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Abstract: Since the electro-hydraulic servo shaking table exists many nonlinear elements, such as, 

dead zone, friction and blacklash, its acceleration response has higher harmonics which result in 

acceleration harmonic distortion, when the electro-hydraulic system is excited by sinusoidal signal. 

For suppressing the harmonic distortion and precisely identify harmonics, a combination of the 

adaptive linear neural network and least mean M-estimate (ADALINE-LMM), is proposed to 

identify the amplitude and phase of each harmonic component. Namely, the Hampel’s three-part 

M-estimator is applied to provide thresholds for detecting and suppressing the error signal. 

Harmonic generators are used by this harmonic identification scheme to create input vectors and 

the value of the identified acceleration signal is subtracted from the true value of the system 

acceleration response to construct the criterion function. The weight vector of the ADALINE is 

updated iteratively by the LMM algorithm, and the amplitude and phase of each harmonic, even 

the results of harmonic components, can be computed directly online. The simulation and 

experiment are performed to validate the performance of the proposed algorithm. According to 

the experiment result, the above method of harmonic identification possesses great real-time 

performance and it has not only good convergence performance but also high identification 

precision. 

Key words: harmonic identification; adaptive linear neutral network; least mean M-estimate; 

electro-hydraulic servo shaking table; harmonic distortion 

 

1. Introduction 

As a great significant testing equipment for engineering research in industry, the 

electro-hydraulic servo shaking table owns some advantages, such as quicker response speed, 

higher control precision, higher force-to weight ratio and etc, this make it applied in aerospace, 

automotive, machine, metallurgy and many other fields of heavy industry[1]. Yet the 

electro-hydraulic servo shaking table also has plenty of disadvantages, namely, blacklash 

connections, friction between the piston, the hydraulic cylinder, and the hydraulic oil pipeline 

geometry[2-3]. As a result of these nonlinearities existing in the servo system, the acceleration 

response of system generates high-order harmonics when the shaking table is excited by sinusoidal 

signal, which not only seriously leads to distortion of the acceleration response signal, but also 

lowers the dynamic tracing performance. Definitely, under this condition, the control precision of 

the system will became lower than it was. Sometimes, these nonlinearities existing in the system we 

discuss above may even make the electro-hydraulic servo shaking table unstable. 

Although the harmonic identification is mostly applied in the field of the power system, it is 

still meaningful for us to apply it to the electro-hydraulic servo shaking table system. In the power 

system field, in order to guarantee the power quality, researchers who devote themselves into this 

field propose various techniques such as Fast Fourier Transformation(FFT), Kalman Filter (KF), 

Least Mean Square(LMS), Recurisive Least Squares(RLS) and many other algorithms to identify the 
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high order harmonics of the current signal. However, the FFT estimation algorithm need to acquire 

the past current data firstly, and then analyze it. The computation task of using FFT to identify 

harmonics is burden and it inevitably gets delayed for about two periods. Furthermore, the 

real-time performance of this algorithm is not good. The precision of the estimated parameter may 

be reduced due to frequency spectrum leakage and picket-fence effects. Kalman Filter is also one of 

the most useful algorithms for harmonic identification, but its dynamic tracing performance will be 

seriously reduced when the tested signal is time-varying. Besides, Least Mean Square, as well as 

Recurisive Least Squares, is also used in harmonic identification. But they are not that effective 

when used to estimate harmonics online. During the real-time detection, since their estimation 

precision and real-time performance are unqualified, they are not extensively used. 

The artificial neural network (ANN) is a network which is combined with several nerve cells. It 

is an important way to imitate the human intelligence from microcosmic structure and function. It 

certainly reflects some basic characters of human brain’s function. After several intensive studies, 

scientists proposed lots of ways to identify high order harmonics. Yao et al.[3] developed a new 

adaptive linear neural network using normalized least-mean-square adaptive algorithm to adjust 

the value of weight for harmonic identification in an electro-hydraulic servo shaking table system. 

Cao et al.[4] proposed a new method based on Radial basis function (RBF) neural network to detect 

each order harmonic’s amplitude and phase of a distorted harmonic signal. Ketabi et al.[5] 

introduced a multilayer feedforward neural network to analyze harmonic overvoltage during 

power system restoration. The effect and precision performance of this scheme had been proved to 

be satisfied by experimental results. Based on Hopfield neural network, Zou et al.[6] proposed a 

new approach using for harmonic detection, and the convergence and real-time performance was 

proved to be satisfied. Subsequently, the adaptive linear neural network (Adaline) is extensively 

applied for harmonic parameters estimation, and the Least mean square (LMS) algorithm is used to 

adjust the weight of the Adaline. But if the tested signal was distorted by impulse noise, the 

performance of linear adaptive filter with LMS-based algorithms will significantly degrade. For 

impulse noise suppression, a new adaptive filtering algorithm using M-estimate was carried out by 

Zou to solve this problem[7]. M-estimate is a piecewise estimator which can dectect impulse noise 

and ignore the large signal error when the measured signal is contaminated by the impulse signal. 

