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Abstract 

 Climate change is predicted to alter the geographic distribution of a wide variety of taxa, 

including butterfly species. Research has focused primarily on high latitude species in North 

America, with no known studies examining responses of taxa in the southeastern US. The Diana 

fritillary (Speyeria diana) has experienced a recent range retraction in that region, disappearing 

from lowland sites and now persisting in two, phylogenetically disjunct mountainous regions. 

These findings are consistent with the predicted effects of a warming climate on numerous taxa, 

including other butterfly species in North America and Europe. We used ecological niche 

modeling to predict future changes to the distribution of S. diana under several climate models.  

To evaluate how climate change might influence the geographic distribution of this butterfly, we 

developed ecological niche models using Maxent. We used two global circulation models, CCSM 

and MIROC, under low and high emissions scenarios to predict the future distribution of S. diana. 

Models were evaluated using the Receiver Operating Characteristics Area Under Curve test and 

the True Skill Statistics (mean AUC = 0.91± 0.0028 SE, TSS = 0.87 ± 0.0032 SE for RCP = 4.5, and 

mean AUC = 0.87± 0.0031SE, TSS = 0.84 ± 0.0032 SE for RCP = 8.5), which both indicate that the 

models we produced were significantly better than random (0.5). The four modeled climate 

scenarios resulted in an average loss of 91% of suitable habitat for S. diana by 2050. Populations in 

the Southern Appalachian Mountains were predicted to suffer the most severe fragmentation and 

reduction in suitable habitat, threatening an important source of genetic diversity for the species. 

The geographic and genetic isolation of populations in the west suggest that those populations 

are equally as vulnerable to decline in the future, warranting ongoing conservation of those 

populations as well. Our results suggest that the Diana fritillary is under threat of decline by 2050 

across its entire distribution from climate change, and is likely to be negatively affected by other 

human-induced factors as well.  

Keywords: Speyeria diana, butterfly, conservation, fragmentation, global warming, Maxent, 

WorldClim  

 

Introduction 

 Understanding how species distributions might shift with changing climate is a critical 
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component of managing and protecting future biodiversity. Hundreds of species in the US and 

elsewhere have responded to the warming climate by shifting to higher latitudes or elevations [1-

4]. Such range shifts have been documented in a number of taxa [5-7], including alpine plants [8], 

marine invertebrates [9], marine fishes [10], mosquitoes [11], birds [12, 13], and butterflies [1, 14-

18]. A number of species distribution models have been developed to predict the impacts of 

climate change on species distributions, including bioclimate envelope models, which are useful 

first estimates of the potential effects of climate change on altering species’ ranges [19]. Bioclimate 

envelope models work by identifying the climatic bounds within which a species currently 

occurs, and then delineating how those climatic bounds will shift under various future climate 

projections [20-23]  

 Most often, researchers are limited to presence-only occurrence data, requiring the use of 

indirect methods to infer a species’ climatic requirements [8, 24-25]. One of the best performing 

models using presence-only data is maximum entropy modeling, or Maxent [26], which performs 

well even with low sample sizes typical of rare species [19, 27-28]. Maxent works by comparing 

climate data from occurrence sites with those from a random sample of sites from the larger 

landscape to minimize the relative entropy of statistical models’ fit to each data set. Species 

distribution models such as Maxent have been criticized for being overly simplistic, since they do 

not incorporate external biotic factors such as species interactions [20, 27, 29]. However, such 

bioclimate envelope models have been used to project with reasonable accuracy whether species 

ranges will increase or decrease under a changing climate [19, 30- 32], which was the primary 

objective of this study.  

 Speyeria diana (Nymphalidae) (Cramer 1777) is a butterfly species endemic to the 

southeastern US and is currently threatened across portions of its range. This species is of 

particular conservation interest because it has experienced a range collapse in recent decades 

resulting in an 800 km geographic and genetic disjunction between western populations in the 

Ouachita and Ozark Mountains and populations in the southern Appalachian Mountains, and 

has shifted to a higher elevation at an estimated rate of 18m per decade [33].  This range 

contraction is consistent with the predicted effects of a warming climate, and might represent the 

first such documented case in the southeastern US, though the region has experienced other 

environmental changes in recent decades as well [33]. Previous research using coalescent-based 

population divergence models dated the earliest splitting of the western population from the east 

at least 20,000 years ago, during the Last Glacial Maximum [34]. In addition, recent geometric 

morphometric evidence from the wings of S. diana further support this long-term spatial and 

genetic isolation [35]. In light of these pieces of evidence, we used Maxent to model the future 

distribution of S. diana under several future climatic scenarios, to forecast how the range of the 

butterfly might shift under predicted conditions. Forecasts of large range reductions, or small 

overlap between current and future ranges, would suggest high vulnerability to climate change. 

Range reductions of any size in the western distribution would likely threaten those populations, 

that are genetically isolated and adapted to relatively low dispersal, with the negative effects of 

genetic drift [34, 35].   

