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Abstract: Smart grids require flexible data driven forecasting methods. We propose clustering
tools for bottom-up short-term load forecasting. We focus on individual consumption data analysis
which plays a major role for energy management and electricity load forecasting. The two first
sections are dedicated to the industrial context and a review of individual electrical data analysis.
We are interested in hierarchical time-series for bottom-up forecasting. The idea is to disaggregate
the signal in such a way that the sum of disaggregated forecasts improves the direct prediction.
The 3-steps strategy defines numerous super-consumers by curve clustering, builds a hierarchy of
partitions and selects the best one minimizing a forecast criterion. Using a nonparametric model to
handle forecasting, and wavelets to define various notions of similarity between load curves, this
disaggregation strategy applied to French individual consumers leads to a gain of 16% in forecast
accuracy. We then explore the upscaling capacity of this strategy facing massive data and implement
proposals using R, the free software environment for statistical computing. The proposed solutions
to make the algorithm scalable combines data storage, parallel computing and double clustering
step to define the super-consumers.
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1. Industrial context

Energy systems are facing a revolution and many challenges. On the one hand, electricity
production is moving to more intermittency and complexity with the increase of renewable energy
and the development of small distributed production units such as photovoltaic panels or wind farms.
On the other hand, consumption is also changing with plug-in (hybrid) electric vehicles, heat pumps,
the development of new technologies such as smart phones, computers, robots that often come with
batteries. To maintain the electricity quality, energy stakeholders are developing smart grids (see
[1,2]), the next generation power grid including advance communication networks and associated
optimisation and forecasting tools. A key component of the smart grids are smart meters. They
allow two-sided communication with the customers, real time measurement of consumption and a
large scope of demand side management services. A lot of countries have deployed smart meters,
as stated in [3], the UK, the US and China have respectively deployed 2.9, 70 and 96 million of such
equipments in 2016. In France, 35 millions will be deployed before 2021 for a global cost of 5 billions
(see e.g. [4]). [5] mentions that Sweden and Italy have achieved full deployment and [6] that Italian
DSOs are planning the second wave of roll-outs.

This results into new opportunities such as local optimisation of the grid, demand side
management and smart control of storage devices. Exploiting the smart grid efficiently requires
advanced data analytics and optimisation techniques to improve forecasting, unit commitment,
and load planning at different geographical scales. Massive data sets are and will be produced as
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explained in [7]: data from energy consumption measured by smart meters at a high frequency (every
half minute instead of every 6 months); data from the grid management (e.g. Phasor Measurement
Units); data from energy markets (prices and bidding, TSOs and DSOs data like balancing and
capacity); data from production units and equipments for their maintenance and control (sensors,
periodic measures...). A lot of efforts are made by utilities to develop datalakes and IT structures to
gather and make these data available for their business units in real time. Designing new algorithms
to analyse and process these data at scale is a key activity and a real competitive advantage.

We will focus on individual consumption data analysis which plays a major role for
energy management and electricity load forecasting, designing marketing offers and commercial
strategies, proposing new services as energy diagnostics and recommendations, detect and prevent
non-technical losses.

The paper is organized as follows. After this first section introducing the industrial context,
Section 2 offers a state-of-the-art review of individual electrical data analysis. Section 3 provides
the big picture of our proposal for bottom-up forecasting from smart meter data, without technical
details. The next three sections focus on the main tools: wavelets (Section 4) to represent functions and
to define similarities between curves, the nonparametric forecasting method KWF (Section 5) and the
wavelet-based clustering tools to deal with electrical load curves (Section 6). Section 7 is specifically
devoted to the upscaling issue and strategy. Section 8 describes an application for forecasting a French
electricity dataset. Finally, Section 9 collects some elements of discussion. It should be noted that we
tried to write the paper in such a way that each section could be read independently of each other.
Conversely, some sections could be skipped by some readers, without altering the local consistency
of the others.

2. Individual electrical consumption data: a state-of-the-art

Individual consumption data analysis is, according to the development on smart meters, a
popular and growing field of research. Composing an exhaustive survey of recent realizations is then
a difficult challenge not addressed here. As detailed in [3], individual consumption data analytics
covers various fields of statistics and machine learning: time series, clustering, outlier detection, deep
learning, matrix completion, online learning among others.

Given a data set of individual consumptions, a first natural step is exploratory: clustering, which
is the most popular unsupervised learning approach. The purpose of clustering is to partition a
dataset into homogeneous subsets called clusters (see [8]). Homogeneity is measured according
to various criteria such as intra and inter class variances, or distance/dissimilarity measures. The
elements of a given cluster are then more similar to those of the same cluster than the elements of the
other clusters. Time series clustering is an active subfield where each individual is not characterised
by a set of scalar variables but are described by time series, signals or functions, considered as a
whole, opening the way for signal processing techniques or functional data analysis methods (see [9]
and [10] for general surveys).

Clustering methods for electricity load data have been widely applied for profiling or demand
response management. [11] and [12] give an overview of the clustering techniques for customer
grouping, finding patterns into electricity load data or detecting outliers and apply it to 400
non-residential medium voltage customers. Clustering can be seen as longitudinal when the objective
is to cluster temporal patterns (e.g. daily load curves) from a single individual or transversal when
the goal is to build clusters of customers according to their load consumption profile and/or side
information. The main application of clustering is load profiling which is essential for energy
management, grid management and demand response (see [13]). For example, in [14] data mining
techniques are applied to extract load profiles from individual load data of a set of low voltage
Portuguese customers, and then supervised classification methods are used to allocate customers
to the different classes. In [15], load profiles are obtained by iterative self-organizing data analysis on
metered data and demonstrated on a set of 660 hourly metered customers in Finland. [16] proposes an
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unsupervised clustering approach based on k-means on features obtained by average seasonal curves
using minute metered data from 103 homes in Austin, TX. Correspondence between clusters, their
associated profiles and survey data are also studied. Authors of [17] suggest a k-means clustering to
derive daily profiles from 220,000 homes and a total of 66 millions daily curves in California. Other
approaches based on mixture models are presented in [18] for customers categorization and load
profiling on a data set of 2,613 smart metered household from London.