For active impulse-like noise control, Wu[8] proposed a new M-estimator based algorithm called 

fair algorithm and Its effectiveness and convergence performance were validated by the simulation 

results. In 2000, Zou et al.[9] proposed two new gradient-based adaptive algorithms named the 

transform domain least mean M-estimate (TLMM) and the least Mean M-estimate(LMM) 

algorithms which possess better convengence and anti-impulse noise performance than RLS and 

LMS according to the simulation result. Based on the robust statistics theory, Sun et.al.[10] 

proposed the filtered-x least mean M-estimate(FxLMM) algorithm to get a better noise control effect 

on active noise control(ANC). It was proved to be a very promising way for ANC with numerous 

simulation results. 

The most obvious distinction between harmonic identification for electro-hydraulic servo 

shaking table system and for power system is that the former requires better real-time and precision 

performance[11-12]. The LMM algorithm, a LMS-like algorithm, uses a more robust “M-estimator” 

to replace LMS for the purpose of harmonic identification. Instead of minimize the variance of the 

error signal directly, it chooses to minimize the M-estimate of error function and it can be 

effectively used to detect and suppress the impulse noise which is verified by the simulation results. 

Furthermore, good precision identification results, both the amplitude and the phase of harmonics, 

are showed by using the Hampel’s three-part M-estimator. In this article, The LMM algorithm is 

utilized to adjust the weight of the Adaline for harmonic identification, and, subsequently, its 

numerous merits are verified through simulation and experiment. 

2. System description 

Figure 1 shows the electro-hydraulic servo shaking table of the University of Bristol. The table 

which is used to perform experiments in this paper is a platform made of cast alumilium weighing 
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3.8 tonnes. The maximum payload and the supply pressure of this table are 15 tonnes and 20.5MPa 

separately. Other parameters are shown in Table 1. At the center of the table, there is an 

accelerometer which is installed on the platform. Each actuator of this table contains an 

accelerometer at the end of the piston and a linear variable differential transformer (LVDT) fixed to 

the inside of the cylinder. Besides, the load applied by each actuator is measured by some load cells. 

The shaking table adopts a typical PID control system as its control system. The feedback signal of 

PID is usually a composite signal which includes the displacement signals, acceleration signals and 

load signals. 

 

Figure 1. The hydraulic shaking table. 

Table 1. The detail parameters of the shaking table. 

Category Parameter value 

Axes 6 

Size 3x3 m 

Frequency range 0-100Hz 

Vertical actuators 4 at 70kN 

Vertical acceleration (no payload) 5.6g 

Longitudinal and lateral actuators 4 at 70kN 

Horizontal acceleration (no payload) 3.7g 

When the hydraulic servo shaking table without load is excited by a sinusoidal signal, 

sin(2 3 )t  m/s2, its corresponding sinusoidal acceleration response is shown in Figure 2. In time 

domain, it is clear that the acceleration response is not a standard sine wave but a distorted one. 

There are other seven harmonics (from the second to the eighth) except the fundamental frequency 

signal in the sinusoidal acceleration response shown in Figure 2 and Figure 3. Besides, in order to 

demonstrate the impact of the nonlinear hydraulic system, the total harmonic distortion (THD) is 

introduced. The value of THD can be calculated by using equation (1), and its analysis result is 

shown in Table 2. From Table 2, it can be seen that the amplitude of the fundamental response is 

less than the excitation signal. Besides, the third harmonic is the largest harmonic among other 

seven harmonics, i.e., it plays a most prominent part in THD. The amplitude of the sixth harmonic 

is the same as that of the Seventh, at 0.006, but both are less than the eighth harmonic. The fifth 

harmonic is in the least domination, at 0.016. The value of the THD is 7.06%.  

2 2 2

2 3

1

100%n
A A A

THD
A

+ + +
= ´                           (1)                                                                                                                 
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Where
1 2, , , nA A A are the amplitude of each harmonic. 

 

Figure 2. Acceleration response of sin( 2 3t  )m/s2 in time domain. 

 

Figure 3. Acceleration response of sin( 2 3t  )m/s2 in frequency domain. 