 

Methods 

Study species 

The Diana fritillary, Speyeria diana, is a large and sexually dimorphic nymphalid butterfly, 

endemic to the southeastern US. Adult males emerge in late May to early June, with females 

flying several weeks to a month later [36]. Once mated, each female can lay thousands of eggs 

singly on ground litter during the months of August and September in the vicinity of Viola spp., 

the larval host plant for all Speyeria [37].  After hatching, first instar larvae immediately burrow 
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deep into the leaf litter layer of the forest floor, where they overwinter [38]. In spring, larvae feed 

on the foliage of freshly emerging violets. Adult Diana butterflies are often found along forest 

edges or dirt roads containing tall, conspicuous nectar sources such as milkweeds, butterfly 

bushes or other large summer and fall composites [39-42]. While males begin to die off in late 

July, females may persist in large numbers, although somewhat cryptically, through October [42].  

 

Distributional dataset 

We searched for all known records of S. diana, from publications, catalogued and 

uncatalogued specimens in public and private collections in the United States and Europe, online 

databases, contemporary field surveys by scientists and amateurs, and our own field surveys. We 

obtained distributional data from 1,323 pinned S. diana specimens from 38 natural history 

museum collections in the United States and Europe. Four hundred thirty-five additional records 

(1938–2012) were provided by the Butterfly and Moth Information Network and the participants 

who contribute to its BAMONA project. Our literature survey produced 153 records (1818–2011) 

across 54 US counties. We also collected 419 S. diana butterflies in our own field surveys. Our 

dataset represents essentially a complete dataset of all publicly available records for the species, 

and is as comprehensive as for any taxon in the region [33]. For this reason, our dataset should be 

especially informative in creating an accurate bioclimate envelope for the species, as collection 

bias is a major consideration with ecological niche modeling [43, 44].  

 

Species distributional modeling 

We developed species distribution models using the popular machine-learning algorithm for 

ecological modeling, Maxent [26].  Maxent estimates a species’ probability distribution that has 

maximum entropy (closest to uniform), subject to a set of constraints based on the sampling of 

presence-only data [45]. Because of the difficulty and impracticality of obtaining accurate absence 

data, presence-only data are most often used in species distribution modeling. In order to offset 

the lack of absence data, Maxent uses a background sample to compare the distribution of 

presence data along environmental gradients with the distribution of background points 

randomly drawn from the study area [46-48].  Locality data and the randomly sampled 

background points are combined with climatic data to predict the probability of the species’ 

occurrence within each raster grid cell.  We used environmental climate data from WorldClim 

[49] at 30 arc-second resolution or approximately 1 km2 grid cells. Bioclimate variables and 

elevation layers were each clipped to the extent of North America using ESRI ArcMap 10.0, and 

data extracted to S. diana sample localities. Additionally, we collected the same types of locality 

data for three other species of North American butterflies (Speyeria cybele, Speyeria idalia, Battus 

philenor), which served as 5,628 random background points for our models. We utilized these 

background data to minimize spatial bias in our modeling, as data represented by similar 

butterfly species can be used as pseudo-absence data with the same collection bias as our 

occurrence data, improving the accuracy of the model [50, 51]. 

 Climatic variables included 19 derived bioclimatic variables that describe annual and 

seasonal variation in temperature and precipitation averaged for 1950-2000, as well as elevation  

(Table 1). One concern when modeling species distributions is the strong correlation that occurs 

between multiple climate variables, which can significantly influence model predictions of 

species distributions [52]. To test for co-linearity, we performed spatial autocorrelation statistics 

between all pairs of the 19 bioclimate variables using ESRI ArcMap 10.0. We then selected the 

biologically most meaningful variable for each group of two or more variables with Pearson 

correlation coefficients higher than 0.7 (Table 1).  This allowed us to reduce the number of 

bioclimate variables to the 9 most potentially important ones, which were: Minimum 
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Temperature of Coldest Month, Mean Temperature of Driest Quarter, Precipitation of Wettest 

Month, Precipitation of Driest Month, Precipitation of Driest Quarter, Isothermality, Mean 

Diurnal Range (Mean of monthly (maximum temperature - minimum temperature)), 

Temperature Annual Range, and Annual Precipitation, along with elevation (Table 1). These 

variables are typically considered to be important determinants of butterfly distributions, as they 

relate to life history traits. Butterflies are highly sensitive to weather and climate, particularly 

changes in temperature and rainfall [53]. For example, mean temperature of the coldest month is 

related to the overwintering survival of first instar larvae, growing degree days above 5°C is 

regarded as a surrogate for the developmental threshold of the larvae, water balance corresponds 

to the moisture availability for the larval host and adult nectar plants, and the mean temperature 

of late summer ensures proper adult emergence and mating [54-59]. Temperature changes affect 

all aspects of butterfly life history, from their distribution and abundance [14, 54], to their 

realized fecundity [60-61]. Changes in rainfall levels can influence butterfly larvae indirectly 

through changes in host plant quality, and generally rainfall is considered to be beneficial 

because it enhances host plant growth [62]. 

