

1 Article

2 **An Integrated Wireless, Full-Range, Capacitive Sensor
3 System Designed for Measuring Ventricular Pressure**4 NH Sebastián¹, DD Alonso², FJ Renero-Carrillo¹, Noé Villa-Villaseñor³ and W Calleja-Arriaga^{1*}5 ¹ CD-MEMS INAOE, Puebla, México; natiely@inaoep.mx, wcalleja@inaoep.mx, paco@inaoep.mx6 ² Center for Engineering and Industrial Development, CIDESI, Queretaro, México; daniela.diaz@cidesi.edu.mx7 ³ Advance Technology Center, CIATEQ, San Luis Potosí, México; noe.villa@ciateq.mx

8 * Correspondence: wcalleja@inaoep.mx

9

10

11 **Abstract:** This paper reports the novel design of a touch mode capacitive pressure sensor
12 (TMCPS) system with a wireless approach for a full-range continuous monitoring of ventricular
13 pressure. The system consists of two modules: an implantable set and an external reading device.
14 The implantable set, restricted to a 2x2 cm² area, consists of a TMCPS array connected with a
15 dual-layer coil, for making a reliable resonant circuit for communication with the external device.
16 The capacitive array is modelled considering the small deflection regime for achieving a dynamic
17 and full 5-300 mmHg pressure range. In this design, the two inductive-coupled modules are
18 calculated considering proper electromagnetic alignment, based on two planar coils and
19 considering the following: 13.56 MHz frequency to avoid tissue damage and three types of
20 biological tissue as core (skin, fat and muscle). The system was validated with the Comsol
21 Multiphysics and CoventorWare softwares; showing a 90% power transmission efficiency at a 3.5
22 cm distance between coils. The implantable module includes aluminum- and polyimide-based
23 devices, which allows ergonomic, robust, reproducible, and technologically feasible integrated
24 sensors. In addition, the module shows a simplified and low cost design approach based on
25 PolyMEMS INAOE® technology, featured by low-temperature processing.

26 **Keywords:** RF MEMS, Pressure Sensor; MEMS Resonators; Implantable BioMEMS; Flexible
27 Electronics, Touch Mode Capacitive Sensor.

28

29 **1. Introduction**

30 This work addresses a new alternative for measuring blood pressure, using a novel LC sensor
31 arrangement, which can overcome some restrictions that are due to the reduced implantation area
32 available at the left ventricle (LV). Some recent alternatives are still considering the pulmonary
33 artery anatomy dimensions, since it can allow a wider area for the implantation of a more powerful
34 LC radiating inductor [1], however, they are characterized by a limited pressure range [2]. Some
35 biomedical and technology details are described below.

36 Regarding sensors placed inside the human body for the measurements and wireless
37 transmission of physiological parameters, some cases were proposed since several decades ago. In
38 1967, C. Collins [3] developed a passive miniature sensor for the continuous measurement of the
39 intraocular pressure on patients with glaucoma. This device was based on a passive LC resonant
40 circuit, in which the resonant frequency was varied according to the embedded pressure
41 surrounding the device. The electromagnetic coupling of the sensor to an external loop allowed for
42 the wireless transmission, hence determining the resonant frequency of the LC sensor. Then, and
43 considering some suitable calibration, that sensor was able to read the embedding pressure. Starting
44 from that work and with the current advances in microelectronics and microelectromechanical
45 systems (MEMS), several groups began conduct research based on the same principle [4-12]. As was
46 evidenced, the available area for the LC array versus power transmission is the main issue to be

47 solved for this kind of implantable sensors, calling for technological improvements in order to meet
48 the implantation requirements.

49 Blood pressure problems are a kind of disease that chronically damages the blood vessels,
50 organs and tissues of the human body. Public information shows that at least 10% of the world
51 population suffers from these diseases, with the high blood pressure being the main cause of
52 morbidity and mortality in the world [12-15]. In the heart, the contractions of the ventricular
53 chambers, left and right, provide the force to send the blood to the human limbs, however,
54 sometimes the heart cannot provide enough force to send the blood to the whole body [2]. Thus, it is
55 desired to perform some real time pressure measurements directly inside the chambers of the heart.
56 Accordingly, a successful ventricular pressure monitoring is crucial in medical diagnosis on a series
57 of diseases such as heart failure, aortic aneurysms, strokes, arteriosclerosis and renal failure [16,17].

58 Currently, there are several blood pressure measurement systems; the most common are the
59 non-invasive devices such as air-filled blood-pressure cuffs linked to a sphygmomanometer and the
60 via auscultator sound method [18]. In addition, non-invasive blood pressure measurements lack of
61 accuracy and stability, since they are indirect measurement techniques [17]. On the other hand,
62 current invasive methods are typically used for percutaneous arterial catheter system, which
63 although are very accurate, they inhibit the free movement of the patient and might be unsafe for
64 long-term use due to complications such as trauma to arterial vessels, infection, hemorrhage and
65 difficulty in obtaining access [18-21].

66 The development of polymeric materials has represented one of the most significant tools for
67 the medical area and bioengineering research, since the use of new materials has allowed significant
68 advantages for obtaining implantable devices that can work for a long time, besides they also
69 present additional advantages, such as biocompatibility, low weight, mechanical flexibility and the
70 use of minimally invasive implantation techniques.

71 In 2006, Fonseca et al. [22] published the first flexible wireless pressure sensor for monitoring
72 abdominal aortic aneurysms. This device was fabricated using a flexible polymer and ceramics
73 which incorporated using lamination techniques, in order to implement a passive resonant circuit.
74 Although this work represents one of the first academic contributions about implanted blood
75 pressure monitors with strong consideration for biocompatibility and minimally invasive
76 functionality, the device precision showed limitations by signal drift and the distance of the
77 electromagnetic transmission.

78 In 2006 [11], began the development of a new class of implantable devices for the control of
79 aortic aneurysms and heart failure. The system was named CardioMEMS™ [23-27], and consists of
80 an implantable pressure sensor, an external communication module and an intravenous supply
81 system designed to deploy the sensor in the pulmonary artery. The battery-less 3.5×30 mm device
82 has a wireless range of about 20cm. The micromachined device was fabricated utilizing two fused
83 silica wafers, electrodeposited inductors, and fusion bonding. Once implanted, the CardioMEMS™
84 sensor provided hemodynamic data for systolic pulmonary pressure of 15-35 mmHg, diastolic
85 pressure of 8-20 mmHg and a mean of 10-25 mmHg [26, 28]. In 2014 this system was approved by
86 FDA and according to the CHAMPION study, the use of this device in patients with heart failure
87 (HF) has allowed for a reduction of hospitalization events which improved the life quality of the
88 patients [28-29].