Another interest of clustering is forecasting, more precisely bottom-up forecasting which means
forecasting the total consumption of a set of customers using individual metered data. Forecasting
is an obvious need for optimisation of the grid. As pointed previously, it becomes more and more
challenging but also crucial to forecast electricity consumption at different “spatial” scale (a district,
a city, a region but also a segment of customers). Bottom up methods are a natural approach
consisting in building clusters, forecasting models in each cluster and then aggregating them. In [19],
clustering algorithms are compared according to their forecasting accuracy on a data set consisting
of 6000 residential customers and SME in Ireland. Good performances are reached but the proposed
clustering methods are defined quite independently of the model used for forecasting. On the same
data set, [20] associate a longitudinal clustering and a functional forecasting model similar to KWF
(see [21]) for forecasting individual load curves.

A clustering method supervised by forecasting accuracy is proposed in [22] to improve the
forecast of the total consumption of a French industrial subset obtaining a substantial gain but
suffering from high computational time. In [23], a k-means procedure is applied on features consisting
in mean consumption for 5 well chosen periods of day, mean consumption per day of a week and
peak position into the year. In each cluster a deep learning algorithm is used for forecasting and then
the bottom up forecast is the simple sum of clusters forecasts. Results showing a minimum gain of
11% in forecast accuracy are provided on the Irish data set and smart meter data from New-York.
On the Irish data again, [3] propose to build an ensemble of forecasts from a hierarchical clustering
on individual average weekly profiles, coupled with a deep learning model for forecasting in each
cluster. Different forecasts corresponding to different sizes of the partition are at the end aggregated
using linear regression.

We propose here a new approach, following the previous work of [24], to build clusters and
forecasting models that are performant for the bottom-up forecasting problem as well as from the
computational point of view.

3. Bottom-up forecasting from smart meter data: big picture

We present in this section the whole procedure to obtain a hierarchy of partitions of customers,
schematically represented in Figure 1. On the bottom line, there are N individual customers, say
I1, . . . , IN . Each of them has an individual demand coded into an electrical load curve. At the top of
the schema, there is one single global demand G obtained by the simple aggregation of the individual
ones at each time step, i.e. G = ∑n In. We look for the construction of a set of K medium level
aggregates, A1, . . . , AK such that they form a partition of the individuals. Each of the considered
entities (individuals, medium level aggregates and global demand) can be considered as time series
since they carry important time dependent information.

In the context of economic seasonal univariate continuous time series, it is often natural to
segment it in time, into consecutive curves, for example days, which are then treated as a discrete
time series of functions. In particular, in the electrical context, the shape of the curves exhibits rich
information about the calendar day type, the meteorological conditions or the existence of special
electricity tariffs. Using the information contained in the shape of the load curves leads to very elegant
formulation of functional forecasting.

The shape of the curves exhibits rich information about the calendar day type, the meteorological
conditions or the existence of special electricity tariffs. Using the information contained in the shape
of the load curves, [21] proposed a flexible nonparametric function-valued forecast model called KWF
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Figure 1. Schematic representation of a hierarchy of customers.

(Kernel + Wavelet + Functional) well suited to handle nonstationary series. The predictor can be seen
as a weighted average of futures of past situations, where the weights increase with the similarity
between the past situations and the actual one.

Pattern research-based methods repose on a fully non parametric and thus more general frame
than prediction approaches more adapted to electricity load demand. This point can be seen as both a
weakness and a strength. Specific models can better express the known dependences of electricity
demand to long-term trend, seasonal components (due to the interaction of economic and social
activities) and climate. However, they usually need more human time to be calibrated. The arrival of
new measurement technologies structure of intelligent networks, with more local and high resolution
information, unveils the need for local electricity load forecasting at different levels of the grid.

Bottom-up approaches, based on a two stage process combining clustering and forecasting
methods, are a promising perspective. First, it consists in building classes in a population such
that each class could be sufficiently well forecast but corresponds to different load shapes or reacts
differently to exogenous variables like temperature or prices (see e.g. [25] in the context of demand
response). The second stage consists in aggregating predictions to forecast the total or any subtotal of
the population consumption. For example, identify and forecast the consumption of a sub-population
reactive to an incentive is an important need to optimize a demand response program.

Recently, [24] proposed to build clustering tools useful for the two tasks simultaneously:
clustering individual customers and forecasting the load consumption. The idea is to disaggregate
the global signal in such a way that the sum of disaggregated forecasts significantly improves the
prediction of the whole global signal. The general strategy is in three steps: first we cluster individual
curves defining super-consumers, then we build a hierarchy of partitions within which a best one is
finally selected with respect to a disaggregated forecast criterion. The predictions are made with the
KWF model which allows one to use it as a off-the-shelve tool.