One concern when modeling species distributions is whether the occurrence records are 

spatially biased with respect to site accessibility (e.g., towns, roads, trails) [63]. To address this 

concern, we applied a spatial filter to remove all sampling points that were within 5 km of each 

other using ESRI ArcMap 10.0. The spatial filter resulted in 254 unique presence points for S. 

diana that were used in the final model. We first modeled the distribution of these 254 

occurrences in present-day climate, and then projected the fitted species distribution under two 

future climate scenarios for the period 2040-2069 (hereafter referred to as 2050). Future climate 

scenarios were taken from two global circulation models (GCMs) obtained from 

www.worldclim.org: the Community Climate System Model (CCSM) [64] and the Model for 

Interdisciplinary Research on Climate (MIROC) [65-66]. These GCMs differ in the reconstruction 

of several climatic variables and are well known to produce different outcomes for butterfly 

species [67-68]. For example, in hind-casting Mediterranean butterflies, the CCSM model projects 

narrower distributions at the last glacial maximum than does MIROC [65-66]. For each of these 

two GCMs, we considered two different representative concentration pathways (RCPs) [69-73], 

which are cumulative measures of human emissions of greenhouse gases from all sources 

expressed in Watts per square meter. These pathways were developed for the Fifth Assessment 

Report of the Intergovernmental Panel on Climate Change [67] and correspond to a total 

anthropogenic radiative forcing of RCP = 4.5 W/m2 (low) and RCP = 8.5 W/m2 (high) [72-73]. 

 We used Maxent’s default parameters [26, 50] and a ten-fold cross-validation approach to 

further reduce bias with respect to locality data. This method divides presence data into ten equal 

partitions, with nine used to train the model, and the tenth used to test it. These partitions 

generate ten maps (one map per run), with each raster grid cell containing a value representing 

the probability of occurrence. These values were used to designate habitat suitability ranging 

from 0 (unsuitable habitat) to 1 (highly suitable habitat). We averaged the resulting maps for the 

current climate, and for the two GCMs under RCP = 4.5 and RCP = 8.5. This method resulted in 

the production of a “low” and “high” average prediction for S. diana species distribution in 2050, 

represented with habitat suitability maps. We measured the goodness of fit for the models using 

the area under the curve (AUC) of a receiver–operating characteristic (ROC) plot [74]. We used 

criteria of Swets [75] and considered AUC values higher than 0.7 representative of model 

predictions significantly better than random values of 0.5 or less [26, 27, 74]. Because AUC has 

been recognized as a somewhat questionable measure of accuracy, especially when used with 

background data instead of true absences [74, 77], we also calculated the TSS (true skill statistics), 

a threshold-dependent evaluation metric [76-77]. The relative importance of each variable’s 
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contribution was assessed by sequential variable removal by Jackknife [26].  

 

Results 

Species distributional modeling resulted in “excellent” model fits for Speyeria diana, with 

a mean AUC = 0.91± 0.0028 SE, TSS = 0.87 ± 0.0032 SE for RCP = 4.5, and a mean AUC = 0.87± 

0.0031 SE, TSS = 0.84 ± 0.0032 SE for RCP = 8.5 (Table 1). Annual precipitation explained the 

largest fraction of the distribution of S. diana under both RCPs (17.9%, RCP = 4.5; 19.4%, RCP = 

8.5). Among the remaining bioclimatic variables, mean temperature of driest quarter had the next 

highest average percent contribution (10.3%, RCP = 4.5; 25.0%, RCP = 8.5), followed by minimum 

temperature of coldest month (20.1%, RCP = 4.5; 10.4%, RCP = 8.5), isothermality (7.3%, RCP = 

4.5; 7.6%, RCP = 8.5), precipitation of wettest month (3.5%, RCP = 4.5; 3.9%, RCP = 8.5), 

precipitation of driest month (1.4%, RCP = 4.5; 5.4%, RCP = 8.5), precipitation of driest quarter 

(3.3%, RCP = 4.5; 2.4%, RCP = 8.5), Elev (1.5%, RCP = 4.5; 3.5%, RCP = 8.5), mean diurnal range 

(1.8%, RCP = 4.5; 2.8%, RCP = 8.5), and temperature annual range (1.6%, RCP = 4.5; 1.3%, RCP = 

8.5) (Table 1).  

 Modelling with Maxent under the selected climate-change scenarios predicted that habitat 

suitability would decrease for S. diana by 2050 (two-tailed paired t-tests comparing current 

Maxent values with those of 2050; all P<0.01). The MIROC model resulted in more loss of suitable 

habitat than CCSM under both RCP scenarios (88.2% versus 92.4% of suitable habitat retained for 

RCP 4.5, and 90.2% versus 94.3% of suitable habitat retained for RCP 8.5 in CCSM and MIROC, 

respectively). Both climate models indicate that the loss of core distributional area is modest, with 

an average of 91.3% of present distributional areas retained. The most drastic reduction in habitat 

is apparent across the southern Appalachian Mountains (Fig. 2).  

 

Discussion 

  Our ecological niche models predicted that the amount of suitable habitat for Speyeria 

diana will decline substantially by the year 2050 across its entire distribution. Both CCSM and 

MIROC climate models predicted severe habitat loss and fragmentation in the Southern 

Appalachian Mountains by 2050, with some range expansion predicted into higher latitudes in 

both eastern and western populations. High elevation habitat will be an important refuge for the 

species across the entire distribution, as the range of S. diana is already shifting to higher 

elevations at an estimated rate of 18m per decade [33].  Recent evidence further suggests that 

some S. diana populations may already be adapting to high elevations, as S. diana female 

forewings from high elevation populations were found to be narrower than low elevation 

populations, indicating that these females may be more mobile than those from low elevations 

with wider forewings [35].  

