Preprint
Article

This version is not peer-reviewed.

ZnS/SiO2 Passivation Layer for High-Performance of TiO2/CuInS2 Quantum Dot Sensitized Solar Cells

A peer-reviewed article of this preprint also exists.

Submitted:

05 July 2018

Posted:

05 July 2018

You are already at the latest version

Abstract
Suppressing the charge recombination at the interface of photoanode/electrolyte is the crucial way to enhance the photovoltaic performance of quantum dot sensitized solar cells (QDSSCs). In this scenario, ZnS/SiO2 blocking layer was deposited on TiO2/CuInS2 QDs to inhibit the charge recombination at photoanode/electrolyte interface. As a result, the TiO2/CuInS2/ZnS/SiO2 based QDSSCs delivers a power conversion efficiency (η) value of 4.63%, which is significantly higher than the 2.15% and 3.23% observed for QDSSCs with a TiO2/CuInS2 device and TiO2/CuInS2/ZnS, respectively. Electrochemical impedance spectroscopy and open circuit voltage decay analyses indicate that ZnS/SiO2 passivation layer on TiO2/CuInS2 suppress the charge recombination at the photoanode/electrolyte interface and prolongs the electron lifetime.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated