

1 *Review*

2 **Vitamin C to improve Organ Dysfunction in Cardiac**

3 **Surgery Patients – Review and Pragmatic Approach**

4 **Aileen Hill^{1,2,3*}, Sebastian Borosch^{3,4}, Carina Benstöm^{1,3}, Christina Neubauer^{1,3}, Patrick**
5 **Meybohm⁵, Pascal Langlois⁶, Neill KJ Adhikari⁷, Daren K Heyland⁸ and Christian Stoppe^{1,3*}**

6 ¹ Department of Intensive Care Medicine, University Hospital RWTH, D-52074 Aachen, Germany;
7 ahill@ukaachen.de (A.H.), cbenstom@ukaachen.de (C.B.), cstoppe@ukaachen.de (C.S.)

8 ² Department of Anesthesiology, University Hospital RWTH, D-52074 Aachen, Germany, elaaaf@ukaachen.de

9 ³ 3CARE—Cardiovascular Critical Care & Anesthesia Evaluation and Research, D-52074 Aachen

10 ⁴ Department of Thoracic, Cardiac and Vascular Surgery, University Hospital RWTH, D-52074 Aachen,
11 Germany; sborosch@ukaachen.de

12 ⁵ Department of Anesthesiology and Intensive Care, University Hospital Frankfurt, D-60590 Frankfurt,
13 Germany; patrick.meybohm@kgu.de

14 ⁶ Department of Anesthesiology and Reanimation, Faculty of Médecine and Health Sciences, Sherbrooke
15 University Hospital, Sherbrooke, Québec, Canada; Pascal.laferriere-langlois@usherbrooke.ca

16 ⁷ Department of Critical Care Medicine, Sunnybrook Health Sciences Centre; Interdepartmental Division of
17 Critical Care Medicine, University of Toronto, Toronto, Canada; Neill.Adhikari@sunnybrook.ca

18 ⁸ Clinical Evaluation Research Unit, Kingston General Hospital, K7L 2V7 Kingston, Canada;
19 dkh2@queensu.ca

20 * Correspondence: ahill@ukaachen.de (A.H.); christian.stoppe@gmail.com, Tel.: +49-241-8036575 (C.S.)

21 **Abstract:** The pleiotropic biochemical and antioxidant functions of Vitamin C (Vit C) have recently
22 sparked interest in its application in intensive care. Vit C protects important organ systems such as
23 the cardiovascular, neurologic and renal system during inflammation and oxidative stress. Vit C
24 also influences the systems of coagulation and inflammation and its application might prevent the
25 development of organ damage. The current evidence of Vit C's effect on the pathophysiological
26 reactions during various acute stress events, such as sepsis, shock, trauma, burn and ischemia-
27 reperfusion injury imposes the question, if the application of Vit C might be especially beneficial for
28 cardiac surgery patients, who are routinely exposed to ischemia/reperfusion and subsequent
29 inflammation, systematically affecting different organ systems. This review covers current
30 knowledge about the role of Vit C in cardiac surgery patients with focus on its influence on organ
31 dysfunctions. The relationships between Vit C and clinical health outcomes are reviewed with
32 special emphasis on its application in cardiac surgery. Additionally, this review pragmatically
33 discusses evidence regarding the administration of Vitamin C in every day clinical practice, tackling
34 the issues of safety, monitoring, dosage and most the appropriate application strategy.

35 **Keywords:** vitamin C; ascorbic acid; cardiac surgery; antioxidant therapy; nutrient; oxidative stress;
36 organ dysfunction; multi organ failure

40 **1. Introduction**

41 **1.1. Pathogenesis of Organ Dysfunction after Cardiac Surgery**

42 Patients undergoing cardiac surgery experience a complex systemic inflammatory response
43 syndrome (SIRS). SIRS after cardiac surgery is induced by surgical trauma [4, 5], foreign surface
44 contact during cardiopulmonary bypass (CPB) [6 – 13], CPB itself [5, 13 – 16], ischemia-reperfusion-
45 injury (I/R) [4, 6, 14, 17], endotoxemia [6, 14, 17], and blood transfusion [14, 18, 19] as shown in Figure

46 1. Each stimulus triggers both the cellular and the humoral inflammatory response systems. Cellular
47 mechanisms include the activation of leukocytes, platelets and endothelial cells [4, 6, 11, 14, 16, 17].
48 Humoral reactions are mainly the activation of complement and coagulation systems, as well as the
49 release of inflammatory mediators and reactive oxygen species [4, 8, 11, 14].

50
51 **Figure 1.** Pathomechanisms of organ damage in cardiac surgery.

52 Oxidative stress is defined as an imbalance between production of oxidants, mainly free radicals
53 and reactive metabolites, in relation to their elimination by protective mechanisms. In many acute
54 stages of disease, the production of reactive oxygen species (ROS) is initiated by several conditions,
55 for example I/R-injury, activation of the NADPH oxidase, as well as severe alterations in the
56 mitochondrial metabolism [1]. ROS play an essential role in the human biology and regulate different
57 metabolic processes and signaling pathways. In critical illness, such as trauma, surgery, ischemia and
58 reperfusion, shock and sepsis, the ROS production increases and often exceeds the natural
59 antioxidant capacity, leading to damage of the structures of macromolecules. Structural damage of
60 macromolecules, such as proteins, nucleic acids, lipids and carbohydrates impairs their essential
61 biological function and leads to significant damage of cell structure and organ function [20]. The
62 results of the general activation of the inflammatory system and the oxidative stress are leukocyte
63 extravasation, intravascular leukostasis, lipid peroxidation, cell death, vasodilation and capillary
64 fluid leakage in the tissues, which in sum negatively influence patient outcome [2 – 5, 21, 22].

65 While SIRS is a well-known reaction to cardiac surgery, this syndrome can cause multiple acute
66 and persistent organ dysfunctions, which are explained in greater detail in section 3. Postoperative
67 complications, especially organ failures and infections are major determinants of morbidity and
68 mortality, necessitating a prolonged hospital and intensive care unit (ICU) length-of-stay (LOS),
69 which is further associated with high care related costs and worse quality of life (QOL) after cardiac
70 surgery [4, 6, 11, 14, 15, 17, 23 – 28]. In fact, the development of acute and persistent multiorgan

71 dysfunction occurs in 15 % of patients and is the most important determinant of mortality, clinical
72 outcome and QOL for patients, who had undergone cardiac surgery [7].