89 CardioMEMS™ sensor and most of the pressure sensors designed to be implanted in a place
90 near the heart, are mainly placed in the pulmonary artery (PA), since the pressure in this site can be
91 related to a series of diseases such as heart failure, pulmonary hypertension and aortic aneurysms
92 [19, 23-25]. In addition, the implantation of pressure sensors in the PA offers a series of design and
93 manufacture advantages such as reduced pressure range (0-80 mm Hg), large devices due to the size
94 of the PA (3x3 cm), and the use of techniques for minimally invasive implantation. However, the
95 pressure range measured in PA cannot be related directly to cardiac ventricular contraction and
96 relaxation event. Therefore, if a reliable ventricular pressure sensor can be fabricated and implanted,
97 new diagnostic and therapeutic possibilities could be open, because the LV is the chamber of the
98 heart responsible for pumping the oxygenated blood to the circulatory system [2, 29]. As a result, the

99 continuous monitoring of left ventricular pressure, could allow the control of diseases such as: heart
 100 failure, hypertrophy in the LV and hypertension; additionally, this will allow the control of
 101 secondary diseases such as strokes, renal failure, myocardial infarctions, disease in the coronary
 102 artery and aortic aneurysms, placing the sensor permanently in the aneurysmal sac [8,
 103 17,19,20-21,30-43]. Figure 1 shows a geometrical approach for the left ventricle, this section is
 104 proposed for the sensor implantation, with an inner available area of 2x2 centimeters [44].

105 **Figure 1.** Sketch of the left ventricle [44]; showing the inner section proposed for the sensor implantation.

106 Therefore, an implantable LV pressure device that meets the following considerations is
 107 required: wide range of operating pressure (5 to 300 mmHg), small size, appropriated frequency
 108 bandwidth, high resolution and precision, biocompatibility and stability in hostile environments. In
 109 addition, the sensor design must take into account minimally invasive techniques and anchoring
 110 schemes that prevents displacements of the sensor.

111 This paper reports the novel design of a two inductive-coupled modules designed for a
 112 continuous monitoring of LV pressure. The conception of the implantable capacitive array and the
 113 inductive coupling link are designed for accomplish practical, accurate, and real-time wireless
 114 pressure sensing. This novel design is supported by our previous work: a) A magnetically coupled
 115 planar coils for wireless power transfer in intraocular pressure measurements [45]; b) An aluminum
 116 based thin film technique for the fabrication of capacitive sensors [46-47], and c) The implantation of
 117 an experimental LC prototype beneath the conjunctiva of a rabbit's eye using a very simple surgery.
 118 The sensors array has the capability to adjust between the conjunctiva and the cornea without an
 119 aggressive invasive procedure; the LC array did not suffer rejection; tissue irritation disappears after
 120 three weeks; the prototype showed good stability, and the rabbit tolerated this implant during six
 121 months before its sacrifice [48]. Figure 2 shows images of this previous work. This implantable
 122 sensor is still under fabrication considering a thin-film monolithic approach, defining the capacitive
 123 and inductive structures in the same flexible/foldable ergonomic substrate, without the use of
 124 hybrid-like connections, combining two manufacturing technologies: surface micromachining and
 125 flexible electronics.

(a) (b)

126 **Figure 2.** a) Aluminum based capacitive pressure sensor fabricated over a thick polyimide substrate and capped
127 with a thin polyimide film. b) Flexible LC prototype implanted in the rabbit's eye [45, 47-48].

128 The fabrication process was designed according to the PolyMEMS INAOE® technology, which
129 is featured by a low-temperature processing, considering materials for assuring biocompatibility.
130 Finally, this sensor can also be adapted for monitoring the pressure in different organs, such as the
131 aorta, pulmonary artery and even the urinary bladder.

132 **2. Integrated Wireless System Description**

133 The concept supporting the wireless ventricular pressure sensor, in a passive electrical sensing
134 scheme, is shown in Figure 3. The complete monitoring system consists of two modules: an
135 implantable sensor set and an external reader device. In this design, the two inductive-coupled
136 modules are calculated considering a proper electromagnetic alignment, based on two circular
137 planar coils with the proper resonant frequency, calculated as [49-51]:

$$f = \frac{1}{2\pi\sqrt{LC}} \quad \text{if} \quad R^2 \gg \frac{L}{C} \quad (1)$$

138 Where L, C and R denotes the magnitudes for inductance, capacitance and resistance,
139 respectively. In addition, for this design both coupled modules are modelled as a multicore
140 transformer for transmission/reception power. That is, when a time varying current circulates
141 though the coil (L_r) from the reader device, an electromagnetic field is radiated around it. If the coil
142 (L_s) from the implantable set is inside the radiation zone, some electromagnetic field lines cross the
143 L_s area, generating a time varying current on the implantable set and operates according to the C_s
144 magnitude. C_s will vary following the ventricular pressure, and the proper electromagnetic coupling
145 is the main subject for this work.

146
147 **Figure 3.** Electromagnetic scheme for the wireless ventricular pressure sensor.

148 The resonant frequency of the implanted sensor set and the signal coupling towards the
149 external coil can be modeled as a two-port network. Under this premise, the input impedance of the
150 reader coil is expressed taking electrical parameters from the implantable device [49-50, 52], as
151 follows:

$$Z_{eq} = \frac{V_r}{I_r} = j2\pi f L_r \left[1 + k^2 \frac{(f/f_s)^2}{1 - (f/f_s)^2 + (1/Q_s)j(f/f_s)} \right] \quad (2)$$

152 Where V and I are the exciting voltage and current across the reader coil, f is the excitation
153 frequency, k is the coupling factor (totally dependent on physical dimensions), f_s is the resonating

154 frequency of the implanted sensor set and $Q=(2\pi f_s L_s)/R_s$ is the quality factor of the sensor under
155 resonance.

156 It can be seen from Equation 2, that in order to change the impedance Z_{eq} from the reader coil,
157 one must change either the k or f_s of the implanted set. For ventricular pressure applications, the
158 distance between both coils will remain constant so the k will not change. Therefore, f_s is the only
159 parameter capable of changing the equivalent impedance. According to Equation 1, the overall
160 variation of the capacitance into the implanted sensor array is caused by a local change of the
161 pressure, which accordingly changes the resonant frequency. Such changes are detected in the
162 reading coil as variations in the equivalent impedance, and hence related to the ventricular pressure.