Table 2. THD analysis results. 

THD Harmonic Amplitude (m/s2) 

7.06% 
Fundamental Second Third Fourth Fifth Sixth Seventh eighth 

0.859 0.005 0.057 0.004 0.016 0.006 0.006 0.008 

3. Harmonic identification scheme based on Adaline-LMM algorithm 

When the servo system is excited by a sinusoidal signal, the system response can be regarded 

as a composite signal which is composed of the fundamental response and high order harmonics. 

The general model of the composite signal can be defined as: 

1

( ) sin( )
i

N

i

i

a k A i k 
=

= +                               (2) 

where, 
iA , i  are the amplitude and phase of the ith harmonic, respectively.  is the fundamental 

frequency. N is the highest order of the acceleration harmonic. k represents iterations. For the 

purpose of obtaining the input vector of the network, equation (2) can be written as: 

1

( ) sin( )cos( ) cos( )sin( )
i i

N

i i

i

a k A i k A i k   
=

= +                       (3) 

In order to identify the fundamental waveform and high order harmonics, the Adaline 
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(illustrated in Figure 4) is introduced. It is a single layer linear neural network which has n inputs 

but only a single output. The output of this neural network â(k) is the dot product between the 

input vector and weight vector. Certainly, the relationship between the output and the input of the 

neural network is linear at any time. The error signal e(k) will be acted as the input signal of the 

weight adjusting algorithm to adjust the weight of the Adaline. Apparently, with the output of the 

Adaline getting more and more close to the output of the servo system, this error signal is getting 

smaller too. That is, the process of training this neural network is actually the process that the 

output of the network converging to the expected signal.  

 

Figure 4. Adaline neural network. 

( )aiX k  and ( )biX k  are input signal vectors of the network, and e(k) is the error signal which 

is used to adjust the weight of the network. Both ( )ai k  and ( )bi k  are the weight of the network. 

The above vectors are illustrated in equations. (4-6). 

X ( ) sin( ), 1,2,3, ,ai k i k i n= =                            (4) 

X ( ) cos( ), 1,2,3, ,bi k i k i n= =                            (5) 

e(k)=a(k)-â(k)                                    (6) 

The weight adjusting is accomplished by using the LMM algorithm, which is a nolinear 

algorithm using the error signal’s M-estimator so as to minimize the instantaneous criterion 

function ( )MJ k  and then get the optimized weight vector. The criterion function ( )MJ k  is 

expressed as: 

( ) { ( ( ))}
M

J k E M e k=                                    (7) 

where M(.) is a robust M-estimate function that can be obtained by using Hampel’s three parts 

re-descending function which is expressed as: 

2

1

2

1
1 1 2

22
31 1 1

2 32 3

2 3

3

( )
0 ( )

2

( ) ( )
2( ( ))

( ( ) )
( ) ( )

2 2 2

0 ( )

e k
e k t

h
t e k t e k t

M e k

e k hh h h
h h t e k t

h h

t e k

 
  

 
 

−   
=  
 −

+ − +   
− 

  

                   (8) 

( ( ( )))
( ( ))

( ( ))

M e k
S e k

e k


=


                                    (9) 

where ( ( ))S e k is called the score or influence function as shown in equation (10).  
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1

1 1 2

1
3 2 3

2 3

3

( ) 0 ( )

sgn( ( )) ( )

( ( ))
[ ( ) ] sgn( ( )) ( )

0 ( )

e k e k t

t e k t e k t

S e k t
e k t e k t e k t

t t

t e k

   
 

  
 

=  
−   

− 
  

                   (10) 

where t1, t2 and t3 are thresholds used to control the impulse-suppressing degree and can be 

determined by estimating the variance of the impulse free signal. These threshold parameters can 

be estimated as[13]: 

 2 2 2 2 2

1 1 2( ) ( 1) (1 ) ( ( ) , ( 1) ,... ( 1) )wk C k C C med e k e k e k L = − + − − − +               (11) 

1

2

3

1.96 ( )

2.24 ( )

2.57 ( )

t k

t k

t k







=


=
 =

                                     (12) 

where ( )k is the estimated value of the variance of the impulse-free signal. 
1C  (

1 1C  ) and 
2C  

(
22 3C  ) are the active forgetting factor and the modifying factor, respectively. 

wL represents the 

length of the estimated window. Apparently, the stability and the tracing performance depend on 

these parameters.  

