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Abstract: Reliable evapotranspiration (ET) estimation is a key factor for water resources 33 
planning, attaining sustainable water resources use, irrigation water management, and water 34 
regulation. During the past few decades, researchers have developed a variety of remote 35 
sensing techniques to estimate ET. The Earth Engine Evapotranspiration Flux (EEFlux) 36 
application uses Landsat imagery archives on the Google Earth Engine platform to calculate 37 
the daily evapotranspiration at the local field scale (30 m). Automatically calibrated for each 38 
Landsat image, the EEFlux application design is based on the widely vetted Mapping 39 
Evapotranspiration at high Resolution with Internalized Calibration (METRIC) model and 40 
produces ET estimation maps for any Landsat 5, 7 or 8 scene in a matter of seconds. In this 41 
research we evaluate the consistency and accuracy of EEFlux products that are produced 42 
when standard US and global assets are used. Processed METRIC products for 58 scenes 43 
distributed around the western and central United States were used as the baseline for 44 
comparison. The goal of this paper is to compare the results from EEFlux with the standard 45 
METRIC applications to illustrate the utility of the EEFlux products as they currently stand. 46 
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Given that EEFlux is derived from METRIC, differences are expected to occur due to 47 
differing calibration methods (automatic versus manual) and differing input datasets. The 48 
products compared include the fraction of reference ET (ETrF), actual ET (ETa), and 49 
surface energy balance components net radiation (Rn), ground heat flux (G), and sensible 50 
heat flux (H), as well as Ts, albedo and NDVI. The product comparisons show that the 51 
intermediate products of Ts, Albedo, and NDVI, and also Rn have similar values and 52 
behavior for both EEFlux and METRIC. Larger differences were found for H and G. Despite 53 
the more significant differences in H and G, results show that EEFlux is able to calculate 54 
ETrF and ETa values comparable to the values from trained expert METRIC users for 55 
agricultural areas. For non-agricultural areas such as semi-arid rangeland and forests, the 56 
automated EEFlux calibration algorithm needs to be improved in order to be able to 57 
reproduce ETrF and ETa that is similar to the manually calibrated METRIC products. 58 

Keywords: Google Earth Engine, EEFlux, METRIC, Evapotranspiration, Landsat, Water 59 
Resources Management  60 

 61 

1. Introduction 62 

Reliable and accurate estimates of water consumption are essential for water rights 63 
management, water resources planning and water regulation, especially for agricultural fields 64 
that may have specifically attached water rights [1]. Over the past few decades, a variety 65 
remote sensing techniques have been used to quantify evapotranspiration (ET) at the field 66 
and larger scales over large range of agricultural and nonagricultural land uses [1–6]. Among 67 
the types of remote sensing of ET models, surface energy balance techniques are one of the 68 
more popular methods used. The Mapping Evapotranspiration at high Resolution with 69 
Internalized Calibration (METRIC) application [7,8] is one of the more widely used surface 70 
energy balance models in operational practice, and employs principles and techniques that 71 
originated with the Surface Energy Balance Algorithms for Land (SEBAL) [9]. 72 

The accuracy of METRIC ET has been evaluated using measured ET by Lysimeter, 73 
Bowen ratio and eddy covariance towers in a range of locations of the U.S. [10–16]. Because 74 
results of comparisons between METRIC ET and measured ET have been promising, and 75 
due to the physically-based employment of surface energy balance algorithms, METRIC is 76 
considered to be a well-established model that has been routinely applied as part of the water 77 
resources management operations in a number of states and federal agencies [17]. However, 78 
applying METRIC can often be time-consuming, since a well-trained expert is typically 79 
needed to calibrate and run the model. Calibration of METRIC is required for each Landsat 80 
scene and image date and entails the determination and assignment of extreme ranges in ET 81 
(high and low) to locations within an image. The step calibrates temperature-impacted 82 
components of the surface energy balance to reproduce the assigned ET range. Different users 83 
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who might not be equally experienced can produce different results. To reduce the 84 
uncertainties associated with the calibration process, and to save time and money [15,18], 85 
designed automated calibration algorithms for the METRIC model to generate ET estimates 86 
comparable to ones manually produced from well-trained users. Comparison results have 87 
suggested that an automated calibration algorithm can estimate ET comparable to the ET 88 
estimated by trained users, and the variation within populations of ET produced with 89 
automated calibrations have mimicked the variation produced manually between different 90 
users [15]. 91 

Although the automated calibration of the METRIC application reduces some of the 92 
expertise requirements of ET production, users still have to accrue and assemble a variety of 93 
inputs including the satellite image, land cover map, digital elevation map, local weather 94 
data, and soils map, from a variety of sources and platforms. There can be a significant 95 
amount of pre-processing required for the different inputs before applying the algorithms. 96 
The input and data handling can be one of the most time consuming parts of the overall 97 
process. As a means to automate data assembling and handling and to speed the ET 98 
computation process, the Earth Engine Evapotranspiration Flux (EEFlux) application was 99 
designed and developed on the Google Earth Engine (GEE) platform based on the METRIC 100 
model [7]. EEFlux utilizes Landsat imagery archives stored on GEE, a cloud-based platform 101 
(see Allen et al., [10]). A web-based interface provides users with the ability to request ET 102 
estimation maps for any Landsat 5, 7 or 8 scene in a matter of seconds. EEFlux also provides 103 
rapid generation of intermediate product maps, such as surface temperature (Ts), normalized 104 
difference vegetation index (NDVI) and albedo maps for given Landsat scene that may be 105 
useful for other applications besides ET. 106 