163 *2.1 Implantable LC sensor set*

164 The implantable sensor set, restricted to a $2 \times 2 \text{ cm}^2$ area (according to the LV internal
165 dimensions), was defined over a $20 \mu\text{m}$ -thick polyimide film and interconnected according to Figure
166 1. It consists of 2 touch-mode capacitive pressure sensor (TMCPs) parallel array connected to a
167 dual-layer planar coil, thus a reliable resonant circuit for communication with the external device is
168 attained. The implantable set has been designed considering a thin-film monolithic approach,
169 underlying the capacitive and inductive structures in the same flexible ergonomic substrate without
170 the use of hybrid-like connections, combining two manufacturing technologies, such as surface
171 micromachining and flexible electronics. Figure 4 shows a 3D view of the double-layer coil and a
172 cross-section view of the implantable sensor set.

173 **Figure 4.** a) Cross section cut of the implantable sensor set and b) A 3D view.

174 The proposed novel capacitive array is shown in Figure 5a, it consists of a sectioned hermetic
175 chamber with 2 parallel capacitors array. In this approach, both plates are isolated by a double
176 insulator: air/silicon oxide, allowing a dynamic variable capacitive sensor [47, 53-55], as can be seen
177 in the layout of Figure 5b. The $555 \mu\text{m}$ -side capacitor is mechanically designed for response under
178 the lower LV pressure regime and the $300 \mu\text{m}$ -side capacitor is designed to obtain a response under
179 the higher LV pressure regime. This capacitive array is fully designed considering a thin polyimide
180 film, which is added as a biocompatible capping film, i. e., at the same time is part of the diaphragm
181 of the capacitors. Finally, the capacitors are analyzed as follows: a) the top diaphragm is calculated
182 to provide a direct contact with the physiological environment; thus, the structures are properly

183 covered with a biocompatible film; b) the double-film squared diaphragm (polyimide over
 184 aluminum) was structurally modeled considering the small deflection regime [54-55]. This analytical
 185 work has concluded with 2 precise mechanical complementary capacitors, capable of achieving a
 186 dynamic and full 5 - 300 mmHg pressure range to cover the full diastolic-systolic pressure range
 187 developed across the LV [2, 19].

188 **Figure 5.** a) Double diaphragm capacitive array, the sketch shows structural materials and dimensions. b)
 189 Layout.

190 The detection principle for the capacitive array is based on the relationship between the changes
 191 in capacitance under the applied pressure [8, 47, 49, 54]. In this case the total capacitance, at any time,
 192 is the sum of the individual capacitances associated at a given pressure, as follows:

$$C_s = \frac{\epsilon_0 \epsilon_{aire} \epsilon_{d1} A_{touch1}}{W_{max1} + \epsilon_{d1} W_{max1}} + \frac{\epsilon_0 \epsilon_{aire} \epsilon_{d2} A_{touch2}}{W_{max2} + \epsilon_{d2} W_{max2}} \quad (3)$$

193 Where ϵ_d is the dielectric constant of the insulating material, A_{Touch} is the contact area of the
 194 diaphragm, W_{max} is the separation distance between the parallel metal plates and the subscripts 1
 195 and 2 indicate the first and second capacitive structure, respectively. Table 1 shows the main
 196 parametric design and the analytical results for the capacitive array. Both diaphragms were
 197 calculated to operate simultaneously based on the minimum and maximum operating pressure of
 198 the LV, that is, the first structure operates from the minimum pressure of 5 mmHg and the second
 199 one operates up to a maximum pressure of 300 mmHg, thereby ensuring that the capacitive
 200 assembly covers the full range for the ventricular pressure.

201 **Table 1.** Parameters design and analytical results for the capacitive array.

Parameters	Symbol	Structure 1	Structure 2
Contact pressure	P_{Touch}	5 mmHg	40 mmHg
Maximum operating pressure	P_{Max}	200 mmHg	300 mmHg
Lateral length of the diaphragm	a	555 μm	300 μm

Thickness of the lower electrode	$t_{E\text{low}}$	2 μm	2 μm
Thickness of the top electrode	$t_{E\text{top}}$	1 μm	1 μm
Thickness of the biocompatible film	t_{Bio}	1.5 μm	1.5 μm
Air gap	W_{max}	1.5 μm	1.5 μm
Oxide thickness	t_{oxi}	0.2 μm	0.2 μm
Sensor capacitance at zero pressure	C_{p0}	1.9 pF	0.51 pF

202 Because the restricted area existing inside the LV, the design of the internal coil consists of a
 203 dual-layer planar inductor to increase the total value of the inductance and its quality factor. The
 204 two superposed aluminum loops, insulated by a dielectric bi-layer (oxide and polyimide), are
 205 connected in series and composed by 28 turns each, covering an external diameter of 2cm. Regarding
 206 the metal and coil thickness, they were chosen based on the full implantable set to facilitate the
 207 thin-film monolithic approach. As shown in the layout of Figure 6, the full array is covered by a thin
 208 polyimide film.

209
 210 **Figure 6.** Double layer internal coil, layout showing the 5-level design.

211 The electrical characteristics of the dual-layer planar coil can be determined by using
 212 established models [56-58], where the electrical inductance for a circular multi-layer coil is calculated
 213 as:

$$L \approx L_1 + L_2 \pm 2M \quad (4)$$

214 Where $M = k(L_1 \cdot L_2)^{1/2}$ is the mutual inductance between the two levels of the planar coil [28],
 215 $k = (R_{\text{out,T}}^2 \cdot R_{\text{out,R}}^2) / (R_{\text{out,T}}^2 + R_{\text{out,R}}^2)^{1/2} (R_{\text{out,T}}^2 + X^2)^{3/2}$ is the coupling factor between two coils, whereas L_1 and
 216 L_2 are the self-inductances for the lower and upper loops, which are determined from the following
 217 Equation [49-50, 57, 59]:

$$L_1 = L_2 \approx \frac{\mu_0 n^2 d_{\text{avg}} C_1}{2} \left[\ln \left(\frac{C_2}{F} \right) + C_3 F + C_4 F^2 \right] \quad (5)$$

218 Where $n = (R_{\text{out}} - R_{\text{in}})(w + s)$ is the number of turns of the inductor, $d_{\text{avg}} = (D_{\text{out}} + D_{\text{in}})/2$ is the
 219 averaged diameter of the windings, $F = (D_{\text{out}} - D_{\text{in}}) / (D_{\text{out}} + D_{\text{in}})$ is the fill factor of the windings and
 220 $C_1 - C_4$ are constant coefficients determined by the winding geometry [57].

221 From Equation 4 we can observe that for a multi-layer system, the final inductance increases
 222 according to a positive effective mutual coupling. Figure 6 shows the layout of the sensor set. This
 223 design has several advantages that include small size, stability, ergonomic and mechanical
 224 flexibility. Additionally, the distribution of the windings are not superposed, in this way there is no
 225 contribution to parasitic capacitance and the mutual coupling results positive.