In concrete, data for each customer is a set of P time dependent (potentially noisy) records evenly
sampled at a relatively high frequency (e.g. 1/4, 1/2 or hourly records). Then, we consider the data
for each individual as a time series that we treat as a function of time. Wavelets are used to code the
information about the shape of the curves. Thanks to nice mathematical properties of wavelets, we
compress the information of each curve into a handy number of coefficients (in total J = [log2(P)])
that are called relative energetic contributions. The compression is such that discriminative power if
kept even if information is lost. This allows us to fall fall into the classical framework of data analysis
where data is tabulated into a matrix with lines containing observations and columns containing
variables (see Figure 2).

The following sections are devoted to the technical details of the different modules that compose
our framework. Wavelets are rapidly reviewed in Section 4, the prediction model KWF is presented
in Section 5 and the clustering strategy is detailed in Section 6. In order to upscale the procedure to
cope with tens of millions of load curves two strategies are discussed in Section 7, along with some
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Figure 2. From curves to matrices.

computational considerations. Finally, 8 presents numerical experiments and results using a French
electricity dataset.

4. Wavelets

A wavelet ψ is a sufficiently regular and well localized function verifying a simple admissibility
condition. During a certain time a wavelet oscillates like a wave and is then localized in time due
to a damping. Figure 3 represents the Daubechies least-asymmetric wavelet of order 6. From this
single function ψ, using translation and dilation a family of functions that form the basic atoms of the
Continuous Wavelet Transform (CWT) is derived

ψa,b(t) =
1√
a

ψ

(
t− b

a

)
, a ∈ R+
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Figure 3. Daubechies least-asymmetric wavelet with filter size 6.

For a function z(t) of finite energy we define its CWT by the function Cz of two real-valued
variables:

Cz(a, b) =
∫ ∞

−∞
z(t)ψa,b(t)dt

Each single coefficient measures the fluctuations of function f at scale a, around the position
b. Figure 4 gives a visual representation of |Cz(a, b)|2, also known as wavelet spectrum, for a 10
days period of load demand sampled at 30 minutes. The waves that one can visually find on
the image indicate the highest zone of fluctuations which corresponds to the days. CWT is then
extremely redundant but it is useful for example, to characterize the Holderian regularity of functions
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Figure 4. Wavelet spectrum of a week of electrical load demand

or to detect transient phenomena or change-points. A more compact wavelet transform can also be
defined.

The Discrete Wavelet Transform is a technique of hierarchical decomposition of the finite energy
signals. It allows to represent a signal in the time-scale domain, where the scale plays a role analogous
to that of the frequency in the Fourier analysis ([26]). It allows to describe a real-valued function
through two objects: an approximation of this function and a set of details. The approximation part
summarizes the global trend of the function, while the localized changes (in time and frequency) are
captured in the detail components at different resolutions. The analysis of signals is carried out by
analysing functions called wavelets obtained from simple transformations of a single function called
mother wavelet. For short, a wavelet is a smooth and quickly vanishing oscillating function with good
localization properties in both frequency and time. This is suitable for approximating curves that
contain localized structures. A compactly supported WT uses an orthonormal basis of waveforms
derived from scaling (i.e. dilating or compressing) and translating a compactly supported scaling
function φ̃ and a compactly supported mother wavelet ψ̃. We consider periodized wavelets in order
to work over the interval [0, 1], denoting by

φ(t) = ∑
l∈Z

φ̃(t− l) and ψ(t) = ∑
l∈Z

φ̃(t− l), for t ∈ [0, 1],

the periodized scaling function and wavelet, that we dilate or stretch and translate

φj,k(t) = 2j/2φ(2jt− k), ψj,k(t) = 2j/2φ(2jt− k).

For any j0 ≥ 0, the collection

{φj0,k, k = 0, 1, . . . , 2j0 − 1; ψj,k, j ≥ j0, k = 0, 1, . . . , 2j − 1},

is an orthonormal basis of H. Thus, any function z ∈ H can then be decomposed in terms of this
orthogonal basis as

z(t) =
2j0−1

∑
k=0

cj0,kφj0,k(t) +
∞

∑
j=j0

2j−1

∑
k=0

dj,kψj,k(t), (1)
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where cj,k and dj,k are called respectively the scale and the wavelet coefficients of z at the position k of
the scale j defined as

cj,k =< z, φj,k >H dj,k =< z, ψj,k >H .

To efficiently calculate the WT, Mallat introduced the notion of mutiresolution analysis of H
(MRA) and designed a family of fast algorithms (see [26]). With MRA, the first term at the right hand
side of (1) can be viewed as a smooth approximation of the function z at a resolution level j0. The
second term is the approximation error. It is composed by the aggregation of the details at scales
j ≥ j0. We will focus our attention on the finer details, i.e. on the information at the scales {j : j ≥ j0}.

Figure 5 is the multiresolution analysis of a daily load curve. The original curve is represented on
the top leftmost panel. The bottom rightmost panel contains the approximation part at the coarsest
scale j0 = 0, that is, a constant level function. The set of details are plotted by scale which can be
connected to frequencies. With this, the detail functions clearly show the different patterns ranging
between low and high frequencies. The structure of the signal is centred on the highest scales (lowest
frequencies), while the lowest scale (highest frequencies) keep the noise of the signal.

Figure 5. Multiresolution analysis of a daily load curve.

