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Abstract: Vibration measurement serves as the basis for various engineering practices such as 
natural frequency or resonant frequency estimation. As image acquisition devices become cheaper 
and faster, vibration measurement and frequency estimation through image sequence analysis 
continue to receive increasing attention. In the conventional photogrammetry and optical methods 
of frequency measurement, vibration signals are first extracted before implementing the vibration 
frequency analysis algorithm. In this work, we demonstrated that frequency prediction can be 
achieved using a single feed-forward convolutional neural network. The proposed method is 
verified using a vibration signal generator and excitation system, and the result obtained was 
compared with that of an industrial contact vibrometer in a real application. Our experimental 
results demonstrate that the proposed method can achieve acceptable prediction accuracy even in 
unfavorable field conditions.  

Keywords: vibration measurement; frequency prediction; deep learning; convolutional neural 
network; photogrammetry; computer vison; non-contact measurement 

 

1. Introduction 

Structural vibration measurement is widely used in civil engineering, mechanical engineering, 
and other engineering practices. The frequency components can be estimated from the measured 
vibration signal; thus, the resonant frequency or the natural frequency can be determined from the 
signal. The estimation of the resonant frequency or natural frequency of a mechanical system is of 
great importance in many engineering applications. The resonant frequency and natural frequency 
can be used in monitoring the mechanical behavior of important structural components, detecting 
variations in the mechanical properties, design optimization, avoiding the occurrence of resonance 
disasters, and so forth. 

Vibration measurement methods can be divided into two categories: contact measurement and 
non-contact measurement. Contact measurement uses contact sensors attached to the measurement 
target such as velocity transducer, strain gauges, and accelerometer. However, installing and 
deploying contact sensors are both time and labor intensive. Non-contact measurement utilizes 
certain types of electromagnetic radiation to transmit information, such as laser Doppler vibrometer 
(LDV) [1–3] and microwave interferometry techniques [4,5]. The use of cameras to record visible light 
to carry out non-contact vibration measurement (also called image-based or computer vison vibration 
measurement) has received significant attention in the past decades, such as in digital image 
correlation (DIC) [6–8], marker tracking [9–12], and target-less [13,14] image-based vibration 
measurement methods. In the conventional image-based methods, the vibration signals should be 
extracted first to determine the vibration frequency. In the DIC method, patterns must be manually 
applied to the target object surface. Then, the image processing algorithm is implemented to track 
variations in the projected or printed pattern on the surface for correlation analysis of the vibration 
signals. Then, algorithms such as FFT are used to analyze the frequency components and finally 
determine the resonant frequency. Marker tracking also requires an optical target such as LED light 
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or marker printed or mounted on the target surface, while the image algorithm and signal analysis 
algorithm are implemented consecutively. In the target-less method, the image processing algorithm 
must also be applied first to analyze and track the intrinsic features of the target object surface, and 
an algorithm is then implemented to determine the frequency spectrum. As discussed above, the 
present image-based non-contact vibration frequency measurement method requires a complex 
image algorithm for vibration signal extraction, as well as a signal analysis algorithm to estimate the 
vibration frequency, which requires the use of substantial amount of computational resources. This 
makes it difficult to deploy conventional image-based non-contact methods in real applications. 

In this work, we did not explicitly analyze and extract vibration signals from the image sequence; 
rather, we proposed a convolutional neural network (CNN) trained with generated artificial signals, 
and utilized the learned features to discriminate the pixel brightness variation in the time domain for 
vibration frequency prediction. Furthermore, down sampling, de-noising, or other signal 
enhancement algorithms are not required. The proposed method predicts the vibration frequency at 
pixel level or the statistic result of pixels in the region of interest (ROI) using the original raw noisy 
brightness signals of each pixel and additional image processing or signal processing algorithms are 
not required. Verification tests were conducted using a vibration signal generator and excitation 
system. Further laboratory and field experiments were conducted to compare the performance of the 
proposed method with that of an industrial vibrometer. The limitations of this study and challenges 
in a real application were discussed. 

2. Methods 

This section describes the learning of deep features for vibration frequency prediction using our 
CNN model. First, the proposed artificial neural network architecture is introduced. Then, we will 
describe how the artificial signals were generated in the dataset preparation stage and the training 
procedure. The entire pipeline of the proposed method is presented at the end of the section. 

