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A novel simplification of the Reynolds-Chou-Navier-Stokes turbulence equations of
incompressible flow
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Based on author’s previous work [Sun, B. The Reynolds Navier-Stokes Turbulence
Equations of Incompressible Flow Are Closed Rather Than Unclosed. Preprints 2018,
2018060461 (doi: 10.20944/preprints201806.0461.v1)], this paper proposed an explic-
it representation of velocity fluctuation and formulated the Reynolds stress tensor in
terms of the mean velocity field. The proposed closed Reynolds Navier-Stokes tur-
bulence formulations reveal that the mean vorticity is the key source of producing

turbulence.
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INTRODUCTION

Turbulence is a difficulty subject that pervades so
many aspects of peoples’ daily lives [1-16]. It is believe
that the turbulence flow are govern by the Navier-Stokes
momentum equation is pu , +V -II = 0, continuity equa-
tion of incompressible flow is V-u = 0, where the energy-
moementum tensor given by IT = pI + pu @ u — u(Vu +
uV), dynamic viscosity u, gradient operator V = e;0;,
base vector in the i-coordinate e;, and tensor product ®.

To solve the problem, in 1895 Reynolds published a
seminal work on turbulence [29], in which he proposed
that flow velocity w and pressure p are decomposed in-
to its time-averaged quantities, u,t, p, and fluctuating
quantities, u’, p’; thus, the Reynolds decomposition-
u(x,t) + (2, t) and p(x,t) = p(a,t) +
p'(x,t), where coordinates and times are (x,t). With
decomposition the Navier-Stokes equation is then trans-

S are: u =

formed into Reynolds-averaged Navier - Stokes equation-
s, where the Reynolds stress tensor 7 = —pu/ @ v/ =
—plimy_,00 7 f:JrT(u’ ® u')dt is introduced, where T is
the period of time over which the averaging takes place
and must be sufficiently large to give meaningful aver-
ages. Reynolds stress is apparent stress owing to the
fluctuating velocity field w’. Since introduction of the
Reynolds stress tensor, the closure problem of turbu-
lence, namely the Reynolds equations are unclosed, has
eluded scientists and mathematicians for centuries. The
Reynolds equations can not be solved unless some addi-
tional restrictions are somehow determined.

Applying the Reynolds decomposition and averaging
operation, we have the Reynolds equations and continu-
ity equation of the mean velocity as follows, respectively:

pus+pV - (u@u)+Vp=uViu—pV - (v ®@u') and

V -u = 0, which is called the Reynolds (averaged) e-
quations. For a general three-dimensional flow, there are
four independent equations governing the mean velocity
field; namely three components of the Reynolds equation-
s together with one mean continuity equation. However,
these four equations contain more than four unknowns.
In addition to w and p (four quantities), there are also the
Reynolds stresses. The Reynolds equations are unclosed.
This is a manifestation of the closure problem.

In 1940 and 1945, P.-Y. Chou [30, 31] published a re-
markable result and pointed out that because the Navier-
Stokes equations are the basic dynamical equations of
fluid motion, it is insufficient to consider only the mean
turbulent motion. The turbulent fluctuations are as im-
portant as the mean motion and the equations for turbu-
lent fluctuations also need to be considered. Subtracting
the mean motions from the Navier-Stokes equation and
continuity equation, Chou [30, 31] obtained the equations
of the turbulence fluctuations pu’ ;+pV-(u@u'+u'@u+
u@u)+Vp =V +pV - (v @u) and V-u' = 0.
In honor of Chou’s contribution, we like to propose to
call the equation the Chou turbulence equation.

Although Chou [31] mentioned that the rigorous way
of treating the turbulence problem is probably to solve
the Reynolds’ equations of mean motion and the equa-
tions of turbulent fluctuation simultaneously. However,
from the presentation of [31] and all his subsequent pub-
lications [32-36], we noticed that Chou together with all
other researchers [1-8, 10-16] did not realised that the
fluctuation equations together with the mean equations
already can form a closed equations system.