 Unlike populations in the eastern distribution, the wing shape of western populations of 

S. diana appears to be better adapted for lower dispersal, which is in alignment with findings that 

western populations of S. diana are both spatially and genetically isolated [35]. Our models 

predicted that the southern edge of highly suitable habitat in the west will recede by 2050; 

However, as was found in the Southern Appalachian Mountains, suitable habitat was predicted 

to expand in the higher elevations of the Ozark and Ouachita mountains of Arkansas. The genetic 

isolation of western populations may ultimately prevent them from adapting to higher elevations 

as successfully as populations in the eastern distribution of the species. If this is the case, lower 

elevation populations will be even more vulnerable to climate change than our models predict.  

 We would like to note that all ecological niche models should be used and interpreted 

with caution due to various sources of bias and error that result in inaccurate predictions [78]. 

Some have questioned the applicability of bioclimatic modeling at regional scales due to the 
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somewhat coarse resolution [79]. However, we are confident that the size of our study area, and 

our uniquely extensive dataset, provide sufficient data to forecast climate-driven range shifts in 

S. diana with accuracy. Both global circulation models (CCCM and MIROC) were very closely 

aligned in their outcomes, indicating strong agreement between them. Climate is well 

understood to play a primary role in shaping the distributions of species [80], and we are 

confident in our overall findings that suitable habitat for S. diana will decline and become 

increasingly fragmented by 2050.  

 These results highlight the importance of maintaining connectivity of suitable habitat for 

S. diana, especially in the eastern populations that appear most vulnerable to increased 

fragmentation and loss of suitable habitat. These populations in the eastern distribution of S. 

diana harbor important genetic diversity that may become lost through genetic drift if these 

populations become small and isolated. The Ozark and Ouachita Mountains of Arkansas and 

Missouri appear to be least vulnerable to loss of suitable habitat from climate change, and 

therefore will be important for the future conservation of S. diana after 2050. Due to the 

geographic and genetic isolation of the western populations, conservation of suitable habitat in 

the west is equally as important as in the east. Our climate models show that the 800 km 

disjunction across the center of the range of S. diana is not due to complete absence of suitable 

habitat, but more probably a result of the extensive habitat fragmentation regionally across the 

Ohio River Valley from agricultural land use change, and other human related factors that were 

not included in our models. We conclude that maintaining well-connected low and high 

elevation habitats across the entire distribution of S. diana, both now and into the future, will be 

necessary for this species, even under conservative forecasts of climate change.  
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Table 1. Elevation plus the 19 bioclimate variables from the WorldClim dataset (Hijmans et al., 2005) collapsed into groups of highly correlated 

variables (Pearson’s correlation coefficient, r ≥ ± 0.70), and their corresponding contribution to the Maxent model. The ten variables kept in the 

final model are bold and highlighted in grey. CCCM and MIROC global circulation models are shown under representative concentration 

pathways (RCPs) 4.5 (low) and 8.5 (high), as predicted by the IPCC 5th report on climate.  

                  % Contribution 

Bioclimate variables        Abbreviation    CCCM-45   MIROC-45   AVG                CCCM-85 MIROC-85     AVG  

Annual Mean Temperature   Bio 1   4.4  0.7      2.5           0.5          1.4            0.96 

Max Temperature of Warmest Month Bio 5   0.6  1.7      1.2           1.4          0.8     1.1 

Min Temperature of Coldest Month  Bio 6              3.9           36.3    20.1           2.6          3.3   10.4 

Mean Temperature of Wettest Quarter Bio 8            14.1           10.2    12.2           4.0        16.8              2.6 

Mean Temperature of Driest Quarter  Bio 9            15.5             5.1    10.3         30.2        19.8   25.0 

Mean Temperature of Warmest Quarter Bio 10   0.5  0.8      0.7                      0.1          0.3              0.2 

Mean Temperature of Coldest Quarter Bio 11   0.8           12.5    11.9           3.3          1.5     2.4 

Precipitation of Wettest Month  Bio 13   3.7  0.2      3.5           2.0          5.8     3.9 

Precipitation Seasonality    Bio 15   6.0             3.7      4.9           8.7          2.7     5.6  

Precipitation of Wettest Quarter  Bio 16              0.8  0.6      0.7           0.2          0.9    0.6 

Precipitation of Warmest Quarter  Bio 18    1.1  0.3      1.0           1.9          1.0    1.5 

Precipitation of Driest Month   Bio 14   0.9  1.6      1.4                      2.7          8.0             5.4 

Precipitation of Driest Quarter  Bio 17   4.2  2.3      3.3           2.2          2.6    2.4 

Precipitation of Coldest Quarter  Bio 19   0.1  0.2      0.2           0.2          1.7    0.9 

Elevation     Elev   2.0  1.0      1.5           4.9          2.0    3.5 

Isothermality (BIO2/BIO7) (* 100)  Bio 3            11.0  3.5      7.3           8.5          6.6    7.6 

Temperature Seasonality    Bio 4   6.4             1.0      3.7           0.0          4.2    2.1 

(standard deviation *100)   

Mean Diurnal Range (Mean of monthly  Bio 2   0.6  3.0      1.8           2.0          3.6    2.8 

(max temp - min temp))    

Temperature Annual Range (BIO5-BIO6) Bio 7   1.2  1.9     1.6           1.5          1.0   1.3 

Annual Precipitation    Bio 12            22.3            13.4   17.9          22.9         15.9 19.4 

AUC                  0.86           0.96   0.91          0.87         0.86 0.87
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Figure 1 The present-day geographic distribution of Speyeria diana, with indices of habitat 

suitability as predicted by maximum entropy modelling (Maxent) under current climatic 

conditions (1950-2010).  
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Figure 2   (a) Habitat suitability indices for the projected future distribution of Speyeria diana 

under the CCMA and MIROC RCP 4.5 climate change scenarios; (b) Habitat suitability indices for 

the projected future distribution of Speyeria diana under the CCMA and MIROC RCP 8.5 climate 

change scenarios. 