2.1. Network architecture 
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Figure 1. Convolutional neural network architecture of proposed method. 

To discriminate the brightness signals of the raw noisy pixels, we treated the vibration frequency 
prediction as a multi-class classification problem, utilizing the learned deep features to classify input 
information into different classes, which are the values of the predicted frequencies. Figure 1 shows 
the proposed neural network architecture. The proposed network is composed of D one-dimensional 
convolution layers and two fully connected layers; each convolution layer has W outputs and is 
followed by a batch normalization (BN) [15] layer, a max pooling layer [16], and activated by a 
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rectified linear unit (ReLU) [17] activation function. We used K1 kernels for each convolution layer. 
The input one-dimensional information length L is the product of the sampling rate and video clip 
duration. The fully connected layers connected all input neural nodes, which function as high-level 
reasoning in the artificial neural network captured and correlated features activated by different parts 
of the input signal. Since most parameters are collected in the fully connected layer, overfitting can 
easily occur. The dropout [18] layer, which is a regularization method that randomly sets several 
neural nodes to zero, is followed by the first fully connected layer to effectively prevent overfitting, 
and all the fully connected layers also consist of an ReLU. The fully connected layers connected all 
activations into the frequency range (FR) output. The FR is defined as the frequency range multiplied 
by the reciprocal of the prediction precision. For example, if the measurement frequency range is 0–
200 Hz and the precision is 0.2 Hz, the FR value is 200  1/0.2, which is equal to 1000. FR outputs are 
fed into a softmax function to yield a probability distribution over every FR class. 

In general, we optimize for a deeper (larger D) and thinner (smaller W) network architecture. 
We varied D from 2 up to 6, and for every convolution layer, we used a kernel with kernel size K in 
the range 3–13. Furthermore, we padded the input of every convolution layer by (K-1)/2 pixels with 
0 on both sides to maintain the spatial dimensions along the depth. 

2.2. Dataset preparation 

The proposed CNN was trained with large amount of purely artificial data. Both the training 
data and testing data were generated by an artificial random process. 

 

(a)

(b)

(c)

Times(s)

Times(s)

Times(s)  
Figure 2. Examples of artificial signals: (a) Artificial signal of 5.6 Hz vibration frequency with random 
noise added; (b) Artificial signal of 26.5 Hz vibration frequency with random noise added; (c) 
Artificial signal of 46.8 Hz vibration frequency with random noise added. 

To simulate real vibration signals, we used a simple artificial vibration signal generator to 
generate vibration signals with a specific vibration frequency. Artificial noise random sample from a 
Gaussian distribution with zero mean and varying standard deviation was added to the artificial 
signals to improve generalization of the CNN and avoid overfitting. The standard deviation of the 
artificial noise was set to vary between 0.6 and 2.1, which will achieve the best result after testing 
from 0 to 10. Details of the artificial signal generating function is given in Equation (1). T is the 
discrete time value from zero to the duration of the artificial signal with an even step of , where 
FS is the sampling rate, 𝑓 is the frequency of the artificial signal, and A is the signal amplitude. 
Examples of generated artificial signals are shown in Figure 2. 
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A = sin(2𝜋𝑓 × 𝑇) + 𝑁𝑜𝑖𝑠𝑒. (1)

For each frequency precision step, we generated approximately 3,000 or even more artificial 
signals and the corresponding ground truth vibration frequency value was labelled with each 
artificial signal. For instance, if FR is 100, there would be at least 300,000 artificial signals generated 
for the training process. 

2.3. Training procedure 

At the training stage, we optimized the weights and bias parameters by minimizing the negative 
log likelihood loss over the entire training dataset. In all our experiments, we used the adaptive 
moment estimation (Adam) optimizer [19], which is a stochastic gradient descent-based optimizer 
and maintained the adaptive estimate of the first and second order moment of the gradient. We used 
a learning rate of 10-4, and did not decrease the learning rate while using a larger batch size of 4096, 
which is inspired by Smith et al. [20]. The training is carried out on Pytorch [21] with an nVidia 
GTX1080ti, which normally requires 12 h to 1 day to converge to a good solution.  