The goal of this paper is to compare the results from EEFlux with standard manually 107 
calibrated METRIC products to assess the utility and accuracy of EEFlux products as they 108 
currently stand. Though METRIC does not represent ground-truth, its standing in the 109 
scientific community is established, making it a reasonable benchmark for comparison. 110 
Further, given that EEFlux is derived from METRIC, it is useful to examine the differences 111 
between their products. Differences are expected due to the differing energy balance 112 
calibrations (automatic versus manual), versions of METRIC, geographic location and 113 
differing input datasets. Because of the continuing evolution of both METRIC and EEFlux, 114 
there are algorithmic differences beyond the energy balance calibrations, but these generally 115 
tend to have more minor impacts on the final ET products relative to calibration and input 116 
differences. Therefore, this paper does not seek to trace each algorithmic difference but 117 
touches on some of the significant known differences. The products compared include the 118 
fraction of reference ET (ETrF), actual ET (ETa), net radiation (Rn), ground heat flux (G), 119 
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sensible heat flux (H), Ts, albedo and NDVI. Those products were gathered from 58 METRIC 120 
scenes in the western and central United States that were produced by trained individuals.  121 

 122 

2. Materials and Methods  123 

2.1 Study Area 124 

A suite of images from different parts of the western and central U.S. were chosen to 125 
compare the performance of automatically calibrated EEFlux to manually calibrated 126 
METRIC, and locations within agricultural fields and non-agricultural land areas were 127 
examined. These areas were selected due to the importance of water in the areas and the 128 
significant impacts of water on the study areas’ economies. In this comparison analysis, we 129 
used existing processed METRIC images that had been developed to identify or address 130 
particular water resources issues in key areas. Analyzing different regions of the U.S. 131 
provided a basis for examining regional differences in comparison statistics. 132 

In total 58 Landsat image dates were evaluated in this study. Figure 1 shows the 133 
Landsat scene locations and study areas of the research. In central Nebraska, areas along the 134 
Platte River were the focus of study, where 15 Landsat images (Paths 29-30 and Rows 31-135 
32), during summer 2002, were utilized. In western Wyoming, agricultural areas along the 136 
Green River were evaluated. That area falls into 2 Landsat rows on a single path (Path 37 and 137 
Rows 30-31). We utilized 9 Landsat images during summer 2011 for the comparison. 138 
Southern California was the third study area (Path 39 and Row 37). Due to its very dry 139 
climate, the California location had the highest frequency of cloudless images, so that we 140 
were able to evaluate 13 Landsat images from late January 2014 to early November 2014. A 141 
large irrigated area in southern Idaho comprised a fourth area containing 15 Landsat image 142 
dates from year 2016 (Path 40 and Row 30). That location represents a large irrigated region 143 
receiving irrigation water from the Snake River and from the Snake Plain Aquifer. The fifth 144 
location was comprised of agricultural areas in the Klamath basin of southern Oregon and 145 
northern California where we evaluated 6 Landsat images (Path 45 and Row 31), during the 146 
growing season of year 2004. 147 

 148 
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 149 
Figure 1. Locations of Landsat Scenes evaluated in this study. 150 

 151 

2.2 Methods 152 

Because the objective of this study was the comparison between the automatically 153 
calibrated EEFlux products to manually produced METRIC products, we discuss the primary 154 
differences between the two applications and refer the readers to primary documents that 155 
explain the details of the METRIC model (e.g., [1,7–9,17]). We note that the GEE-based 156 
EEFlux application is still being actively developed by the University of Nebraska-Lincoln 157 
(UNL), University of Idaho (UI) and Desert Research Institute (DRI). EEFlux production 158 
data from version 0.9.4 was used in this study.  159 

In this section, we briefly explain the sampling methods we used and introduce the 160 
criteria used to compare EEFlux and METRIC products. We note that METRIC algorithms 161 
have been improved upon and evolved over time, with applications of METRIC in the study 162 
areas occurring over a number of different years (2002-2016), and using different versions 163 
of METRIC algorithms. The different versions of METRIC include differences in produced 164 
energy balance components that are generally minor, for example, in the calculation of 165 
ground heat flux and aerodynamic roughness. 166 

 167 
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2.2.1 Similarities and Differences between EEFlux and METRIC 168 

EEFlux employs primary METRIC algorithms that conduct a full energy balance at 169 
the land surface and calculate latent heat energy (LE, W/m2) on a pixel by pixel basis as a 170 
residual of the surface energy balance equation: 171 

LE = Rn – G – H    (1) 172 

where LE is heat energy used by water in its phase change from liquid to gas during the ETa 173 
process, Rn is net radiation flux density (W/m2); G is the ground heat flux density (W/m2) 174 
representing sensible heat conducted into the ground; and H is the sensible heat flux density 175 
(W/m2) convected into the air. LE is estimated at the exact time of the satellite overpass for 176 
each pixel. ETa is then calculated by dividing LE by the latent heat of vaporization: 177 

ET = 3600     (2) 178 

where ETinst is the instantaneous ET flux (mm h-1); 3600 converts seconds to hours; ρw is the 179 
density of water (~1000 kg m-3); and λ is the latent heat of vaporization (J kg-1) that can be 180 
computed using Ts, which is the surface temperature (K): 181 

λ = [2.501 – 0.00236(Ts – 273.15)] × 106 (3) 182 

The ETrF is calculated for each pixel as the ratio of the computed ETinst from each pixel to 183 
the instantaneous tall crop reference evapotranspiration (ETr): 184 

ET F =      (4) 185 

ETrF is used as a vehicle for extrapolating ET from the instant of the overpass to the 186 
surrounding 24-hour period. Lastly, daily ETa over the 24 hour period is calculated by 187 
multiplying ETrF values for each individual pixel by the daily ETr computed from local or 188 
gridded weather data, assuming consistency between ETrF at overpass time and ETrF for the 189 
24-hour period [7]: 190 

ETa = ETrF × ETr    (5) 191 

Equivalency of instantaneous and 24-hour ETrF is applied to land uses that typically have an 192 
adequate water supply for full ET, including agriculture and wetland classes. For most other 193 
classes such as rangeland and forest, the well-known evaporative fraction, EF, [19] is used 194 
to extrapolate to the full day, where EF = ETinst/(Rn-G)inst. Both EEFlux and METRIC 195 
applications utilize hourly and daily ETr computed for the tall reference crop of alfalfa to 196 
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convert ETrF to daily ETa, where the tall alfalfa reference approximates maximum, energy-197 
limited ET from a well-watered, extensive surface of vegetation. ETr is computed using the 198 
ASCE Standardized Penman-Monteith method [20]. 199 

One of the primary differences between EEFlux and METRIC is in the use of  sources 200 
of weather data in their calibration and calculations. METRIC generally uses ground-based 201 
hourly weather data from an agriculturally sited weather station to calculate ETr for the 202 
solution of the surface energy balance equation during calibration and estimation of any 203 
background evaporation caused by recent precipitation events. EEFlux uses gridded hourly 204 
and daily weather data stored on Earth Engine. For locations processed in the US, EEFlux 205 
uses North American Land Data Assimilation System (NLDAS) 206 
(https://ldas.gsfc.nasa.gov/nldas/) [21] hourly weather data for calibration and GridMet 207 
gridded weather data [22] for determining background evaporation.  In California, EEFlux 208 
uses spatial California Irrigation Management Information System (CIMIS) 209 
(https://cimis.water.ca.gov/) daily weather data, if available for the particular date, instead of 210 
GridMet.  For locations outside of the conterminous United States, EEFlux uses the six-211 
hourly CFSv2 operational analysis [23,24] and the Climate Forecast System Reanalysis 212 
(CFSR) (http://cfs.ncep.noaa.gov/cfsr/) [25] gridded weather data for all calculations. 213 

The use of gridded weather data in EEFlux can explain, to some extent, differences 214 
between METRIC and EEFlux final products, including estimates for daily ETa. This is 215 
discussed in more detail in the following sections. More detailed information on METRIC 216 
and EEFlux ETr calculations is found elsewhere [10,26,27]. 217 

During calibration, METRIC and EEFlux solve the energy balance equation by 218 
applying an estimate for ETa at low ET and high ET conditions and solving for H = Rn – G 219 
– LE. The low and high ET calibration end-points are referred to as hot and cold pixels. In 220 
METRIC, these end-points are searched for automatically or manually, and EEFlux, they are 221 
determined automatically. LE is computed by multiplying ETr by the assumed fraction of ETr 222 
at the calibration points (typically between 0 and 0.1 for the hot pixel and between 1 and 1.05 223 
for the cold pixel). The estimate for instantaneous ETr does not have a large effect on the 224 
ETrF or ETa values, since ETrF is assigned to the end-point conditions. However, it does have 225 
an impact on the internally computed H, which is used to absorb and later correct for 226 
systematic biases in the other parameters, including Rn, G, albedo, aerodynamic roughness 227 
and ETr [7]. 228 

A significant internal difference between EEFlux and METRIC is in the way they 229 
calculate G. Some versions of METRIC evaluated calculated G by the following equations 230 
depending on the pixel leaf area index (LAI) value: 231 
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= 0.05 + 0.18 .    (LAI ≥ 0.5)  (6a) 232 

= . ( . ).    (LAI ˂ 0.5)  (6b) 233 

whereas later versions of METRIC calculated G as a function of sensible heat flux for LAI > 234 
0.5 and equation 6b otherwise. Very recent versions of METRIC calculate G as a function of 235 
LAI only.  The version of EEFlux evaluated calculated G as: 236 = (0.1 + 0.17 .  ) ×     (7) 237 

LAI is estimated from surface-corrected NDVI. Due to the differences in calculation of G, 238 
the G products often do not match well between METRIC and EEFlux. These differences are 239 
carried into the calibration of H, as previously described, but are generally factored back out 240 
during calculation of ETa due to the internal bias correction of METRIC and EEFlux.  This 241 
is shown later in the results.  242 

 METRIC and EEFlux use similar methods for estimating aerodynamic roughness length 243 
for momentum transfer, zom, used in calculating aerodynamic resistance in the calculation of 244 
H, sensible heat flow from the surface to the air. zom is estimated as a function of estimated 245 
LAI for agricultural land classes and as fixed values for nonagricultural classes. METRIC 246 
and EEFlux apply a Perrier roughness function [28] for trees, where roughness is a convex 247 
function of amount of ground cover. Some versions of METRIC provide for local 248 
modification of land cover maps to specify orchard, vineyard and tall (corn) crops so that 249 
special estimation can be made for zom as well as albedo and surface temperature to account 250 
for shadowing in deep canopies.  251 

 252 

2.2.2 Sampling method and comparison criteria 253 

 For the comparisons, the highest percentage cloud-free images were selected for the five 254 
locations and, for the few images having minor cloud cover, a cloud mask was applied to 255 
avoid sampling from clouded areas. A minimum thermal threshold of 270 (K) was used to 256 
further screen sampling pixels to avoid thermal pixels lying near the edges of cloud masks or 257 
at the edge of gaps in Landsat 7 images caused by the Scan Line Corrector failure. 258 
Occasionally, thermal pixels in Landsat 7 images are contaminated by cubic convolution-259 
averaged non-data values stemming from the original native thermal resolution of 60 m.  260 
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For the comparison, we randomly chose 1000 pixels from specified areas of interest 261 
in the Landsat scenes.  These areas targeted primary agricultural areas and adjacent non-262 
agricultural areas comprised of rangeland or forests. National Land Cover Database (NLCD) 263 
(https://www.mrlc.gov/) raster data were used to distinguish between agricultural and non-264 
agricultural land covers during sampling. Pixels designated as 81 and 82 NLCD class 265 
numbers were used to represent agricultural areas. Non-agricultural pixels were sampled 266 
from among all pixels not labeled 81 or 82 in the area of interest. We used a 7×7 focal 267 
standard deviation on NDVI to avoid sampling from agricultural field edges, which usually 268 
contain mixed pixels, by selecting a pixel only when the standard deviation of the NDVI for 269 
those 49 pixels was less than 0.05. Pixels with negative values were removed from the sample 270 
selection. 271 

Root Mean Square Error (RMSE) and Coefficient of Determination (R2) were 272 
calculated for each set of data to compare EEFlux products with the same products from 273 
METRIC. In addition, slopes of EEFlux products vs. METRIC products with zero intercept 274 
were calculated to indicate when EEFlux underestimated or overestimated the products, on 275 
average, compared to METRIC.  In this study, R2 values higher than 0.8, RMSE values less 276 
than 15% of the average magnitude of each product, and slope values between 0.9 to 1.1 were 277 
conidered acceptable, in terms of expected error common to operationally produced spatial 278 
ET products [1,7,29–31]. 279 

 280 
3. Results 281 

Five locations in the United States comprised of nine Landsat image scenes were used 282 
to compare the automatically calibrated EEFlux products to the manually calibrated METRIC 283 
products. Although the final and primary products of the applications are ETrF and ETa, we 284 
also compared intermediate products from the models including Ts, albedo, and NDVI, and 285 
the primary components of the energy balance: Rn, G, and H. EEFlux is a user-friendly web-286 
based platform that enables users to download the intermediate products of Ts, albedo, and 287 
NDVI in addition to ETrF and ETa. Therefore, it is useful to confirm similarity with METRIC 288 
for those additional products. 289 

 We compared the intermediate and final products for each location and calculated R2, 290 
RMSE, and slopes relative to the METRIC products. Figure 2 shows an example comparison 291 
for each product sampled from within agricultural fields in Path 29 Row 32 in central 292 
Nebraska for a Landsat 5 (2002/06/28) image. Additional graphs of the same format as Figure 293 
2 are included for each location studied in the Supplemental Figures 1-8. 294 
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 295 
Figure 2. Comparison between various components of EEFlux and METRIC models for 296 
agricultural fields located in central Nebraska (Path 29 Row 32, Landsat 5, 2002/06/28). 297 

 The comparisons in Figure 2 indicate that the three intermediate products of Ts, Albedo, 298 
and NDVI have nearly identical values between EEFlux and METRIC. Their R2 and slope 299 
values are nearly equal to 1 and they have very small RMSE values. The slope for NDVI is 300 
greater than 1 due to the particular METRIC version computing NDVI using top-of-301 
atmosphere reflectance values rather than using surface reflectance values as is done in 302 
EEFlux. The Rn and H products are also similar between the two models, with R2 and slope 303 
close to 1. Considering the magnitudes of the two products, RMSE values are relatively 304 
small. The EEFlux version evaluated uses a different equation to compute G, as compared to 305 
the METRIC version applied in Nebraska. Therefore, as expected, G values do not match 306 
well, with a positive offset in EEFlux estimates of about 20 W/m2; However, the R2 and 307 
RMSE values are still within the acceptable range. Moreover, due to the self-reducing bias 308 
reduction used internally in EEFlux and METRIC, the systematic bias in G largely cancels 309 
out during production of ETrF [7].  310 

The agreement found with the intermediate products and energy balance components 311 
are good indicators of strong correlation and similarity in algorithm performance between 312 
EEFlux and METRIC.  ETrF values from EEFlux and METRIC were very similar, with R2 313 
and slope close to 1 and RMSE value of 0.03. This indicates similarity in the energy balance 314 
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calibration performed in EEFlux via the automated scheme and the manually-determined 315 
calibration in METRIC. For daily ETa, however, EEFlux had a significant bias relative to 316 
METRIC, with RMSE exceeding 2 mm/d and slope of 1.3. The higher estimation of ETa 317 
from EEFlux, given similarity in ETrF, traces to the conversion of ETrF to ETa by multiplying 318 
by daily ETr, which is derived from synoptic gridded weather data in EEFlux as compared to 319 
being derived from local measured point or gridded weather data collected from agricultural 320 
environments. The general aridity of synoptic weather data, with generally lower humidity 321 
content and higher air temperature than experienced under irrigated conditions, especially in 322 
semiarid and arid climates [32,33], causes overstatement of ETr by the Penman-Monteith 323 
combination reference equation that presumes a well-watered surface and associated air 324 
temperature and humidity parameters [20]. This is discussed more in a later section. 325 

 326 

3.1 Overall Summary of EEFlux vs METRIC comparisons 327 

A summary of comparisons over all 58 images and five locations was compiled by 328 
combining all sampled data and calculating overall R2, RMSE, and slope values. For 329 
individual image and location comparisons, the reader is referred to Supplemental Tables 1-330 
6 that provide statistics for both agricultural and non-agricultural areas for each image date. 331 
Table 1 presents the overall R2, RMSE, and slope values for all products for agricultural and 332 
non-agricultural areas. Intermediate products of Ts, Albedo, and NDVI were relatively 333 
similar between agricultural and non-agricultural classes, with R2 and slope values close to 1 334 
and with relatively small RMSE values. Rn estimates by EEFlux correlated well with those 335 
by METRIC, with an average R2 value of 0.93 and slope of 1.02 for agricultural areas and 336 
average R2 of 0.87 and slope of 1.02 for non-agricultural areas. Relative RMSE for Rn was 337 
less than 5%, on average, for Rn for both land covers. The other two energy balance 338 
components sampled (G and H) did not match as well between EEFlux and METRIC. The 339 
poor agreement for G is attributed to the previously noted differences between METRIC and 340 
EEFlux equations for G. Although the equations for G differed between EEFlux and the 341 
various METRIC versions, the average RMSE and slope indicate that EEFlux still calculated 342 
ETrF and ETa values that compared well to METRIC for agricultural areas, with R2 values 343 
of 0.82 and 0.76 for ETrF and ETa, respectively. The relatively good agreement for ETrF and 344 
the relatively poor agreement in H is partly explained by the systematic differences in 345 
estimates for G, which are embedded into the calibrated estimates for H, and that are then 346 
removed from the ET estimates during the ET production steps, due to the internal, systematic 347 
bias correction of METRIC and EEFlux. Differences in H are also traceable to the sources 348 
used to compute instantaneous ETr as noted previously, where generally higher estimates in 349 
ETr in EEFlux produce lower values for H during the surface energy balance calibration. 350 
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Because METRIC typically uses ground-based weather data for hourly and daily ETr 351 
calculation, and EEFlux uses gridded weather data sets to derive ETr, the calculated ETr 352 
values used in computations can be different due to differences in origin of weather data and 353 
aridity biases common to the gridded weather data sets. While several of the METRIC 354 
applications applied only a single ETr value for an entire Landsat image for both energy 355 
balance calibration and for interpolation to 24-hour periods, ETr values used in EEFlux can 356 
vary across the image through the gridded weather data that has an approximately 12 km grid 357 
spacing for NLDAS-2 hourly data, for CONUS, and 4 km grid spacing for GRIDMET 24-358 
hour data. In order to explore differences among ETr values used in METRIC and EEFlux, 359 
we calculated averages of gridded ETr values for each image date and associated ratios of 360 
those average values to the typically single scene-wide METRIC ETr values. Table 1 361 
summarizes average slopes of 24-hour EEFlux ETr values to METRIC ETr values. On 362 
average, over all five locations and the dates evaluated, the grid-based ETr ran higher than 363 
ground-based calculated ETr by ratios of 1.10 and 1.09 for agricultural and non-agricultural 364 
land uses, respectively. The approximately 10% higher ETr estimation by the gridded data 365 
suggests that general ET applications with EEFlux can be biased 10% high solely due to the 366 
aridity bias of the gridded data sets  [27,34]. This bias is the basis for ongoing studies and 367 
development of methods to identify and condition gridded data sets to remove aridity bias 368 
prior to calculation of reference ET, which represents near maximum ET in well-watered 369 
environments [32]. We further explored the ETr biases for each individual date and location 370 
as described later in the discussion section. 371 

 372 

 373 

 374 

 375 

 376 

 377 

 378 

 379 

  380 
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Table 1. Average values for R2, RMSE, and slope for EEFlux vs. METRIC, based on a 381 
comparison over all data (Ag sample size = 47838, Non-Ag sample size = 35110) 382 

 383 

Product 
Average R2 Average Slope Average RMSE 

Ag Non-Ag Ag Non-Ag Ag Non-Ag 

Ts (K) 1.00 1.00 1.00 1.00 0.53 0.51 

Albedo (0-1) 0.98 0.97 1.00 1.00 0.01 0.01 

NDVI (0-1) 0.97 0.93 1.09 1.11 0.07 0.06 

Rn (W/m2) 0.93 0.87 1.02 1.02 26.8 31.6 

G (W/m2) 0.53 0.26 1.43 1.22 41.8 40.6 

H (W/m2) 0.47 0.37 1.03 0.94 69.0 71.5 

ETr (mm/day) --- --- 1.10 1.09 --- --- 

ETrF (0-1.05) 0.82 0.45 0.94 0.64 0.13 0.21 

ETa (mm/day) 0.76 0.44 1.01 0.70 1.23 1.39 

 384 

3.2 ETrF and ETa examples 385 

 For most applications, the primary products of EEFlux and METRIC that are of most 386 
interest are ETrF and ETa.  Therefore, this results section focuses on those two products. 387 
Figure 3 illustrates ETrF and ETa correlations and behavior between EEFlux and METRIC 388 
over individual sample points for two locations (central Nebraska and southcentral Idaho) 389 
and two Landsat systems for agricultural areas. The top two rows of graphs show good 390 
EEFlux calibration and estimation relative to the METRIC calibration and estimation, 391 
producing relatively good R2, RMSE, and slope values. The lower row of graphs illustrates 392 
a poorer calibration where EEFlux substantially underestimated ETrF and ETa especially in 393 
the lower end of the ET spectrum, as reflected in poor R2, RMSE, and slope values. The poor 394 
agreement for the particular location and date indicate that the EEFlux automated calibration 395 
algorithms can fail under some conditions. As previously noted, those algorithms are under 396 
continued improvement by the UNL and UI developers. While the automated calibration of 397 
EEFlux is prone to producing poor calibrations under some circumstances, it should be noted 398 
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that manually calibrated METRIC can also depart from the ground truth [35]. In the 2002/5/2 399 
application shown in Figure 3, the METRIC application diagnosed a substantial impact of 400 
recent rain on elevating minimum ETrF to no lower than 0.6 across the Landsat scene, even 401 
for bare soils. The EEFlux application, which used GRIDMET-based precipitation, did not 402 
diagnose that same evaporation residual, apparently due to low precipitation amounts present 403 
in the gridded data set, and EEFlux therefore projected minimum values for ETrF of 0.0. This 404 
last illustration illustrates some of the challenges associated with what are sometimes labeled 405 
as ‘wet’ images, where atmospheric conditions are clear for processing, but the land surface 406 
is relatively wet from recent precipitation events. 407 

 408 
Figure 3. Examples of ETrF and ETa calibrations at agricultural fields in different locations. 409 
The upper two graphs: good calibration (P29 R31, Landsat 7, central Nebraska, 2002/9/8). 410 

The middle two graphs: relatively good calibration (P40 R30, Landsat 7, southcentral 411 
Idaho, 2016/9/27). The lower two graphs: poor calibration (P30 R31, Landsat 5, central 412 

Nebraska, 2002/5/2). 413 

 414 
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In the following section, we explore the differences between EEFlux and METRIC 415 
by discussing average statistics determined for ETrF and ETa for each of five locations. 416 

 417 

3.3 EEFlux ETrF vs METRIC ETrF for Individual Locations 418 

 Table 2 provides a statistical summary for ETrF comparisons for each of the nine Landsat 419 
path and row locations evaluated that were located in five general USA locations. Statistics 420 
are provided for agricultural and non-agricultural land uses. Figure 4 illustrates average slope 421 
values for ETrF for the different locations and Figure 5 presents average RMSE values for 422 
ETrF. The supplemental Figure 9 provides similar plots showing average R2 values for ETrF. 423 
As shown in Table 2 and Figures 4 and 5, there was minor underestimation of ETrF values 424 
by EEFlux, relative to METRIC, within agricultural land uses for some locations. However, 425 
the results were generally good, and EEFlux, on average, is judged to have produced 426 
reasonably accurate and useful ETrF imagery, particularly in southern California, southern 427 
Oregon, the Green River area of Wyoming, and in southern Idaho, with average R2 values 428 
higher than 0.84 and average slope values larger than 0.93, and where, in some of the areas, 429 
slopes were nearly 1.00. Moreover, the RMSE values in these areas were almost all less than 430 
10% of the average magnitudes of ETrF values (0-1.05). RMSE values of 10% are considered 431 
by Allen et al., [29] and Jensen and Allen [32] to be common to ET estimation and ET 432 
measurement. Within the agricultural fields in Nebraska, EEFlux performance was not as 433 
good or consistent as for the other locations. However, RMSE and R2 values are still within 434 
our acceptable range, except for one scene area which had an ETrF RMSE value of 0.28 and 435 
R2 value of 0.69. This was previously illustrated in Figure 3 and is explained by the impact 436 
of recent rains, where EEFlux underestimated ETrF for agricultural areas for several dates in 437 
central Nebraska. 438 

 R2, slope and RMSE values in Table 2 and Figures 4 and 5 indicate that EEFlux ETrF 439 
values did not match METRIC ETrF values as strongly for non-agricultural land uses as they 440 
did for agricultural land uses. EEFlux tended to underestimate ETrF for all non-agricultural 441 
land covers sampled and produced RMSE values that were higher than those for agricultural 442 
land uses within the same Landsat scene. Some of the differences are due to different means 443 
for estimating soil heat flux, for aerodynamic roughness of natural vegetation systems, and 444 
potentially due to impacts of the digital elevation model (DEM) used to estimate solar 445 
radiation and aerodynamic behavior in complex terrain that is characteristic of natural 446 
systems. Differences are also attributed to the weather data sources used in the application of 447 
the evaporative fraction (EF) function to nonagricultural land uses, where a ratio of ETa to 448 
Rn – G is used to transform ETrF to 24-hour ETrF values, rather than assuming that 24-hour 449 
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ETrF equals instantaneous ETrF as is done for agricultural land uses [7]. The typically 450 
stronger ETr from gridded weather data impacts this transformation. Causes of these 451 
differences, with location, continue to be investigated. 452 

Table 2. Average values for R2, slope and RMSE for ETrF for each Landsat scene location 453 
evaluated. RMSE values are unitless. 454 

 455 

Path Row Year 
Processed 

Year 

Ag ETrF Non-Ag ETrF 

n R2 Slope RMSE n R2 Slope RMSE 

29 31 2002 2014 2003 0.84 0.80 0.16 1063 0.83 0.63 0.26 

29 32 2002 2014 2387 0.86 0.86 0.15 1309 0.32 0.42 0.30 

30 31 2002 2014 3187 0.69 0.72 0.28 1910 0.19 0.40 0.42 

30 32 2002 2014 3302 0.94 0.94 0.11 3906 0.50 0.55 0.28 

37 30 2011 2013 4815 0.84 0.93 0.11 915 0.52 0.61 0.18 

37 31 2011 2013 3608 0.89 1.05 0.10 1921 0.31 0.72 0.14 

39 37 2014 2014 10152 0.86 1.00 0.13 6311 0.61 0.81 0.14 

40 30 2016 2016 12164 0.89 0.95 0.10 12416 0.52 0.81 0.16 

45 31 2004 2011 5765 0.89 0.98 0.10 5759 0.49 0.70 0.18 

 456 
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 457 
Figure 4. Average slope values for ETrF for EEFlux vs. METRIC for different locations 458 

and scenes for agricultural and nonagricultural land uses. 459 

 460 
Figure 5. Average RMSE values for ETrF for EEFlux vs. METRIC for different locations 461 

and scenes for agricultural and nonagricultural land uses. 462 
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3.4 EEFlux ETa vs METRIC ETa for Individual Locations 463 

Table 3 provides a statistical summary for ETa comparisons for the nine Landsat path 464 
and row locations evaluated, for both agricultural and non-agricultural land uses. Figures 6 465 
and 7 show average slopes and RMSE values for ETa. Supplemental Figure 10 provides 466 
similar plots for average R2 values for ETa. As shown in Table 3 and Figures 6 and 7, slope 467 
values increased over those for ETrF for both agricultural and non-agricultural areas for most 468 
of the locations investigated. As discussed previously, that is largely a consequence of ETr 469 
overestimation by use of the gridded weather data set [27,34]. R2 and slope values were 470 
generally within the acceptable accuracy range for agricultural areas. R2 values were mostly 471 
larger than 0.8 and RMSE values were generally in the range of 0.9 to 1.1 mm/d, except one 472 
location where it was 0.69 mm/d. Most R2 values were less than 0.8 for non-agricultural land 473 
uses and RMSE values in all locations, except for southern California and southern Idaho, 474 
were larger for non-agricultural land uses as compared to agricultural lands. Slope values 475 
show that EEFlux tended to underestimate ETa for non-agricultural land uses everywhere 476 
except for southern Idaho. In general, ETa was substantially lower in non-agricultural land 477 
uses than in agricultural areas due to limits on ET imposed by precipitation amount. The 478 
agricultural areas sampled were generally all irrigated. 479 

Table 3. Average values for R2, slope and RMSE for 24-hour ETa for each Landsat scene 480 
location evaluated. RMSE values have units of mm/d. 481 

Path Row Year 
Processed 

Year 

Ag ETa Non-Ag ETa 

n R2 Slope RMSE n R2 Slope RMSE 

29 31 2002 2014 2003 0.84 0.92 0.93 1063 0.83 0.73 1.90 

29 32 2002 2014 2387 0.87 1.11 1.76 1309 0.39 0.54 2.33 

30 31 2002 2014 3187 0.50 0.69 1.89 1910 0.49 0.46 2.67 

30 32 2002 2014 3302 0.86 0.91 0.92 3906 0.52 0.57 1.78 

37 30 2011 2013 4815 0.83 0.91 1.11 915 0.58 0.54 1.58 

37 31 2011 2013 3608 0.87 1.02 0.88 1921 0.34 0.62 1.13 

39 37 2014 2014 10152 0.76 1.10 1.22 6311 0.51 0.96 0.97 

40 30 2016 2016 12164 0.82 1.13 1.29 12416 0.53 1.05 1.15 
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45 31 2004 2011 5765 0.89 1.11 0.80 5759 0.54 0.82 0.86 

 482 

 483 

 484 
Figure 6. Average slope values for ETa for EEFlux vs. METRIC for different locations and 485 

scenes for agricultural and nonagricultural land uses. 486 
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 487 
Figure 7. Average RMSE values (mm/d) for ETa for EEFlux vs. METRIC for different 488 

locations and scenes for agricultural and nonagricultural land uses. 489 

 490 

3.5 Time dependency of EEFlux performance  491 

 Because the study area in southern California had the broadest time series of processed 492 
images, we chose this location to explore the time dependency of EEFlux performance and 493 
to assess the impact of time of year on performances of the two processing systems. As 494 
described earlier we evaluated 13 processed Landsat 8 images for the southern California 495 
location. The first and last images evaluated were the 26th of January 2014 and the 10th of 496 
November 2014, respectively. Figure 8 shows R2, slope, and RMSE values for ETrF and ETa 497 
for agricultural and non-agricultural land uses for different comparison dates. Generally, 498 
there was not any statistical correlation between the performance of EEFlux as compared to 499 
that of METRIC with time of year. While R2 values for both ETrF and ETa were always 500 
higher for agricultural land uses as opposed to non-agricultural land uses, no trends through 501 
time were detected. The slope values were similar over time for both agricultural and non-502 
agricultural land uses. However, slopes for non-agricultural ETrF and ETa do show a slight 503 
trend, decreasing from March through November. RMSE values for ETrF, like R2 and slope 504 
values did not follow any visible trend during 2014 in the agricultural land uses in southern 505 
California. However, as observed in the bottom plot of Figure 8, RMSE values for ETa 506 
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increased for both land covers during summer time, indicating larger differences between 507 
EEFlux ETa values and METRIC values during the primary growing season when ETa was 508 
higher.  509 

 510 
Figure 8. a) R2, b) slope and c) RMSE values for ETrF and ETa products for 511 

EEFlux vs. METRIC for a series of comparison dates (Path 39 Row 37). 512 

  513 
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4. Discussion 514 

Based on the comparison results, we conclude that the implementation of EEFlux on 515 
GEE, including the automated internal calibration, has been relatively successful. EEFlux 516 
ETrF and ETa results matched those from manually applied METRIC applications for most 517 
of the agricultural areas evaluated. For some dates within central Nebraska, EEFlux 518 
performance was poorer than for the other locations for agricultural land uses. Some of the 519 
increased error is due to fewer Landsat images processed for that region due to extensive 520 
cloud clover. In one location we were able to evaluate only 3 Landsat image dates (Path 29 521 
Row 31) and for the other three Worldwide Reference System (WRS) scene areas we 522 
evaluated 4 image dates; whereas we evaluated 13 Landsat Image dates in California and 15 523 
image dates in Idaho. Having fewer image dates can result in more extreme means due to 524 
greater impacts of outliers and/or a smaller sample size. Other impacts, as noted, for central 525 
Nebraska is the tendency for more frequent and substantial rainfall during the growing season 526 
that increases the impact of background evaporation. This complicates the image calibration. 527 
In non-agricultural land uses, EEFlux did not match with METRIC as well as it did for 528 
agricultural land uses. This may be partially due to differences among G and H products and 529 
DEM sources used. As noted earlier, we evaluated EEFlux version 0.9.4 and, as EEFlux is 530 
still in progress, the automated calibration algorithms are expected to be improved in the 531 
future, which should result in even more accurate ETrF and ETa estimates. 532 

