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Abstract: The residual multiparticle entropy (RMPE) of a fluid is defined as the difference, ∆s, 
between the excess entropy per particle (relative to an ideal gas with the same temperature and 
density), sex, and the pair-correlation contribution, s2. Thus, the RMPE represents the net 
contribution to sex due to spatial correlations involving three, four, or more particles. A heuristic 
“ordering” criterion identifies the vanishing of the RMPE as an underlying signature of an 
impending structural or thermodynamic transition of the system from a less ordered to a more 
spatially organized condition (freezing is a typical example). Regardless of this, the knowledge of 
the RMPE is important to assess the impact of non-pair multiparticle correlations on the entropy of 
the fluid. Recently, an accurate and simple proposal for the thermodynamic and structural 
properties of a hard-sphere fluid in fractional dimension 1 < d < 3 has been proposed [Santos, A.; 
López de Haro, M. Phys. Rev. E 2016, 93, 062126]. The aim of this work is to use this approach to 
evaluate the RMPE as a function of both d and the packing fraction φ. It is observed that, for any 
given dimensionality d, the RMPE takes negative values for small densities, reaches a negative 
minimum ∆smin at a packing fraction φmin, and then rapidly increases, becoming positive beyond a 
certain packing fraction φ0. Interestingly, while both φmin and φ0 monotonically decrease as 
dimensionality increases, the value of ∆smin exhibits a nonmonotonic behavior, reaching an absolute

16

minimum at a fractional dimensionality d ≃ 2.38. A plot of the scaled RMPE ∆s/|∆smin | shows a17

quasiuniversal behavior in the region −0.14 . φ − φ0 . 0.02.18

Keywords: residual multiparticle entropy; hard spheres; fractal dimension19

1. Introduction20

The properties of liquids are of great interest in many science and engineering areas. Aside from21

ordinary three-dimensional systems, many interesting phenomena do also occur in restricted one- or22

two-dimensional geometries, under the effect of spatial confinement. Actually, there are also cases23

where the configuration space exhibits, at suitable length scales, non-integer dimensions. Indeed,24

many aggregation and growth processes can be described quite well by resorting to the concepts of25

fractal geometry. This is the case, for example, of liquids confined in porous media or of assemblies26

of small particles forming low-density clusters and networks [1–4].27

Heinen et al. [5] generalized this issue by introducing fractal particles in a fractal configuration

space. In their framework the particles composing the liquid are fractal as is the configuration space

in which such objects move. Santos and López de Haro [6] have further developed reliable heuristic
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interpolations for the equation of state and radial distribution function of hard-core fluids in fractal

dimensions between one and three dimensions. Taking advantage of their work, we intend to study

in this paper some thermostatistical properties of such fractal systems in the theoretical framework

provided by the multiparticle correlation expansion of the excess entropy,

sex(ρ, β) = s(ρ, β)− sid(ρ, β), (1)

where ρ is the number density, β = 1/kBT is the inverse temperature, s(ρ, β) is the entropy per particle

(in units of the Boltzmann constant kB), and

sid(ρ, β) =
d + 2

2
− ln

[
ρ

(
h2β

2πm

)d/2
]

(2)

is the ideal-gas entropy; in Eq. (2), d is the spatial dimensionality of the system, h is Planck’s constant,28

and m is the mass of a particle.29

As is well known, the excess entropy can be expressed as an infinite sum of contributions

associated with spatially integrated density correlations of increasing order [7,8]. In the absence

of external fields, the leading and quantitatively dominant term of the series is the so-called “pair

entropy”,

s2(ρ, β) = −ρ

2

∫
dr [g(r; ρ, β) ln g(r; ρ, β)− g(r; ρ, β) + 1] , (3)

whose calculation solely requires the knowledge of the pair distribution function of the fluid, g(r; ρ, β).

An integrated measure of the importance of more-than-two-particle density correlations in the overall

entropy balance is given by the so-called “residual multiparticle entropy” (RMPE) [9]:

∆s(ρ, β) = sex(ρ, β)− s2(ρ, β). (4)

It is important to note that, at variance with sex and s2, which are both negative definite quantities, ∆s30

may be either negative or positive. As originally shown by Giaquinta and Giunta for hard spheres in31

three dimensions [9], the sign of this latter quantity does actually depend on the thermodynamic state32

of the fluid. In fact, the RMPE of a hard-sphere fluid is negative at low densities, thus contributing to33

a global reduction of the phase space available to the system as compared to the corresponding ideal34

gas. However, the RMPE undergoes a sharp crossover from negative to positive values at a value of35

the packing fraction which substantially overlaps with the thermodynamic freezing threshold of the36

hard-sphere fluid. Such a behavior suggests that at high enough densities multiparticle correlations37

play an opposite role with respect to that exhibited in a low packing regime in that they temper the38

decrease of the excess entropy that is largely driven by the pair entropy. The change of sign exhibited39

by the RMPE is a background indication, intrinsic to the fluid phase, that particles, forced by more and40

more demanding packing constraints, start exploring, on a local scale, a different structural condition.41

This process is made possible by an increasing degree of cooperativity, that is signalled by the positive42

values attained by ∆s, which gradually leads to a more efficacious spatial organization and ultimately43

triggers the crystalline ordering of the system on a global scale.44

A similar indication is also present in the RMPE of hard rods in one dimension [10]. In45

this model system, notwithstanding the absence of a fluid-to-solid transition, one can actually46

observe the emergence of a solid-like arrangement at high enough densities: tightly-packed particles47

spontaneously confine themselves within equipartitioned intervals whose average length is equal48

to the the total length per particle, even if the onset of a proper entropy-driven phase transition is49

frustrated by topological reasons. Again, even in this “pathological” case, the vanishing of the RMPE50

shows up as an underlying signature of a structural change which eventually leads to a more ordered51

arrangement.52
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The relation between the zero-RMPE threshold and the freezing transition of hard spheres53

apparently weakens in four and five dimensions [11], where lower bounds of the entropy threshold54

significantly overshoot the currently available computer estimates of the freezing density [11,12]. On55

the other side, a close correspondence between the sign crossover of the RMPE and structural or56

thermodynamical transition thresholds has been highlighted in both two and three dimensions on57

a variety of model systems for different macroscopic ordering phenomena other than freezing [13],58

including fluid demixing [14], the emergence of mesophases in liquid crystals [15], the formation of a59

hydrogen-bonded network in water [16], or, more recently, the onset of glassy dynamics [17].60

If hard-core systems in fractal geometries exhibit a sort of disorder-to-order transition, it seems61

plausible that such a transition is signaled by a change of sign of ∆s. Taking all of this into account, it62

is desirable to study the RMPE of hard-core fractal fluids, and this is the main goal of this paper. It is63

organized as follows. The theoretical approach of Ref. [6] is described and applied to the evaluation64

of the RMPE in Sec. 2. The results are presented and discussed in Sec. 3. Finally, the main conclusions65

of the work are recapped in Sec. 4.66

2. Methods67

2.1. General relations68

In principle, the knowledge of the pair distribution function, g(r; ρ, β), allows one to determine

the pair entropy from Eq. (3). This is equivalent to

s2(ρ, β) =
1

2
[χT(ρ, β)− 1] + s̃2(ρ, β), (5)

where

χT(ρ, β) = 1 + ρ
∫

dr [g(r; ρ, β)− 1] (6)

is the isothermal susceptibility and we have called

s̃2(ρ, β) = −ρ

2

∫
dr g(r; ρ, β) ln g(r; ρ, β). (7)

Thus, Eq. (4) can be rewritten as

∆s(ρ, β) = sex(ρ, β)− 1

2
[χT(ρ, β)− 1]− s̃2(ρ, β). (8)

Equations (5)–(8) hold regardless of whether the total potential energy U(r1, r2, r3, . . .) is pairwise

additive or not. On the other hand, if U is pairwise additive, the knowledge of g(r; ρ, β) yields, apart

from s2(ρ, β), the thermodynamic quantities of the system via the so-called thermodynamic routes

[18]. In particular, the virial route is

Z(ρ, β) ≡ βp(ρ, β)

ρ
=1 − ρβ

2d

∫
dr r

du(r)

dr
g(r; ρ, β)

=1 +
ρ

2d

∫
dr r

de−βu(r)

dr
y(r; ρ, β), (9)

where p is the pressure, Z is the compressibility factor, u(r) is the pair interaction potential, and

y(r; ρ, β) ≡ eβu(r)g(r; ρ, β) is the so-called cavity function. Next, the excess Helmholtz free energy per

particle, aex, and the excess entropy per particle, sex, can be obtained by standard thermodynamic

relations as

βaex(ρ, β) =
∫ 1

0
dt

Z(ρt, β)− 1

t
, sex(ρ, β) = β

∂βaex(ρ, β)

∂β
− βaex(ρ, β). (10)
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Combining Eqs. (9) and (10), we obtain

sex(ρ, β) =
ρ

2d

(
β

∂

∂β
− 1

) ∫
dr r

de−βu(r)

dr

∫ 1

0
dt y(r; ρt, β). (11)

To sum up, assuming the pair distribution function g(r; ρ, β) for a d-dimensional fluid of particles69

interacting via an interaction potential u(r) is known, it is possible to determine the excess entropy70

[see Eq. (1)], the pair entropy [see Eq. (3)], and hence the RMPE ∆s. Note that, while s2 only requires71

g(r) at the state point (ρ, β) of interest, sex requires the knowledge of g(r) at all densities smaller than72

ρ and at inverse temperatures in the neighborhood of β.73

A remark is now in order. The isothermal susceptibility χT(ρ, β) can be obtained directly from

g(r; ρ, β) via Eq. (6) or indirectly via Eq. (9) and the thermodynamic relation

χ−1
T (ρ, β) =

∂ρZ(ρ, β)

∂ρ
. (12)

If the correlation function g(r; ρ, β) is determined from an approximate theory, the compressibility74

route (6) and the virial route given by Eqs. (9) and (12) yield, in general, different results.75

2.2. Fractal hard spheres76

Now we particularize to hard-sphere fluids in d dimensions. The interaction potential is simply

given by

u(r) =

{
∞, r < σ,

0, r > σ,
(13)

where σ is the diameter of a sphere. In this case, the pair distribution function g(r; φ) is independent

of temperature and the density can be characterized by the packing fraction

φ ≡ (π/4)d/2

Γ(1 + d/2)
ρσd. (14)

Taking into account that d
dr e−βu(r) = δ(r − σ), Eqs. (9) and (11) become

Z(φ) = 1 + 2d−1φgc(φ), (15)

sex(φ) = −βaex(φ) = 2d−1φ
∫ 1

0
dt gc(φt), (16)

where gc(φ) = g(σ+; φ) = y(σ; φ) is the contact value of the pair distribution function. Also, Eq. (7)

can be written as

s̃2(φ) = −d2d−1φ
∫

∞

0
dr rd−1g(r; φ) ln g(r; φ). (17)

In Eqs. (14)–(17) it is implicitly assumed that d is an integer dimensionality. However, in a pioneering77

work [5] Heinen et al. introduced the concept of classical liquids in fractal dimension and performed78

Monte Carlo (MC) simulations of fractal “spheres” in a fractal configuration space, both with the same79

noninteger dimension. Such a generic model of fractal liquids can describe, for instance, microphase80

separated binary liquids in porous media and highly branched liquid droplets confined to a fractal81

polymer backbone in a gel. For a discussion on the use of two-point correlation functions in fractal82

spaces, see Ref. [19].83

It seems worthwhile extending Eqs. (14)–(17) to a noninteger dimension d and studying the84

behavior of the RMPE ∆s as a function of both φ and d. To this end, an approximate theory85

providing the pair distribution function g(r; φ) for noninteger d is needed. In Ref. [5], Heinen et86

al. solved numerically the Ornstein–Zernike relation [20] by means of the Percus–Yevick (PY) closure87

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 July 2018                   doi:10.20944/preprints201807.0049.v1

Peer-reviewed version available at Entropy 2018, 20, 544; doi:10.3390/e20070544

http://dx.doi.org/10.20944/preprints201807.0049.v1
http://dx.doi.org/10.3390/e20070544