2.4. Implementation pipeline

ConvNet

(a)

(b) (c)  
Figure 3. Implementation pipeline of the proposed method: (a) Read in the ROI video as image 
sequence and save as separate pixel brightness variation signals, then feed in the ConvNet; (b) 
Network output prediction result visualization; (c) Optional edge enhancement operation. 

The ROI for frequency prediction was selected in the input video; then, the cropped video of the 
ROI was read out as image sequences. The brightness values of every pixel of the image sequence in 
the time domain were saved as separate pixel brightness variation signals. For instance, if we have a 
500 fps 9 × 9 image sequence with duration of 5 s, we will obtain 81 (9 × 9) instances of input with 
length L equal to 2500 (500 Hz × 5 s). Then, the instances were directly fed into the trained CNN to 
yield the number of predicted vibration frequency as output. 

After obtaining the predicted vibration frequency of each pixel, we can generate a vibration 
frequency map corresponding to the original image spatial information as shown in the left plot in 
Figure 3b. A histogram of the predicted frequency distribution is plotted in Figure 3b, so that the 
result can be quantified for an overall frequency prediction. For the frequency corresponding to the 
maximum of the histogram, the pixels predicted around this frequency are highlighted for a better 
understanding of the prediction result, as shown in the middle of Figure 3b. 
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An optional operation can be implemented if the input video is recorded in an unfavorable 
condition such as if it contains extremely noisy signals, variations in the lighting condition, and 
camera shake. We described such operation as edge enhancement operation, that is, to perform 
Canny edge detection on the first frame of the image, and only take pixels at the edge into 
consideration in the statistic procedure when generating the histogram plot, while pixels outside the 
edge are ignored. Improved vibration frequency prediction result can be obtained because pixels 
around the image edge always have better contrast, which is very important in all photogrammetry 
methods. 

 

3. Experiment 

Several experiments were conducted, including a verification test using the vibration test 
system, impact hammer excitation test in a controlled laboratory condition, and field experiment, 
similar to a practical application. An industrial camera with Aptina MT9P031 image sensor was used 
in all the experiments and DongHua DH5906 industrial vibrometer was used for comparison of 
results of the proposed method in laboratory and field experiments. 

In all experiments presented in this paper, the camera sampling rate was set to 100 Hz, and 10 s 
of video was recorded for each experiment case. The input information length L was 1000 (100 Hz  
10 s), and the prediction FR value was 500 since the frequency range is 0–50 Hz and the precision is 
defined as 0.1 Hz. The experiments described in this section used a network with D = 4 layers (each 
with W = 10 and K = 11). Since we must test D from 2 to 6, W from 5 to 15, and K from 3 to 13, this 
configuration ensured that the network exhibited fast convergence to a usable model and acceptable 
prediction accuracy without many redundant parameters. The prediction accuracy did not benefit 
from a deeper network. Choosing W = 10 features per layer worked well, W = 15 is superfluous, while 
W = 5 will significantly decrease the convergence speed and prediction accuracy. K = 11 was found 
to be the best choice considering the accuracy and convergence speed. 

3.1. Verification test 

3.1.1. Experimental setup 

An experiment was conducted to validate the proposed method using a vibration test system, 
which consisted of a RIGOL DG1022 arbitrary waveform generator, MB Dynamics MODAL 50 
exciter, and SL500VCF amplifier. The experimental setup is shown in Figure 4. 

(a) (c)(b)

(d)  
Figure 4. Experimental setup for verification test: (a) Camera, laptop, and steel structure; (b) MB 
Dynamics MODAL 50 exciter (ROI highlighted in red rectangle); (c) RIGOL DG1022 arbitrary 
waveform generator; (d) ROI for vibration frequency measurement. 

Sine signals were generated every 5 Hz between 0 to 50 Hz; then, the signals pass through the 
amplifier with minimum gain and to the exciter. A modular steel structure was excited by the 
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precisely controlled vibration signals, and a video of the measurement ROI in Figure 4d, which was 
set to the beam near the exciter with a resolution of 468  14 pixels, was recorded simultaneously. 
Then, the proposed method was applied to the recorded videos to determine the vibration frequency 
prediction of the measurement target ROI. 

