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Abstract

Climate change is predicted to alter the geographic distribution of a wide variety of taxa,
including butterfly species. Research has focused primarily on high latitude species in North
America, with no known studies examining responses of taxa in the southeastern US. The Diana
fritillary (Speyeria diana) has experienced a recent range retraction in that region, disappearing
from lowland sites and now persisting in two, phylogenetically disjunct mountainous regions.
These findings are consistent with the predicted effects of a warming climate on numerous taxa,
including other butterfly species in North America and Europe. We used ecological niche
modeling to predict future changes to the distribution of S. diana under several climate models.
To evaluate how climate change might influence the geographic distribution of this butterfly, we
developed ecological niche models using Maxent. We used two global circulation models, CCSM
and MIROC, under low and high emissions scenarios to predict the future distribution of S. diana.
Models were evaluated using the Receiver Operating Characteristics Area Under Curve test and
the True Skill Statistics (mean AUC = 0.91+ 0.0028 SE, TSS = 0.87 + 0.0032 SE for RCP = 4.5, and
mean AUC = 0.87+ 0.0031SE, TSS = 0.84 + 0.0032 SE for RCP = 8.5), which both indicate that the
models we produced were significantly better than random (0.5). The four modeled climate
scenarios resulted in an average loss of 91% of suitable habitat for S. diana by 2050. Populations in
the Southern Appalachian Mountains were predicted to suffer the most severe fragmentation and
reduction in suitable habitat, threatening an important source of genetic diversity for the species.
The geographic and genetic isolation of populations in the west suggest that those populations
are equally as vulnerable to decline in the future, warranting ongoing conservation of those
populations as well. Our results suggest that the Diana fritillary is under threat of decline by 2050
across its entire distribution from climate change, and is likely to be negatively affected by other
human-induced factors as well.
Keywords: Speyeria diana, butterfly, conservation, fragmentation, global warming, Maxent,
WorldClim

Introduction
Understanding how species distributions might shift with changing climate is a critical
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component of managing and protecting future biodiversity. Hundreds of species in the US and
elsewhere have responded to the warming climate by shifting to higher latitudes or elevations [1-
4]. Such range shifts have been documented in a number of taxa [5-7], including alpine plants [8],
marine invertebrates [9], marine fishes [10], mosquitoes [11], birds [12, 13], and butterflies [1, 14-
18]. A number of species distribution models have been developed to predict the impacts of
climate change on species distributions, including bioclimate envelope models, which are useful
first estimates of the potential effects of climate change on altering species’ ranges [19]. Bioclimate
envelope models work by identifying the climatic bounds within which a species currently
occurs, and then delineating how those climatic bounds will shift under various future climate
projections [20-23]

Most often, researchers are limited to presence-only occurrence data, requiring the use of
indirect methods to infer a species’ climatic requirements [8, 24-25]. One of the best performing
models using presence-only data is maximum entropy modeling, or Maxent [26], which performs
well even with low sample sizes typical of rare species [19, 27-28]. Maxent works by comparing
climate data from occurrence sites with those from a random sample of sites from the larger
landscape to minimize the relative entropy of statistical models’ fit to each data set. Species
distribution models such as Maxent have been criticized for being overly simplistic, since they do
not incorporate external biotic factors such as species interactions [20, 27, 29]. However, such
bioclimate envelope models have been used to project with reasonable accuracy whether species
ranges will increase or decrease under a changing climate [19, 30- 32], which was the primary
objective of this study.

Speyeria diana (Nymphalidae) (Cramer 1777) is a butterfly species endemic to the
southeastern US and is currently threatened across portions of its range. This species is of
particular conservation interest because it has experienced a range collapse in recent decades
resulting in an 800 km geographic and genetic disjunction between western populations in the
Ouachita and Ozark Mountains and populations in the southern Appalachian Mountains, and
has shifted to a higher elevation at an estimated rate of 18m per decade [33]. This range
contraction is consistent with the predicted effects of a warming climate, and might represent the
first such documented case in the southeastern US, though the region has experienced other
environmental changes in recent decades as well [33]. Previous research using coalescent-based
population divergence models dated the earliest splitting of the western population from the east
at least 20,000 years ago, during the Last Glacial Maximum [34]. In addition, recent geometric
morphometric evidence from the wings of S. diana further support this long-term spatial and
genetic isolation [35]. In light of these pieces of evidence, we used Maxent to model the future
distribution of S. diana under several future climatic scenarios, to forecast how the range of the
butterfly might shift under predicted conditions. Forecasts of large range reductions, or small
overlap between current and future ranges, would suggest high vulnerability to climate change.
Range reductions of any size in the western distribution would likely threaten those populations,
that are genetically isolated and adapted to relatively low dispersal, with the negative effects of
genetic drift [34, 35].

Methods
Study species
The Diana fritillary, Speyeria diana, is a large and sexually dimorphic nymphalid butterfly,
endemic to the southeastern US. Adult males emerge in late May to early June, with females
flying several weeks to a month later [36]. Once mated, each female can lay thousands of eggs
singly on ground litter during the months of August and September in the vicinity of Viola spp.,
the larval host plant for all Speyeria [37]. After hatching, first instar larvae immediately burrow


http://dx.doi.org/10.20944/preprints201807.0058.v1
http://dx.doi.org/10.3390/insects9030094

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 July 2018 d0i:10.20944/preprints201807.0058.v1

deep into the leaf litter layer of the forest floor, where they overwinter [38]. In spring, larvae feed
on the foliage of freshly emerging violets. Adult Diana butterflies are often found along forest
edges or dirt roads containing tall, conspicuous nectar sources such as milkweeds, butterfly
bushes or other large summer and fall composites [39-42]. While males begin to die off in late
July, females may persist in large numbers, although somewhat cryptically, through October [42].

Distributional dataset

We searched for all known records of S. diana, from publications, catalogued and
uncatalogued specimens in public and private collections in the United States and Europe, online
databases, contemporary field surveys by scientists and amateurs, and our own field surveys. We
obtained distributional data from 1,323 pinned S. diana specimens from 38 natural history
museum collections in the United States and Europe. Four hundred thirty-five additional records
(1938-2012) were provided by the Butterfly and Moth Information Network and the participants
who contribute to its BAMONA project. Our literature survey produced 153 records (1818-2011)
across 54 US counties. We also collected 419 S. diana butterflies in our own field surveys. Our
dataset represents essentially a complete dataset of all publicly available records for the species,
and is as comprehensive as for any taxon in the region [33]. For this reason, our dataset should be
especially informative in creating an accurate bioclimate envelope for the species, as collection
bias is a major consideration with ecological niche modeling [43, 44].

Species distributional modeling

We developed species distribution models using the popular machine-learning algorithm for
ecological modeling, Maxent [26]. Maxent estimates a species’ probability distribution that has
maximum entropy (closest to uniform), subject to a set of constraints based on the sampling of
presence-only data [45]. Because of the difficulty and impracticality of obtaining accurate absence
data, presence-only data are most often used in species distribution modeling. In order to offset
the lack of absence data, Maxent uses a background sample to compare the distribution of
presence data along environmental gradients with the distribution of background points
randomly drawn from the study area [46-48]. Locality data and the randomly sampled
background points are combined with climatic data to predict the probability of the species’
occurrence within each raster grid cell. We used environmental climate data from WorldClim
[49] at 30 arc-second resolution or approximately 1 km? grid cells. Bioclimate variables and
elevation layers were each clipped to the extent of North America using ESRI ArcMap 10.0, and
data extracted to S. diana sample localities. Additionally, we collected the same types of locality
data for three other species of North American butterflies (Speyeria cybele, Speyeria idalia, Battus
philenor), which served as 5,628 random background points for our models. We utilized these
background data to minimize spatial bias in our modeling, as data represented by similar
butterfly species can be used as pseudo-absence data with the same collection bias as our
occurrence data, improving the accuracy of the model [50, 51].

Climatic variables included 19 derived bioclimatic variables that describe annual and
seasonal variation in temperature and precipitation averaged for 1950-2000, as well as elevation
(Table 1). One concern when modeling species distributions is the strong correlation that occurs
between multiple climate variables, which can significantly influence model predictions of
species distributions [52]. To test for co-linearity, we performed spatial autocorrelation statistics
between all pairs of the 19 bioclimate variables using ESRI ArcMap 10.0. We then selected the
biologically most meaningful variable for each group of two or more variables with Pearson
correlation coefficients higher than 0.7 (Table 1). This allowed us to reduce the number of
bioclimate variables to the 9 most potentially important ones, which were: Minimum
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Temperature of Coldest Month, Mean Temperature of Driest Quarter, Precipitation of Wettest
Month, Precipitation of Driest Month, Precipitation of Driest Quarter, Isothermality, Mean
Diurnal Range (Mean of monthly (maximum temperature - minimum temperature)),
Temperature Annual Range, and Annual Precipitation, along with elevation (Table 1). These
variables are typically considered to be important determinants of butterfly distributions, as they
relate to life history traits. Butterflies are highly sensitive to weather and climate, particularly
changes in temperature and rainfall [53]. For example, mean temperature of the coldest month is
related to the overwintering survival of first instar larvae, growing degree days above 5°C is
regarded as a surrogate for the developmental threshold of the larvae, water balance corresponds
to the moisture availability for the larval host and adult nectar plants, and the mean temperature
of late summer ensures proper adult emergence and mating [54-59]. Temperature changes affect
all aspects of butterfly life history, from their distribution and abundance [14, 54], to their
realized fecundity [60-61]. Changes in rainfall levels can influence butterfly larvae indirectly
through changes in host plant quality, and generally rainfall is considered to be beneficial
because it enhances host plant growth [62].

One concern when modeling species distributions is whether the occurrence records are
spatially biased with respect to site accessibility (e.g., towns, roads, trails) [63]. To address this
concern, we applied a spatial filter to remove all sampling points that were within 5 km of each
other using ESRI ArcMap 10.0. The spatial filter resulted in 254 unique presence points for S.
diana that were used in the final model. We first modeled the distribution of these 254
occurrences in present-day climate, and then projected the fitted species distribution under two
future climate scenarios for the period 2040-2069 (hereafter referred to as 2050). Future climate
scenarios were taken from two global circulation models (GCMs) obtained from
www.worldclim.org: the Community Climate System Model (CCSM) [64] and the Model for
Interdisciplinary Research on Climate (MIROC) [65-66]. These GCMs differ in the reconstruction
of several climatic variables and are well known to produce different outcomes for butterfly
species [67-68]. For example, in hind-casting Mediterranean butterflies, the CCSM model projects
narrower distributions at the last glacial maximum than does MIROC [65-66]. For each of these
two GCMs, we considered two different representative concentration pathways (RCPs) [69-73],
which are cumulative measures of human emissions of greenhouse gases from all sources
expressed in Watts per square meter. These pathways were developed for the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change [67] and correspond to a total
anthropogenic radiative forcing of RCP = 4.5 W/m? (low) and RCP = 8.5 W/m? (high) [72-73].

We used Maxent’s default parameters [26, 50] and a ten-fold cross-validation approach to
further reduce bias with respect to locality data. This method divides presence data into ten equal
partitions, with nine used to train the model, and the tenth used to test it. These partitions
generate ten maps (one map per run), with each raster grid cell containing a value representing
the probability of occurrence. These values were used to designate habitat suitability ranging
from 0 (unsuitable habitat) to 1 (highly suitable habitat). We averaged the resulting maps for the
current climate, and for the two GCMs under RCP = 4.5 and RCP = 8.5. This method resulted in
the production of a “low” and “high” average prediction for S. diana species distribution in 2050,
represented with habitat suitability maps. We measured the goodness of fit for the models using
the area under the curve (AUC) of a receiver—operating characteristic (ROC) plot [74]. We used
criteria of Swets [75] and considered AUC values higher than 0.7 representative of model
predictions significantly better than random values of 0.5 or less [26, 27, 74]. Because AUC has
been recognized as a somewhat questionable measure of accuracy, especially when used with
background data instead of true absences [74, 77], we also calculated the TSS (true skill statistics),
a threshold-dependent evaluation metric [76-77]. The relative importance of each variable’s
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contribution was assessed by sequential variable removal by Jackknife [26].

Results

Species distributional modeling resulted in “excellent” model fits for Speyeria diana, with
amean AUC =0.91+ 0.0028 SE, TSS = 0.87 + 0.0032 SE for RCP =4.5, and a mean AUC = 0.87+
0.0031 SE, TSS = 0.84 + 0.0032 SE for RCP = 8.5 (Table 1). Annual precipitation explained the
largest fraction of the distribution of S. diana under both RCPs (17.9%, RCP =4.5; 19.4%, RCP =
8.5). Among the remaining bioclimatic variables, mean temperature of driest quarter had the next
highest average percent contribution (10.3%, RCP =4.5; 25.0%, RCP = 8.5), followed by minimum
temperature of coldest month (20.1%, RCP = 4.5; 10.4%, RCP = 8.5), isothermality (7.3%, RCP =
4.5;7.6%, RCP = 8.5), precipitation of wettest month (3.5%, RCP = 4.5; 3.9%, RCP = 8.5),
precipitation of driest month (1.4%, RCP = 4.5; 5.4%, RCP = 8.5), precipitation of driest quarter
(3.3%, RCP =4.5; 2.4%, RCP = 8.5), Elev (1.5%, RCP = 4.5; 3.5%, RCP = 8.5), mean diurnal range
(1.8%, RCP =4.5; 2.8%, RCP = 8.5), and temperature annual range (1.6%, RCP =4.5; 1.3%, RCP =
8.5) (Table 1).

Modelling with Maxent under the selected climate-change scenarios predicted that habitat
suitability would decrease for S. diana by 2050 (two-tailed paired t-tests comparing current
Maxent values with those of 2050; all P<0.01). The MIROC model resulted in more loss of suitable
habitat than CCSM under both RCP scenarios (88.2% versus 92.4% of suitable habitat retained for
RCP 4.5, and 90.2% versus 94.3% of suitable habitat retained for RCP 8.5 in CCSM and MIROC,
respectively). Both climate models indicate that the loss of core distributional area is modest, with
an average of 91.3% of present distributional areas retained. The most drastic reduction in habitat
is apparent across the southern Appalachian Mountains (Fig. 2).

Discussion

Our ecological niche models predicted that the amount of suitable habitat for Speyeria
diana will decline substantially by the year 2050 across its entire distribution. Both CCSM and
MIROC climate models predicted severe habitat loss and fragmentation in the Southern
Appalachian Mountains by 2050, with some range expansion predicted into higher latitudes in
both eastern and western populations. High elevation habitat will be an important refuge for the
species across the entire distribution, as the range of S. diana is already shifting to higher
elevations at an estimated rate of 18m per decade [33]. Recent evidence further suggests that
some S. diana populations may already be adapting to high elevations, as S. diana female
forewings from high elevation populations were found to be narrower than low elevation
populations, indicating that these females may be more mobile than those from low elevations
with wider forewings [35].

Unlike populations in the eastern distribution, the wing shape of western populations of
S. diana appears to be better adapted for lower dispersal, which is in alignment with findings that
western populations of S. diana are both spatially and genetically isolated [35]. Our models
predicted that the southern edge of highly suitable habitat in the west will recede by 2050;
However, as was found in the Southern Appalachian Mountains, suitable habitat was predicted
to expand in the higher elevations of the Ozark and Ouachita mountains of Arkansas. The genetic
isolation of western populations may ultimately prevent them from adapting to higher elevations
as successfully as populations in the eastern distribution of the species. If this is the case, lower
elevation populations will be even more vulnerable to climate change than our models predict.

We would like to note that all ecological niche models should be used and interpreted
with caution due to various sources of bias and error that result in inaccurate predictions [78].
Some have questioned the applicability of bioclimatic modeling at regional scales due to the
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somewhat coarse resolution [79]. However, we are confident that the size of our study area, and
our uniquely extensive dataset, provide sufficient data to forecast climate-driven range shifts in
S. diana with accuracy. Both global circulation models (CCCM and MIROC) were very closely
aligned in their outcomes, indicating strong agreement between them. Climate is well
understood to play a primary role in shaping the distributions of species [80], and we are
confident in our overall findings that suitable habitat for S. diana will decline and become
increasingly fragmented by 2050.