 

 

 

 

 

Literature Cited 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 July 2018                   doi:10.20944/preprints201807.0058.v1

Peer-reviewed version available at Insects 2018, 9, 94; doi:10.3390/insects9030094

http://dx.doi.org/10.20944/preprints201807.0058.v1
http://dx.doi.org/10.3390/insects9030094


 

1. Parmesan, C. Climate and species’ ranges. Nature 1996, 382, 765-766. 

 

2. Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across 

natural systems. Nature 2003, 421, 37-42. 

 

3. Thomas, C.D.; Franco, A.M.; Hill, J.K. Range retractions and extinction in the face of climate 

warming. Trends in Ecology and Evolution 2004, 21, 415-416. 

 

4. Crozier, L.; Dwyer, G. Combining population-dynamic and ecophysiological models to 

predict climate-induced insect range shifts. The American Naturalist 2006, 167, 853-866. 

 

5. Walther, G.R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.; Fromentin, J.M.; 

Hoegh-Guldberg, O.; Bairlein, F. Ecological Responses to recent climate change. Nature 2002, 

416, 389-395. 

 

6. Root,T.L.; Price, J.T.; Hall, K.R.; Schneider, S.H.; Rosenzweig, C.; Pounds, J.A. Fingerprints of 

global warming on wild animals and plants. Nature 2003, 421, 57–60. 

 

7. Parmesan, C. Ecological and evolutionary responses to recent climate change. Annual Review 

of Ecology, Evolution, and Systematics 2006, 37, 637–69. 

 

8. Walther ,G.R.; Beibner, S.; Conradin, A. Trends in the upward shift of alpine plants. Journal of 

Vegetation Science 2005, 16, 541-548. 

 

9. Cheung, W.W.L.; Lanm, W.Y.V.; Sarmiento, J.L.; Kearney, K.; Watson, R.; Pauly, D. (2009) 

Projecting global marine biodiversity impacts under climate change scenarios. Fish and 

Fisheries 2009, 10, 235-251. 

 

10. Perry, A.L.; Low, P.J.; Ellis, J.R.; Reynolds, J.D. Climate change and distribution shifts in 

marine fishes. Science 2005, 308, 1912-1915. 

 

11. Epstein, P.R.; Diaz, H.; Elias, F.S.; Grabherr, G.; Graham, N.E.; Martens, W.J.M.; Mosley-

Thompson, E.; Susskind, E.J. Biological and physical signs of climate change: Focus on 

mosquito-borne disease. Bulletin of the American Meteorological Society 1998, 78, 409– 417. 

 

12. Thomas, C.D.; Lennon, J.J. Birds extend their ranges northwards. Nature 1999, 399, 213. 

 

13. Hitch, A.T.; Leberg, P.L. Breeding distributions of North American bird species moving north 

as a result of climate change. Conservation Biology 2007, 21, 534–539. 

14. Parmesan, C.; Ryrholm, N.; Stefanescu, C.; Hill, J.; Thomas, C.; Descimon, H.; Huntley, B.; 

Kaila, L.; Kullberg, J.; Tammaru, T.; Tennent, T.J.; Warren, M. Poleward shifts in geographical 

ranges of butterfly species associated with regional warming. Nature 1999, 399, 579-583. 

 

15. Wilson, R.J.; Gutiérrez, D.; Gutiérrez, J.; Martinez, D.; Aguado, R.; Monserrat, V.J. Changes to 

the elevational limits and extent of species ranges associated with climate change. Ecology 

Letters 2005, 8, 1138-1146.  

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 July 2018                   doi:10.20944/preprints201807.0058.v1

Peer-reviewed version available at Insects 2018, 9, 94; doi:10.3390/insects9030094

http://dx.doi.org/10.20944/preprints201807.0058.v1
http://dx.doi.org/10.3390/insects9030094


 

16. Wilson, R.J., Gutiérrez, D.; Gutiérrez, J.; Monserrat, V. An elevational shift in butterfly species 

richness and composition accompanying recent climate change. Global Change Biology 2007, 

13, 1873- 1887. 

 

17. Asher, J.; Fox, R.; Warren, M.S. British butterfly distributions and the 2010 target. Journal of 

Insect Conservation 2011, 15, 291-299. 

 

18. Wilson, R.J.; Maclean, I.M.D. Recent evidence for the climate threat to Lepidoptera and other 

insects. Journal of Insect Conservation 2011, 15, 259–268. 

 

19. Garcia, K.; Lasco, R.; Ines, A.; Lyon, B.; Pulhin, F. Predicting geographic distribution and 

habitat suitability due to climate change of selected threatened forest tree species in the 

Philippines. Applied Geography 2013, 44, 12-22. 