3.1.2. Results 

Figure 5 shows four results of histograms of the predicted frequency distribution with excitation 
frequencies of 5 Hz, 15 Hz, 25 Hz, and 35 Hz. The prediction visualized results for 30 Hz and 40 Hz 
are shown in Figure 6; the prediction results of every pixel mapped to its original spatial position on 
the input image and pixels predicted around the maximum value of the histogram were highlighted. 
Optional operation using the Canny edge detection algorithm of finding pixels on the edge is shown 
in Figure 6c. Figure 7 shows results of the corresponding excitation frequencies of 5 Hz, 15 Hz, 25 
Hz, and 35 Hz obtained from edge enhancement in which pixels on the edge were taken into 
consideration in generating the histogram. 

The results in 9 different test scenarios are summarized in Table 1, including excitation with 
frequencies of 5 Hz, 10 Hz, 15 Hz, 20 Hz, 25 Hz, 30 Hz, 35 Hz, 40 Hz, and 45 Hz. 

(a) (b)

(c) (d)

Predicted frequency(Hz) Predicted frequency(Hz)

Predicted frequency(Hz) Predicted frequency(Hz)

 
Figure 5. Four representative results of histogram of the predicted frequency distribution: (a) 5 Hz 
excitation result; (b) 15 Hz excitation result; (c) 25 Hz excitation result; (d) 35 Hz excitation result. 
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(a)

(b)

(c)  
Figure 6. Two representative results and Canny edge detection algorithm result: (a) 30 Hz excitation 
result: prediction result map and pixels predicted around 30 Hz (maximum value of histogram) 
highlighted; (b) 40 Hz excitation result: prediction result map and pixels predicted around 40 Hz 
(maximum value of histogram) highlighted; (c) Pixels used in edge enhancement. 
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Figure 7. Four representative results of histogram of predicted frequency distribution after edge 
enhancement: (a) 5 Hz excitation result; (b) 15 Hz excitation result; (c) 25 Hz excitation result; (d) 35 
Hz excitation result. 

Table 1. Verification test result summary. 

Scenario 
Excitation 

frequency (Hz) 
Predicted frequency (Hz) 

Direct result Edge enhanced result 
1 5.0 4.9 4.9 
2 10.0 10.0 10.0 
3 15.0 14.9 14.9 
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4 20.0 20.1 20.0 
5 25.0 25.1 25.1 
6 30.0 30.0 30.0 
7 35.0 35.0 34.9 
8 40.0 40.0 39.9 
9 45.0 45.0 45.0 

It can be observed from the above results that the proposed method successfully predicted the 
excitation frequency within an error range of 0.1 Hz. The optional edge enhancement operation is not 
necessary under such condition and did not improve the direct prediction results. Since the excitation 
is a standard clear sine wave without noise, the background and lighting conditions in the verification 
test are relatively stable so that noise in the captured videos was also low.  

3.2. Laborotory experiment 

3.2.1. Experimental setup 

An experiment was conducted in a well-controlled laboratory environment to investigate the 
performance of the proposed method and the results were compared with those obtained using an 
industrial vibrometer. A carbon plate was struck on the left support point using an impact hammer 
as the excitation. The resulting vibrations of the carbon plate were captured by the vibrometer 
mounted at the midpoint of the simple-supported carbon plate and the sampling rate of the 
vibrometer was set to 100 Hz. The ROI of the camera was also set to the midpoint of the plate with a 
resolution of 176  304 pixels as shown Figure 8c. An LED torch was used as additional light source 
to the target object, so that the camera can maintain a high sampling rate. The configuration is shown 
in Figure 8a. 

(a) (c)(b)
 

Figure 8. Laboratory experimental setup: (a) Camera, laptop, carbon plate, and vibrometer mounted 
at the midpoint; (b) Field of view of the camera (ROI highlighted in red rectangle); (c) ROI for 
vibration frequency measurement. 

The raw acceleration signal was transformed to the frequency domain using fast Fourier 
transform (FFT). The frequency components of the vibration signal were examined in the frequency 
domain and compared with the vibration frequency prediction result obtained from the proposed 
method. 