But researchers are making progress on understand-
ing the physics of the Reynolds stresses. In a Preprint
published on 28 June 2018 in Preprints.org, a new per-
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spectives proposed by Sun [37] could help to solve the
long-standing puzzle over the turbulence closure issue.
He proven that the Reynolds stress tensor is not a gen-
eral second order tensor with six independent elements,
while its each element is the product of two fluctuation
velocity components. There are 3 velocity components in
3D flow, therefore the number of independent parameters
is 3 rather than 6, namely the three components of the
fluctuation velocity. For three dimensional flow, we can
only have three components of fluctuation velocity u’ as
unknowns. It means that the Reynolds stress tensor has
only three unknowns, namely u], uj, u4. For two dimen-
sional flow, of course, the 2D Reynolds stress tensor has
only two unknowns, namely u}, u}.

With this new understanding, Sun [37] finally shown
the integral-differential equations of the Reynolds mean

J

pﬂ,t+pV'(a®a)+V;5:uV2apr1Lm 7

pu ¢+ +pV-(u@u +u @u+u @u)+ Vp —,uVQ'u’—i—p hm —/ V- (v ®@u)dt,

V.a=0,
V.-u =0.

Denoting kinematic viscosity v = u/p, the above equa-
tions be equivalently rewritten in a conventional form

T—o0

U +u-Vu+ Vp—l/Vzuf lim —
p T

wi+u-Vu +u - Va+u - Vu' + Vp—uVQu’—i-hm —/ V. (u - Vu)dt,

Applying the divergence operation V on both sides of
the Eqgs.(5,6), we can obtain equations for both mean
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and fluctuation equations have same number of unknown-
s That is why he claim that the Reynolds Navier-Stokes
turbulence equations of incompressible flow are closed
rather than unclosed.

THE REYNOLDS-CHOU-NAVIER-STOKES
(RCNS) TURBULENCE EQUATIONS

Sun [37] proposed the closed turbulence equations of
incompressible flow. In honor of seminal contribution
from both O Reynolds and P.-Y.Chou, in the future, we
like to propose to call the equations as the Reynolds-
Chou-Navier-Stokes (RCNS) turbulence equations. The
RCNS can be presented as follows

t+T
V(v @ud)dt,
¢

t+T

V(v - Vu')dt,

T—oo T

and fluctuation pressure as follows
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V%5 = —pV - (a-Va)

T—o0

V2 = —pV-[u-Vu' +u -Va+u -Vu']+p lim —

Although the Egs.(1,2,3,4) are closed, if you add Eq.1
and Eq.2, the Reynolds stress tensor will be cancelled
out and all equations go back to the Navier-Stokes equa-
tion; similarly the total velocity continuity equation will
be restored if adding Eq.3 and Eq.4. In other words, al-
though the turbulence equations Egs.(1,2,3,4) are closed,
it would not provide us a real boost in solving turbu-
lence problem. Nevertheless, the turbulence equations
Eqgs.(1,2,3,4) still have an academic value, which can def-
initely give a better guideline in the modelling of turbu-
lence.

VELOCITY FLUCTUATION APPROXIMATION

Although the turbulence problem can be calculated
by Eqs.(5,6,7,8), it would be useful to propose a fluc-
tuation velocity without solving the equations, where
the velocity fluctuation u’ satisfies the incompressibil-
ity condition V -/ = 0 and time average conditions
o =limy_, o + ft+T u'dt = 0 as well.