From a practical point of view, let us suppose for simplicity that each function is observed on a
fine time sampling grid of size N = 2J (if not, one may interpolate data to the next power of two).
In this context we use a highly efficient pyramidal algorithm ([27]) to obtain the coefficients of the
Discrete Wavelet Transform (DWT). Denote by z = {z(tl) : l = 0, . . . , Ni − 1} the finite dimensional
sample of the function z. For the particular level of granularity given by the size N of the sampling
grid, one rewrites (1) using the truncation imposed by the 2J points and the coarser approximation
level j0 = 0, as:

z̃J(t) = c0φ0,0(t) +
J−1

∑
j=0

2j−1

∑
k=0

dj,kψj,k(t). (2)

Hence, for a given wavelet ψ and a coarse resolution j0 = 0, one may define the DWT operator:

Wψ : RN → RN , z 7→
(
d0, . . . , dJ−1, c0 f

)
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with dj = {dj,0, . . . , dj,2j−1}. Since the DWT operator is based on an L2-orthonormal basis
decomposition, the energy of a square integrable signal is preserved:

‖z‖2
2 = c2

0 +
J−1

∑
j=0

2j−1

∑
k=0

d2
j,k = c2

0 +
J−1

∑
j=0
‖dj‖2

2. (3)

Hence, the global energy ‖z‖2
2 of z is distributed over some energetic components. The way these

energies are distributed and contribute to the global energy of a signal is the key fact that we are
going to exploit to generate a handy number of features that are going to be used for clustering.

5. KWF

5.1. From Discrete to Functional Time Series

Theoretical developments and practical applications associated with functional data analysis
were mainly guided by the case of independent observations. However, there is a wide range of
applications in which this hypothesis is not reasonable. In particular, when we consider records on
a finer grid of time assuming that the measures come from a sampling of an underlying unknown
continuous-time signal.

Formally, the problem can be written by considering a continuous stochastic process X =

(X(t), t ∈ R). So the information contained in a trajectory of X observed on the interval [0, T], T > 0
is also represented by a discrete-time process Z = (Zk(t), k = 0, . . . , n; t ∈ [0, δ]) where Zk(t) =

X((δ− 1)k + t) comes from the segmentation of the trajectory X in n blocks of size δ = T/n ([28]).
Then, the process Z is a time series of functions. For example, we can forecast Zn+1(t) from the
data Z1, . . . , Zn. This is equivalent to predicting the future behaviour of the X process over the entire
interval [T, T + δ] by having observed X on [0, T]. Note that by construction, the Z1, . . . , Zn are usually
dependent functional random variables.

This framework is of particular interest in the study of electricity consumption. Indeed, the
discrete consumption measurements can naturally be considered as a sampling of the load curve
of an electrical system. The usual segment size, δ = 1 day, takes into account the daily cycle of
consumption.

In [21], the authors proposed a prediction model for functional time series in the presence of
non stationary patterns. This model has been applied to the electricity demand of Electricité de France
(EDF). The general principle of the forecasting model is to find in the past, situations similar to the
present and linearly combine their futures to build the forecast. The concept of similarity is based
on wavelets and several strategies are implemented to take into account the various non stationary
sources. [29] proposes for the same problem to use a predictor of a similar nature but applied to a
multivariate process. Next, [30] provide an appropriate framework for stationary functional processes
using the wavelet transform. The latter model is adapted and extended to the case of non-stationary
functional processes ([31]).

Thus, a forecast quality of the same order of magnitude as other models used by EDF is obtained
for the national curve (highly aggregated) even though our model can represent the series in a simple
and parsimonious way. This avoids explicitly modeling the link between consumption and weather
covariates, which are known to be important in modeling and often considered essential to take into
account. Another advantage of the functional model is its ability to provide multi-horizon forecasts
simultaneously by relying on a whole portion of the trajectory of the recent past, rather than on certain
points as univariate models do.
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5.2. Functional model KWF

5.2.1. Stationary case

We consider a stochastic process Z = (Zi)i∈Z assumed for the moment, to be stationary, with
values in a functional space H (for example H = L2([0, 1])). We have a sample of n curves Z1, . . . , Zn

and the goal is to forecast Zn+1. The forecasting method is divided in two steps. First, find among the
blocks of the past those that are most similar to the last observed block. Then build a weight vector
wn,i, i = 1, . . . , n− 1 and obtain the desired forecast by averaging the future blocks corresponding to
the indices 2, . . . , n respectively.

First step.

To take into account in the dissimilarity the infinite dimension of the objects to be compared, the
KWF model represents each segment Zi, i = 1, . . . , n, by its development on a wavelet basis truncated
to a scale J > j0. Thus, each observation Zi is described by a truncated version of its development
obtained by the discrete wavelet transform (DWT):

Zi,J(t) =
2j0−1

∑
k=0

c(i)j0,kφj0,k(t) +
J

∑
j=j0+1

2j−1

∑
k=0

d(i)j,k ψj,k(t), t ∈ [0, 1].

The first term of the equation is a smooth approximation to the resolution j0 of the global behaviour
of the trajectory. It contains non-stationary components associated with low frequencies or a trend.
The second term contains the information of the local structure of the function. For two observed
segments Zi(t) and Zi′(t), we use the dissimilarity D defined as follows:

D(Zi, Zi′) =
J

∑
j=j0+1

2−j
2j−1

∑
k=0

(d(i)j,k − d(i
′)

j,k )2. (4)

Since the Z process is assumed to be stationary here, the approximation coefficients do not contain
useful information for the forecast since they provide local averages. As a result, they are not taken
into account in the proposed distance. In other words, the dissimilarity D makes it possible to find
similar patterns between curves even if they have different approximations.

Second step.