 

20. Pearson, R.G.; Dawson, T.P. Predicting the impacts of climate change on the distribution of 

species: are bioclimate envelope models useful? Global Ecology and Biogeography 2003, 12, 361-

371. 

 

21. Peterson, A.T. Projected climate change effects on Rocky Mountain and Great Plain birds: 

generalities on biodiversity consequences. Global Change Biology 2003, 9, 647–55. 

 

22. Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction 

across space and time. Annual Review of Ecology, Evolution, and Systematics 2009, 40, 677–697. 

 

23. Fordham, D.A.; Resit, A.H.; Araújo, M.B.; Elith, J.; Keith, D.A.; Pearson, R.; Auld, T.D.; 

Mellin, C.; Morgan, J.W.; Regan, T.J.; Tozer, M.; Watts, M.J.; White, M.; Wintle, B.A.; Yates, C.; 

Brook, B.W. Plant extinction risk under climate change: Are forecast range shifts alone a good 

indicator of species vulnerability to global warming? Global Change Biology 2012, 18, 1357–

1371. 

 

24. Thuiller, W.; Lavorel, S.; Araújo, M.B.; Sykes, M.T.; Prentice, I.C. Climate change threats to 

plant diversity in Europe. Proceedings of the National Academy of Sciences 2005, 102, 8245–8250. 

 

25. Willis, K.J.; Araújo, M.B.; Bennett, K.D.; Figueroa-Range, B.; Froyd, C.A.; Myers, N. How can 

a knowledge of the past help to conserve the future? Biodiversity conservation and the 

relevance of long-term ecological studies. Philosophical Transactions of the Royal Society of 

Britain 2007, 362, 175–186. 

 

26. Phillips, S.J.; Anderson, R.; Schapire, R.E. Maximum entropy modeling of species geographic 

distributions. Ecological Modelling 2006, 190, 231–259. 

 

27. Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of 

MaxEnt for ecologists. Diversity and Distributions 2011, 17, 43-57. 

 

28. Weber, T.C. Maximum entropy modeling of mature hardwood forest distribution in four US 

states. Forest Ecology and Management 2011, 261, 779-788. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 July 2018                   doi:10.20944/preprints201807.0058.v1

Peer-reviewed version available at Insects 2018, 9, 94; doi:10.3390/insects9030094

http://dx.doi.org/10.20944/preprints201807.0058.v1
http://dx.doi.org/10.3390/insects9030094


 

29. Araújo, M.B.; Luoto, M. The importance of biotic interactions for modeling species 

distributions under climate change. Global Ecology and Biogeography 2007, 16, 743-753. 

 

30. Araújo, M.B.; Pearson, R.G.; Thuiller, W.; Erhard, M. Validation of species-climate impact 

models under climate change. Global Change Biology 2005, 11, 1504-1513. 

 

31. Araújo, M.B.; Whittaker, R.J.; Ladle, R.J.; Erhard, M. Reducing uncertainty in projections of 

extinction risk from climate change. Global Ecology and Biogeography 2005, 14, 529-538. 

 

32. Green, R.E.; Collingham, Y.C.; Willis, S.G., Gregory, R.D.; Smith, K.W.; Huntley, B. 

Performance of climate envelope models in predicting recent changes in bird population size 

from observed climatic change. Biology Letters 2008, 4, 599-602. 

 

33. Wells, C.N.; Tonkyn, D.W. Range collapse in the Diana fritillary, Speyeria diana 

(Nymphalidae). Insect Conservation and Diversity 2014, 7, 365-380. 

 

34. Wells, C.N.; Marko, P.B.; Tonkyn, D.W. The phylogeographic history of the threatened Diana 

fritillary, Speyeria diana (Lepidoptera: Nymphalidae): with implications for 

conservation. Conservation Genetics 2015, 16, 703-716. 

 

35. Wells, C.N., Munn, A.; Woodworth, C. Geomorphic Morphometric Differences between 

Populations of Speyeria diana (Lepidoptera: Nymphalidae). Florida Entomologist 2018, 101(2), 

195-202. 

 

36. Opler, P.A.; Krizek, G. Butterflies East of the Great Plains. Johns Hopkins University Press: 

Baltimore, MD., USA, 1984; pp. 294; ISBN: 0801829380 

 

37. Allen, T.J. The Butterflies of West Virginia and their Caterpillars. University of Pittsburgh Press, 

Pittsburgh, PA., USA, 1997. pp. 388; ISBN: 0822939738 

 

38. Cech, R.; Tudor, G. Butterflies of the East Coast. Princeton University Press, Prinecton, NJ., 

USA, 2005, pp. 345; ISBN: 069109055 

 

39. Baltosser, W. Flitting with disaster: Humans and habitat are keys to our state butterfly’s 

future. Arkansas Wildlife, 2007, 38, 6-11. 

 

40. Ross, G.N. What’s for dinner? A new look at the role of phytochemicals in butterfly diets. 

News of the Lepidopterists’ Society 2003, 45, 83-89. 

 

41. Ross, G.N. Diana’s Mountain Retreat. Natural History 2008, 72, 24-28. 

 

42. Adams, J.K.; Finkelstein, I. Late season observations on female Diana fritillary (Speyeria diana) 

aggregating behavior. News of the Lepidopterists’ Society, 2006, 48, 106-107. 