The question is: how does one construct velocity fluc-
tuation u'? Since there are no definitive stances on what
turbulence is, or no scientific definition of turbulence, it is
hard to guess the weight of velocity fluctuation ' within
the flow velocity u. But what is apparent is that the
mean field and fluctuation counterpart of velocity is in-
terconnected, for instance, the faster w goes, the higher
the frequency w’, which implies that the velocity fluc-
tuation u’ is dependent on the mean velocity field w.
With this understanding one can propose that the veloc-
ity fluctuation «’ is a function of mean velocity 4, namely
u' = u'(u,t). Therefore, the Reynolds velocity decom-
position can be rewritten as u = @ + u'(u,t). However,
the closure problem would still be there if u'(@, t) cannot
be proposed.

Numerous observations [1-16] have shown that turbu-
lence is caused by excessive kinetic energy in parts of
a fluid flow, which overcomes the damping effect of the
fluid’s viscosity. Hence, turbulence is easier to create in
low viscosity fluids, but more difficult in highly viscous
fluids. The dynamic balance between kinetic energy and
viscous damping in a fluid flow can be perceived as flow
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— p lim —/ V- (u - Vu')dt, (9)

t+T
V. (u - Vu')dt. (10)

T—o00 +

(

symmetries that are broken by mechanisms, which pro-
duce turbulence, and are restored by the chaotic char-
acter of the cascade to small scales [11]. This dynamic
balance process is the key source to generating velocity
In particular, it is found that the mean
velocity vorticity w = V x u plays an essential role in
producing turbulence. This means that velocity fluctua-

tion u’ should be a function of both mean velocity @ and

fluctuation u'.

its vorticity w.

To satisfy the incompressibility condition V -’ = 0,
the velocity fluctuation w’ must be divergence-free, hence
we can introduce a vector function v and let

=V x 1. (11)

Based on the above understanding and mathematical re-
quirements, we like propose the following conjecture for
the vector ¥:

Y = f(a)B(z,1), (12)

where f(x,t) is a scalar function and represents the na-
ture of fluctuation. How should one determine the func-
tion f(w)?
if f(a) is a homogenous function of @, we should express
that the function f(w) = b+ aw, in which the constant
vector a can be omitted, since V x b = 0. Physically,
there is no velocity fluctuation w’ if there is no mean

Considering the vector as a first order tensor,

velocity @, namely uy_q = 0.
If one substitutes ¢ = 0 and Eq. (12) into Eq. (13), it
will lead to the following velocity fluctuation:

u =aV x [uf(z,t)] =a(BV xu+VExu), (13)

where the « is a constant with the length dimension. The
time mean condition w/ = 0, which requires 3 = 0 and
Vj3=0.

In the Navier-Stokes equation of incompressible flow,
there are four physical quantities, namely flow density p,
dynamic viscosity p, flow velocity w and the flow pressure
field p. Due to the incompressibility, the pressure field p
can be represented by VZp = —pV - (u - Vu); therefore,
we have a total of three independent physical quantities,
namely p, ;1 and w. According to Buckingham’s II the-
orem [38-43], the three physical quantities, p, u and u,


http://dx.doi.org/10.20944/preprints201807.0030.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 July 2018

should produce one dimensionless II. However, there is
no dimensionless quantity II that can be constructed by
p, 1 and w, which indicates that p, p and w will par-
ticipate within the turbulence in other ways. From di-
mensional perspectives, the three quantities, namely p, i
and w, can produce only one quantity, p%, having length
dimensions.

Without a loss of generality, one can propose that «
takes the form, o = p%, where U is a flow characteristic
velocity. Hence, the velocity fluctuation can be expressed
as:

o' = v x [af(x,t)]
pU
I

7BV xa+ Vs xa)
s

i (bo+VExu). (14)
The beauty of the velocity fluctuation in Eq. (14) is
that both the incompressibility V-« = 0 and time aver-
:+T u'dt = 0 can be sat-
isfied simultaneously under those time mean conditions
B=0and V5 =0.
Because of no clear scientific definition of turbulence,

age conditions u/ = limp_, o, %

the candidates of 3(x,t) could be any one as long as the
above conditions are satisfied. For instance, if we have
experimental data on the velocity fluctuation, we can use
them as the function, 5.