5 of 10

[21]. However, since one needs to carry out an integration in Eq. (17) over all distances, an analytic88

approximation for g(r; φ) seems highly desirable.89

In Ref. [6] a simple analytic approach was proposed for the thermodynamic and structural

properties of the fractal hard-sphere fluid. Comparison with MC simulation results for d = 1.67659

showed results comparable to or even better than those obtained from the numerical solution of

the PY integral equation. In this approach the contact value of the pair distribution function is

approximated by

gc(φ) =
1 − kdφ

(1 − φ)2
, (18)

with

kd =
(5 − d)(2− d)

4
+ (3 − d)(d − 1)k2, k2 =

2
√

3

π
− 2

3
≃ 0.436. (19)

When particularized to d = 1, 2, and 3, Eq. (18) gives the exact [18], the Henderson [22], and the

PY [23,24] results, respectively. Insertion into Eq. (15) gives the compressibility factor Z(φ) and, by

application of Eq. (12), the isothermal susceptibility as

χT(φ) =

[
1 + 2d−1φ

2 − kdφ(3 − φ)

(1 − φ)3

]−1

. (20)

Analogously, Eq. (16) yields

sex(φ) = −2d−1

[
(1 − kd)φ

1 − φ
− kd ln(1 − φ)

]
. (21)

Thus, in order to complete the determination of ∆s from Eq. (8), only s̃2 remains. It requires the

knowledge of the full pair distribution function [see Eq. (17)]. In the approximation of Ref. [6], g(r; φ)

is given by the simple interpolation formula

g(r; φ) = α(φ)g1D

(
r; φeff

1D(φ)
)
+ [1 − α(φ)]g3D

(
r; φeff

3D(φ)
)

, (22)

where g1D(r; φ) and g3D(r; φ) are the exact and PY functions for d = 1 and 3, respectively,

φeff
1D(φ) =

gc(φ)− 1

gc(φ)
, φeff

3D(φ) =
1 + 4gc(φ)−

√
1 + 24gc(φ)

4gc(φ)
(23)

are effective packing fractions, and

α(φ) =
H(φ)− H3D

(
φeff

3D(φ)
)

H1D

(
φeff

1D(φ)
)
− H3D

(
φeff

3D(φ)
) (24)

is the mixing parameter. In Eq. (24),

H(φ) =
1
2 − Adφ + Cdφ2

1 + (d − 1)φ [1 + (3 − d)(1 − 2k2)(3 − φ)φ]
, (25)

with

Ad =
(2 − d)(63− 23d)

60
+

3(d − 1)(3− d)

4
k2, Cd =

(2 − d)(8− 3d)

20
+

(d − 1)(3− d)

4
k2. (26)

Of course, H1D(φ) and H3D(φ) are obtained from Eq. (25) by setting d = 1 and d = 3, respectively.90

Summing up, the proposal of Ref. [6] for noninteger d is defined by Eqs. (22)–(24), with gc(φ)91

and H(φ) being given by Eqs. (18) and (25), respectively. By construction, this approximation reduces92

to the exact and PY results in the limits d → 1 and d → 3, respectively. Moreover, it is consistent (via93
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both the virial and compressibility routes) with Henderson’s equation of state [22] in the limit d → 2.94

The corresponding isothermal susceptibility and excess free energy are given by Eqs. (20) and (21).95

Finally, ∆s(φ) can be obtained from Eq. (8) by evaluating s̃2(φ) from Eq. (17) numerically. To that end,96

and in order to avoid finite-size effects, it is convenient to split the integration range 0 < r < ∞ into97

0 < r < R and R < r < ∞, with R = 10σ. In the first integral the analytically known function g(r; φ)98

is used, while in the second integral g(r; φ) is replaced by its asymptotic form [6].99

3. Results and Discussion100

0.0 0.2 0.4 0.6 0.8
-5

-4

-3

-2

-1

0

d=3

d=2.5

d=2

d=1.5 s
ex

 s
2

s ex
, s

2 d=1

(a)

0.0 0.2 0.4 0.6 0.8
-0.4

-0.2

0.0

0.2

0.4
(b)

min

d=3
d=2.5

d=2

d=1.5

d=1

s 0

s
min

Figure 1. (a) Plot of sex(φ) (solid lines) and s2(φ) (dashed lines) for dimensions d = 1, 1.5, 2, 2.5, and

3. The circles indicate the points where sex(φ) and s2(φ) cross. (b) Plot of ∆s(φ) = sex(φ)− s2(φ) for

d = 1, 1.5, 2, 2.5, and 3. The triangles indicate the location of the minima and the circles indicate the

packing fractions φ0 where ∆s = 0.