226 2.2 External Coil

227 The external coil was calculated under flexible conditions taking into account the physical
 228 dimensions and materials for manufacturing; it was projected on a 4-layer PCB FR-4 as the substrate
 229 material; composed by 27-turns cooper coil and 8-cm outside diameter, and designed following the
 230 Finkenzeller condition, according the following Equations [52, 59]:

$$D_{\text{out},T} \leq D2\sqrt{2} \quad (6)$$

$$R_{\text{out},T} \geq \sqrt{X^2 + R_{\text{out},R}^2} \quad (7)$$

231 Where $D_{\text{out},T}=2R_{\text{out},T}$ is the outer diameter of the outer coil, D is the radiation distance and X is the
 232 separation between the inner and outer coils.

233 The electromagnetic coupling was calculated considering the following: a) 13.56 MHz
 234 frequency to avoid tissue damage by radiation and heating (according to ISO 14117 for implantable
 235 devices) and b) in order to simulate a more realistic environment, the core considers three
 236 components for the biological tissue: the first layer is skin with 0.5 cm thickness, the second layer is
 237 fat with 1 cm thickness and the third layer is muscle with 2cm thickness. Design parameters such as
 238 the number of turns, width, thickness and value for the inductive element are determined based on
 239 the self-inductance value of the implantable sensor set, so that the two RCL circuits resonate at the
 240 same frequency. Figure 7 shows the lay out of the external coil.

241
 242 **Figure 7.** Layout generated for the external coil.

243 The self-inductance of the external coil as well as for the internal coil were calculated based on
 244 the number of turns taken from Equation 5. For the inductive coupling link, the electrical parameters
 245 were calculated using well known methods [51, 59-60], and then the power transmission efficiency
 246 for the inductive link is given by:

$$\eta = \frac{k^2 Q_1 Q_2^3 R_2 R_{\text{load}}}{(k^2 Q_1 Q_2^3 R_2 R_{\text{load}} + k^2 Q_1 Q_2 R_{\text{load}}^2 + Q_2^4 R_2^2 + 2Q_2^2 R_2 R_{\text{load}} + R_{\text{load}}^2)} \quad (8)$$

247 Where $Q=(1/R)(L/C)^{1/2}$ represents the quality factor for the external and internal coils, R_2 is the
 248 equivalent resistance of the internal coil, $R_{\text{load}} \geq 2\omega L_2$ is the load resistance [59], and for this case $R_{\text{load}}=3$
 249 $\text{k}\Omega$. Table 2 shows the main parametric design and the analytical results for the internal and external
 250 coils.

251 **Table 2.** Analytical and design parameters for the internal and external coils.

Quantity	Symbol	Internal coil	External coil
Internal diameter	D_{in}	2 mm	2 mm
External diameter	D_{out}	2 cm	8 cm
Width of the metal lines	w	160 μm	700 μm
Space between turns	s	160 μm	700 μm

Thickness of the metal lines	h	2 μm y 1 μm	35 μm
Number of turns	N	28 each loop	27
Length	l	1.14 m	1.7 m
Frequency of operation	fs	13.56 MHz	
Self-Inductance	L	20.05 μH	21.29 μH
Electrical resistance	R	309 Ω	4 Ω
Quality factor	Q	8	591
Load resistance	Rload	3 k Ω	---
Radiation distance	X	3.5 cm	
Coupling coefficient	k	0.054	
Mutual inductance	M	2.5 μH	
Power transmission efficiency	η	90%	

252

3. Results and Discussion

253

3.1. Capacitive array

254 The capacitive array was analyzed using the CoventorWare® software based on the finite
 255 element method to evaluate the mechanical deformation of both diaphragms. In addition, the
 256 obtained parameters (strain, stress, electrical resistance, and finally the C-P characteristics) and the
 257 resultant quantitative curves were used as a design tool to achieve a desired electromechanical
 258 performance. Figure 8a compares both, the analytical and simulated diaphragm maximum
 259 deflection $P\text{-}W_{\max}$ versus the applied pressure, obtained from the designed squared capacitive
 260 structures: 555 μm - and 300 μm -side. Figure 8b illustrates the initial touching operation pressure
 261 (P_{Touch}) for each diaphragm.

262

263 **Figure 8.** Comparison of analytical and simulated $P\text{-}W_{\max}$ curves obtained from (a) 555 μm -side
 264 diaphragm and (b) 300 μm -side diaphragm.

265 Figure 9 allows the 3D qualitative visualization for the mechanical response under an applied
 266 pressure. It can be observed that the large structure operates at the low pressure regime and the
 267 small one operates at the high pressure regime.

268 **Figure 9.** Simulated mechanical response, obtained from the capacitive array at (a) 10 mmHg and (b) 100
 269 mmHg applied pressure.

270 From Figure 8, the analytical model agrees well the calculated mechanical response, where the
 271 maximum deflection (touching pressure) occurs at 5 mmHg and 40 mmHg, according to the size for
 272 each squared diaphragm. The slight variation observed at the beginning of the $P-W_{max}$ curves are
 273 due the fact that the analytical calculations neglects some deformations at the middle plane of the
 274 composed diaphragm, and the simulation software recreates the complete trajectory of the
 275 diaphragm, considering key structural parameters and a more complex analysis.

276 Once the capacitance (TCMPS) parameters have been determined for achieving an optimum
 277 performance, the maximum operating pressure is evaluated according to the increasing pressure
 278 over the diaphragms, hence simulating the touching contact area ($A_{contact}$) over the isolated lower
 279 plate. Therefore, once the contact area does not increase anymore, the applied pressure at this point
 280 is the maximum operating pressure. Figure 10 shows the $P-A_{contact}$ graphs, where the maximum
 281 operating pressure for each capacitive structure are plotted. The lower pressure regime corresponds
 282 to the 550 μ m diaphragm, and the higher pressure regime is for the 300 μ m diaphragm.

283 **Figure 10.** $P-A_{contact}$ graphs for the capacitive (TMCPS) sensor array.
 284

285 In both diaphragms under increasing pressure regime, the variations of the touching contact
 286 area seem slight, however these variations are enough to produce significative changes in the overall
 287 capacitance, and consequently produce changes in the resonant frequency of the RCL circuit (see
 288 Equation 1). The touch contact area can be expressed as $A_{Touch}=K_1P-K_2P^2$, where K_1 y K_2 are linear and
 289 saturation constants, respectively, and $K_1 \gg K_2$ [53]. Therefore, under a determined pressure, the
 290 contact area is proportional to the pressure, and the corresponding capacitance is directly
 291 determined. This is because the overall response is a linear C-P relationship, typical of a touch mode
 292 capacitive pressure sensor, which is very suitable for conditioning circuits. Figure 11 shows the
 293 characteristic C-P curves obtained for each one and the full set of capacitive sensors as well.