Denote Ξi = {c
(i)
J,k : k = 0, 1, . . . , 2J − 1} the set of scaling coefficients of the i-th segment Zi at the

finer resolution J. The prediction of scaling coefficients (at the scale J ) Ξ̂n+1 of Zn+1 is given by:

Ξ̂n+1 =
∑n−1

m=1 Khn(D(Zn,J , Zm,J))Ξm+1

1/n + ∑n−1
m=1 Khn(D(Zn,J , Zm,J))

,

where K is a probability kernel. Finally, we can apply the inverse transform of the DWT to Ξ̂n+1 to
obtain the forecast of the Zn+1 curve in the time domain. If we note

wn,m =
Khn(D(Zn,J , Zm,J))

∑n−1
m=1 Khn(D(Zn,J , Zm,J))

, (5)

these weights allow to rewrite the predictor as a barycentre of future segments of the past:

Ẑn+1(t) =
n−1

∑
m=1

wn,mZm+1(t). (6)
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5.2.2. Beyond the stationary case

In the case where Z is not a stationary functional process, some adaptations in the predictor (6)
must be made to account for nonstationarity. In Antoniadis et al. (2012) corrections are proposed and
their efficiency is studied for two types of non-stationarities: the presence of an evolution of the mean
level of the approximations of the series and the existence of classes segments. Let us now be more
precise.

It is convenient to express each curve Zi according to two terms Si(t) and Di(t) describing
respectively the approximation and the sum of the details,

Zi(t) = ∑
k

c(i)j0,kφj0,k(t) + ∑
j≥j0

∑
k

d(i)j,k ψj,k(t)

= Si(t) +Di(t).

When the curves Zm+1 have very different average levels, the first problem appears. In this
case, it is useful to centre the curves before calculating the (centred) prediction, and then update the
forecast in the second phase. Then, the forecast for the segment n+ 1 is ̂Zn+1(t) = ̂Sn+1(t) + ̂Dn+1(t).
Since the functional process Dn+1(t) is centred, we can use the basic method to obtain its prediction

̂Dn+1(t) =
n−1

∑
m=1

wm,nDn+1(t), (7)

where the weights wm,n are given by (5). Then, to forecast Sn+1(t) we use

̂Sn+1(t) = Sn(t) +
n−1

∑
m=1

wm,n∆(Sn)(t). (8)

To solve the second problem, we incorporate the information of the groups in the prediction
stage by redefining the weights wm,n according to the belonging of the functions m and n to the same
group:

w̃m,n =
wm,n1{gr(m)=gr(n)}

∑n
m=1 wm,n1{gr(m)=gr(n)}

, (9)

where 1{gr(m)=gr(n)} is equal to 1 if the groups gr(n) of the n-th segment is equal to the group of
the m-th segment and zero elsewhere. If the groups are unknown, they can be determined from an
unsupervised classification method.

The weight vector can give an interesting insight on the prediction power carried on by the shape
of the curves. Figure 6 represents the computed weights obtained for the prediction of a day during
Spring 2007. When plotted against time, it is clear that the only days found similar to the current one
are located in a remarkably narrow position of each year in the past. Moreover, the weights seem
to decrease with time giving more relevance to those days closer to the prediction past. A closer
look at the weight vector (not shown here) reveals that only days in Spring are used. Note that no
information about the position of the year was used to compute the weights. Only the information
coded in the shape of the curve is necessary to locate the load curve at its effective position inside the
year.

Figure 7 is also of interest to understand how the prediction works. There, the plot on the left
contains all the days of the dataset against which the similarity was computed with respect to the
curve in blue. A transparency scale which makes visible only those curves with a relatively high
similarity index. The plot on the right contains the futures of the past days on the left. These are also
plot on the transparent scale with the curve in orange which is the prediction given by the weighted
average.
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Figure 6. Vector of weights (sorted chronologically) obtained for the prediction of a day during
Spring. On each panel, all the days are represented with a transparent colour making visible only the
most relevant days for the construction of the predictor.

Figure 7. Past and future segments involved in the construction of the prediction by KWF.

6. Clustering electrical load curves

The lack of regularity of the individual signals make the prediction of each customer a very
difficult task. The variability of each individual demand is such that the ratio signal to noise decreases
dramatically when passing from aggregate to individual data. With almost no hope of predicting
individual data, an alternative strategy is to use these data to improve the prediction of the aggregate
signal. For this, one may rely on clustering strategies where customers of similar consumption
structure will be put into classes in order to form groups of heterogeneous clients. If the clients are
similar enough, the signal of the aggregate will gain in regularity and thus in predictability.

Many clustering methods exist in the specialized literature. We adopt the point of view of [32]
were two strategies for clustering functional data using wavelets are presented. While the first one
allows to rapidly create groups using a dimension reduction approach, the second one permits to
better exploit the time-frequency information at the price of some computational burden.

Clustering by feature extraction

From Equation (3), we can see that the global energy of the curve is approximately decomposed
into energy components associated with the smooth approximation of the curve (c2

0) plus a set
of components related to each detail level. In [32] these detail levels were called the absolute
contributions ACj = ‖dj‖2

2, j = 0, . . . , J − 1 of each scale to the global energy of the curve. Notice that
the approximation part is not of primary interest since the underlying process of electrical demand
may be highly non stationary. With this, we focus only on the shape of the curves and on its frequency
content in order to unveil the structure of similar individual consumers to construct clusters. A
normalized version of absolute contributions can be considered, which is called relative contributions
and is defined as RCj = ACj/ ∑j ACj. After this representation step, the result is depicted by the
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schema in Figure 2, where the original curves are now embedded into a multi dimensional space of
dimension J. Moreover if relative contributions are used, the points are in the simplex of RJ.

Now we begin with the proper clustering step. For this any clustering algorithm on multivariate
data can be used. Since the time complexity of this step depends on the number of observation N
and of variables P we decide to screen out irrelevant features using a feature selection algorithm
for unsupervised learning described in [33]. Besides the reduction of the computation time, feature
selection allows also to gain in interpretability of the clustering since it highly depends on the data.