Figure 1a shows sex(φ) and s2(φ) as functions of the packing fraction for a few dimensions101

1 ≤ d ≤ 3. In all the cases, both functions become more negative as the packing fraction increases.102

Moreover, at a common packing fraction φ, both sex(φ) and s2(φ) decrease as the dimensionality103

increases. This is an expected property in the conventional case of integer d since, at a common φ,104

all the thermodynamic quantities depart more from their ideal-gas values with increasing d. Not105

surprisingly, this property is maintained in the case of noninteger d.106

Figure 1a also shows that the pair entropy s2(φ) overestimates the excess entropy sex(φ) for107

packing fractions smaller than a certain value φ0. This means that, if φ < φ0, the cumulated effect of108

correlations involving three, four, five, . . . particles produces a decrease of the entropy. The opposite109

situation occurs, however, if φ > φ0. At the threshold point φ = φ0 the cumulated effect of110

multiparticle correlations cancels and then only the pair correlations contribute to sex.111

The density dependence of the RMPE ∆s = sex − s2 is shown in Fig. 1b for the same values of d112

as in Fig. 1a. The qualitative shape of ∆s(φ) is analogous for all d: ∆s starts with a zero value at φ = 0,113

then decreases and reaches a minimum value ∆smin at a certain packing fraction φmin, after which it114

grows very rapidly, crossing the zero value at the packing fraction φ0.115

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 July 2018                   doi:10.20944/preprints201807.0049.v1

Peer-reviewed version available at Entropy 2018, 20, 544; doi:10.3390/e20070544

http://dx.doi.org/10.20944/preprints201807.0049.v1
http://dx.doi.org/10.3390/e20070544


7 of 10

1.0 1.5 2.0 2.5 3.0
-0.40

-0.35

-0.30

-0.25
s m

in

d
2.383

(a)

1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8 (b)

min
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in
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0

0
-

min

Figure 2. (a) Plot of ∆smin as a function of d. The circle and the arrow indicate the location of the

minimum at d ≃ 2.383. (b) Plot of φ0 (solid line), φmin (dashed line), and the difference φ0 − φmin

(dotted line) as functions of d. The horizontal solid line signals the value φ0 − φmin = 0.109. The

circles represent the values φ = 0.68 at d = 2 and φ = 0.49 at d = 3 corresponding to the fluid-hexatic

[25,26] and fluid-crystal [27–29] transitions, respectively.

The dimensionality dependence of the minimum value of the RMPE, ∆smin, is displayed in Fig.116

2a. Interestingly enough, as can also be observed in Fig. 1a, ∆smin presents a nonmonotonic variation117

with d, having an absolute minimum ∆smin ≃ −0.385 at d ≃ 2.383. At this noninteger dimensionality118

the pair entropy s2 represents the largest overestimate of the excess entropy sex. In contrast to ∆smin,119

both φ0 and φmin decay monotonically with increasing d. This is clearly observed from Fig. 2b,120

where also the fluid-hexatic and the fluid-crystal transition points for disks and spheres, respectively,121

are shown. The proximity of those two points to the curve φ0 provide support to the zero-RMPE122

criterion, especially considering the approximate character of our simple theoretical approach. Thus,123

if a disorder-to-order transition phase is possible for fractal hard-core liquids, we expect that it is124

located near (possibly slightly above) the packing fraction φ0.125
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 Eq. (27)

s/
|

s m
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|

-
0

Figure 3. (a) Plot of the scaled RMPE ∆s/|∆smin| as a function of the difference φ − φ0 for dimensions

d = 1, 1.5, 2, 2.5, and 3. (b) Magnification of the framed region of panel a. The light thick line

represents the formula given by Eq. (27).