When the criterion function ( )MJ k  reaches the minimum value, the weight gets its optimized 

value. The first derivative of the criterion function is expressed as : 

( ) ( ( )) ( ( )) ( )
( ) ( )

M ai

ai ai

J k M e k S e k X k
k k 

 
= = −

 
                    (13) 

( ) ( ( )) ( ( )) ( )
( ) ( )

M bi

bi bi

J k M e k S e k X k
k k 

 
= = −

 
                    (14) 

The update equation of the Adaline neural network’s weights are shown as: 

( 1) ( ) ( )( ( ))
( )

ai ai ai M

ai

k k k J k
k

  



+ = + −


                        (15) 

( 1) ( ) ( )( ( ))
( )

bi bi bi M

bi

k k k J k
k

  



+ = + −


                        (16) 

Substituting equations (13-14) into equations (15-16), the weight update of the Adaline-LMM 

algorithm can be given as:  

a( 1) ( ) ( ( )) ( )
ai ai i aik k S e k X k  + = +                             (17) 

( 1) ( ) ( ( )) ( )
bi bi bi bik k S e k X k  + = +                             (18) 

where ai ，
bi  represent variable weight updating steps which can be updated as: 

50
a 0.24

i

i bi  = = =                                   (19) 

where i is the number of iterations. If 0.0001  , =0.0001 . 

When the LMM algorithm has been trained, the error signal will generally be very close to 0. At 

that time when the output of the network equals to the system’s output, the weight will not be 

adjusted. i.e., the ultimate weight vector is the Fourier coefficient vector of the signal. The ultimate 

weight vector can be given as:  

1 2
, , ,[ ]

a a a aN
   =                                    (20) 

1 2
, , ,[ ]

b b b bN
   =                                    (21) 
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Due to equations (20-21), the ith harmonic’s amplitude and phase can be computed by: 

2 2( ( )) ( ( ))i ai biA k k = +                                  (22) 

1tan ( ( ) / ( ))i bi aiw k w k −=                                   (23) 

4. Simulation results 

The real-time and precision identification performance of the proposed Adaline-LMM 

algorithm is initially tested by simulation using MATLAB/SIMULINK. The simulation input is: 

( ) ( ) ( ) ( ) ( )

( ) ( )

a 3sin 1.2 0.6sin 2 0.9 0.5sin 3 0.7 0.4sin 4 0.5

0.3sin 5 0.4 0.2sin 6 0.3

k k k k k

k k

   

 

= + + + + + + +

+ + + +
      (24) 

Apparently, there are 6 harmonics whose frequencies are the integral multiple of the 

fundamental frequency. Its sampling frequency is 1000Hz. The fundamental frequency is 3Hz. The 

optimum values of constant parameters such as 
1C , 

2C , 
wL  are 0.995, 2.157 and 12 respectively. 

The initial values of both ( )ai k  and ( )bi k  are chosen as 0.018. 

From the error plot in Figure 5, it is noted that the estimation error is converging to nearly zero 

within 1s, in spite of much large fluctuation existing in the initial stage of harmonic identification. 

Figure 6 contains two different kinds of signals, both the actual signal denoted by dashed line and 

the identified signal denoted by red line. Although the estimation error is quite large originally, it is 

noted that the identified signal is well converged to the actual signal within 0.7s which means both 

the amplitude and the phase of each harmonic are precisely estimated.  

 

Figure 5. The estimation error. 

 

Figure 6. The identification acceleration. 
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The estimation amplitude and phase of each identified harmonic are separately shown in 

Figure 7 and Figure 8, and the result of contrast between the estimated values and the set values is 

showed in Table 3. At the initial stage of the harmonic identification, there are relatively large 

fluctuation. But both amplitudes and phases of all the harmonics are converging to their specific 

values which are exactly the same as what the simulation input signal contains originally, i.e., the 

amplitude and phase of each harmonic are precisely estimated by using Adaline-LMM algorithm. 

Besides, harmonics can be directly identified and its results are shown in Figure 9. 

Table 3. the result of contrast between the estimated values and the given values. 

Harmonic Order 
Set Values Estimated Values(LMM) 

Amplitude (m/s2) Phase (rad) Amplitude (m/s2) Phase (rad) 

Fundamental response 3 1.2 2.999999 1.199999 

Second harmonic 0.6 0.9 0.599999 0.899999 

Third harmonic 0.5 0.7 0.500000 0.700000 

Fourth harmonic 0.4 0.5 0.399999 0.500000 

Fifth harmonic 0.3 0.4 0.300000 0.400000 

Sixthe harmonic 0.2 0.3 0.199999 0.299999 

 

 

Figure 7. Estimation amplitudes of simulation results. 
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Figure 8. Estimation phases of simulation results. 

 

Figure 9. The identification harmonics. 