73 1.2. Basic Metabolism and Functions of Vitamin C

74 Vitamin C is an essential micronutrient involved in numerous biochemical and biological
75 processes. Two forms of Vit C are present in the plasma: ascorbic acid (AA) and its oxidized form
76 dehydroascorbate (DHA) [30]. The human body is unable to synthesize Vit C due to lack of the last
77 enzyme in the biosynthetic process. An adequate intake of Vit C of 200 mg/d, equaling approximately
78 5 servings of fruit and vegetables is recommended, though food content varies due to its lability [31].
79 Vit C is absorbed enterally, remains unbound in the human plasma and is dialyzable. Renal
80 elimination of Vit C follows its glomerular filtration, if the concentration of Vit C in the urine is larger
81 than the capacity of the responsible transport protein, which is achieved by Vit C uptake of 100 mg/d
82 and a plasma concentration of 60 μ mol/l [31].

83 There is no data for true bioavailability of enteral Vit C, but almost complete bioavailability was
84 calculated in several models for dosages of 200 mg/d. A steep sigmoidal relationship between Vit C
85 dose and steady-state plasma concentration was observed, where a dose of 200 mg produces
86 approximately 80 % plasma saturation, while plasma saturation occurs at about 1000 mg of Vit C.
87 However, the saturation of cells occurs at 100 mg/d due to active Vit C transport, which saturates at
88 about 60 – 70 μ mol/l. The peak plasma concentration is reached about 2 hours after ingestion, while
89 an exponential drop of plasma levels is observed after intravenous application of Vit C, where a half-
90 life of Vit C in plasma of approximately one hour was observed [31].

91 Vit C has pleiotropic functions in the human body, acting as an electron donor and thereby being
92 a reducing agent for 8 enzymes and many intra- and extracellular reactions. Enzymatic reactions
93 dependent on Vit C are the synthesis of norepinephrine, collagen and carnitine, amidation of peptide
94 hormones and tyrosine metabolism. The promotion of iron absorption in the small intestine is another
95 function of Vit C. [31]. Based on its redox-potential and powerful antioxidant capacity, Vit C has been
96 called the most important antioxidant countering the influence of free radicals [32, 33]. The functions
97 of Vit C in the various organ systems are explained in greater detail in Section 2.

98 1.3. The Influence of Vitamin C on Oxidative Stress and Inflammation

99 Vit C scavenges free radicals through the formation of the ascorbyl radical and thereby prevents
100 damage to macromolecules, such as lipids or the DNA. The dismutation of two ascorbyl radicals
101 produces one molecule of ascorbate and one molecule of DHA [8]. Additionally, Vit C inhibits the
102 expression of intracellular adhesion molecules and thereby inhibits the intake of immune cells into
103 the microcirculation [8]. Furthermore, an increase of the intracellular Vit C concentration inhibits the
104 protein phosphatase type 2A and thereby protects the endothelial barrier from septic shock [9]. Due
105 to its pleiotropic functions in 8 enzymatic processes, Vit C not only mitigates oxidative stress, but
106 restores vascular responsiveness to vasoconstrictors [10], ameliorates microcirculatory blood flow,
107 preserves endothelial barriers [49], prevents apoptosis [11] and augments the bacterial defense [42].

108 1.4. Current Evidence of Vitamin C in Critically Ill Patients

109 Sepsis, trauma, burn and surgery are causes of systemic inflammatory responses and can lead
110 to similar pathologies in the human body, including microvascular dysfunction, refractive
111 vasodilatation, endothelial barrier dysfunction and edema and disseminated intravascular
112 coagulation. Vitamin C concentrations are lowered in critical illness [12], in patients recovering from
113 surgery [13, 14], in patients after cardiac surgery [15] and especially in patients going into multiorgan
114 failure [5, 16]. Fowler et al observed a lower rate of organ dysfunction as assessed by the sequential
115 organ failure assessment (SOFA) Score and a reduced 28-day mortality after the application of Vit C
116 in patients with sepsis and multiorgan-failure, whereas an influence on the ICU-LOS was not
117 observed [17]. Zabet et al. demonstrated in 2016 a significantly reduced mean vasopressor demand
118 and shorter duration of vasopressor therapy and reduced mortality in septic patients receiving Vit C

[18]. In 2002, Nathens et al. observed a decreased risk of pneumonia, acute respiratory distress syndrome (ARDS) and a tendency towards lower alveolar inflammation in a randomized controlled trial (RCT) of antioxidant supplementation in mostly trauma patients, though the results of this RCT did not reach statistical significance [19]. In severe burn patients, ascorbic acid reduced fluid demand and increased urine production in a retrospective review by Kahn et al. [20] and in an RCT by Takada et al. [21]. In fact, the application of Vit C is frequently considered in the treatment of severe burn patients [22]. While an overview of the influence of Vit C on organ dysfunction is summarized in Table 1, Section 2 will take a closer look on each individual organ system.

Table 1: Summary of Vit C's influence on organ systems

Organ System	Influence of Vitamin C
Nervous system	<ul style="list-style-type: none"> • Elevated levels (up to 80 times) protect neurons from oxidative damage [15, 34] • Reduces the infarct volume after ischemia [35]
Cardiovascular System	<ul style="list-style-type: none"> • Attenuates myocardial damage and improves myocardial stunning [15] • Reduces vasopressor demand [18] • Reduces rate of atrial fibrillation [23, 24] • Improves endothelial function [49]
Respiratory System	<ul style="list-style-type: none"> • Reduces intubation time [25] • Decreases risk of pneumonia and alveolar inflammation [19]
Renal System	<ul style="list-style-type: none"> • Reduces fluid demand and increases urine production [40]
Gastrointestinal System	<ul style="list-style-type: none"> • Attenuates drug toxicity, decreases inflammatory reaction [26] • Lowers infiltration of neutrophils [26] • Reduces the expression of apoptosis related genes as well as DNA [11]
Coagulation System	<ul style="list-style-type: none"> • Restores platelet function and decreases capillary plugging [42] • Attenuates a sepsis-induced drop of thrombocytes [42]
Immune System	<ul style="list-style-type: none"> • Inhibits bacterial growth [29], enhances microbial killing [43] • Supports endothelial barrier function and promotes antioxidant scavenging [43]

2. Influence of Vitamin C on the Organ Systems in Cardiac Surgery Patients

2.1. Nervous System

2.1.1. Neuropsychological Dysfunction after Cardiac Surgery

Brain tissue is very susceptible to oxidative damage because of its high content of polyunsaturated fatty acids and its high demand for oxygen. Neuropsychological complications are commonly seen in patients undergoing cardiac surgery, leading to a prolonged ICU stay (Figure 2). The American College of Cardiology and the American Heart Association defined two classes of neurological complications after cardiac surgery: Type I neurological deficits include stroke and transient ischemic attack, coma and fatal cerebral injury, Type II include delirium and postoperative cognitive dysfunction (POCD) [27].

Cerebral ischemia due to stroke, microembolization, hypoperfusion, or hypoxemia contributes considerably to cognitive decline. New cerebral lesions occur in about 30 – 50 % of cardiac surgery patients, but most of them are clinically inapparent. The incidence of manifest stroke with clinical deficits is about 1 – 2 % after low-risk heart surgery [28, 29, 30, 31, 32]. Contributing factors are major bleeding and transfusions of red blood cells, preoperative use of unfractionated heparin and use of CPB [28]. Delirium is observed in a quarter and POCD is observed in 25 – 65 % of all patients, while most of these patients recover within the first months [29, 33]. Cognitive function is strongly influenced by the systemic inflammation reaction, leading to increased permeability of the blood-brain barrier and cerebral edema [34]. All neuropsychological complications are associated with decreased QOL, inability to work, loss of independence and increased mortality [32].

148
149 **Figure 2.** Cerebral dysfunction after cardiac surgery

150 2.1.2. Role of Vitamin C in the Nervous System

151 Vit C levels are elevated up to 80 times in the cells of the brain and up to 4 times in the cerebrospinal
152 fluid due to its active transport via the sodium-dependent vitamin C transporter-2 (SVCT2)
153 transporter, protecting neurons and leukocytes from oxidative damage [15]. Vit C is also essential for
154 the myelination of the neurons [35] and a Vit C deficiency through insufficient transporter molecules
155 leads to hypomyelination and collagen-containing extracellular matrix deficits [36]. If oxidized, Vit C
156 can also be taken up by glucose transporters [37]. During I/R injury or stroke, the Vit C is shifted from
157 the intracellular to the extracellular compartment, leading to an intracellular Vit C deficiency and
158 perhaps neuronal damage [15].

159 While there is evidence that Vit C reduces infarct volume in cerebral ischemia, most evidence is
160 derived from experimental studies inducing stroke or I/R-injury: reduced infarct volumes after
161 experimental stroke models were demonstrated by Henry et al. [38] and Huang et al. [39]. This
162 finding was supported by a recent study demonstrating that Vit C protects from neuronal cell death
163 in a model of ethanol induced damage in early development age [40]. Ethanol thereby induced the
164 development of oxidative stress. Amongst others, the protection was evaluated by reduced activation
165 of caspase-9 and 3 as well as reduced levels of cytochrome c [40]. Lagowska-Lenard et al. found
166 elevated antioxidant levels in the serum after Vit C supplementation in a placebo-controlled RCT in
167 patients with ischemic stroke. However, in this small study, the clinical outcome was unchanged [41].

168 2.1.3. Vitamin C's Influence on the Nervous System in Cardiac Surgery Patients

169 In the meta-analysis of Hu et al. 2017 including eight RCTs and 1,060 patients, Vit C
170 supplementation had no effect on the incidence of stroke (0.8% [Vit C] vs. 2.0% [Control]) in cardiac
171 surgery patients [23]. To our knowledge, until now, no study evaluated the influence of Vit C on
172 cognitive dysfunction or delirium in cardiac surgery patients.

173 2.2. *Cardiovascular System*

174 2.2.1. Cardiovascular Dysfunction after Cardiac Surgery

175 Surgical trauma, myocardial I/R, the excretion of inflammatory mediators, intraoperative
176 cardioplegic arrest, reduced coronary blood flow and microvascular occlusion lead to a decline of
177 myocardial contractility and a reduction of ventricular compliance and resulting function, as
178 displayed in Figure 3. Vasodilation and decreased systemic vascular resistance contribute to systemic
179 hypotension as well. Therefore, vasopressor treatment is commonly needed to support the circulation

180 perioperatively in cardiac surgery patients. Although it is associated with increased oxidative stress
 181 and endothelial dysfunction and myocardial fibrosis [42].

182 Myocardial dysfunction and cardiovascular insufficiency after cardiac surgery can cause a
 183 mismatch of oxygen delivery and metabolic demand and lead to tissue hypoxia. Ventricular systolic
 184 and diastolic dysfunction occurs in up to 70 % of cardiac surgery patients [43, 44]. The low cardiac
 185 output syndrome (LCOS) is clinically characterized by hypotension and signs of tissue
 186 hypoperfusion and occurs in 5 – 15 % after cardiac surgery [43, 45]. Acute kidney injury (AKI) as well
 187 as neurologic and pulmonary complications are the most common consequences of LCOS, leading to
 188 a mortality rate of more than 20 % [34, 44, 46]. Arrhythmias are very common after cardiac surgery.
 189 Their impact on the clinical outcome depends on the kind of arrhythmia, its duration, ventricular
 190 response rate and cardiac function [47]. Arrhythmias might be I/R- and inflammation- induced and
 191 result from an increased intracellular calcium concentration due to calcium-influx through the
 192 damaged, peroxidized lipids in the cell membranes as well as hindered calcium uptake by the
 193 sarcoplasmic reticulum [15].

194
 195 **Figure 3.** Cardiovascular dysfunction after cardiac surgery

196 2.2.2. Role of Vitamin C in the Cardiovascular System

197 The effects of Vit C in the cardiovascular system are tremendous. Despite the capability of
 198 scavenging free radicals, Vit C also promotes the differentiation of embryonic and pluripotent stem
 199 cells into cardiac myocytes [48, 49]. Vit C has cardioprotective properties, which were demonstrated
 200 in rat models, where Vit C reduced oxidative damage in diabetic rats [50] and during I/R-injury [51].
 201 Vitamin C improved myocardial stunning and increased left ventricular function in some animal
 202 studies, however, other animal studies showed no effect of Vit C and some only in combination with
 203 other antioxidants [15]. Therefore, preclinical data regarding the myocardial protection through Vit C
 204 in I/R-injury remains inconclusive, as discussed in detail in a review by Spoelstra-de Man et al. [15].

205 Vit C inhibits the expression of inducible nitric oxide synthetase (iNOS) in endothelial cells and
 206 neuronal nitric oxide synthetase (nNOS) and thereby lowers the plasmatic level of nitric oxide (NO),
 207 which is responsible for the activation of the guanylate cyclase, which counteracts the effects of
 208 vasoconstrictors. Vit C also prevents the impairment of vasoconstriction [10] and restores inter-
 209 endothelial electrical coupling through connexin 37-containing gap-junctions as well as through
 210 protein kinase A-activation required for connexin 40 dephosphorylation [10]. Therefore, Vit C might
 211 increase vasopressor-sensitivity. However, in patients with endothelial dysfunction due to cardio-
 212 metabolic diseases, such as hypertension, atherosclerosis, diabetes and smokers, Vit C promotes
 213 endothelial- and nitric oxide-dependent vasodilation [52]. Overall, Vit C might improve micro-
 214 perfusion [10, 13].