The aim of this first clustering step is to produce first a coarse clustering with a sufficiently large
number K′ of prototypical customers that we call super-customers (SC). For each SC we can compute
the synchrone demand, that is the direct sum of the individual demand of customers that belongs
to the group at each time step of the sampling grid. Notice the parallelism with the initial situation,
we have now K′ coarsely aggregated demands over P records that can be seen as a discretized noisy
sampling of a curve. Figure 8 shows this first clustering round on the first row of the schema.

Figure 8. Two step clustering.

Clustering using a dissimilarity measure

The aim of the second stage of the clustering is to aggregate the SC into a small number K of
aggregates and to construct a hierarchy. Instead of projecting curves and work with coefficients, we
choose to use a notion of dissimilarity between objects of functional nature to construct a dissimilarity
matrix between the SC.

Following [32] we use the wavelet extended R2 based distance (WER) which is constructed on
top of the wavelet coherence. If x(t) and z(t) are two signals, the the wavelet coherence between them
is defined as

Rx,z(a, b) =
|S(Cx,z(a, b))|

|S(Cx,x(a, b))|1/2|S(Cz,z(a, b))|1/2 ,

where Cx,z(a, b)) = Cx(a, b))C∗z (a, b)) is the cross-wavelet transform, and S is a smooth operator.
Then, the wavelet coherence can be seen as a linear correlation coefficient computed in the wavelet
domain and so localized both in time and scale. Notice that smoothing is a mandatory step in order
to avoid a trivial constant Rx,z(a, b) = 1 for all a, b.

The wavelet coherence is then a two dimensional map that quantifies for each time-scale location
the strength of the association between the two signals. In order to produce a single measure of
this map, some kind of aggregation must be done. Following the construction of the extended
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determination coefficient R2, [32] propose to use the wavelet extended R2 which can be computed
using

WER2
x,z =

∑J
j=1

(
∑N

k=1 |S(Cx,z(j, k))|
)2

∑J
j=1

(
∑N

k=1 |S(Cx,x(j, k))|∑N
k=1 |S(Cz,z(j, k))|

) .

Notice that WER2
x,z is a similarity measure and it can easily be transformed into a dissimilarity one by

D(x, z) =
√

JN(1−WER2
x,z),

where the computations are done over the grids {1, . . . , N} for the locations b and {aj, j = 1, . . . J} for
the scales a. The smallest scale and the greatest scale are usually chosen as a power of two depending
on the minimum detail resolution and the length of the time grid respectively. The rest of the values
corresponds usually to a linear interpolation on a base 2 logarithmic scale.

While the measure is justified by the power of the wavelet analysis, in practice this distance
implies heavy computations involving complex numbers and so requires of a larger memory space.
This is one of the two reason that renders its use on the original dataset intractable. The second reason
is related to the size of the dissimilarity matrix that results from its applications and that grows with
the square of the number of time series. Indeed, such a matrix obtained from the SC is largely tractable
for a moderate number of super customers of about some hundreds, but it is not if applied on the
whole dataset of some tens of millions of individual customers. The trade off between computation
time and precision is resolved by a first clustering step that dramatically reduces the number of time
series using the RC features; and a second step that introduces the finer but computationally heavier
dissimilarity measure on the SC aggregates.

Since the number of SC, K′, is small enough, we can construct a dissimilarity matrix between the
SC which is the input of the classical Agglomerative Hierarchical Clustering (AHC) used here with
the Ward link. The output of the AHC is the desired hierarchy of (super-)customers. Otherwise, one
may use other clustering algorithms that use a dissimilarity matrix as input (for instance Partitioning
Around Mediods, PAM) to get an optimal partitioning for a fixed number of clusters. The second row
of the scheme in Figure 8 represents this second step clustering.

7. Upscaling

We discuss in this section the ideas we develop to upscale the problem. Our final target is to
work over twenty million time-series. For this, we run many independent clustering tasks in parallel,
before merging the results to obtain an approximation of the direct clustering. We give proposed
solutions that were tested in order to improve the code performance. Some of our ideas proved
to be useful for moderate sample sizes (say tens of thousands) but turned to be counter-productive
for larger sizes (tens of millions). Of course all these considerations depend heavily on the specific
material and technology. We recall that our interest is on relatively standard scientific workstations.
The algorithm we use on the first step of the clustering is described below. We then show the results of
the profiling of our whole strategy to highlight where are the bottlenecks when one wishes to upscale
the method. We end this section discussing the solutions we proposed.

7.1. Algorithm description

The massive dataset clustering algorithm is as follows:

0. Data serialization. Time series are given in a verbose by-column format. We re-code all of them
in a binary file (if suitable), or a database.

1. Dimensionality reduction. Each series of length N is replaced by the log2(N) energetic coefficients
defined using a wavelet basis. Eventually a feature selection step can be performed to further
reduction on the number of features.
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2. Chunking. Data is chunked into groups of size at most nc, where nc is a user parameter (we use
nc = 5000 in the next section experiments).

3. Clustering. Within each group, the PAM clustering algorithm is run to obtain K0 clusters.
4. Gathering. A final run of PAM is performed to obtain K′ mediods, K′ � n out of the nc × K0

mediods obtained on the chunks..

From these K′ medoids the synchrone curves are computed (sum of all curves within each
group), and given on output for the prediction step.