These results highlight the importance of maintaining connectivity of suitable habitat for
S. diana, especially in the eastern populations that appear most vulnerable to increased
fragmentation and loss of suitable habitat. These populations in the eastern distribution of S.
diana harbor important genetic diversity that may become lost through genetic drift if these
populations become small and isolated. The Ozark and Ouachita Mountains of Arkansas and
Missouri appear to be least vulnerable to loss of suitable habitat from climate change, and
therefore will be important for the future conservation of S. diana after 2050. Due to the
geographic and genetic isolation of the western populations, conservation of suitable habitat in
the west is equally as important as in the east. Our climate models show that the 800 km
disjunction across the center of the range of S. diana is not due to complete absence of suitable
habitat, but more probably a result of the extensive habitat fragmentation regionally across the
Ohio River Valley from agricultural land use change, and other human related factors that were
not included in our models. We conclude that maintaining well-connected low and high
elevation habitats across the entire distribution of S. diana, both now and into the future, will be
necessary for this species, even under conservative forecasts of climate change.
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Table 1. Elevation plus the 19 bioclimate variables from the WorldClim dataset (Hijmans et al., 2005) collapsed into groups of highly correlated
variables (Pearson’s correlation coefficient, r > + 0.70), and their corresponding contribution to the Maxent model. The ten variables kept in the
final model are bold and highlighted in grey. CCCM and MIROC global circulation models are shown under representative concentration
pathways (RCPs) 4.5 (low) and 8.5 (high), as predicted by the IPCC 5t report on climate.

% Contribution

Bioclimate variables Abbreviation CCCM-45 MIROC-45 AVG CCCM-85 MIROC-85 AVG
Annual Mean Temperature Bio1 4.4 0.7 25 0.5 1.4 0.96

Max Temperature of Warmest Month ~ Bio 5 0.6 1.7 1.2 1.4 08 1.1

Min Temperature of Coldest Month Bio 6 3.9 36.3 20.1 2.6 3.3 104

Mean Temperature of Wettest Quarter Bio 8 14.1 10.2 12.2 40 168 2.6

Mean Temperature of Driest Quarter Bio 9 15.5 51 10.3 302  19.8 25.0

Mean Temperature of Warmest Quarter Bio 10 0.5 0.8 0.7 0.1 0.3 0.2

Mean Temperature of Coldest Quarter Bio 11 0.8 12.5 11.9 3.3 1.5 24

Precipitation of Wettest Month Bio 13 3.7 0.2 3.5 2.0 58 39

Precipitation Seasonality Bio 15 6.0 3.7 49 8.7 27 56

Precipitation of Wettest Quarter Bio 16 0.8 0.6 0.7 0.2 09 0.6

Precipitation of Warmest Quarter Bio 18 1.1 0.3 1.0 1.9 1.0 1.5

Precipitation of Driest Month Bio 14 0.9 1.6 1.4 2.7 8.0 5.4
Precipitation of Driest Quarter Bio 17 4.2 2:3 3.3 22 26 24

Precipitation of Coldest Quarter Bio 19 0.1 0.2 0.2 0.2 1.7 09

Elevation Elev 2.0 1.0 1.5 4.9 2.0 35

Isothermality (BIO2/BIO7) (* 100) Bio 3 11.0 3.5 7.3 8.5 6.6 7.6

Temperature Seasonality Bio 4 6.4 1.0 3.7 0.0 42 2.1

(standard deviation *100)

Mean Diurnal Range (Mean of monthly Bio 2 0.6 3.0 1.8 2.0 3.6 28

(max temp - min temp))

Temperature Annual Range (BIO5-BIO6) Bio 7 1.2 1.9 1.6 1.5 1.0 1.3

Annual Precipitation Bio 12 22.3 13.4 17.9 229 15.9 19.4
AUC 0.86 0.96 0.91 0.87 0.86 0.87
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Figure 1 The present-day geographic distribution of Speyeria diana, with indices of habitat
suitability as predicted by maximum entropy modelling (Maxent) under current climatic
conditions (1950-2010).
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Figure 2 (a) Habitat suitability indices for the projected future distribution of Speyeria diana
under the CCMA and MIROC RCP 4.5 climate change scenarios; (b) Habitat suitability indices for
the projected future distribution of Speyeria diana under the CCMA and MIROC RCP 8.5 climate
change scenarios.
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