 

43. Araújo, M.B.; Peterson, A.T. Uses and misuses of bioclimatic envelope modeling. Ecology, 

2012, 93, 1527-1539. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 July 2018                   doi:10.20944/preprints201807.0058.v1

Peer-reviewed version available at Insects 2018, 9, 94; doi:10.3390/insects9030094

http://dx.doi.org/10.20944/preprints201807.0058.v1
http://dx.doi.org/10.3390/insects9030094


 

44. Loiselle, B.A.; Jørgensen, P.M.; Consiglio, T.; Jiménez, I.; Blake, J.G.; Lohmann, L.G.; Montiel, 

O.M. Predicting species distributions from herbarium collections: does climate bias in 

collection sampling influence model outcomes? Journal of Biogeography 2007, 35, 105-116. 

 

45. Renner, I. W. & Warton, D. I. Equivalence of MAXENT and Poisson Point Process Models 

for Species Distribution Modeling in Ecology. Biometrics 2013, 69, 274–281. 

 

46. Gomes, Vitor HF, et al. Species Distribution Modelling: Contrasting presence-only models 

with plot abundance data. Scientific reports 2018, 8.1, 1003. DOI:10.1038/s41598-017-18927-1 

 

47. Elith, J.; Graham, C.H. NCEAS Species Distribution Modelling Group, Novel methods 

improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129-

151. 

 

48. Elith, J.; Kearney, M.; Phillips, S. The art of modeling range-shifting species. Methods in 

Ecology and Evolution 2010, 1, 330-342. 

 

49. Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution 

interpolated climate surfaces for global land areas. International Journal of Climatology 2005, 25, 

1965-1978. 

 

50. Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: new extensions and a 

comprehensive evaluation. Ecography 2008, 31, 161-175. 

 

51. Phillips, S.J.; Dudík, M.; Elith, J.; Graham, C.H.; Lehmann, A.; Leathwick, J.; Ferrier, S. Sample 

selection bias and presence-only distribution models: implications for background and 

pseudo-absence data. Ecological applications, 2009, 19, 181-197. 

 

52. Beaumont, L.; Hughes, L.; Poulsen, M. Predicting species distributions: use of climatic 

parameters in BIOCLIM and its impact on predictions of species’ current and future 

distributions. Ecological Modelling 2005, 186, 250-269. 

 

53. Dennis, R.L.H. Butterflies and Climate Change. Manchester University Press, Manchester, UK., 

1993, pp. ISBN: 

 

54. Hill, J.K.; Thomas, C.D.; Huntley, B. Modelling present and potential future ranges of 

European butterflies using climate response surfaces. In: Butterflies: Ecology and Evolution 

Taking Flight (editors Boggs CL, Watt WB Ehrlich PR). University of Chicago Press, Chicago, 

2003, pp. 149–167. 

 

55. Peterson, A.T.; Martínez-Meyer, E.; González-Salazar, C.; Hall, P.W. Modeled climate change 

effects on distributions of Canadian butterfly species. Canadian Journal of Zoology 2004, 82, 

851–858. 

 

56. Mitikka, V.; Heikkinen, R.K.; Luoto, M.; Araújo, M.B.; Saarinen, K.; Pöyry, J.; Fronzek, S. 

Predicting range expansion of the map butterfly in Northern Europe using bioclimatic 

models. Biodiversity and Conservation 2008, 17, 623-641. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 July 2018                   doi:10.20944/preprints201807.0058.v1

Peer-reviewed version available at Insects 2018, 9, 94; doi:10.3390/insects9030094

http://dx.doi.org/10.20944/preprints201807.0058.v1
http://dx.doi.org/10.3390/insects9030094


 

57. Filz, K.J.; Schmitt, T.; Engler, J.O. How fine is fine-scale? Questioning the use of fine-scale 

bioclimatic data in species distribution models used for forecasting abundance patterns in 

butterflies. European Journal of Entomology 2013, 110, 311-317. 

 

58. Zinetti, F.; Dapporto, L.; Vovlas, A.; Chelazzi, G.; Bonelli, S.; Balletto, E.; Ciofi, C. When the 

rule becomes the exception: No evidence of gene flow between two Zerynthia cryptic 

butterflies suggests the emergence of a new model group. PLOS ONE 2013, 8, e65746-e65746. 

 

59. Hill, J.K.; Thomas, C.D.; Fox, R.; Telfer, M.G.; Willis, S.G.; Asher, J.; Huntley, B. Responses of 

butterflies to twentieth century climate warming: implications for future ranges. Proceedings 

of the Royal Society of London, Series B-Biological Sciences 2002, 269, 2163–2171. 

 

60. Karlsson, B.; Van Dyck, H. Does habitat fragmentation affect temperature-related life-history 

traits? A laboratory test with a woodland butterfly. Proceedings of the Royal Society of London B: 

Biological Sciences, 2005, 272, 1257-1263. 

 

61. Gibbs, M., Van Dyck, H., & Karlsson, B. Reproductive plasticity, ovarian dynamics and 

maternal effects in response to temperature and flight in Pararge aegeria. Journal of Insect 

Physiology, 2010, 56: 1275-1283. 

 

62. Morecroft, M.D.; Bealey, C.E.; Howells, O.; Rennie, S.; Woiwod, I.P. Effects of drought on 

contrasting insect and plant species in the UK in the mid-1990s. Global Ecology and 

Biogeography 2002, 11, 7-22. 