7.2. Code profiling

Figure 9 gives some timings obtained by profiling the runs of our initial (C) code. In order to give
a clearer insight, we also report the size of the objects we deal with. The starting point is the ensemble
of individual records of electricity demand for a whole year. Here, we treat over 25000 clients sampled
half-hourly during a year. The tabulation of these data to obtain a matrix representation suitable to
fit in memory take about 7 minutes and requires over 30 Gb of memory.

Task Time Memory Disk

Raw (15Gb) to matrix 7 min 30 Gb 2.7 Gb
Compute contributions 7 min <1Gb 7 Mb
1st stage clustering 3 min <1Gb –
Aggregation 1 min 6Gb 30 Mb
Wer distance matrix 40 min 64Gb 150 Kb
Forecasts 10 min <1Gb –

Figure 9. Code profiling by tasks.

7.3. Proposed solutions

Two main solutions are to be discussed, concerning the internal data storage strategy and the use
of a simple parallelization scheme. The former looks for reducing the communication time of internal
operations using serialization. The latter attacks the major bottleneck of our clustering approach, that
is the construction of the WER dissimilarity matrix.

The initial format (verbose, by-column) is clearly inappropriate for efficient data processing.
There are several options starting from this data format, they imply having all series stored as

• an ASCII file, one sample per line; very fast, but data retrieval will depend on line number;
• a binary format (3 or 4 octets per value); compression is unadvised since it would increase both

preprocessing time and (by a large amount) reading times;
• a database (this is the slowest option), so that retrieval can be very quick.

Since we plan to deal with millions of series of thousands time steps, binary files seemed like
a good compromise because they can easily fit on disk − and often also in memory. Our R package
uses this format internally, although it allows to input data in any of these three shapes. If we were
speaking of billions of series of a million time steps or more, then distributed databases would be
required. In this case one would only has to fill the database and tell the R package how to access
time-series.

The current version is mostly written in R using the parallel package for efficiency, [34]. A
partial version written fully in C was slightly faster, but not enough compared to the loss of code
clarity. The current R version can theoretically process the 20 million samples on a standard desktop
computer in 24 hours or less – assuming the curves can be stored and accessed quickly.
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Table 1. Mean average running times (over 5 replicates) for different sample sizes (in log).

Sample size Time (in seconds)

25x103 67
25x104 513
25x105 4420
25x106 43893

8. Forecasting French electricity dataset

8.1. Data presentation

We work on the data provided by EDF also used in [24] which is composed of big customers
equipped with smart meters. The dataset consists in approximately 25000 half-hourly load
consumption series over two years (2009-2010). The first year is used for partitioning and the
calibration of our forecasting algorithm, then the second year is used as a test set to simulate a real
forecasting use-case.

The initial dataset contains over 25,000 individual load curves. In order to test the upscaling
ability of our implementation, we create three datasets of sizes 250,000; 2,500,000 and 25,000,000. In
other words, we progressively increase the sample sizes by a factor of 10, 100 and 1000 respectively.
The creation follows a simple scheme where each individual curve is multiplied by the realization
of independent variables uniformly distributed on [0.95, 1.05] at each time step. Each curve is then
replicated using this scheme by a number of times equal to the upscaling factor.

8.2. Numerical experiments

The first task clustering is crucial for reducing the dimension of the dataset. We give some
timings in order to illustrate how our approach can deal with tens of thousands of time series. Of
course, the total computation time depends on the technical specification of the structure used to
perform the computation. In our case, we restrict ourselves to a standard scientific workstation with
8 physical cores and 70 Gigabits of live memory. We use all the available cores to cluster chunks
of 5000 observations following the algorithm described in Section 7 for both the first and second
clustering task.

A very simple pretreatment is done in order to eliminate load curves with eventual errors. For
this, we measure the standard deviation of the contributions of each curve to keep only the 99%
central observations eliminating the extremest ones. With this, too flat curves (maybe constant)
consumptions or very wiggle ones are considered to be abnormal.

Table 1 gives mean average running times over 5 replicates for each of the different sample
sizes. These figures show that our strategy yields on a linear increment on the computation time with
respect to the number of time series. The maximum number of series we treat, that is 25 millions of
individual curves, needs about 12 hours to achieve the first task clustering.

The result of this first clustering task is the load curves of 200 super consumers (SC). We now
explore how much time series contains the super consumers. For this, we plot (in Figure 10) the
relative frequency of each SC cluster (i.e. proportion of observation in the cluster) against its size
rank (in logarithmic scale). With this, the leftmost point of the curve represents the largest cluster,
while the following ones are sorted in decreasing order of size. To compare between sample sizes
four curves are plotted, one for each sample size. A common decreasing trend of the curves appears
producing several relatively small clusters. This is not a desired behaviour for a final clustering task.
However, we are in an intermediate step which aims at reducing the number of curves n to a certain
number K′ of super customers, here K′ = 200. The isolated super customers may merge together in
the following step, producing meaningful aggregates.
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Figure 10. Relative frequency of observation by clusters, in decreasing order, for different sample
sizes.

In what follows we focus on the results for the largest dataset, that is the one with over 25 millions
of load curves. The resulting 200 super consumers are used to construct the WER dissimilarity
matrix, which contains rich information about the clustering structure. One may use for instance
a hierarchical clustering algorithm to obtain a hierarchy of SC. A graphical result of this structure in
the object of Figure 11, which corresponds to the dendrogram obtained by agglomerative hierarchical
clustering using the Ward link function. Then, one may get a partitioning of the ensemble of SC by
setting some threshold (a value of height in the figure). However, we will not follow this idea to
concentrate on the bottom-up prediction task.