3.2.2. Results 

The histogram of the predicted frequency distribution obtained from the proposed method in 
the laboratory experiment is shown in Figure 9a, while the histogram obtained after edge 
enhancement is shown in Figure 9b. The results of every pixel in the ROI are visualized in its original 
spatial position as shown in Figure 10a, while the pixels predicted using a frequency of 
approximately 12.7 Hz are highlighted in Figure 10b. The pixels selected using Canny edge detection, 
which were utilized for edge enhancement, are shown in Figure 10c. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 July 2018                   doi:10.20944/preprints201807.0086.v1

Peer-reviewed version available at Sensors 2018, 18, 2530; doi:10.3390/s18082530

http://dx.doi.org/10.20944/preprints201807.0086.v1
http://dx.doi.org/10.3390/s18082530


 9 of 14 

 

Figure 11 shows the vibration measurement result from the contact vibrometer; the time history 
of the normalized acceleration signal is plotted in Figure 11a, while the corresponding power 
spectrum density (PSD) obtained using FFT with peak picking is shown in Figure 11b. 

  
 
 

(b)(a)
Predicted frequency(Hz) Predicted frequency(Hz)

 
Figure 9. Laboratory experimental results of the proposed method: (a) Histogram of the predicted 
frequency distribution; (b) Histogram of the predicted frequency distribution after edge 
enhancement. 

(a) (b) (c)  
Figure 10. Laboratory experimental result visualization using the proposed method: (a) Prediction 
result map; (b) Pixels predicted at 12.4 Hz (maximum value of histogram) highlighted; (c) Histogram 
of the predicted frequency distribution after edge enhancement. 
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(b)(a)  
Figure 11. Vibrometer laboratory experimental result: (a) Time history of normalized acceleration 
signal; (b) Normalized power spectrum density. 

It can be observed that the result obtained from the proposed method closely matched that from 
the vibrometer, namely 12.4 Hz and 12.75 Hz, respectively. After edge enhancement operation was 
applied, the noise floor significantly reduced, and a better prediction result of 12.7Hz was achieved, 
which is very close to that of the vibrometer. In addition, the highlighted pixels in Figure 10b also 
demonstrate that the predicted frequency came from the pixels of the vibrometer and carbon plate 
rather than noise from other parts of the image. 

3.3. Field experiment 

3.3.1. Experimental setup 

To verify the applicability of the proposed method to practical engineering applications, a field 
experiment was conducted on the Wuyuan bridge, Xiamen. Since the bridge is a steel structure and 
was built on extremely salty marine environment, the bridge is surrounded by water vapor 
evaporating from sea; as the vapor cools, it condenses to fog with high salinity, which inevitably 
speeds up corrosion of the steel structural components. The local department of transportation 
actively monitors the dynamic behavior of bridge cables and other structural components. The 
vibration frequency is one of the most important parameters used in predicting the structure’s modal 
shape and tension force of structural components. A bridge cable was selected as the test object. 

(a) (c)(b)  
Figure 12. Field experimental setup: (a) Camera, receiver, vibrometer (highlighted in blue circle); (b) 
Field of view of the camera (ROI highlighted in red rectangle); (c) ROI for vibration frequency 
measurement. 

In the field experiment, the bridge cable was excited by randomly passing vehicles at varying 
speeds, dissimilar pattern, and weight. The vibrometer was attached to the bridge cable with a 
sampling rate of 100 Hz, and a video of the ROI of the bridge cable was captured; the resolution of 
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the ROI was 72  86 pixels as shown in Figure 12c. The frequency components of the bridge cable 
were obtained using FFT from the vibrometer acceleration time history. The proposed method was 
implemented on the video recorded in the field to determine the vibration frequency, which was 
compared with that of the vibrometer.  

3.3.2. Results 

A comparison of the direct prediction result histogram of the field experiment and the 
corresponding result after edge enhancement is shown in Figure 13. The field experimental result 
visualization is shown in Figure 14, including the mapped prediction result, pixels predicted around 
the maximum value in the histogram highlighted, and pixels for the edge enhancement procedure.  

The vibration signal of the bridge cable collected from the vibrometer was normalized and 
plotted as shown in Figure 15a, while the normalized PSD obtained by FFT is plotted as shown in 
Figure 15b to examine the frequency components of the bridge cable vibration. 