294
295**Figure 11.** Capacitance response versus applied pressure, covering a full 5–300 mmHg range.

296 In Figure 11, graph C, it can be seen that at the beginning the capacitance increases suddenly
 297 because the 555 μm diaphragm quickly makes contact over the lower electrode. In the 15–75 mmHg
 298 range, the capacitance increases with a linear rate typical for the 555 μm diaphragm. Around 80–300
 299 mmHg, the capacitance increases linearly and steadily, influenced by the 300 μm diaphragm
 300 according to the simulation routines. This electromechanical response from the capacitive sensor set
 301 is analyzed once it is interconnected with the planar coil. As expected, the capacitance variations
 302 lead to changes over the resonant frequency. Figure 12 shows the simulated operating frequency
 303 versus the capacitance variations, according to the circuit shown in Figure 3.

304
305**Figure 12.** Simulated operating frequency as a function of capacitance for the implantable set.

306 According to simulations, the operating frequency for the implantable sensor set has a variation
 307 from 13.56 MHz to 5.2 MHz, this frequency range which is included within the industrial, medical
 308 and scientific band (ISM), and completely ensures the safety because no tissue damage by radiation
 309 can occur. Another key parameter for analyzing the capacitive pressure sensor is the sensitivity
 310 $\Delta C/\Delta P$ as a function of frequency.

311 Our mathematical analysis and simulations make evident some changes in the sensor
 312 sensitivity, considering the operating frequency range. Figure 13 shows the relationship between the
 313 sensitivity and the applied pressure, considering each capacitive structure. As observed, the
 314 sensitivity decreases when the applied pressure increases. This sensitivity is influencing the final
 315 power transmission efficiency to be discussed later.

316
317**Figure 11.** Sensitivity versus applied pressure.318 3.2. *Inductive coupling link*

319 The overall inductive coupling link was modeled considering three main factors (internal
 320 dual-layer coil, external coil and protocol coupling link), using the Comsol Multiphysics® software
 321 based on physical interfaces and finite element analysis. Each factor was modeled explicitly and
 322 with a homogenized approach for obtaining diverse parameters, such as: self-inductance (L), mutual
 323 inductance (M), electrical resistance (R), magnetic flux density (Φ) and induced current (i).

324 3.2.1. Internal dual-layer coil model

325 The internal dual-layer coil is simulated by parts and as a single-element, because a multilevel
 326 coil involves more coupling factors, than a single-layer coil (see Equation 4). As a
 327 composed-element, a self-inductance of 6.68 μ H was obtained for each loop, and an electric
 328 resistance of 77 Ω and 158 Ω were obtained for the lower and upper loop, respectively. For the
 329 single-element coil, separated 1.5 μ m by a dielectric material (polyimide) and planarly oriented, a
 330 coupling factor of 0.99, a self-inductance of 27.1 μ H and an electrical resistance of 259 Ω were
 331 obtained, this is shown in Figure 14.

Figure 14. Simulation results for the internal double-level coil. (a) Self-inductance for the composed double coil and (b) self-inductance for a single-element coil.

334 The model for a dual-layer planar coil implemented in the implantable set, allows for obtaining
 335 higher values of inductance in a small area (restricted by the anatomical dimension of the LV, which
 336 results in better characteristics in terms of the internal coupling factor and power transmission
 337 efficiency. Table 3 shows the simulation results for the internal coil.

338
339

340

Table 3. Simulation results for the internal dual coil.

Parameters	Lower loop	Upper loop	Binding
Electrical resistance	77 Ω	158 Ω	259 Ω
Self-inductance	6.68 μ H	6.68 μ H	21.12 μ H
Quality Factor	17	8.3	9.1
Internal coupling factor ¹		0.99	
Internal mutual inductance ¹		6.67 μ H	

341

¹Parameters between the lower and upper loops.

342

3.3.2. External coil

343
344
345
346

The external coil was simulated in a similar way to the internal coil, however, a less complex system was considered, since the coil is formed by a single loop, thus only the explicit simulation model was used. A self-inductance of 19.7 μ H, a quality factor of 512 and an electrical resistance of 5.6 Ω were obtained.

347

3.3.3 Magnetic Coupling link model

348
349
350
351
352
353
354
355

The mathematical analysis of the inductive coupling link was validate with the software Comsol Multiphysics based on the near field approximation. The simulation model considers that the external coil is located outside the human body but establishes communication across the surface skin, where the internal coil is mounted within the left ventricle at a depth of 3.5 cm. In addition, we are considering a 13.56 MHz resonance frequency to avoid tissue damage by radiation and heating (according to ISO 14117 for implantable devices), and in order to simulate a more realistic coupling environment, the core considers three types of biological tissue: skin, fat and muscle, as shown in Figure 15. Table 4 shows the parameters used for the composed biological tissue [61-62].

356
357**Figure 15.** Inductive coupling link across biological tissue.

358

Table 4. Constitutive parameters of human biological tissue at a frequency of 13.53 MHz.

Model	Thickness [cm]	Conductivity [sm ⁻¹]	Relative permittivity	Wavelength [m]
Dry skin	0.5	0.23802	285.25	2.26
Wet skin		0.38421	177.13	2.87
Fat	1	0.030354	11.827	11.11
Muscle	2	0.62818	138.44	3.24

359
360

For medical applications, a key factor is the inductive coupling link because part of the field dissipates in the tissue causing some power dissipation. It is clear that as the distance between the

361 coils decreases, the electromagnetic field density increases, as well as other parameters such as: the
 362 mutual inductance, induced current/voltage and power transmission efficiency. Figure 16 shows the
 363 magnetic field density of the inductive coupling link and the relationship between the separation
 364 distance between the coils and the induced voltage for an input voltage of 5 V, 10 V and 15 V.

365 **Figure 16.** (a) Magnetic flux density and (b) induced voltage changes as a function of the separation distance.

366 Finally, the simulation results for the coupling across biological tissue delivers the following
 367 results: first, they show a 90% power transmission efficiency under the lower pressure range;
 368 second, under the higher pressure range the efficiency decreases to 78%. This controlled coupling
 369 attenuation comes from the smooth capacitance transition over the TMCPS array; Figure 17 shows
 370 this relationship.

371
 372 **Figure 17.** Power transmission efficiency versus frequency.

373 Table 5 list the simulation parameters about the inductive coupling link, which are in good
 374 agreement with the theoretical analysis.

375 **Table 5.** Simulation parameters for the inductive coupling link.