An interesting feature of Fig. 2b is that the difference φ0 − φmin ≃ 0.109 is hardly dependent on

d. This suggests the possibility of a quasiuniversal behavior of the scaled RMPE ∆s/|∆smin| in the

neighborhood of φ = φ0. To check this possibility, Fig. 3a shows ∆s/|∆smin | as a function of φ − φ0

for the same dimensionalities as in Fig. 1. We can observe a relatively good collapse of the curves in

the region −0.14 . φ − φ0 . 0.02. A magnification of that region is shown in Fig. 3b. A simple fit
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can be obtained as follows. Let us define X ≡ (φ − φ0)/0.109 and Y(X) ≡ ∆s(φ)/|∆smin|. Then, a

cubic function Y(X) consistent with the conditions Y(0) = 0, Y(−1) = −1, Y′(−1) = 0, Y′′(−1) > 0

is Y(X) = X
[
2 + X + c(1 + X)2

]
with c < 1. A good agreement is found with 0.8 < c < 1 and we

choose c = 0.9. In summary, our proposed universal form is

∆s(φ)

|∆smin|
≃ X

[
2 + X + c(1 + X)2

]
, X ≡ φ − φ0

0.109
, c = 0.9. (27)

It is also plotted in Fig. 3b, where we can see that it captures well the behavior for dimensions 1 ≤126

d ≤ 3.127

Before closing this section, it is convenient to add a comment. As said at the end of Sec. 2, the

values of ∆s have been obtained from Eq. (8) by evaluating s̃2 from Eq. (17) numerically. Since in

Eq. (20) we have followed the virial route, here we will refer to this method to obtain the function

∆s as the virial route and denote the resulting quantity as ∆svir. On the other hand, this method

is not exactly equivalent to that obtained from Eq. (1) with s2 evaluated numerically from Eq. (3) by

following the same procedure as described above for s̃2. This alternative method will be referred to as

the compressibility route (∆scomp), since it is equivalent to evaluating the isothermal compressibility

from Eq. (6). Therefore, according to Eq. (8),

∆svir − ∆scomp = −1

2

(
χvir

T − χ
comp
T

)
. (28)

We have checked that both methods (virial and compressibility) yield practically indistinguishable128

results. For instance, if d = 3, φ0 = 0.4552 in the virial route, while φ0 = 0.4547 in the compressibility129

route. At d = 1 and d = 2 both methods yield, consistently, φ0 = 0.8246 and φ0 = 0.6573, respectively.130

Note that the compressibility route to measure ∆s has still a virial “relic” in the contribution coming131

from the excess free energy, Eq. (21). A pure compressibility route would require the numerical132

evaluation of χT from Eq. (6) and then a double numerical integration, as evident from Eqs. (10)133

and (12). This procedure would complicate enormously the evaluation of sex without any significant134

gain in accuracy.135

4. Conclusions136

In this article we have calculated the pair contribution and the cumulative contribution arising137

from correlations involving more than two particles to the excess entropy of hard spheres in fractional138

dimensions 1 < d < 3. To this end, we have resorted to the analytical approximations for the equation139

of state and radial distribution function of the fluid previously set up by Santos and López de Haro140

[6]. Over the fractional dimensionality range explored, the so-called “residual multiparticle entropy”141

(RMPE), obtained as the difference between the excess and pair entropies, shows a behavior utterly142

similar to that exhibited for integer 1, 2, and 3 dimensions. Hence, on a phenomenological continuity143

basis, we surmise that hard spheres undergo an “ordering” transition even in a space with fractional144

dimensions, which may well anticipate a proper thermodynamic fluid-to-solid phase transition.145

We found that the packing fraction loci of minimum and vanishing RMPE show a monotonic146

decreasing behavior as a function of the dimensionality; this result is coherent with the magnification147

of excluded-volume effects produced by increasing spatial dimensionalities and, correspondingly,148

with a gradual shift of the ordering transition threshold to lower and lower packing fractions.149

However, it also turns out that the minimum value of the RMPE exhibits a non-monotonic behavior,150

attaining a minimum at the fractional dimensionality d = 2.383. For this value of d the relative151

entropic weight of more-than-two-particle correlations reaches, in the “gas-like” regime, its maximum152

absolute value.153

Finally, the quasi-universal scaling of the RMPE over its minimum value in the neighborhood154

of the sign-crossover point suggests that the properties of the local ordering phenomenon should not155

sensitively depend on the spatial dimensionality.156
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