The following shows that formulation of an approxi-
mate modelling (if exact turbulence theory does exist),
does not need to know the function itself, but rather the
mean value (2.

THE AVERAGED REYNOLDS STRESS TENSOR

The averaged Reynolds stress tensor 7 = —pu’ ® u/
can be obtained as follows [45]:

2

T:_ﬁﬁwxmeNwam]
= (Fose+(VBxwe (Vi xu)

2
- 7# (W@ o+ (VE® VB)i(a@a)) . (15)
Regarding the time mean quantity (2, since the ve-
locity fluctuations move up and down around the mean
velocity, the total area under the velocity fluctuation e-
quals zero, which is similar to the cosine function, hence
we can set 2 = 1/2.
Similarly, one can assume the gradient of S(x,t) as a
sine-like function. Since V3 ® V3 is a second homoge-
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nous order tensor, V3 ® V3 is the same in direction-
s, thus, it can be expressed as a scalar (the square of
the sine-like function) that multiplies the identity tensor
I = {;je;e;; therefore, considering the account of di-
mensions, its mean value is (VF ® V) = 1/2(pU/u)*1.
Note I} (u® u) = Itr(u ® @) — (uw @ u)T. [46] Finally,
the averaged Reynolds stress can be proposed as follows:
T, 1 IR B

T = ip(u ®u) — §pItr(u Ru)— -——ww. (16)
The denoted the velocity field u = (u, v, w), thus we have
tr(u®u) = u?+v?+w?; therefore the last term in Eq.(16)
is kinetic energy density.

This expression of the averaged Reynolds stress tensor
reveals that the mean vorticity @ is a key source in pro-
ducing turbulence, and it is worth commenting here in
this regard. Eq.(16) indicates clearly that the averaged
Reynolds stress tensor is proportional to the square of
the mean vorticity. The non-linearity between the aver-
aged Reynolds stress tensor and the mean vorticity and
velocity is the key feature of turbulence phenomena, and
is totally different from molecular diffusivity [2]. Thus,
non-linearity of the averaged Reynolds stress tensor is
the turbulence mechanism behind rapid mixing.

SIMPLIFIED CLOSED
REYNOLDS-CHOU-NAVIER-STOKES (RCNS)
EQUATIONS

With the explicit velocity fluctuation in Eq. (14), one
can formulate the Reynolds averaged Navier-Stokes equa-
tions as follows:

@u)=-Vp+uVia+V-T, (17)
V.ou=0. (18)

where the divergence of the Reynolds stress tensor is giv-
en by

1 1
+§pﬁ-Vﬁ— 5pV-[Itr(ﬁ@@ﬁ)]. (19)

It is clear that Eq. (17) is a closed equation, in which
the mean velocity field u is the only unknown vector.
The above formulations show that although the spe-
cific expression of the function F'(x,t) is not known, one
can still approximately calculate the Reynolds stress ten-
sor 7T, the mean velocity @, mean pressure p, as well as
the kinetic energy of the velocity fluctuation. Howev-

er, the pressure fluctuation and the vorticity fluctuation
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cannot be determined without knowing F'(x,¢). This im-
perfection does not affect the turbulence study too much,
since one of the central issues is to find mean field quan-
tities such as the mean velocity and the pressure, which
can been formulated within the current theoretical frame-
work.