Parameters	Symbol	Value
Resonance frequency	f_s	13.56 MHz
Mutual inductance	M	3.38 µH
Magnetic flux density	\emptyset	150 µT
Coupling efficiency	k	0.054
Radiation distance	X	3.5 cm
Power transmission efficiency	η	90.7%

377 5. Conclusions

378 We report a new sensor scheme offering a continuous blood ventricular pressure monitor,
379 which will allow for the continuous control of some diseases such as heart failure, aortic aneurysms
380 and hypertension. The novel implantable sensor set, composed by capacitive and inductive
381 structures, are arranged over the same flexible substrate, avoiding hybrid-like connections, and
382 combining both manufacturing technologies, surface micromachining and flexible electronics. The
383 capacitive sensors array was designed using a composed aluminum/polyimide diaphragm, where
384 the structure and its parallel interconnection, are arranged in order to cover the wide LV pressure
385 range, which is a key contribution of this work. According to the anatomy of the LV, an internal
386 dual-layer coil was implemented to increase the L and Q parameters in a reduced physical area. The
387 model for a dual-layer planar coil allows for obtaining better characteristics in terms of the internal
388 coupling factor and power transmission efficiency. The implantable set presented the following
389 figures of merit: a dynamic and full 5 mmHg – 300 mmHg pressure range; and an operating
390 frequency range of 5.2–13.56 MHz. This system complies with the full diastolic-systolic pressure
391 range developed across the LV, also following the ISO 14117 standard for implantable devices and
392 the industrial, medical and scientific band (ISM). Currently the fully integrated process fabrication is
393 under progress.

394 The electromagnetic coupling across the biological tissue was validated with the Comsol
395 Multiphysics software: in the first place showed a 90% power transmission efficiency, at 3.5 cm
396 separation between coils, under the lower pressure range; second, under the higher pressure range
397 the efficiency decreases to 78%. Concerning the module fabrication, and according to our previous
398 experimental work, we adapted the PolyMEMS INAOE® technology, for an aluminum-based
399 technique, which allows for obtaining ergonomic, robust, reproducible, low-cost, and
400 technologically feasible inductive and capacitive structures. The polyimide substrate and coating
401 contribute for reducing the tissue damage and also offers a minimally invasive implantation
402 procedure. Finally, this sensor can also be adapted for monitoring the pressure in different organs
403 such as the aorta, pulmonary artery and the urinary bladder.

404

405 **Acknowledgments:** Natiely Hernandez Sebastián acknowledges Conacyt program scholarship #549792.

406 **Author Contributions:** Formal analysis Noe Villa-Villaseñor; Investigation, Natiely
407 Hernández-Sebastián, Daniela Díaz-Alonso and Francisco-Javier Renero-Carrillo, and Wilfrido
408 Calleja-Arriaga. NH Sebastián is a Ph.D. student.

409 **Conflicts of Interest:** "The authors declare no conflict of interest."

410 "The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of
411 data; in the writing of the manuscript, and in the decision to publish the results".

412 References

1. Yujia, P.; Tengxing, W.; Wein, J.; Xinchuan, L.; Xuejun, W. Modeling and Optimization of Inductively Coupled Wireless Bio-Pressure Sensor System Using the Design of Experiments (DOE) Method. *IEEE Transactions on Components, Packaging and Manufacturing Technology*, October 2017, Vol. 8, pp. 65-72.
2. Guyton, A.C.; Hall J. Textbook of medical physiology. 4th ed., 1032pp. Philadelphia-London-Toronto: Saunders 1971.
3. Collins C. Miniature passive pressure transensors for implanting in the eye. *IEEE Trans Biomed Eng.* 1967; Vol. 14, pp. 74–83.
4. Rosengren, L.; Rangsten, P.; Bäcklund, Y.; Hok, B.; Svedbergh, B.; Selen, G. A system for passive implantable pressure sensors. *Proc. 8th Int. Conf. Solid-State Sensors and Actuators, Yokohama, Japan*, 1993, pp. 588-591.
5. Olsen, E. R. et al. Intracranial pressure measurement with a miniature passive implanted pressure transensor. *Am. J. Surg.* 1967, Vol. 113, pp. 727-729.

425 6. Wise, K.D.; Clark, S.K. Diaphragm formation and pressure sensitivity in batch-fabricated silicon
426 pressure sensors. *IEDM Tech. Dig.*, 1978, pp. 96-99.

427 7. Lee, Y.S.; Wise, K.D. A batch-fabricated silicon capacitive pressure transducer with low temperature
428 sensitivity. *IEEE Trans. Electron Devices*, 1982, vol. ED-29, no. 1, pp. 42-48.

429 8. Chatzandroulis, S.; Tsoukalas, D.; Neukomm, P.A. A miniature pressure system with a capacitive
430 sensor and a passive telemetry link for use in implantable applications. *J. Microelectromech. Syst.* 2000,
431 vol. 9, no. 1, pp. 18-23.

432 9. Park, E.C.; Yoon, J.B.; Yoon, E. Hermetically sealed inductor-capacitor (LC) resonator for remote
433 pressure monitoring. *Jpn. J. Appl. Phys.* 1998, Vol. 37, pp. 7124-7128.

434 10. Takahata, K.; DeHennis, A.; Wise K.D.; Gianchandani Y.B. A wireless microsensor for monitoring
435 flow and pressure in a blood vessel utilizing a dual-inductor antenna stent and two pressure sensors.
436 *Int. Conf. Micro Electro Mechanical Systems*, 2004, Vol. 17, pp. 216-9.

437 11. DeHennis, A.; Wise, K.D. A fully-integrated multisite pressure sensor for wireless arterial flow
438 characterization. *Dig. North American Sensor Actuator Microsystems Workshop*, 2004, Vol. 15, pp. 168-171.

439 12. Información General sobre Hipertensión en el Mundo. Available online.
440 http://apps.who.int/iris/bitstream/handle/10665/87679/WHO_DCO_WHD_2013.2_spa.pdf;jsessionid=CA28E7F834B1972192D25482E211BCBC?sequence=1 (Accessed on 15 March 2018).

441 13. Banegas, J.R.; Ruilope, L.M. Mortality study from the Spanish Registry of ABPM. An appeal for the
442 transition of ABPM to clinical practice. *Hipertensión y riesgo cardiovascular*, September 2018, pp.97-100.

443 14. Campos, C.N.; Lucia, H.C. Hipertensión en adultos mexicanos: prevalencia, diagnóstico y tipo de
444 tratamiento. Salud pública de México, vol. 6, mayo 2018.

445 15. Maria, T.L. Burden of hypertension as a cardiovascular risk factor. *Revista médica clínica los condes*,
446 Marzo 2015, Vol. 26, pp. 156-163.

447 16. Lanzarini, L.; Fontana, A.; Campana, C.; Klersy, C. Two simple echo-Doppler measurements can
448 accurately identify pulmonary hypertension in the large majority of patients with chronic heart
449 failure. *J Heart Lung Transplant.* 2005, Vol. 24, pp. 745-754.

