently the more easily particles are 
concentrated to shape conductive chains, the more the thermal conductivity of the particles contributes to the 
variation of the overall  the thermal conductivity of system.   Here, the authors took into consideration that the 
interphase is an altered matrix and thus the coefficient 1C concerns both matrix and interphase. For facility reasons 
coefficient 2C  can be considered equal to unity without violating the generality, wheras 1C  can be roughly 
estimated by considering a modified form of particle packing factor defined first in Ref. [21]. In particular, let us 
focus on the second variation of the icosahedral model given that it has the greatest range of validity when 
compared with two others.  Since the edge of the proposed icosahedron is L  it is known that the edge of its unique 

dual regular dodecahedron defined by the centroids of the icosahedron faces is L
6

51 . Now, let us define the 

particle packing factor m  of the second variation as the ratio between the volumes of icosahedron and the volume 

of its dual dodecahedron. It is known from the literature [22] that 
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To yield the thermal conductivity of the overall material, which as we have already said can be considered as 
homogeneous, eqn. (63) can generally be combined with (48 - 56) provided of course an experimental estimation of 
the interphase thickness. 
 Also, focusing on eqn. (62), one may consider the maximum influence of interphase both on the thermal 
conductivity of this intermediate zone and the overall material by supposing that 1 .   
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In addition, the average values of interphase conductivities for the two degree parabolic variation law, 

expressed by eqn. (62) for 1 can be estimated as 
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4.  Experimental Work 
 
To define experimentally the interphase thickness, the specimens used have as matrix a system based on a 
diglycidilether of bisphenol A resin (Epikote 828) as prepolymer, with an epoxy equivalent 185-192, a molecular 
weight between 370 and 384 and a viscosity of 15000 CP at 25oC. As curing agent, 8% triethylenetetramine 
hardener per weight of the epoxy resin was employed. As filler, aluminum particles of diameter m 10 x 150 -6  and 
filler contents from Uf = 0.05 to 0.30 were used.   
 
The properties of the constituent materials are given in Table 1. 
 

Type of constituent material Aluminum Epoxy resin 

Thermal Conductivity 120 W/m·K 0.2 W/m·K 

Density ρ (kgr/m3) 2700 1190 
 
Table 1 Properties of  filler and matrix material 

 
 
The test pieces were machined from each casting. To measure the interphase thickness a series of   pure and 
aluminum reinforced epoxy resin samples of the same diameter and thickness were manufactured and tested on a 
Du – Pont 900 differential thermal analyzer combined with a Du – Pont Differential Scanning Calorimetry (DSC) 
analyzer at the zone of the glass transition temperature in order to determine the specific heat capacity values for 
filler volume fraction varying from 0 to 30 percent. It is well-known that Lipatov [23] have shown that, if 
calorimetric measurements are performed in the neighborhood of the glass transition zone of the composite, energy 
jumps are observed. These jumps are too sensitive to the amount of filler added to the matrix and can be used to 
evaluate the boundary layers developed around the inclusions. Apparently, as the filler volume fraction is 
increased, the proportion of macromolecules characterized by a reduced mobility is also increased.  This is 
equivalent to an augmentation of the interphase content and supports the empirical conclusion presented in Ref. 
[23], which the extent of the interphase expressed by its thickness r  is the cause of the variation of the 
amplitudes of heat capacity jumps appearing at the glass transition zones of the matrix material and the composite 
with various filler – volume fractions. Moreover, the size of heat capacity jumps for unfilled and filled materials is 
directly related to Δr by an empirical relationship given in Ref. [23] This expression defines the thickness r   
corresponding to the interphase and is written out below This relationship defines the thickness r  corresponding 
to the interphase and is written out below 
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where 
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(70) 

Here, the numerator and the denominator of the fraction appearing in the right hand side of eqn. (70) denote the 
sudden changes of the heat capacity for the filled and unfilled polymer respectively. In continuing, the values of the 
interphase thickness and volume fraction for various filler contents are listed in Tables 2-5. These values were 
obtained by introducing the experimental values of the sudden change and heat capacity at the transition region for 
the composite into eqns. (69 - 70). 
 