215 In extension, ascorbate also tightens the endothelial permeability barrier [52] and thus might
216 lead to reduced extravasation and edema [53]. A meta-analysis including 44 RCTs and 1129 patients,
217 displayed an overall positive effect of Vit C on endothelial function independently of baseline plasma
218 concentration or route of administration [54]. In the studies included in this meta-analysis,
219 endothelial function was assessed using ultrasound, plethysmography and pulse wave analysis. The
220 effects were significant in patients with cardio-metabolic disorders, especially with heart failure
221 (p< 0.02), atherosclerosis (p< 0.001) and diabetes (p< 0.001).

222 2.2.3. Vitamin C's Influence on the Cardiovascular System in Cardiac Surgery Patients

223 In cardiac surgery with CPB, Vit C levels decrease with the production of ROS and remain low
224 for days after surgery [15] indicating a greater demand of Vit C in the setting of surgery and I/R-
225 induced oxidative stress. Oxidative stress and myocardial damage after cardiac surgery with CPB
226 might be decreased by the administration of Vit C, as demonstrated in an RCT by Dingchao et al. in
227 the 1990ies [55]. In this RCT including 85 patients, the intervention group received a total of
228 250 mg/kg Vit C before and after CPB. Markers for myocardial injury (creatinine kinase (CK) and
229 creatine phosphokinase isoenzyme muscle/brain (CK-MB), as well as malondialdehyde as a marker
230 for oxidative stress were significantly lower in patients receiving Vit C. Clinically, the cardiac index
231 was higher, intervention-group patients were less likely to need defibrillation after weaning from
232 CPB and had shorter ICU- and hospital-LOS [55].

233 Vit C treatment also improves the ventricular function, reduces vasopressor and fluid demand
234 [55 – 57] and increases the cardiac index (CI). In a systematic review [58] and in 6 different meta-
235 analyses including 8 – 15 RCTs [23 – 25, 59 – 61], Vit C was shown to significantly reduce the
236 occurrence of postoperative cardiac arrhythmia, mainly atrial fibrillation (AF). However, the results
237 of these meta-analyses might be strongly influenced by publication bias, as discussed by Hemilae
238 [62]. While postoperative AF gained increasing attention in the past years, and was investigated by
239 several RCTs and meta-analyses, to our knowledge, no large, multicenter study evaluated the effect
240 of Vit C on other important outcomes, such as myocardial function or vasopressor and fluid-demand.

241 2.3. Respiratory System

242 2.3.1. Pulmonary Dysfunction after Cardiac Surgery

243 Pulmonary dysfunction (Figure 4) occurs in up to 79 % of patients after cardiac surgery, ranging
244 from mild subclinical functional changes to manifest acute respiratory distress syndrome (ARDS) in
245 less than 2 % of patients [63]. Acute lung injury is characterized by inflammation, and tissue damage
246 is dealt mainly through oxidative stress and free radicals [64]. ROS like nitric oxide and superoxide
247 can nitrate and oxidize key amino acids in lung proteins, such as surfactant protein, disturbing their
248 function [65].

249 Factors contributing to pulmonary dysfunction are poor lung mechanics, increased
250 intrapulmonary shunt and vascular resistance, pulmonary edema, changes in surfactant and alveolar
251 protein accumulation. The underlying pathomechanisms include inflammation and free radicals, I/R-
252 injury, transfusion-associated lung injury and drug toxicity. Pulmonary dysfunction causes
253 prolonged need for mechanical ventilation, increases ICU- and hospital-LOS and mortality, and
254 significantly affects long-term physical and psychological morbidity [34, 66 – 70].

255

256 **Figure 4.** Pulmonary dysfunction after cardiac surgery.

257 2.3.2. Role of Vitamin C in the Respiratory System

258 Vit C functions as an antioxidant preventing ROS-induced lung damage and rapid oxidation of
 259 ascorbate occurs in during acute inflammation in acute lung injury [65]. In a mouse-model, the
 260 supplementation of Vit C preserved lung barrier function and preserves functionality of ion pumps
 261 in the alveolar epithelium [71] and decreased the lung pathology in an *in vivo* study of influenza virus
 262 infected mice [72]. In rats, Vit C attenuated lung injury caused by I/R [73].

263 A study conducted in 2016 found that Vit C treatment of human bronchial epithelial cells
 264 attenuates particulate matter induced ROS damage, IL-6 expression and increased cell viability [74].
 265 Vitamin C additionally attenuated the smoking induced pulmonary emphysema and vascular
 266 remodeling by reducing ROS induced protein oxidation [75]. In a study by Nathens et al. in 2002, the
 267 application of Vit C decreased risk for pneumonia and ARDS with lower alveolar inflammation in a
 268 cohort of 270 mostly trauma patients [19]. Even though the results of this RCT did not reach statistical
 269 significance, further investigations on that subject were sparked. In the OMEGA study, Rice et al.
 270 supplemented antioxidant cocktails to ARDS patients and observed no benefit [76]. However, these
 271 cocktails contained many components and the 2g/d Vit C was only a minor component. In an RCT
 272 by Gadek et al., a combination of antioxidants, including Vit C decreased pulmonary inflammation
 273 and showed beneficial effects on gas exchange and requirement of mechanical ventilation in patients
 274 with ARDS [77].

275 2.3.3. Vitamin C's Influence on the Respiratory System in Cardiac Surgery Patients

276 Even if preclinical and clinical data seem promising, only very few studies addressed the effect
 277 of Vit C on pulmonary dysfunction in cardiac surgery. To our knowledge, the duration of mechanical
 278 ventilation was the only outcome parameter measured in RCTs investigating this matter. Reduced
 279 intubation time after cardiac surgery was shown in a meta-analysis including 3 RCTs and 575 patients
 280 (mean difference: -2.41, 95% confidence interval -3.82/-0.98, $p=0.001$). However, the heterogeneity of
 281 the included trials was high ($p=0.74$) [25].