450 17. Hugo, E.V.; Pablo, F.C.; Roberto, A.F.; Mario, A.A.; Milton, E.A.; Carlos, C.D.; Robert, C.B.
451 Comparison of a Radiofrequency-Based Wireless Pressure Sensor to Swan-Ganz Catheter and
452 Echocardiography for Ambulatory Assessment of Pulmonary Artery Pressure in Heart Failure.
453 *Journal of the American College of Cardiology*. Dec 2007, Vol. 50 (25), pp. 2375-2382; DOI:
454 10.1016/j.jacc.2007.06.061.

455 18. Ogedegbe, G.; Pickering, T. Principles and Techniques of Blood Pressure Measurement. *Cardiology*
456 *Clinics*, 2010, Vol. 28, pp.571-586.

457 19. Fonarow, G.C.; Stevenson, L.W.; Walden, J.A.; et al. Impact of comprehensive heart failure
458 management program on hospital readmission and functional status of patients with advanced heart
459 failure. *J Am Coll Cardiol*, 1997, Vol. 30, pp. 725-732.

460 20. Fonarow, G.C.; Chelimsky-Fallik, C.; Stevenson, L.W.; et al. Effect of direct vasodilation with
461 hydralazine versus angiotensin-converting enzyme inhibition with captopril on mortality in
462 advanced heart failure: *The HyC trial*. *J Am Coll Cardiol.* 1992, Vol. 19, pp. 842-850.

463 21. Stevenson, L.W.; Tillish, T.H. Maintenance of cardiac output with normal filling pressures in patients
464 with dilated heart failure. 1986, Vol. 74, pp. 1303-1308

465 22. Fonseca, M.A.; Allen, M.G.; Kroh, J.; White, J. Flexible wireless passive pressure sensors for
466 biomedical applications. *Proc. 12th Solid-State Sens. Actuators Microsyst. Workshop*, 2006, pp. 37-42.

467 23. CardioMEMSTM. Available online. https://www.accessdata.fda.gov/cdrh_docs/pdf10/p100045c.pdf
468 (Accessed on 21 February 2018).

469 24. Clausen, I.; Glott, T. Development of Clinically Relevant Implantable Pressure Sensors: *Perspectives*
470 and *Challenges*. *Sensors*, 2014, pp. 17686-17702.

471 25. CardioMEMS, CardioMEMS, inc. announces FDA clearance of the EndoSureä wireless AAA pressure
472 measurement system for measuring intrasac pressure during thoracic aortic aneurysm (TAA) repair.
473 Available Online. <http://www.cardiomems.com/content.asp?display=news&view=9> (Accessed on 21
474 on February 2018).

475 26. Host, J.F.; Hasan A. Role of telephone monitoring in patients with chronic heart failure: theory and
476 practical implications. *Smart Homecare Technology and TeleHealth*, 2014, pp. 1-12.

477

478 27. Pandey, A.C. et al. Reducing Days in the Hospital with Cardiomems Device in Patients with Left
479 Ventricular Assist Device. *The Journal of Heart and Lung Transplantation*, Vol. 37, Issue 4, pp. S280 - S281.

480 28. Rodrigo, B. Revolucionando el tratameinto de la insuficiencia cardíaca descubriendo
481 CardioMEMSTM: Descubriendo CardoMEMST. *Insuficiencia cardíaca*, 2015, Vol. 10(3), pp. 141-148.

482 29. Abraham, W.T.; Stevenson, L.W.; Bourge, R.C.; Lindenfeld, J.A.; Bauman J.G.; Adamson, P.B.
483 CHAMPION Trial Study Group. Sustained efficacy of pulmonary artery pressure to guide adjustment
484 of chronic heart failure therapy: complete follow-up results from the CHAMPION randomised trial.
485 *Lancet*, 2016, Vol. 387, pp. 453-461. DOI: 10.1016/S0140-6736(15)00723-0.

486 30. Ahmed, D. RVSP – Right Ventricular Systolic Pressure: MyHeart. Available online.
487 <https://myheart.net/articles/rvsp-right-ventricular-systolic-pressure/> (Accessed on February 2018).

488 31. Takahata, K.; DeHennis, A.; Wise, K.D.; Gianchandani, Y.B. A micromachined antenna stent for
489 wireless monitoring of implantable microsensors. *Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.* 4,
490 2004, pp. 3360-3363.

491 32. DeHennis, A.D.; Wise, K.D. A fully integrated multisite pressure sensor for wireless arterial flow
492 characterization. *J. Microelectromech. Syst.* 15, 2006, pp. 678-685.

493 33. CardioMEMS. Available Online. <http://www.cardiomems.com> (Accessed in 2018).

494 34. Allen, M.G. Micromachined endovascularly-implantable wireless aneurysm pressure sensors: from
495 concept to clinic *Transducers*, 2005, pp. 275-278.

496 35. Hamilton, M.A.; Stevenson, L.W.; Child, J.S.; Moriguchi, J.D.; Walden, J.; Woo, M. Sustained reduction
497 in valvular regurgitation and atrial volumes with tailored vasodilator therapy in advanced congestive
498 heart failure secondary to dilated (ischemic or idiopathic) cardiomyopathy. *Am J Cardiol*, 1991, Vol. 67,
499 pp. 259-263.

500 36. Harvey, S.; Stevens, K.; Harrison, D.; et al. An evaluation of the clinical and cost-effectiveness of
501 pulmonary artery catheters in patient management in intensive care: a systematic review and a
502 randomized controlled trial. *Health Technol*. 2006, Vol. 10, pp. 1-150.

503 37. Merchant, F.M.; Dec, G.W.; Singh, J.P. Implantable sensors for heart failure. *Circ Arrhythm
504 Electrophysiol*. 2010, Vol. 3, pp. 657-667.

505 38. Adamson, P.B.; Magalski, A.; Braunschweig, F.; Bohm, M.; Reynolds, D.; Steinhaus, D.; Luby, A.;
506 Linde, C.; Ryden, L.; Cremers, B.; Takle, T.; Bennett, T. Ongoing right ventricular hemodynamics in
507 heart failure: clinical value of measurements derived from an implantable monitoring system. *J Am
508 Coll Cardiol*. 2003, Vol. 41, pp. 565-571.

509 39. Magalski, A.; Adamson, P.; Gadler, F.; Boehm, M.; Steinhaus, D.; Reynolds, D.; Vlach, K.; Linde, C.;
510 Cremers, B.; Sparks, B.; Bennett, T. Continuous ambulatory right heart pressure measurements with
511 an implantable hemodynamic monitor: a multicenter, 12-month follow-up study of patients with
512 chronic heart failure. *J Card Fail*. 2002, Vol. 8, pp. 63-70.