(b)(a)
Predicted frequency(Hz) Predicted frequency(Hz)

 
Figure 13. Field experimental results of the proposed method: (a) Histogram of predicted frequency 
distribution; (b) Histogram of predicted frequency distribution after edge enhancement. 

 
(a) (b) (c)

 
Figure 14. Proposed method field experimental result visualization: (a) Prediction result map; (b) 
Pixels predicted around 12.7 Hz (maximum value of histogram) highlighted; (c) Histogram of 
predicted frequency distribution after edge enhancement. 
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(b)(a)  
Figure 15. Vibrometer field experimental result: (a) Time history of normalized acceleration signal; 
(b) Normalized power spectrum density. 

The direct result of the proposed method under field condition, which is challenging for many 
image-based measurement methods, is shown in Figure 13a. The figure shows significantly higher 
noise floor than the results obtained from the verification test and laboratory experiment. Many pixels 
were predicted in the low frequency range under 1 Hz, which may be due to noise from variations in 
the lighting condition and background of the measurement target, or other forms of disturbance in 
the image while capturing the video. Excluding the low frequency noise, we can still find the peak 
with predicted frequency of 12.6 Hz. However, the result with edge enhancement operation shows a 
clear peak of 12.7 Hz in Figure 13b, and noise was mostly eliminated. The highlighted pixels shown 
in Figure 14b also confirms that pixels around the measurement object edge are more robust to real-
world noise in our method. 

The result obtained from the vibrometer was 12.97 Hz, which gives an error of approximately 
0.27 Hz (2.1%) compared to the result obtained using the proposed method, that is, 12.7 Hz. One 
possible explanation for the error is that the vibrometer was installed near the hinge of the bridge 
cable as this location was convenient and accessible for hand installation as highlighted by the blue 
circle in Figure 12a, while the ROI for the vibration frequency prediction highlighted by the red 
rectangle in Figure 12b was significantly higher than the vibrometer installation position to avoid 
disturbance from passing vehicles and pedestrians in the image.  

3.4. Discussion 

Based on the experiments conducted with different excitation sources and different test objects 
vibrating at different frequencies, the following observations were made on the performance of our 
method. (1) On average, the proposed method can provide acceptable vibration frequency prediction 
result and the visualized result can improve understanding of the distribution of the vibration 
frequencies. (2) Under good experimental condition with adequate and stable lighting, as well as 
good contrast on the measurement target, the proposed method provides acceptable vibration 
frequency prediction accuracy without any additional operation. Implementing edge enhancement 
operation improved the predicted result; furthermore, edge enhancement can significantly improve 
the usability of the predicted result.  

4. Conclusion 

In this work, we proposed an artificial neural network for vibration frequency prediction. We 
also proposed an optional operation for result enhancement. Experiments were conducted, including 
verification test, laboratory experiment, and field experiment. A comparison of the results obtained 
from the proposed method and that of an industrial vibrometer indicates that the proposed method 
can predict vibration frequency within acceptable error. 
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Compared to the conventional image-based method, our method does not explicitly analyze the 
vibration signal to determine the vibration frequency. It uses a single feed-forward CNN to directly 
predict the vibration frequency. No extra algorithm, image or signal processing technique is required, 
which makes for a fast, simple, and easy cross-platform deployment. In addition, the CNN model 
used in the proposed method was trained with purely artificial data, making this method scalable to 
other frequency ranges or higher precision. 

This work also has some limitations. The sampling rate of the input video is restricted to the 
training configuration; a new model must be trained if a different sampling rate of the input video is 
to be used. Furthermore, only the peak or resonant frequency is estimated, while other frequency 
components are not determined. The proposed method is vulnerable to variations in the lighting 
condition, changes in the background of the measurement target, camera shake, and other forms of 
electric or mechanical noise. 

The method proposed in this paper offers some opportunities for future research. Our method 
does not require signal preprocessing before feeding into the CNN. A proper signal preprocessing 
procedure such as signal denoising may improve the performance of the proposed method. The 
dataset is limited in that it was generated by a simple algorithm and only simple noise was added. 
The use of a better artificial signal generator that emulates real situations and real noise better will 
further improve the generalization and robustness of the CNN model in a real-world application. 
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