Uf Δri(μm) Ui 
0.05 0.3 0.0013 
0.10 1.06 0.004 
0.15 2.12 0.013 
0.20 3.53 0.028 
0.25 5.0 0.050 

 
Table 2 Interphase thickness and volume fraction for various filler contents   

 

r1 (μm) r2 (μm) r3 (μm) r4 (μm) r5 (μm) r6 (μm) r7 (μm) r8 (μm) r9 (μm) 
277.0035 277.13 290.9511 291.1819 407.1626 447.8789 488.5951 508.9533 529.3114 
213.8782 214.196 236.0859 236.632 323.1652 355.4817 387.7982 403.9565 420.1148 
181.3065 182.2403 210.5572 212.0603 282.3108 310.5419 338.773 352.8885 367.004 
159.3733 161.2773 195.0717 197.9276 256.4964 282.146 307.7957 320.6205 333.4453 
142.6199 145.9378 184.4561 189.0586 238.1102 261.9212 285.7322 297.6378 309.5433 

 

Table 3  Radii of each region for first icosahedral variation   
  

 

r1 (μm) r2 (μm) r3 (μm) r4 (μm) r5 (μm) r6 (μm) r7 (μm) r8 (μm) r9 (μm) 
252.9995 253.115 277.0119 277.4866 466.0849 512.6934 559.3019 582.6061 605.9104 
189.7454 190.0273 228.2665 229.3624 369.9318 406.925 443.9182 462.4148 480.9113 
154.815 155.6124 206.2451 209.1962 323.1652 355.4817 387.7982 403.9565 420.1148 
129.0684 130.6103 193.2105 198.7092 293.6151 322.9766 352.3381 367.0189 381.6996 
106.6727 109.1543 184.4599 193.1686 272.5681 299.8249 327.0817 340.7101 354.3385 

 
Table 4 Radii of each region for   second icosahedral variation   
 

 

r1 (μm) r2 (μm) r3 (μm) r4 (μm) r5 (μm) r6 (μm) r7 (μm) r8 (μm) r9 (μm) 
126.9527 127.0106 166.0369 166.7953 369.9318 406.925 443.9182 462.4148 480.9113 
73.07607 73.18465 142.9556 144.5607 293.6151 322.9766 352.3381 367.0189 381.6996 
-54.4821 -54.7627 133.3176 137.3547 256.4964 282.146 307.7957 320.6205 333.4453 
-75.926 -76.8331 127.9268 135.0525 233.0424 256.3466 279.6509 291.303 302.9551 
-84.4967 -86.4625 124.461 135.2567 216.3374 237.9711 259.6049 270.4218 281.2386 

 
Table 5 Radii of each region for third icosahedral variation 

 

  

Discussion 
 
In Table 6, the theoretical values of the thermal conductivity of the overall material with respect to filler volume 

fraction, as obtained from the authors, eqn. (63), and other workers are performed. Here, we elucidate that the 

second variation of the icosahedral model was selected for the calculation of thermal conductivity in terms of filler 

content as it was found to be subjected into the most realistic restrictions for filler concentration by volume.  
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Uf      10-6C-1 Authors Agari and Uno [16] 
Two - Phase Inverse 

Law of Mixtures 

Three - Phase 
Inverse Law of 

Mixtures 

Kytopoulos 
and Sideridis 
[13] 

Venetis and 
Sideridis [19] 

Venetis 
and 

Sideridis 
[20] 

0 0.362 0.362 0.2 0.2 0.2 0.2 0.2 

0.1 0.666182 0.646779 0.222181078 0.222403259 0.219743998 0.24897 0.252461 

0.2 1.190256 1.155588 0.249895877 0.250145773 0.243813239 0.279869 0.321414 

0.3 2.126609 2.064669 0.28551035 0.28779586 0.27380382 0.315462 0.389988 

0.4 3.799574 3.688906 0.332963 0.3347893 0.31220382 0.362884 0.494138 
 
Table 6 Theoretical values of the thermal conductivity 
 
In addition, Fig. 7 illustrates the variation of the thermal conductivity of the composite material against  filler 
volume fraction as obtained from the proposed multiphase spherical model, resulting in the modified form of Agari 
and Uno formula [16]. In addition, theoretical values derived from two and three phase inverse law of mixtures and 
other formulae also appear [see Appendix Section].  
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Fig.  7 Theoretical predictions of   thermal conductivity versus filler content at low and medium concentrations  
 