513 40. Adamson, P.B.; Kjellstrom, B.; Braunschweig, F.; Magalski, A.; Linde, C.; Kolodziej, A.; Cremers, B.;
514 Bennett, T. Ambulatory hemodynamic monitoring from an implanted device: components of
515 continuous 24-hour pressures that correlate to supine resting conditions and acute right heart
516 catheterization. *Congest Heart Fail*. 2006, Vol. 12, pp. 14-19.

517 41. Thomas, M.; Philip B.; Jason, W.; Jin W.P.; Jessica H.; Julia, V.; Peter K.; Stuart, W.; Peter, S.; Erwin, B.;
518 Wilfried, D.; Jörg H.; Hubert T. Remote Left Ventricular Hemodynamic Monitoring Using a Novel
519 Intracardiac Sensor. *Journal of the American College of Cardiology*.

520 42. Mosterd, A.; Azadas, A.W. Epidemiología clínica de la insuficiencia cardíaca. *Heart*. 2007, Vol. 93, pp.
521 1137 – 1146. Doi: 10.1136 / hrt.2003.025270.

522 43. Zile, M.R.; Bennett, T.D.; John, S.M.; Cho, Y.K.; Adamson, P.B.; Aaron, M.F.; Aranda, J.M.; Braham,
523 W.T.; Smart, F.W.; Stevenson, L.W.; Kueffer, F.J.; Bourge, R.C. Transición de la insuficiencia cardíaca
524 crónica compensada a la descompensada aguda: información fisiopatológica obtenida de la
525 monitorización continua de las presiones intracardíacas. 2008, Vol. 118, pp. 1433 – 1441. Doi: 10.1161 /
526 CIRCULATIONAHA.108.783910.

527 44. Roberto M.L; Luigi P.B.; Víctor, M.; Jonathan, A.. Recomendaciones para la Cuantificación de las
528 Cavidades Cardiacas por Ecografía en Adultos: Actualización de la Sociedad Americana de
529 Ecocardiografía y de la Asociación Europea de Imagen Cardiovascular. *Chicago Illinois; Padua, Italia,
530 Quebec y Toronto. American Society of Echocardiography*. 2015.

531 45. Rendón-Nava, A.; Díaz-Méndez, J.; Nino-de-Rivera, L.; Calleja-Arriaga, W.; Gil-Carrasco, F.;
532 Díaz-Alonso, D. Study of the Effect of Distance and Misalignment between Magnetically Coupled
533 Coils for Wireless Power Transfer in Intraocular Pressure Measurement. *The Scientific World Journal*,
534 2014, pp.1-11.

535 46. Díaz, D. Caracterización y modelado de sensores capacitivos para aplicaciones médicas. PhD. *Instituto*
536 *Nacional de Astrofísica, Óptica y Electrónica*. 2015.

537 47. Díaz, D.; Mario, M.M., Carlos, Z.; Joel, M.; Wilfrido-Calleja, A.; Juan- Carlos, C., Luis-Niño, R.;
538 Volodymir, P.; Felix, G.; Angel, G.; Efrain, R. Hermetic capacitive pressure sensors for biomedical
539 applications. *Microelectronics International*, 216, Vol. 33 Issue: 2, pp.79-86,

540 48. Carrasco, F.; Alonso, D.; Niño-de-Rivera, L. Biocompatibility and implant of a less invasive
541 intraocular pressure sensor. *Microelectronic Engineering*, 2016, Vol. 159, pp.32-37.

542 49. Chen, P.J.; Saati, S.; Varma, S.; Humayun, M.S.; Tai, Y.C. Wireless intraocular pressure sensing using
543 microfabricated minimally invasive flexible-coiled LC sensor implant. *J. Microelectromechan. Syst.*,
544 2010, vol. 19, no. 4, pp. 721-734.

545 50. Chen, P.J.; Rodger, D.; Saati, S.; Humayun, M.S.; Tai, Y.C. Microfabricated Implantable
546 Parylene-Based Wireless Passive Intraocular Pressure Sensors. *Journal of Microelectromechanical*
547 *Systems*, 2018, 17(6), pp.1342-1351.

548 51. Hannan, M. A.; Mutashar, S.; Samad, S. A.; Hussain, A. Energy harvesting for the implantable
549 biomedical devices: issues and challenges. *Biomed. Eng. Online* 13, 2014, pp. 79.

550 52. Finkenzeller, K. *RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and*
551 *Identification*, 2nd ed.; Wiley: New York, NY, USA, 2003.

552 53. Ko, W.H.; Wang, Q. Touch mode capacitive pressure sensors. *Sensors and Actuators*, 1999, vol. A 75, pp.
553 242-251.

554 54. Yamamoto, S.; Nakao, O.; Nishimura, H. Touch mode capacitive pressure sensor for passive tire
555 monitoring system. *Proc. Sensors of IEEE*, 2002, vol 2, pp 1582-6.

556 55. Timoshenko, S.P.; Woinowsky, K.S. *Theory of Plates and Shells*. Second Edition, Mc-Graw-Hill Book,
557 1959, New York, NY.

558 56. Islam, A.; Islam, S. Design of multi-spiral solenoidal inductor for inductive power transfer in
559 biomedical applications. *Proc. Applied Computational Electromagnetics Society Conf.*, 2011, pp. 369-374.

560 57. Zhao J. A new calculation for designing multilayer planar spiral inductors. *EDN*, July 2010, vol. 29, pp.
561 37-40.

562 58. Chiang, C.; Klin, C.; Ju, M. An implantable capacitive pressure sensor for biomedical applications.
563 *Sens. Actuators, A*, 2007, Vol. 134, pp. 382-388.

564 59. Mutashar, S.; Hannan, M.A.; Samad, S.A.; Hussain, A. Analysis and optimization of spiral circular
565 inductive coupling link for bio-implanted applications on air and within human tissue. *Sensors*, Vol.
566 14, pp. 11522-11541, 2014.

567 60. Mutashar, S.; Hannan, M.A.; Samad, S.A.; Hussain, A. Efficiency Improvement of Wireless Power
568 Transmission for Bio-Implanted Devices. *International Journal of Medical, Health, Biomedical,*
569 *Bioengineering and Pharmaceutical Engineering*. 2013, Vol:7, No:12.

570 61. Hmida, G.B.; Ghariani, H.; Samet, M. Design of wireless power and data transmission circuits for
571 implantable biomicrosystem. *Biotechnol. J.* 2007, vol. 6, no. 2, pp. 153-164, 2007.

572 62. Rahko, P.S. Evaluation of the skin-to-heart distance in the standing adult by two-dimensional
573 echocardiography. *J Am Soc Echocardiogr*, Jun 2008, Vol. 21(6), pp. 761-764.