282 2.4. Renal System

283 2.4.1. Renal Dysfunction after Cardiac Surgery

284 Acute kidney injury (AKI) is one of the clinically most significant organ dysfunction and occurs
 285 in about 28 % of cardiac surgery patients [78], with 2 – 5 % of patients requiring dialysis. Contributing
 286 factors are oxidative stress during renal I/R-injury, inflammation, hemolysis, cholesterol emboli,
 287 nephrotoxic drugs and toxins resulting in glomerular and tubular damage, reduced glomerular

288 filtration rates and impaired creatinine clearance as shown in (Figure 5). AKI is strongly associated
 289 with need for renal replacement therapy, increased hospital- and ICU-LOS, mortality and decreased
 290 long-term QOL [34, 78 – 84].

291
 292 **Figure 5.** Renal dysfunction in cardiac surgery

293 **2.4.2. Role of Vitamin C in the Renal System**

294 The protective properties of Vit C on the renal system are also attributed to its anti-oxidant
 295 capabilities. Vit C administration reduced the serum creatinine levels in patients who experienced
 296 contrast-mediated nephropathy after coronary angiography [85]. These findings were supported by
 297 a meta-analysis including 1.536 patients in 9 RCTs in 2013 by Sadat et al., decreasing risk for AKI by
 298 33 % (risk ratio 0.672, confidence interval 0.466 – 0.969, $p=0.034$) [86]. In contrast, excessive and long-
 299 term Vit C consumption might lead to oxalate nephropathy. In a case report in 2012 Gurm et al.
 300 described a woman who consumed 3 – 6.5 g of Vit C daily [87]. A similar case was reported in 2015.
 301 A 96-year-old woman was also diagnosed with oxalate nephropathy resulting from an excessive
 302 Vit C intake [88]. The tubular injuries are thereby caused by crystalline deposits of calcium oxalate,
 303 which might be metabolized from Vit C. Therefore, the recurring formation of kidney stones, as well
 304 chronic renal failure and hyperoxaluria are contraindications for a high-dose long-term Vit C
 305 therapy, even though adverse effects seem unlikely in short-term administration [15, 89]. In an RCT
 306 study including burn patients, decreased volume requirement for fluid resuscitation, as well as
 307 increased urine output were observed [21].

308 **2.4.3. Vitamin C's Influence on the Renal System in Cardiac Surgery Patients**

309 A pilot study by Antonic et al. in 2017 with 100 on-pump CABG surgery patients was not able
 310 to confirm the assumed benefits of Vit C on renal function [90]. Potential causes for the insignificance
 311 of the results might be a rather low dosage and oral administration of Vit C (2 x 1 g/d) and the oral
 312 administration, as discussed in greater detail in section 4.2. In any case, further research is warranted,
 313 to investigate the effect of a high-dosage intravenous Vit C application, to fully achieve the
 314 antioxidant and possibly nephroprotective effects.

315 **2.5. Gastrointestinal System**

316 **2.5.1. Gastrointestinal Dysfunction after Cardiac Surgery**

317 Gastrointestinal (GI) complications (Figure 6) occur in 0.2 – 4 % [91], while a postoperative
 318 gastrointestinal atony is observed in most of cardiac surgery patients [92, 93]. Inflammation and I/R-
 319 injury increase gastrointestinal permeability and can lead to bacterial translocation and systemic
 320 endotoxemia. The most common GI complications are postoperative ileus and GI hemorrhage, while

321 mesenteric ischemia and intestinal perforation are the GI complications with the highest mortality.
 322 GI complications increase LOS and mortality [34, 94 – 97].

323
 324 **Figure 6.** Gastrointestinal dysfunction after cardiac surgery

325 2.5.2. Role of Vitamin C in the Gastrointestinal System

326 The few available studies on the interaction of Vit C with the GI system are derived from
 327 oncology. Vit C treatment might mitigate GI adverse effects associated with cancer treatment [98],
 328 where chemotherapy is often associated with damage to the mucous membrane. Al-Asmari et al.
 329 found attenuated toxicity of the antineoplastic drug 5 fluorouracil when Vit C was administered,
 330 demonstrated by decreased activation of nuclear factor kappa-light-chain-enhancer of activated B
 331 cells (NF- κ B) and COX-2 expression as well as lower infiltration of neutrophils [26]. The authors
 332 suggested that the observed benefits were due to the antioxidative effects of Vit C. Similar findings
 333 were observed by Yamamoto et al. in 2010, who could show that Vit C treatment attenuated the
 334 expression of apoptosis related genes as well as DNA damage in crypt cells caused by radiation [11].

335 2.5.3. Vitamin C's Influence on the Gastrointestinal System in Cardiac Surgery Patients

336 To our knowledge, no study of Vit C in cardiac surgery reported neither beneficial nor adverse
 337 effects on the gastrointestinal system.

338 2.6. Coagulation System

339 2.6.1. Coagulation Disorders after Cardiac Surgery

340 Coagulation disorders – both prothrombotic activity and coagulopathy have deleterious effects
 341 on patient outcome (Figure 7). I/R induces the production of ROS by platelets and other vascular
 342 sources. ROS can alter platelet function and increase platelet aggregation and thrombus formation
 343 [99, 100]. In a vicious circle, ROS and platelets augment each other. Therefore, ROS may act
 344 prothrombotic. Additionally, reduced nitric oxid (NO) responsiveness of the platelets might promote
 345 adhesion of the platelets to the endothelium, which is associated with increased cardiovascular
 346 morbidity in patients with acute coronary syndrome [99]. On the other hand, intra- and postoperative
 347 coagulopathy commonly observed after cardiac surgery, lead to an increased need for the transfusion
 348 of blood products and surgical re-exploration. The definition of bleeding is still debated [101], but
 349 mild bleeding occurs in almost one fifth and major bleeding 3 – 12 % of cardiac surgery patients [102].
 350 A mean blood volume of 470 ml is lost during the first 12 hours after cardiac surgery [103].
 351 Contributing factors to coagulopathy are consumption and dilution of platelets and coagulation
 352 factors and heparinization during CPB, as well as effects of preoperative drugs and preexisting
 353 anemia and low fibrinogen-levels. The transfusion of the allogeneic blood products is associated with

354 inflammation, transfusion-associated lung- and kidney injury and increases risk of stroke [28].
 355 Overall, coagulopathy and major bleeding increase the risk of stroke, acute kidney injury, infections,
 356 surgical reoperation, LOS and mortality [102 – 104].

357
 358 **Figure 7.** Coagulation disorders after cardiac surgery

359 2.6.2. Role of Vitamin C in the Coagulation System

360 Vit C has a tremendous impact on cellular and plasmatic hemostasis in the human body and has
 361 both pro- and anticoagulatory effects. The interaction between coagulation and Vit C
 362 supplementation was already discussed in the early 1960s by Dayton and Weiner [105].