FORMULATIONS IN CARTESIAN
COORDINATES

For a better understanding, the formulations in Carte-
sian coordinates are listed below:

The vorticity components are: w, = %—g’ - %, Wy =
%—%,and@zz%—g—z.
The velocity fluctuation components are:
, 1 ow  0v
u = —p(x, ) (5 — %),
pUﬁ( ) oy ;)
, 1 ou Ow
v = —B(x,t) (5 — ), 20
T8 (G~ 50 (20)
ov  Ou

r_H v _ g
v pUﬁ(w’t)(ax 3y)'

The averaged Reynolds stress components are:

1 _ 1 p? 0w O
Tox = —§P(U2+w2)—§ﬁ(afy—%)2,
_1 ff_}i(aﬂ_@)(@_@)
Toy = oPUUT 02 0y T 92V 02 9z
= 1 m@_li(@_@)(@_@)
vz T 5P 2002 0y 0z 0x Oy’
Tyz = Tay, (21)
1 _ 1 p* Odu Ow
Tyy = *50(“2+w2)*§ﬁ(5*%)2,
I | p? ou  ow 0v Ou
Tyz = HPUW iﬁ(g g)(% @)7
Tz = Tzxz
Tzy = Tyz,

It is clear that the Reynolds stress is proportional to the
square mean velocity gradient, which has been proved by
experiments. Tennekes and Lumley [2] pointed out that
diagonal components of 7, their values pu?, pu3, pu3, in
many flows, contribute little to the transport of mean
momentum. The off-diagonal components of 7 are s-
hear stresses; they play a dominate role in the theory of
mean momentum transfer by turbulent motion. There-
fore the diagonal components of the Reynolds stresses,
pu?, pu3, pu?, can be omitted.

d0i:10.20944/preprints201807.0030.v1

The Reynolds Navier-Stokes equations are:

_ou

_ _ 2 _

S bl =t = WV~ (V- T),,
u8x+vay+waz+p8x vV — (V- 1)
Jv  _Ov _0v  10p 9

v 4 w— 4 - = — (V- 1),(22
u8x+vay+wﬁz »or vV — (V- 1),(22)

OJw _OJw _OJw 10p 9
ot o =2t = VP (V)
iy ’Uay o »or vV — (V- 1)
where the kinematic viscosity is v = u/p, and the Laplace
2 22 22 o2 or
operator V* = g5 + 55 + g3, and (V- 7), = = +

OTay OTgz _ 0Ty OTyy 0Ty _
oy o5 (Vom)y = G+ St + 55 (V7). =

OTo0 OTzy OT:2
ox + Jy + oz °

DISCUSSIONS

(1) The flow characteristic velocity U has proved that
it can be chosen for any given problem. For flow speed
that travels close to the speed of sound ¢, one can choose
the speed of sound c as the flow characteristic velocity
U, namely U = ¢. The sound waves can exist in a fluid
without the presence of any external force field, which
propagates by restoring force that is provided entirely by
the fluid’s own compressibility [44]; therefore, the veloc-
ity fluctuation conjecture in Eq.(14) will be intrinsic if
the speed of the sound waves is chosen as the flow char-
acteristic velocity U.

(2) Since the velocity fluctuation is proportional to the
vorticity w = V xu, and Curl of the mean velocity, V xu
is a three dimensional quantity; therefore, the turbulence
is always rotational and three dimensional, whilst char-
acterized by high levels of fluctuation vorticity. Hence,
vorticity dynamics play an essential role in the descrip-
tion of turbulent velocity fluctuations [2].

(3) If the scalar function f is only a function of time,
the above formulations can be further simplified as fol-
lows:

v =L pw. (23)

@@ (24)

In this special case, the Reynolds averaged stress tensor
is produced fully by the mean vorticity.

(4) Similarly, compressible flow temperature fluctua-
tion 77 and density fluctuation p’ should also be con-
structed.
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CONCLUSIONS

In summary, this study has attempted to propose a
simplification of the velocity fluctuations that can simul-
taneously satisfy both incompressibility and time-average
conditions. The simplified closed Reynolds Navier-Stokes
turbulence formulations show that the mean vorticity has
a strong influence on the velocity fluctuation and the
Reynolds stress tensor, as well as on the mean pressure.
This fact reveals that three-dimensional vorticity fluctu-
ation is a fundamental mechanism to producing turbu-
lence.
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