Here, one may observe that, as it was expected, at Uf = 0 both theoretical values of Agari and Uno formula and eqn. 
(63) coincide. In addition, for low filler contents, one may point out that eqn. (63) constitutes a slight improvement 
of Agari and Uno formula; whilst for medium contents up to 0.4 this improvement seems to be more considerable. 
On the other hand, it is evident that the proposed formula for thermal conductivity yields much better theoretical 
predictions when compared with inverse mixing laws for two and three phases and the three other theoretical 
formulae [13,19, 20] which were derived on the basis of multiphase forms of inverse law of mixtures given that the 
application of standard rule of mixtures cannot take place to evaluate this bulk property of a particulate composite. 
The latter is attributed to the fact that in particulate composites the component phases are interconnected through 
consecutive spherical phases of filler and matrix [21].  In the meanwhile, one may state that the transformation of a 
polyhedral model into a multiphase spherical one mainly concerns the implementation of Classical Elasticity 
approach to particulate composites for the evaluation of properties as tensile modulus, Poisson ratio etc.  However, 
since thermal conductivity is a bulk property of materials one may observe that such a topological transformation is 
not needed. Yet, thermal conductivity of filled polymers is proved to be analogous to viscosity, tensile modulus, 
and shear modulus. The following equation demonstrates the numerical relationship between composite material 
and pure polymer: 
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                                                                                                  (71) 

  
where the subscripts “c” and “p” denote the composite and pure polymer property respectively. 
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Also, in the above equation the symbol “k” is used to denote thermal conductivity, “n” to denote  viscosity, 
“E” for the elastic modulus, and “G” for the shear modulus. On the other hand, a shear loading analogy method was 
proposed by Springer and Tsai [25], to estimate thermal conductivity of a composite. However, this approach 
mainly concerns fibrous materials whilst the approach of Ref. [24] has indeed a wider validity.  Nonetheless, since 
in many formulae predicting the properties of composites there are limitations referring to the values of filler 
volume fraction, it is the authors’ belief that the aforementioned topological transformation of the icosahedral 
model into an ninephase spherical one is useful to be carried out towards the estimation of thermal conductivity, 
since in this way the analogy given by eqn. (71) may be signified and examined in a common framework, when 
necessary.  Moreover, in regard to the possibility of interaction amongst particles which is motivated by the 
proposed configurations of them,   one may say that this is not consistent with the parallel use of inverse law of 
mixtures. However, in our case this interaction has   a qualitative character. Specifically, according to the geometric 
models for a crystallographic packing of particles in the form of platonic solids, e.g. cubic models, icosahedral 
models etc., the particle distribution inside the polymer matrix takes place via deterministic configurations. In this 
way, the range of filler contiguity is defined beforehand in a stringent manner.  Hence, given that the development 
of interphase layers around all inclusions is a fact that cannot be avoided especially in polymer composites filled 
with inorganic filler; our consideration is in opposition with the undesirable existence of consecutive and/or 
intersecting – interacting inhomogeneous interphase layers with evidently unspecified thicknesses. In addition, such 
an unexpected situation may also shift the optimum filler volume fraction above which the reinforcing action of the 
filler is upset. In our concept, any interphase region is developed solely around each particle   and its thickness 
cannot be affected by the interphase layers of neighboring particles and thus the rule of mixtures can be put into 
effect as if  two “sole interphase layers” to be developed around the “two equivalent neighboring particles”, given 
that according to the two proposed variations of the icosahedral model the particles occupying either  the vertices, 
or the mid – edges, or the mid – faces of the octahedron, constitute three distinct phases as illustrated at the 
ninephase spherical model. In this context, the thermal conductivity of this category  of particulate composites was 
obtained by exploring the effect of contiguity, something that can be described by the distribution of the particles 
inside the matrix and which always should be such that to prevent their possible agglomeration.  
In addition, one may emphasize that the well known concept of interphase was considered along with the 
aforementioned influence of particle arrangement, and this combination was illustrated by the performed 9 - phase 
model, which has merged the influence of these parameters. Thus, one can point out that both these two factors 
may have an influence on the coefficient of thermal conductivity. Besides, it can be concluded that the 
simultaneous consideration of these two distinct and important parameters to estimate this property seems quite 
reasonable since in particulate composites the component phases are interconnected through consecutive spherical 
phases of filler and matrix. 
On the other hand, we should clarify that the proposed model holds for great values of filler content. Furthermore, 
as a continuation of the present work, the particle configuration could be approached by more advanced 
deterministic simulations of periodic particulate composites concerning dodecahedral or   icosahedral models,  
divided of course into side centered, face centered and body centered models. Further, the duality of regular 
polyhedra [22] could be applicable towards the introduction of more advanced representative volume elements of 
periodic particulate composites. Yet, to predict the particle distribution inside the matrix by the use of 
symmetrically reproduced unit cells based on platonic solids seems to be a rather simplified approximation when 
compared with advanced random vector generation techniques, motivated by stochastic methods. However, such 
approaches despite their inarguable mathematical rigor may not be convenient enough to represent the periodic 
structure of particle reinforced polymers and incorporate the interphase concept, since they may show many regions 
of agglomeration, leading to singular and unrealistic results. 
 