363 On a cellular level, antioxidants, such as Vit C may inhibit platelets by scavenging ROS,
 364 disrupting the vicious circle of ROS-platelet-activation and restoring normal platelet function [99]. In
 365 healthy individuals, prostacyclin and NO prohibit platelet activation and prevent thrombosis. Vit C
 366 however, inhibits the expression of inducible nitric oxide synthetase (iNOS) in endothelial cells and
 367 neuronal nitric oxide synthetase (nNOS) and thereby lowers the plasmatic level of nitric oxide (NO)
 368 [10], hence acting pro-coagulatory. However, Vit C also prevents microthrombus formation through
 369 inhibition of thrombin-induced and P-selectin mediated platelet aggregation and platelet-endothelial
 370 adhesion [10]. Even after the onset of microthrombus formation, ascorbate injection even reverses
 371 capillary plugging and platelet-endothelial adhesion [10]. Ascorbate also inhibits the pH-dependent
 372 thrombin-induced release of plasminogen-activator-inhibitor-1 from platelets [10].

373 The plasmatic coagulation is influenced by Vit C via several pathways. ROS and other stimuli
 374 activate NF-κB. The transcription factor NF-κB initiates the expression of cytokines and proteins
 375 involved in coagulation, such as tissue factor [106]. This suggests that coagulation via NF-κB can be
 376 affected by Vit C [107, 108]. Furthermore, Vit C decreases tissue plasminogen activator and von
 377 Willebrand-factor, demonstrating an important link between inflammation, coagulation and Vit C
 378 [108, 109]. Vit C is also known to restore the capacity for endogenous, endothelium-dependent
 379 fibrinolysis in smokers [110].

380 On a systemic level, the influence of Vit C on the hemostasis might be dose-dependent. While
 381 depleted Vit C levels are associated with gastrointestinal hemorrhage especially in patients
 382 undergoing acetylsalicylate-treatment [111], in very high dosages (0.5 – 1 g/kg), Vit C was found to
 383 promote the occurrence of thrombosis through pro-coagulant activation of erythrocytes in a rat
 384 model [112]. Vit C abolished coagulation abnormalities in septic mouse blood [71] and attenuated a
 385 sepsis-induced drop of thrombocytes in the systemic blood in septic patients [10].

386 2.6.3. Vitamin C's Influence on the Coagulation System in Cardiac Surgery Patients

387 To our knowledge, only two studies of Vit C in cardiac surgery have addressed the issue of
 388 hemostasis. In one RCT from Sadeghpour et al. (n=290), Vit C reduced chest tube bleeding [113],
 389 while no difference was shown in another RCT [57]. Clearly, further research is needed to determine

390 the influence of Vitamin C on blood loss, need for transfusion and risk of thromboembolic events and
 391 to translate biochemical pathways into clinically relevant outcomes.

392 *2.7. Immune System*

393 *2.7.1. Immune dysfunction after Cardiac Surgery*

394 After cardiac surgery, infections are the most common non-cardiac complication [114], (Figure
 395 8). A quarter of all patients undergoing high-risk heart-surgery are diagnosed with a postoperative
 396 infection [115], and nearly 5 % experience major infection. Pneumonia is the most frequent
 397 nosocomial infection in half of these cases. Surgical site infections and catheter- and device-associated
 398 infections each make up 25 % of infections [115, 116]. Major infections have a tremendous effect on
 399 subsequent survival and are associated with longer mechanical ventilation, ICU- and hospital stay
 400 and a higher morbidity and mortality up to 5 years after the operation [63, 114, 115, 117 – 125].

401
 402 **Figure 8.** Dysfunction of the immune system after cardiac surgery

403 *2.7.2. Role of Vitamin C in the Immune System*

404 Infections are associated with and accompanied by an increase of oxidative stress. The increased
 405 ROS production during infection, and hypermetabolic Vit C requirements are the reasons for the
 406 observed Vit C reduction [126, 127].

407 Vit C is actively accumulated into the dermal cells and neutrophils via the sodium-dependent
 408 Vit C transporters (SVCT). Neutrophils further increase their intracellular Vit C concentration
 409 through uptake of DHA via glucose transporters (GLUT) and metabolism to ascorbate [127]. The
 410 accumulation of Vit C in phagocytotic cells can enhance chemotaxis, phagocytosis, generation of ROS
 411 and microbial killing. Vit C is also necessary for apoptosis and the clearing of spent neutrophils from
 412 the infected site. Vit C enhances the proliferation and differentiation of B and T-cells. Vit C deficiency
 413 results in impaired immunity and thus, higher susceptibility for infections.

414 Vit C supports endothelial barrier function against pathogens and promotes antioxidant
 415 scavenging activity of the skin. Vit C is a known inhibitor of bacterial growth, such as *S. aureus* and
 416 intestinal bacteria. One possible mechanism for the antibacterial function of Vit C is the production
 417 of hydrogen peroxide during its oxidation [13]. Vit C also shortens time to wound healing through
 418 stimulation of proliferation, differentiation and migration of keratinocytes and fibroblasts, as well as
 419 through the stimulation of lipid synthesis [127]. Vit C also enhances microbial killing through
 420 improved immune cells chemotaxis, motility and phagocytosis and decreases necrosis through
 421 facilitation of apoptosis and clearance [127]. Differentiation and proliferation of B and T lymphocytes
 422 is stimulated by Vit C as well, enhancing antibody levels.

423 However, the increased ROS production by the immune system is an important response to
424 invasive pathogens. Therefore, if radical-scavenging role of Vit C is solely beneficial, remains debated
425 and most likely dose-dependent. The systemic effect of Vit C on bacterial and viral infections needs
426 further research, while current evidence demonstrates that Vit C might prevent the development, or
427 ameliorate the clinical course of pneumonia [128, 129]. Vit C deficiency was associated with increased
428 inflammation as measured in CRP and patients with septic shock were deficient in Vit C in 40 % in
429 an observational study by Carr et al. [12]

430 **2.7.3. Vitamin C's Influence on the Immune System in Cardiac Surgery Patients**

431 Unfortunately, again, there is little knowledge about the influence of Vit C on postoperative
432 immune function and infections in cardiac surgery. Sadeghpour et al reported a significant reduction
433 in the composite outcome "complications", defined as death, infection, impairment in renal function
434 and need for reoperation [113]. Neither the incidence of infection, nor the influence of infection on
435 the whole combined outcome parameter were reported in this study. Jouybar 2012 et al. [130] showed
436 no difference in white blood count and inflammatory mediators using two bolus dosages of 3g of
437 Vit C 12 – 18 h before surgery and during CPB initiation.