 

63. Kadmon, R.; Farbr, O.; Danin, A. Effect of roadside bias on the accuracy of predictive maps 

produced by bioclimatic models. Ecological Applications 2004, 14, 401-413. 

 

64. Gent, P.R.; Danabasoglu, G.; Donner, L.J.; Holland, M.M.; Hunke, E.C.; Jayne, S.R.; Lawrence, 

D.M.; Neale, R.B.; Rasch, P.J.; Vertenstein, M.; Worley, P.H.; Yang, Z.L.; Zhang, M. The 

community climate system model, Version 4. Journal of Climate 2011, 24, 4973-4991. 

 

65. Hasumi, H.; Emori, S. K-1 coupled GCM (MIROC) description, K-1 Tech. Rep. 1, Center for 

Climate Systems Research, Univ. of Tokyo, Tokyo, 2004, 34pp. 

 

66. Nozawa, T.; Nagashima, T.; Shiogama, H.; Crooks, S.A. Detecting natural influence on 

surface air temperature change in the early twentieth century. Geophysical Research 

Letters, 2005, 32, L20719. 

 

67. Habel, J.C.; Rödder, D.; Scalercio, S.; Meyer, M.; Schmitt, T. Strong genetic cohesiveness 

between Italy and North Africa in four butterfly species. Biological Journal of the Linnean 

Society 2010, 99, 818–830. 

 

68. Habel, J.C.; Husemann, M.; Schmitt, T.; Dapporto, L.; Vandewoestijne, S. A forest butterfly in 

Sahara desert oases: Isolation does not matter. Journal of Heredity 2013, 104, 234–247. 

 

69. Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; van Vuuren, D.P.; 

Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; Meehl, G.A., Mitchell, J.F.B.; Nakicenovic, N.; 

Riahi, K.; Smith, S.J.; Stouffer, R.J.; Thomson, A.M.; Weyant, J.P.; Wilbanks, T.J. The next 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 July 2018                   doi:10.20944/preprints201807.0058.v1

Peer-reviewed version available at Insects 2018, 9, 94; doi:10.3390/insects9030094

http://dx.doi.org/10.20944/preprints201807.0058.v1
http://dx.doi.org/10.3390/insects9030094


 

generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–

756. 

 

70. van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, 

G.C.; Kram, T.; Krey, V.; Lamarque, J.F.; Masui, T.; Meinshausen, M.; Nakicenovic, N.; Smith, 

S.; Rose, S. The representative concentration pathways: An overview. Climatic Change 2011, 

109, 5-31. 

 

71. Moss, R.H.; Babiker, M.; Brinkman, S.; Calvo, E.; Carter, T.; Edmonds, J.; Elgizouli, I.; Emori, 

S.; Erda, L.; Hibbard, K.; Jones, R.; Kainuma, M.; Kelleher, J.; Lamarque, J.F.; Manning, M.; 

Matthews, B.; Meehl, J.; Meyer, L.; Mitchell, J.; Nakicenovic. N.; O’Neill, B.; Pichs, R.; Riahi, 

K.; Rose, S.; Runci, P.; Stouffer, R.; van Vuuren, D.; Weyant, J.; Wilbanks, T.; van Ypersele, 

J.P.; Zurek, M. Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, 

and Response Strategies. Intergovernmental Panel on Climate Change, Geneva, 2008, 132 pp. 

 

72. Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, 

N.; Rafaj, P. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic 

Change 2011, 109, 33-57. 

 

73. Thomson, A.; Calvin, K.; Smith, S.; Kyle, P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-

Lamberty, B.; Wise, M.; Clarke, L.; Edmonds, J. RCP4.5: a pathway for stabilization of 

radiative forcing by 2100. Climatic Change 2011, 109, 77-94. 

 

74. Jiménez-Valverde, A. Insights into the area under the receiver operating characteristic curve 

(AUC) as a discrimination measure in species distribution modelling. Global Ecology and 

Biogeography 2012, 21, 498-507. 

 

75. Swets, J.A. Measuring the accuracy of diagnostic systems. Science. 1988, 240, 1285-1293. 

 

76. Fielding, A.H.; Bell, J.F. A review of methods for the assessment of prediction errors in 

conservation presence/absence models. Environmental Conservation, 1997, 24, 38–49. 

 

77. Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: 

prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 2006, 43, 1223-

1232. 

 

78. Beaumont, L.J.; Hughes, L.; Pitman, A.J. Why is the choice of future climate       scenarios for 

species distribution modelling important? Ecology Letters 2008, 11, 1135-1146. 

 

79. Chen, I. C.; Hill, J.K.; Ohlemuller, R.; Roy, D.B.; Thomas, C. D. Rapid range shifts of species 

associated with high levels of climate warming. Science, 2011, 333, 1024–1026 

 

80. Fourcade, Y.; Besnard, A.G.; Secondi, J. Paintings predict the distribution of species, or the 

challenge of selecting environmental predictors and evaluation statistics. Global Ecology and 

Biogeography 2018, 27, 245-256.  

 

 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 July 2018                   doi:10.20944/preprints201807.0058.v1

Peer-reviewed version available at Insects 2018, 9, 94; doi:10.3390/insects9030094

http://dx.doi.org/10.20944/preprints201807.0058.v1
http://dx.doi.org/10.3390/insects9030094