Conclusions  
 
The aim of this study was to develop a microstructural model in order to obtain the thermal conductivity   of 
particulate composites taking into account the contiguity i.e. the existence of several particles in the model (instead 
of a single particle in the matrix) thus considering the arrangement  of the inclusions and its influence on the 
properties of the composite material. Of course this becomes more important when the filler content of the 
composite increases and becomes high and/or when the mismatches in the properties of the inclusion and matrix 
are significant. 
The novelty of this work was that the particle contiguity was taken into consideration in parallel with the concept of 
interphase in order to estimate this property. 
To this end, a rigorous mathematical model was performed to simulate particulate composites of periodic structure, 
containing   spherical particles. The material was assumed to be homogeneous and isotropic.  
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After all, one may deduce that the interphase magnitude has an effect when the particles are stiffer than the 
matrix and increases as the thickness does. Meanwhile, the particle configurations indeed have a contribution to the 
thermal properties for particulate composites with icosahedral arrangements as verified from the transformation of 
the two possible variations of the proposed icosahedral model, into a  nine – phase spherical model. 
In closing, it can be said that the theoretical results obtained here may be considered as basic ones for more 
advanced cell models of this class of composites. 
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Appendix 
 
Let us present the theoretical formulae for thermal conductivity of particulates. 
Agari and Uno formula [16] 
 

)log()1(loglog 12 mfffc CUCU   (A1) 
 
The coefficients 21;CC have already been discussed in the text below eqn. (69) of the current article. 
Kytopoulos – Sideridis formula [13]                                                                         
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Here 21,kk are dimensionless parameters somewhat analogous to the packing factor for periodic particulate 
composites defined by Theocaris in Ref. [21]. Evidently these parameters lie between 0 and 1.  
 
Venetis – Sideridis formula [19] 
 








 








 








 





3
5

3
3

3
4

3
5

3
1

3
2

3
5

3
2

3
3

3
5

3
4

3
5

3
5

3
1

r
rr

r
rr

r
rr

r
rr

r
r

mfimif

ifm
c        (A5) 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 July 2018                   doi:10.20944/preprints201807.0134.v1

http://dx.doi.org/10.20944/preprints201807.0134.v1


 

 

 

- 20 -

where 51 rr  denote the radii of a coaxial  five – phase spherical model arising from the transformation of the 
non body centred RVE   
 
Venetis – Sideridis formula [20] 
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Here 71 rr  denote the radii of a coaxial seven – phase spherical model arising from the transformation of the   

body centred  RVE. Since the above formula is a rephrased form of inverse mixtures law, the term  ci, is 

approached by the weighted harmonic mean of 3,2,1, ;; iii   for the three interphase zones and therefore 
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