438 **3. Influence of Vitamin C on the Overall Clinical Outcome of Cardiac Surgery Patients**

439 Considering the above-mentioned evidence and the data gained from meta-analyses and RCTs,
440 as listed in Table 2 and Table 3, Vit C may have positive effects on many vital functions and organ
441 systems, which overall may have beneficial effects on patients short, mid and longterm outcomes.

- 442 • The overall effect is reflected by a reduced ICU-LOS in a meta-analysis of Geng et al. including
443 12 RCTs and 1584 patients [25] and Baker et al., including 11 RCTs and 1390 patients.
- 444 • Reduced hospital LOS was demonstrated in a systematic review 2014 including 5 RCTs [58], as
445 well as the meta-analyses of Geng [25] and Baker [59] and Shi et al., including 13 trials involving
446 1956 patients [60]. However, in the meta-analysis by Hu et al. including 8 RCTs and 1060
447 patients, Vit C application was not associated with reductions in ICU or hospital-LOS [23].
- 448 • Vitamin C might also reduce intubation time and postoperative complications as found by the
449 meta-analyses of Hu and Shi [25, 60].

450 However, all meta-analyses observed significant clinical heterogeneity of the included studies.
451 In addition, effects on LOS in unblinded studies are subject to performance bias due to
452 cointerventions or differentially applied policies on discharge. Additionally, none of the available
453 RCTs included in these meta-analyses was adequately powered to detect an influence of Vit C on
454 overall clinical outcomes, such as on LOS or mortality, as discussed by Polymeropoulos et al. [24].

455

456
457**Table 2.** RCTs investigating the effects of Vitamin C in cardiac surgery. (p.o.= per os, i.v.= intravenous, sign.= significantly, N.A.= not available, WBC= white blood count, preop = before surgery, postop= after surgery)

Author and Year	Patients	Dosage of Vitamin C	p.o/ i.v.	Results
Knodell 1981 [131]	175 + hepatitis	Preop: 4 x 800 mg/d for 2 days Postop: 4 x 800 mg/d for 2 weeks	p.o.	Elevations of plasma Vit C, no influence on the hepatitis
Li 1990 [132]	20	Preop: 250 mg/kg before the start of extracorporeal circulation	N.A.	Sign. reduction in lipid peroxidation
Dingchao 1994 [55]	85 CPB	125 mg/kg 30 minutes before surgery and at the end of CPB	i.v.	Decreased CK/ CKMB, LDH, & rate of defibrillation, ICU- and hospital LOS, improved CI
Carnes 2001 [133]	86 CABG	Preop: 1 x 2 g the night before Postop: 2 x 0.5 g/d for 5 days	N.A.	Lower rate of AF
Demirag 2001 [134]	30 elective	Group 1: 2 x 50 mg/kg Vit C at induction and end of CPB Group 2: Vit C +diltiazem: bolus and 2 µg/kg/min until end of CPB	i.v.	Prevention of lipid peroxidation no difference in myocardial I/R-injury
Eslami 2007 [135]	100 CABG	Preop: 1 x 2 g night before Postop: 2 x 1 g/d for 5 days	p.o.	Lower rate of AF
Colby 2011 [136]	24 CABG and/ or valve	Preop: 1 x 2 g night before Postop: 2 x 0.5 g/d for 4 days	p.o.	No difference in CRP, WBC, fibrinogen, Trend: decreased AF, hospital- and ICU-LOS
Papoulidis 2011 [137]	170 CABG	Preop:1 x 2 g 3 h prior to surgery Postop: 2 x 0.5 mg/d for 5 days	i.v.	Sign. lower rate of AF, hospital- and ICU-LOS
Bjordahl 2012 [138]	185 CABG	Preop: 1 x 2 g night before surgery Postop: 2 x 1 g/d for 5 days	p.o.	No difference in postoperative complications, mortality or AF
Jouybar 2012 [130]	40 CABG	Preop: 2 x 3 g 12 – 18 h before surgery and during CPB initiation	i.v.	No difference in inflammatory cytokines, hemodynamics, blood gases, urea nitrogen, creatinine, WBC, platelet counts & outcomes
Dehghani 2014 [139]	100 CABG	Preop: 1 x 2 g Postop: 2 x 0.5/d g for 5 days	p.o.	Sign. lower rate of AF, hospital- and ICU-LOS
Ebade 2014 [140]	40	Preop: 1 x 2 g Postop: 1 x 1 g 12 h after surgery, 3 x 1 g for 6 days after surgery	i.v.	Lower incidence of AF Shortened ICU- and hospital-LOS
Sama-dikhah 2014 [141]	120 CABG	Preop: 1 x 2 g Postop: 1x 1 g/d for 5 d days Plus atorvastatin 40 mg	p.o.	Sign. lower rate of AF
Sadegh-pour 2015 [113]	290 CABG, valve	Preop: 1 x 2 g before surgery Postop: 1x 1 g/d for 4 days	Preop: i.v. Postop: p.o.	Sign. reductions in AF, hospital- LOS, intubation time, complications (death, renal function, infection) and drainage, unchanged ICU-LOS
Das 2016 [56]	70 elective low risk CABG	Preop: 2 x 0.5 g for 7 days prior to surgery	p.o.	Lower vasopressors-demand, no difference in time to extubation, ICU- and hospital-LOS, mortality or complications
Antonic 2016 [142]	105 CABG	Preop: 2 x 2 g; 24 and 2 h before surgery Postop: 2 x 1 g/d for 4 days	i.v.	Trend: decreased rate of AF, no difference in complications
Antonic 2017 [90]	100 CABG	Preop: 2 x 2 g; 24 and 2 h Postop: 2 x 1 g/d for 5 days	i.v.	No sign. protective effect of ascorbic acid on the incidence of postoperative AKI

458

459 **4. Vitamin C in Combination with other Antioxidant Therapies**

460 Vitamin C has been combined with other antioxidant substances to minimize oxidative damage,
 461 as well as with anti-arrhythmic drugs such as beta-blockers and diltiazem with the objective to reduce
 462 the incidence of postoperative cardiac arrhythmia. In combination with beta-blockers, the incidences
 463 of AF and ICU-LOS were significantly reduced compared to CABG-patients who only received beta-
 464 blocker pre-surgery [57].