The WER dissimilarity matrix encodes rich information about the pairwise closeness between the
200 super consumers. A way to visualize this matrix is to obtain a multidimensional scaling, that is
to construct a setting of low dimension coordinates that best represent the dissimilarities between the
curves. Figure 12 contains the matrix scatter plot of the first 4 dimensions of such a setting. For each
bivariate scatter plot, the points are drawn with a discrete scale of 15 colours, each one representing
a different cluster. This low dimensional representation succeed to represent the clustering structure
since points with the same colour are closer forming compact groups.

Bottom-up forecast is the leading argument of using the individual load curve clustering. We
test the appropriateness of our proposition by getting for a final number of clusters ranging from
2 to 20, 50, 100 and 200 the respective aggregates in terms of load demand. Then, we use KWF as
an automatic prediction model for both strategies: prediction of the global demand using the global
demand, and the one based on the bottom-up approach.

We use the second year on the dataset to measure the quality of the daily prediction using a
rolling basis. Figure 13 reports the prediction error using the MAPE for both the two forecasting
strategies. The full horizontal line indicates the annual mean MAPE using the direct method and so it
is independent of the number of clusters. For different choices of the number of clusters, the dashed
line represent the associated MAPE. All possible clusterings produce then bottom-up forecasts that
are better than the one obtained from direct global forecasting.
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Figure 11. Dendrogram obtained from the WER dissimilarity matrix.
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Figure 12. Multidimensional scaling of the WER dissimilarity matrix for the 200 super consumers.
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9. Discussion

In this final section, we discuss the various choices made as well as some possible extension to
cope with multiscale model point of view and how to handle non stationarity.

9.1. Choice of methods

The three main tools are:

• the wavelet decomposition to represent functions and compute dissimilarities. Of course,
several other choices could be interesting like splines for bases of functions which are
independent of the data or even some data-driven bases like those coming from functional
principal component analysis. With respect to these two classical alternatives, (more or less
related to a monoscale strategy) the choice of wavelets allows simultaneously a parsimonious
representation capturing local features of the data as well as redundant one delivering a more
accurate multiscale representation. In addition, from a computational viewpoint, DWT is a
very fast: of linear complexity. So to design the super-customers the discrete transform is good
enough, for the final clusters, the continuous transform leads to better results. Let us remark
that combining wavelets and clustering has recently been considered in [35] from a different
viewpoint: details and approximations of the daily load curves are clustered separately leading
to two different partitions which are then fused.
• the PAM algorithm and the hierarchical clustering to build the clusters are of very common use

and well adapted to their specifc role in the whole strategy. It should be noted that the use of
PAM to construct the super customers must necessarily be biased towards a large number of
clusters (defining the super customers) so it is useless to include sophisticated model-selection
rules to choose an optimal number of clusters since the strategy is used only to define a
sufficiently large number of clusters.
• the Kernel-Wavelet-Functional (KWF) method to forecast time-series. The global forecasting

scheme is clearly fully modular and then, KWF could be replaced by any other time-series
model forecasting. The model must be flexible and easy to automatically be tuned because
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the modeling and forecasting must be performed in each cluster in a rather blind way. The
main difficulty with KWF is to introduce exogenous variables. We could imagine to include
a single one quite easily but not a richer family in full generality. Nevertheless, it is precisely
when dealing with models corresponding to some specific clusters that it could be of interest
to use exogenous variables especially informative, for example describing meteo at a local level
or some specific market segment. So some alternative could be considered like generalized
additive models (see [36] for a strategy which could be plugged in our scheme).

9.2. Multiscale modeling and forecasting

In fact, such a forecasting strategy combining clustering in individuals and forecasting of the
total consumption of each cluster can be also viewed as a multiscale modeling. Indeed a byproduct is
a forecasting at different levels of aggregation from the super customers to the total population. So,
instead of restricting our attention on the forecasting of the global signal for a given partition we could
imagine to combine in time the different predictions given by each piece of the different partitions in
such a way that all the levels could contribute to the final forecasting. The way to weight the different
predictions could be fixed for all the instants (see [37] for a large choice of proposals) or, on the
contrary, time-dependent according to a convenient choice of the updating policy (see the sequential
learning strategies already used in the electrical context in [38]). An attempt in this direction can be
found in [39].

Another related topic is individual forecasting or prediction. It must be mentioned since it is
interesting to have some ideas about the kind of statistical models or strategies used in this especially
hard context, due to extreme volatility and wild nonstationarity. [40] examine the short-term
(one hour) forecasting of individual consumptions using a sparse autoregressive model which is
compared against well-known alternatives (support vector machine, principal component regression,
and random forests). In general, exogenous variables are used to forecast electricity consumptions,
but some authors focus on the reverse. [41] and [42] are interested in determining household
characteristics or customers information based on temporal load profiles of household electricity
demand. They use sophisticated deep learning algorithm for the first one and more classical tools for
the second one. In the context of customers surveys, [43] use smart meter data analytics for optimal
customer selection in demand response programs.

9.3. How to handle non stationarity?

Even if the model KWF is well suited to handle non stationarities in the time-domain, it remains
that the clusters of customers are also subjected to some dynamics which could be of interest to model
in order to control these changes. A first naive possibility is to periodically recompute the entire
process including a new calculation of the super-customers and decide, at some stage if the change
is significant to be taken into account. A second possibility could be to directly model the evolution
of the clusters. For example, in [44] a time-varying extension of the K-means algorithm is proposed.
A multivariate vector autoregressive model is used to model the evolution of clusters’ centroids over
time. This could help to model the changes of clusters along time but we have to think about a penalty
mechanism allowing to make changes in the cluster only when it is useful.
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