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INTRODUCTION

Turbulence is a difficulty subject that pervades so

many aspects of peoples’ daily lives [1–16]. It is believe

that the turbulence flow are govern by the Navier-Stokes

momentum equation is ρu,t+∇ ·Π = 0, continuity equa-

tion of incompressible flow is ∇·u = 0, where the energy-

moementum tensor given by Π = pI+ρu⊗u−μ(∇u+

u∇), dynamic viscosity μ, gradient operator ∇ = ei∂i,

base vector in the i-coordinate ei, and tensor product ⊗.

To solve the problem, in 1895 Reynolds published a

seminal work on turbulence [29], in which he proposed

that flow velocity u and pressure p are decomposed in-

to its time-averaged quantities, ū, t, p̄, and fluctuating

quantities, u′, p′; thus, the Reynolds decomposition-

s are: u = ū(x, t) + u′(x, t) and p(x, t) = p̄(x, t) +

p′(x, t), where coordinates and times are (x, t). With

decomposition the Navier-Stokes equation is then trans-

formed into Reynolds-averaged Navier Stokes equation-

s, where the Reynolds stress tensor τ = −ρu′ ⊗ u′ =

−ρ limT→∞ 1
T

∫ t+T

t
(u′ ⊗ u′)dt is introduced, where T is

the period of time over which the averaging takes place

and must be sufficiently large to give meaningful aver-

ages. Reynolds stress is apparent stress owing to the

fluctuating velocity field u′. Since introduction of the

Reynolds stress tensor, the closure problem of turbu-

lence, namely the Reynolds equations are unclosed, has

eluded scientists and mathematicians for centuries. The

Reynolds equations can not be solved unless some addi-

tional restrictions are somehow determined.

Applying the Reynolds decomposition and averaging

operation, we have the Reynolds equations and continu-

ity equation of the mean velocity as follows, respectively:

ρū,t + ρ∇ · (ū⊗ ū) +∇p̄ = μ∇2ū− ρ∇ · (u′ ⊗ u′) and

∇ · ū = 0, which is called the Reynolds (averaged) e-

quations. For a general three-dimensional flow, there are

four independent equations governing the mean velocity

field; namely three components of the Reynolds equation-

s together with one mean continuity equation. However,

these four equations contain more than four unknowns.

In addition to ū and p̄ (four quantities), there are also the

Reynolds stresses. The Reynolds equations are unclosed.

This is a manifestation of the closure problem.

In 1940 and 1945, P.-Y. Chou [30, 31] published a re-

markable result and pointed out that because the Navier-

Stokes equations are the basic dynamical equations of

fluid motion, it is insufficient to consider only the mean

turbulent motion. The turbulent fluctuations are as im-

portant as the mean motion and the equations for turbu-

lent fluctuations also need to be considered. Subtracting

the mean motions from the Navier-Stokes equation and

continuity equation, Chou [30, 31] obtained the equations

of the turbulence fluctuations ρū′
,t+ρ∇·(ū⊗u′+u′⊗ū+

u′ ⊗u′)+∇p′ = μ∇2u′ + ρ∇ · (u′ ⊗ u′) and ∇ ·u′ = 0.

In honor of Chou’s contribution, we like to propose to

call the equation the Chou turbulence equation.

Although Chou [31] mentioned that the rigorous way

of treating the turbulence problem is probably to solve

the Reynolds’ equations of mean motion and the equa-

tions of turbulent fluctuation simultaneously. However,

from the presentation of [31] and all his subsequent pub-

lications [32–36], we noticed that Chou together with all

other researchers [1–8, 10–16] did not realised that the

fluctuation equations together with the mean equations

already can form a closed equations system.

But researchers are making progress on understand-

ing the physics of the Reynolds stresses. In a Preprint

published on 28 June 2018 in Preprints.org, a new per-
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spectives proposed by Sun [37] could help to solve the

long-standing puzzle over the turbulence closure issue.

He proven that the Reynolds stress tensor is not a gen-

eral second order tensor with six independent elements,

while its each element is the product of two fluctuation

velocity components. There are 3 velocity components in

3D flow, therefore the number of independent parameters

is 3 rather than 6, namely the three components of the

fluctuation velocity. For three dimensional flow, we can

only have three components of fluctuation velocity u′ as
unknowns. It means that the Reynolds stress tensor has

only three unknowns, namely u′
1, u

′
2, u

′
3. For two dimen-

sional flow, of course, the 2D Reynolds stress tensor has

only two unknowns, namely u′
1, u

′
2.

With this new understanding, Sun [37] finally shown

the integral-differential equations of the Reynolds mean

and fluctuation equations have same number of unknown-

s That is why he claim that the Reynolds Navier-Stokes

turbulence equations of incompressible flow are closed

rather than unclosed.

THE REYNOLDS-CHOU-NAVIER-STOKES

(RCNS) TURBULENCE EQUATIONS

Sun [37] proposed the closed turbulence equations of

incompressible flow. In honor of seminal contribution

from both O Reynolds and P.-Y.Chou, in the future, we

like to propose to call the equations as the Reynolds-

Chou-Navier-Stokes (RCNS) turbulence equations. The

RCNS can be presented as follows

ρū,t + ρ∇ · (ū⊗ ū) +∇p̄ = μ∇2ū− ρ lim
T→∞

1

T

∫ t+T

t

∇ · (u′ ⊗ u′)dt, (1)

ρū′
,t + ρ∇ · (ū⊗ u′ + u′ ⊗ ū+ u′ ⊗ u′) +∇p′ = μ∇2u′ + ρ lim

T→∞
1

T

∫ t+T

t

∇ · (u′ ⊗ u′)dt, (2)

∇ · ū = 0, (3)

∇ · u′ = 0. (4)

Denoting kinematic viscosity ν = μ/ρ, the above equa-

tions be equivalently rewritten in a conventional form

ū,t + ū ·∇ū+
1

ρ
∇p̄ = ν∇2ū− lim

T→∞
1

T

∫ t+T

t

∇ · (u′ ·∇u′)dt, (5)

ū′
,t + ū ·∇u′ + u′ ·∇ū+ u′ ·∇u′ +

1

ρ
∇p′ = ν∇2u′ + lim

T→∞
1

T

∫ t+T

t

∇ · (u′ ·∇u′)dt, (6)

∇ · ū = 0, (7)

∇ · u′ = 0. (8)

Applying the divergence operation ∇ on both sides of

the Eqs.(5,6), we can obtain equations for both mean

and fluctuation pressure as follows
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∇2p̄ = −ρ∇ · (ū ·∇ū)− ρ lim
T→∞

1

T

∫ t+T

t

∇ · (u′ ·∇u′)dt, (9)

∇2p′ = −ρ∇ · [ū ·∇u′ + u′ ·∇ū+ u′ ·∇u′] + ρ lim
T→∞

1

T

∫ t+T

t

∇ · (u′ ·∇u′)dt. (10)

Although the Eqs.(1,2,3,4) are closed, if you add Eq.1

and Eq.2, the Reynolds stress tensor will be cancelled

out and all equations go back to the Navier-Stokes equa-

tion; similarly the total velocity continuity equation will

be restored if adding Eq.3 and Eq.4. In other words, al-

though the turbulence equations Eqs.(1,2,3,4) are closed,

it would not provide us a real boost in solving turbu-

lence problem. Nevertheless, the turbulence equations

Eqs.(1,2,3,4) still have an academic value, which can def-

initely give a better guideline in the modelling of turbu-

lence.

VELOCITY FLUCTUATION APPROXIMATION

Although the turbulence problem can be calculated

by Eqs.(5,6,7,8), it would be useful to propose a fluc-

tuation velocity without solving the equations, where

the velocity fluctuation u′ satisfies the incompressibil-

ity condition ∇ · u′ = 0 and time average conditions

ū′ = limT→∞ 1
T

∫ t+T

t
u′dt = 0 as well.

The question is: how does one construct velocity fluc-

tuation u′? Since there are no definitive stances on what

turbulence is, or no scientific definition of turbulence, it is

hard to guess the weight of velocity fluctuation u′ within
the flow velocity u. But what is apparent is that the

mean field and fluctuation counterpart of velocity is in-

terconnected, for instance, the faster ū goes, the higher

the frequency u′, which implies that the velocity fluc-

tuation u′ is dependent on the mean velocity field ū.

With this understanding one can propose that the veloc-

ity fluctuation u′ is a function of mean velocity ū, namely

u′ = u′(ū, t). Therefore, the Reynolds velocity decom-

position can be rewritten as u = ū+ u′(ū, t). However,

the closure problem would still be there if u′(ū, t) cannot
be proposed.

Numerous observations [1–16] have shown that turbu-

lence is caused by excessive kinetic energy in parts of

a fluid flow, which overcomes the damping effect of the

fluid’s viscosity. Hence, turbulence is easier to create in

low viscosity fluids, but more difficult in highly viscous

fluids. The dynamic balance between kinetic energy and

viscous damping in a fluid flow can be perceived as flow

symmetries that are broken by mechanisms, which pro-

duce turbulence, and are restored by the chaotic char-

acter of the cascade to small scales [11]. This dynamic

balance process is the key source to generating velocity

fluctuation u′. In particular, it is found that the mean

velocity vorticity ω̄ = ∇ × ū plays an essential role in

producing turbulence. This means that velocity fluctua-

tion u′ should be a function of both mean velocity ū and

its vorticity ω̄.

To satisfy the incompressibility condition ∇ · u′ = 0,

the velocity fluctuation u′ must be divergence-free, hence

we can introduce a vector function ψ and let

u′ = ∇×ψ. (11)

Based on the above understanding and mathematical re-

quirements, we like propose the following conjecture for

the vector ψ:

ψ = f(ū)β(x, t), (12)

where β(x, t) is a scalar function and represents the na-

ture of fluctuation. How should one determine the func-

tion f(ū)? Considering the vector as a first order tensor,

if f(ū) is a homogenous function of ū, we should express

that the function f(ū) = b + αū, in which the constant

vector a can be omitted, since ∇ × b = 0. Physically,

there is no velocity fluctuation u′ if there is no mean

velocity ū, namely u′̄
u=0 = 0.

If one substitutes φ = 0 and Eq. (12) into Eq. (13), it

will lead to the following velocity fluctuation:

u′ = α∇× [ūβ(x, t)] = α (β∇× ū+∇β × ū) , (13)

where the α is a constant with the length dimension. The

time mean condition ū′ = 0, which requires β̄ = 0 and

∇β = 0.

In the Navier-Stokes equation of incompressible flow,

there are four physical quantities, namely flow density ρ,

dynamic viscosity μ, flow velocity u and the flow pressure

field p. Due to the incompressibility, the pressure field p

can be represented by ∇2p = −ρ∇ · (u ·∇u); therefore,

we have a total of three independent physical quantities,

namely ρ, μ and u. According to Buckingham’s Π the-

orem [38–43], the three physical quantities, ρ, μ and u,
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should produce one dimensionless Π. However, there is

no dimensionless quantity Π that can be constructed by

ρ, μ and u, which indicates that ρ, μ and u will par-

ticipate within the turbulence in other ways. From di-

mensional perspectives, the three quantities, namely ρ, μ

and ū, can produce only one quantity, μ
ρū , having length

dimensions.

Without a loss of generality, one can propose that α

takes the form, α = μ
ρU , where U is a flow characteristic

velocity. Hence, the velocity fluctuation can be expressed

as:

u′ =
μ

ρU
∇× [ūβ(x, t)]

=
μ

ρU
(β∇× ū+∇β × ū)

=
μ

ρU
(βω̄ +∇β × ū) . (14)

The beauty of the velocity fluctuation in Eq. (14) is

that both the incompressibility ∇ ·u′ = 0 and time aver-

age conditions ū′ = limT→∞ 1
T

∫ t+T

t
u′dt = 0 can be sat-

isfied simultaneously under those time mean conditions

β̄ = 0 and ∇β = 0.

Because of no clear scientific definition of turbulence,

the candidates of β(x, t) could be any one as long as the

above conditions are satisfied. For instance, if we have

experimental data on the velocity fluctuation, we can use

them as the function, β.

The following shows that formulation of an approxi-

mate modelling (if exact turbulence theory does exist),

does not need to know the function itself, but rather the

mean value β2.

THE AVERAGED REYNOLDS STRESS TENSOR

The averaged Reynolds stress tensor τ = −ρu′ ⊗ u′

can be obtained as follows [45]:

τ = − μ2

ρU2
[∇× (βū)]⊗ [∇× (βū)]

= − μ2

ρU2

(
β2ω̄ ⊗ ω̄ + (∇β × ū)⊗ (∇β × ū)

)

= − μ2

ρU2

(
β2ω̄ ⊗ ω̄ + (∇β ⊗∇β)

×
×(ū⊗ ū)

)
. (15)

Regarding the time mean quantity β2, since the ve-

locity fluctuations move up and down around the mean

velocity, the total area under the velocity fluctuation e-

quals zero, which is similar to the cosine function, hence

we can set β2 = 1/2.

Similarly, one can assume the gradient of β(x, t) as a

sine-like function. Since ∇β ⊗∇β is a second homoge-

nous order tensor, ∇β ⊗ ∇β is the same in direction-

s, thus, it can be expressed as a scalar (the square of

the sine-like function) that multiplies the identity tensor

I = δijeiej ; therefore, considering the account of di-

mensions, its mean value is (∇F ⊗∇β) = 1/2(ρU/μ)2I.

Note I×
× (ū ⊗ ū) = Itr(ū ⊗ ū) − (ū ⊗ ū)T . [46] Finally,

the averaged Reynolds stress can be proposed as follows:

τ =
1

2
ρ(ū⊗ ū)− 1

2
ρItr(ū⊗ ū)− 1

2

μ2

ρU2
ω̄ ⊗ ω̄. (16)

The denoted the velocity field u = (u, v, w), thus we have

tr(ū⊗ū) = u2+v2+w2; therefore the last term in Eq.(16)

is kinetic energy density.

This expression of the averaged Reynolds stress tensor

reveals that the mean vorticity ω̄ is a key source in pro-

ducing turbulence, and it is worth commenting here in

this regard. Eq.(16) indicates clearly that the averaged

Reynolds stress tensor is proportional to the square of

the mean vorticity. The non-linearity between the aver-

aged Reynolds stress tensor and the mean vorticity and

velocity is the key feature of turbulence phenomena, and

is totally different from molecular diffusivity [2]. Thus,

non-linearity of the averaged Reynolds stress tensor is

the turbulence mechanism behind rapid mixing.

SIMPLIFIED CLOSED

REYNOLDS-CHOU-NAVIER-STOKES (RCNS)

EQUATIONS

With the explicit velocity fluctuation in Eq. (14), one

can formulate the Reynolds averaged Navier-Stokes equa-

tions as follows:

ρ∇ · (ū⊗ ū) = −∇p̄+ μ∇2ū+∇ · τ , (17)

∇ · ū = 0. (18)

where the divergence of the Reynolds stress tensor is giv-

en by

∇ · τ = −1

2

μ2

ρU2
ω̄ ·∇ω̄

+
1

2
ρū ·∇ū− 1

2
ρ∇ · [Itr(ū⊗ ū)]. (19)

It is clear that Eq. (17) is a closed equation, in which

the mean velocity field ū is the only unknown vector.

The above formulations show that although the spe-

cific expression of the function F (x, t) is not known, one

can still approximately calculate the Reynolds stress ten-

sor τ , the mean velocity ū, mean pressure p̄, as well as

the kinetic energy of the velocity fluctuation. Howev-

er, the pressure fluctuation and the vorticity fluctuation
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cannot be determined without knowing F (x, t). This im-

perfection does not affect the turbulence study too much,

since one of the central issues is to find mean field quan-

tities such as the mean velocity and the pressure, which

can been formulated within the current theoretical frame-

work.

FORMULATIONS IN CARTESIAN

COORDINATES

For a better understanding, the formulations in Carte-

sian coordinates are listed below:

The vorticity components are: ω̄x = ∂w̄
∂y − ∂v̄

∂z , ω̄y =
∂ū
∂z − ∂w̄

∂x , and ω̄z = ∂v̄
∂x − ∂ū

∂y .

The velocity fluctuation components are:

u′ =
μ

ρU
β(x, t)(

∂w̄

∂y
− ∂v̄

∂z
),

v′ =
μ

ρU
β(x, t)(

∂ū

∂z
− ∂w̄

∂x
), (20)

w′ =
μ

ρU
β(x, t)(

∂v̄

∂x
− ∂ū

∂y
).

The averaged Reynolds stress components are:

τxx = −1

2
ρ(v̄2 + w̄2)− 1

2

μ2

ρU2
(
∂w̄

∂y
− ∂v̄

∂z
)2,

τxy =
1

2
ρūv̄ − 1

2

μ2

ρU2
(
∂w̄

∂y
− ∂v̄

∂z
)(
∂ū

∂z
− ∂w̄

∂x
),

τxz =
1

2
ρūw̄ − 1

2

μ2

ρU2
(
∂w̄

∂y
− ∂v̄

∂z
)(
∂v̄

∂x
− ∂ū

∂y
),

τyx = τxy, (21)

τyy = −1

2
ρ(ū2 + w̄2)− 1

2

μ2

ρU2
(
∂ū

∂z
− ∂w̄

∂x
)2,

τyz =
1

2
ρv̄w̄ − 1

2

μ2

ρU2
(
∂ū

∂z
− ∂w̄

∂x
)(
∂v̄

∂x
− ∂ū

∂y
),

τzx = τxz,

τzy = τyz,

τzz = −1

2
ρ(ū2 + v̄2)− 1

2

μ2

ρU2
(
∂v̄

∂x
− ∂ū

∂y
)2.

It is clear that the Reynolds stress is proportional to the

square mean velocity gradient, which has been proved by

experiments. Tennekes and Lumley [2] pointed out that

diagonal components of τ , their values ρu2
1, ρu

2
2, ρu

2
3, in

many flows, contribute little to the transport of mean

momentum. The off-diagonal components of τ are s-

hear stresses; they play a dominate role in the theory of

mean momentum transfer by turbulent motion. There-

fore the diagonal components of the Reynolds stresses,

ρu2
1, ρu

2
2, ρu

2
3, can be omitted.

The Reynolds Navier-Stokes equations are:

ū
∂ū

∂x
+ v̄

∂ū

∂y
+ w̄

∂ū

∂z
+

1

ρ

∂p̄

∂x
= ν∇2ū− (∇ · τ )x,

ū
∂v̄

∂x
+ v̄

∂v̄

∂y
+ w̄

∂v̄

∂z
+

1

ρ

∂p̄

∂x
= ν∇2ū− (∇ · τ )y,(22)

ū
∂w̄

∂x
+ v̄

∂w̄

∂y
+ w̄

∂w̄

∂z
+

1

ρ

∂p̄

∂x
= ν∇2ū− (∇ · τ )z,

where the kinematic viscosity is ν = μ/ρ, and the Laplace

operator ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 , and (∇ · τ )x = ∂τxx

∂x +
∂τxy

∂y + ∂τxz

∂z , (∇ · τ )y =
∂τyx

∂x +
∂τyy

∂y +
∂τyz

∂z , (∇ · τ )z =
∂τzx
∂x +

∂τzy
∂y + ∂τzz

∂z .

DISCUSSIONS

(1) The flow characteristic velocity U has proved that

it can be chosen for any given problem. For flow speed

that travels close to the speed of sound c, one can choose

the speed of sound c as the flow characteristic velocity

U , namely U = c. The sound waves can exist in a fluid

without the presence of any external force field, which

propagates by restoring force that is provided entirely by

the fluid’s own compressibility [44]; therefore, the veloc-

ity fluctuation conjecture in Eq.(14) will be intrinsic if

the speed of the sound waves is chosen as the flow char-

acteristic velocity U .

(2) Since the velocity fluctuation is proportional to the

vorticity ω̄ = ∇×ū, and Curl of the mean velocity, ∇×ū

is a three dimensional quantity; therefore, the turbulence

is always rotational and three dimensional, whilst char-

acterized by high levels of fluctuation vorticity. Hence,

vorticity dynamics play an essential role in the descrip-

tion of turbulent velocity fluctuations [2].

(3) If the scalar function β is only a function of time,

the above formulations can be further simplified as fol-

lows:

u′ =
μ

ρU
βω̄. (23)

The Reynolds stress tensor is given by

τ = −1

2

μ2

ρU2
ω̄ ⊗ ω̄. (24)

In this special case, the Reynolds averaged stress tensor

is produced fully by the mean vorticity.

(4) Similarly, compressible flow temperature fluctua-

tion T ′ and density fluctuation ρ′ should also be con-

structed.
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CONCLUSIONS

In summary, this study has attempted to propose a

simplification of the velocity fluctuations that can simul-

taneously satisfy both incompressibility and time-average

conditions. The simplified closed Reynolds Navier-Stokes

turbulence formulations show that the mean vorticity has

a strong influence on the velocity fluctuation and the

Reynolds stress tensor, as well as on the mean pressure.

This fact reveals that three-dimensional vorticity fluctu-

ation is a fundamental mechanism to producing turbu-

lence.

Acknowledgements

It is my great pleasure to have shared and discussed

some of the above with Michael Sun from Bishops Dioce-

san College, whose pure and direct scientific sense in-

spired me.

∗ Electronic address: sunb@cput.ac.za

[1] Bradshaw P. An Introduction to Turbulence and Its Mea-

surement. Pergamon Press, New York (1971)

[2] Tennekes, H. and Lumley, J.L. A First Course in Turbu-

lence. Cambridge: The MIT Press (1972).

[3] Lesilie D.C. Developments in the Theory of Turbulence.

Clarendon Press, Oxford (1973).

[4] Townsend A.A. The Structure of Turbulent Shear Flow

2nd ed., Cambridge University Press, New York (1976).

[5] Lesieur M. Turbulence in Fluids. 2nd ed. Kluwer, Dor-

drecht (1990).

[6] Wilcox D.C. Turbulence Modeling for CFD. D C W In-

dustries (1993).

[7] Pope S.B. Turbulent Flows. Cambridge University Press,

Cambridge (2000).

[8] Davidson, P.A. Turbulence. Oxford University Press,

Oxford (2004).

[9] Hof B. Experimental Observation of Nonlinear Traveling

Waves in Turbulent Pipe Flow. Science 305, 1594 (2004)

[10] Falkovich, G. and Sreenivasan K.R. Lessons from hydro-

dynamic turbulence. Physics Today, 43-49 (April 2006).

[11] Frisch, U. Turbulence: The Legacy of A.N. Kolmogorov.

Cambridge University Press,Cambridge (2008).

[12] Marusic I. Mathis R. and Hutchins N. Predictive mod-

el for wall-bounded turbulent Flow. Science 329, 193

(2010).

[13] Smits A.J., McKeon B.J. and Marusic I. High Reynolds

Number Wall Turbulence, Annu. Rev. Fluid Mech. 43,

353 (2011).

[14] Davison, P.A. et al. A Voyage Through Turbulence. Cam-

bridge: Cambridge University Press (2011)

[15] Suri B., Tithof J. R., Grigoriev R.O. and Schatz M.F.

Forecasting Fluid Flows Using the Geometry of Turbu-

lence. Phys. Rev. Lett. 118, 114501 (2017).

[16] Cardesa et al. The turbulent cascade in five dimensions.

Science 357, 782 784 (2017) 25

[17] http://www.claymath.org/millennium-problems/navier-

stokes-equation.

[18] Castelvecchi, D. On the trial of turbulence. Nature,

548:382 (2017).

[19] Kolmogorov, A.N. The local structure of turbulence

in incompressible viscous fluid for very large Reynold-

s number. Dokl. Akad. Nauk SSSR, 30:299-303 (1941a)

(reprinted in Proc.R.Soc.Lond. A, 434,9-13, 1991).

[20] Kolmogorov, A.N. On degeneration (decay) of isotrop-

ic turbulence in an incompressible visous liquid. Dokl.

Akad. Nauk SSSR, 31:538-540 (1941b).

[21] Kolmogorov, A.N. Dissipation of energy in locally

isotropic turbulence. Dokl.Akad. Nauk SSSR, 32:16-

18 (1941c).(reprinted in Proc.R.Soc.Lond. A, 434,15-17,

1991).

[22] Sreenivasan K.R. On the scaling of the turbulence en-

ergy dissipation rate. Physics of Fluids, 27,5:1048-1051

(1984).

[23] Sun, B. The temporal scaling laws of compressible turbu-

lence. Modern Physics Letters B. 30,(23) 1650297 (2016).

[24] Sun, B. Scaling laws of compressible turbulence. Appl.

Math. Mech.-Engl. Ed. 38: 765(2017).
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