To validate the impulse noise suppression ability of the Adaline-LMM algorithm in harmonic 

identification, impulse noises(SNR: 15dB) are independently added into the simulation input signal 

and the appearing time of them are fixed at 2s, 3s and 4s during the sumulation. The amplitudes are 

set as 0.8891. For confirming the advantage of LMM on impulse noise suppression objectively, as a 

contrast, LMS algorithm is also used in harmonic identification when the input signal is 

contaminated by the impulse noise. Other parameters are set as the same with the above. According 

to the results which is shown in Figure 10, the estimation error has large fluctuation at the time 
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when impulse noise is acted in the input signal and there still has small oscillation after 2.5s, 3.5s 

and 4.5s(the action time of the impulse noise are 2s, 3s and 4s),  but the estimation error is 

converged to zero and the error oscillation does emerge during the whole identification time.  

For simplicity in visualizing the merits of LMM, the identification results, both amplitude and 

phase of each harmonc, are separately shown in Figure 11 and Figure 12. It is noted that the 

identification amplitudes and phases are not steable and easy to be affected by the impulse noise 

which is not allowed in the acceleration harmonics identification for an electro-hydraulic servo 

shaking table. On the contrary, the amplitudes and phases estimated results by using LMM 

algorithm are more steable and not influenced by impulse noises. That is, unlike LMS algorithm, 

LMM can detect and ignore the impulse noise and provide a more steable and precise harmonic 

identification performance. 

 

Figure 10. The estimation error when the input signal is contaminated by impulse noise. 

 
Figure 11. Estimation amplitudes of simulation result(contaminated by impulse noise). 
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Figure 12. Estimation phases of simulation result(contaminated by impulse noise). 

5. Experiment results 

For validating the effectiveness of the proposed algorithm for harmonic identification 

further, the real experiment is designed to test its identification precision. The initial values of 

both ( )ai k  and ( )bi k  are chosen as 0.05. Its sampling frequency is also 1000Hz. During the 

experiment, the Adaline-LMM parameters are kept as the same as the simulation except 
wL  

which is set as 16. The estimation error is displayed in Figure 13 which is used to demonstrate 

the estimation accuracy. It is noted that the estimation error fluctuated largely at the beginning 

of the identification but rapidly converged to a relative small range(within 0.08) after 2s. There 

are two different lines, the dashed one is the system response signal and the red line presents 

the identification signal, contained in Figure 14. Originally, the red line has a wide fluctuation, 

however, after the Adaline-LMM algorithm has been trained, ultimately, the identified signal is 

well converged to the actual signal within 2s, i.e., the harmonic identification precision of the 

proposed algorithm is pretty great. 

 
Figure 13. The estimation error of experiment result. 
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Figure 14. The process of harmonic identification in experiment. 

The estimation amplitude results are displayed in Figure 15. It is noted that the estimation 

amplitude values match well with the FFT-computed values which are shown in Table 2. As for the 

amplitude plots, all the amplitude values of harmonics are converged in the end. From the 

estimation phases shown in Figure 16, large fluctuations exist within initial 2 seconds, but, 

ultimately, they tend to be steady after around 4 seconds. However, there are still minor variations 

of the estimation phase existing in the second harmonic. Certainly, all of the harmonics can also be 

directed estimated online, and their waveforms are shown in Figure 17. 

6. Conclusion 

When the electro-hydraulic servo shaking table is excited by a sinusoidal signal, the system 

response contains high order harmonics due to many no-linear elements existing in this shaking 

table. For identifing each harmonic, both the amplitude and the phase, a no-linear adaptive 

algorithm based on a single layer ADALINE and LMM which is used to adjust the weights of the 

Adaline was proposed. Both the simulation and experimental results show that the proposed 

algorithm is able to identify the amplitude and phase of each harmonic online, and its real-time 

performance and precision have been proved to be satisfied. 

Besides, the proposed ADALINE-LMM algorithm exhibits other characteristics like great 

tracing precision, fast convergence and simple algorithm construction. The most obvious advantage 

of this algorithm is that it can effectively dectect and ignore the impulse noises during the 

identification process. The simulation result shows that Compared with LMS algorithm, LMM 

algorithm is able to provide a more steable harmonic identification performance when the signal 

response is contaminated by impulse noise. Furthermore,the results from the proposed algorithm 

deserve to be studied further because they are not only useful for harmonic identification, but also 

for harmonic cancellation. 
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Figure 15. The estimation amplitudes of experiment result. 
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Figure 16. The estimation phases of experiment result. 
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Figure 17. The identification harmonics of the experiment result. 
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