 533 
5. Other Analyses 534 

5.1 Source of Reference ET Estimation 535 

Besides using ETr for internal energy balance calibration and computation, EEFlux uses 536 
gridded weather data to extrapolate instantaneous daily ETrF values to the 24-hour period, 537 
which is then multiplied by 24-hour ETr to calculate daily ETa values. Figure 9 shows ratios 538 
of gridded ETr values versus the single ETr values generally used in METRIC computations 539 
for each image date and location. As shown in Figure 9, for most dates and locations, the 540 
average gridded ETr values used in EEFlux were higher than the associated single average 541 
gridded ETr values used by METRIC, with variation within each location from about 0.9 to 542 
1.3. As we discussed earlier, the average EEFlux-gridded ETr was larger than the METRIC 543 
calculated, ground-based ETr values by an average ratio of 1.10 and 1.09 for agricultural and 544 
non-agricultural land uses, respectively. The higher 24-hour ETr estimation in EEFlux due to 545 
the gridded weather data source, leads to some degree of daily ETa overestimation. 546 
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 547 

Figure 9. Ratios of calculated 24-hour ETr used in EEFlux (based on gridded weather data) 548 
to that used in the METRIC model (calculated from ground-based weather station data) for 549 

five different Landsat scene locations and comparison days. 550 

 551 

5.2 Impact of METRIC Calibration Style (User) on METRIC Estimation 552 

Some of the differences noted between ETrF and ETa from EEFlux vs. METRIC could 553 
stem from the semi-subjective behavior for METRIC estimates that are traceable to the 554 
particular individual user and situation responsible for the METRIC application and 555 
calibration. To explore the impact of METRIC user, two different METRIC users with 556 
varying experience and expertise in ET image production applied similar METRIC 557 
algorithms independently during two different time periods, where they calibrated two image 558 
dates in central Nebraska (Path 29 Row 32) for year 2015. Figure 10 shows the results of 559 
comparisons for two processed Landsat 8 image dates for the agricultural land use. The top 560 
two comparisons belong to 18th of July and the two in the bottom belong to 4th of September. 561 
While R2 of ETrF and ETa values are higher than 0.89 for both days, the RMSE and slope 562 
values are considered to be acceptable for only July 18th, and is not in the acceptable range 563 
for September 4th. The average R2 of ETrF and ETa values for combination of all the data 564 
were 0.78 and 0.73, respectively. The combined slope values were 0.9 for ETrF and 1.07 for 565 
ETa values, which do fall within the acceptable ranges. Scatter in the comparisons is due to 566 
small differences in the METRIC version used or in internal parameter settings in METRIC 567 
such as corrections for low albedo in crops such as corn that have deep canopies [7]. 568 
Combined RMSE values were 0.14 for ETrF and 0.98 mm/d for ETa values. A comparison 569 
of these average R2, slope and RMSE values with average values for EEFlux vs. METRIC 570 
summarized in Table.1, suggests that, for the locations evaluated, that the EEFlux automated 571 
calibration algorithm is generally able to estimate ETrF and ETa values for agricultural land 572 
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uses that are comparable in accuracy and reproducibility to differences noted from METRIC 573 
when applied by different trained users. This finding is consistent with that of Medellín-574 
Azuara et al., [14]. 575 

 576 
Figure 10. Comparison between METRIC products (ETrF and ETa) that were manually 577 
calibrated and produced by 2 different METRIC users. The top two comparisons are for 578 

18th of July and the bottom two are for 4th of September. 579 

 580 

5. Conclusions 581 

The consistency and accuracy of ET products from the automatically calibrated GEE 582 
EEFlux application were evaluated by comparing EEFlux products to those from manually 583 
calibrated METRIC images for 58 Landsat images. Sets of Landsat images from five study 584 
locations distributed across central and western USA included both agricultural and non-585 
agricultural land uses. The agricultural areas sampled were typically irrigated. The 586 
comparison results show that EEFlux is able to calculate ETrF and ETa values in agricultural 587 
areas that are comparable to those produced by trained METRIC users and that are generally 588 
within accepted accuracy ranges. Differences between EEFlux and METRIC were larger for 589 
non-agricultural land uses showing room for improvement to the EEFlux algorithms. 590 
Differences noted could, in part, be the result of EEFlux struggling to account for background 591 
evaporation at the hot pixel calibration end point. Hot pixel bias in the hot pixel assigned 592 
ETrF tends to affect the non-agricultural pixels more than agricultural pixels because the non-593 
agricultural pixels tend to have lower ET and are therefore more impacted by error or bias in 594 
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the overall surface energy balance. Another likely reason for the poorer performance for non-595 
agricultural land uses is a bias introduced during the application of EF to extrapolate 596 
instantaneous ETrF to daily ETrF, as discussed earlier. The EF relies on the instantaneous and 597 
24-hour ETr, Rn and G being accurate. We have established that both ETr and G estimates 598 
deviate between METRIC and EEFlux, so we would expect to have different results in the 599 
non-agricultural areas.  In fact, we should expect larger differences between METRIC and 600 
EEFlux in non-agricultural areas than in agricultural areas given that the instantaneous ETrF 601 
used in the agricultural areas is robust in the face of biased G and instantaneous ETr. While 602 
EEFlux is still a work in progress, it can be used to rapidly estimate ETa for areas of interest. 603 
However, it is important to be aware of biases in 24-hour ETa estimates due to aridity biases 604 
in the gridded weather data used by EEFlux. Results presented in this paper should provide 605 
a good overview of the general variability and error to be expected for ETrF and ETa estimates 606 
from EEFlux.  607 
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