465 Vitamin C also regenerates α -Tocopherol (Vit E), therefore, a combination therapy might offer
 466 more benefits compared to a monotherapy [5]. A combination of Vit C and E significantly reduced
 467 28-day mortality and duration of mechanical ventilation in ICU patients in a study by Crimi et al.
 468 [143]. Howe et al. observed a reduction of mechanical ventilation and a trend towards reduced all-
 469 cause mortality and ICU-LOS in critically ill patients [144]. In cardiac surgery patients, the combined
 470 Vit C and E therapy lowered oxidative stress, as demonstrated by lower lipid oxidation and
 471 lysosomal enzyme activity [145], improved function of the pulmonary vessels [146] and seemed to
 472 have an anti-inflammatory effect as measured in lower CRP levels in a study by Gunes et al. [147],
 473 see also Table 3.

474 **Table 3. RCTs investigating antioxidant cocktails in cardiac surgery**

Author and Year	N	Treatment	Outcomes
Barta 1991 [145]	20	Preop: 2000 IU Vit E: 12 h before surgery; 2 g Vit C in the morning on the day of surgery	Inhibition of the decrease of catalase Lower lipid oxidation and lysosomal enzymes in intervention group
Westhuyzen 1997 [148]	76	Preoperative (7-10 days): 1g Vit C and 750 IU Vit E	Supplementation of the vitamins prevented depletion, but provided no clinical advantage
Angdin 2003 [146]	22	Preop: 900 mg Vit E for 10-14 days plus 1 x 2 g Vit C and 600 mg allopurinol the evening before surgery, and acetylcysteine during surgery	Reduction of pulmonary vascular endothelial dysfunction in the group treated with antioxidants
Castillo 2011 [149]	95	Preop: for 7 days n-3 PUFA 2g/d Plus, for 2 days preop until discharge Vit C 1g/d and Vit E 400IU/d	Decrease in oxidative stress-related biomarkers in atrial tissue
Gunes 2012 [147]	59	Preop: Vit C 500 mg and Vit E 300 mg Postop: Vit C 500 mg/d and Vit E 300 mg/d for 4 days	Significant reduction of CRP
Rodrigo 2013 [150]	203	Preop: 1 g/d Vit C plus PUFA and Vit E for 2 days preop until discharge	Decrease in oxidative stress-related biomarkers in atrial tissue
Stanger 2014 [151]	75	4 subgroups: control, vitamins, n-3 PUFAs, and a combination of vitamins and n-3 PUFAs Vitamin group: 500 mg Vit C + 45 IE Vit E 30 minutes before reperfusion, postop and 120 minutes after reperfusion	Attenuation of postop oxidative stress, Oxidative stress associated with consumption of antioxidants and onset of AF
Rezk 2017 [57]	100	3 days preoperatively Group 1: β -blocker: 5 mg bisoprolol and 2g/d Vit C Group 2: β -blocker only	Significantly lower incidence in Vit C group, ICU-LOS, need for inotropes and mechanical ventilation

475 **5. Practical Approach to Vitamin C Supplementation**476 **5.1. Risks and Side Effects**

477 As demonstrated above, many studies have supplemented Vit C, but significant adverse effects
 478 on patients in short term use have not yet been reported [15, 18, 113]. This is true for low, as well as
 479 for dosages of 200 mg/kg/d and up to extremely high dosages of 1500 mg/kg three times a week in

480 cancer patients [15]. Possible adverse effects are related to dosage, enteral route and duration of Vit C
481 supplementation and include:
482 • Diarrhea and abdominal bloating [89]
483 • False negative tests for gastrointestinal occult bleeding [89]
484 • Aggravation of iron overload in patients with hemochromatosis or other diseases requiring
485 frequent blood transfusions, such as thalassemia major and sideroblastic anemia [89]
486 • Possible adverse pro-oxidative effect in large dosages in case of iron overload [15]
487 • Possible hyperuricosuria [89]
488 • Formation of kidney stones through precipitation of calcium oxalate, especially in patients with
489 chronic renal failure, hyperoxaluria and recurring formation of kidney stones [15, 89]
490 • Hemolysis in patients with hereditary glucose-6-phosphate dehydrogenase (G6DP) deficiency
491 when administered in high dosages of > 4 g/d [89]
492 • False-high measurements of blood glucose in hand-held devices [152, 153]

493 *5.2. Application Strategies*

494 *5.2.1. Dosing*

495 Current literature does not support a specific Vit C dosing strategy in cardiac surgery, in the
496 absence of a definitive trial. The dose typically administered by parenteral and enteral nutrition is
497 200 mg/d, which is recommended for the healthy population. In a study by Carr et al., standard
498 enteral or parenteral nutritional therapy with a mean of 125 mg/d did not prevent hypovitaminosis
499 C in critically ill patients [12]. Even after less invasive and elective surgery, such as maxilla-facial
500 surgery, higher dosages (500 mg – 2000 mg/d, mean 1150 mg/d) were required to increase plasma Vit
501 C levels and compensate for the observed loss [13, 154, 155]. In patients experiencing significant
502 inflammation and oxidative stress, such as trauma, burn, sepsis and cardiac surgery patients, the
503 Vit C requirement seems to increase dramatically. A dosage of 3 – 4 g/d parenterally seems necessary
504 to normalize the Vit C plasma levels in patients with burns or sepsis [15] or critically ill trauma
505 patients [14]. Probable causes for this high demand are higher consumption due to the antioxidant
506 capacity of Vit C, as well as increased renal clearance during Vit C substitution.

507 Fowler et al. recently published a phase 1 clinical trial suggesting that 200 mg/kg/day yields
508 higher plasma levels of vitamin C and more favorable Sequential Organ Failure Assessment (SOFA)
509 scores compared to 50 mg/kg/day in severely septic patients [17]. A very high dosage of 66 mg/kg/h
510 for the first 24 hours was used in the study by Tanaka et al. in burn patients, which led to reduced
511 fluid demand and increased urine production [20, 21].

512 In cardiac surgery patients, the dosing regimen used in the previously mentioned studies are
513 extremely heterogenous. Most studies use a single dose of 2 g once prior to surgery. Postoperatively,
514 a very small dosage of less than 1 g/d was administered [113, 131, 133, 136, 137, 139, 141]. However,
515 single-dosages as high as 150 mg/kg [55] or 250 mg/kg have also been applied [132]. To our
516 knowledge, there is no dose-finding study available in cardiac surgery patients yet.

517 *5.2.2. Timing*

518 The oxidative damage is highest minutes after reperfusion, hence an early administration may
519 be optimal. Logically, preoperative administration might refuel the body's antioxidant capabilities,
520 preparing for CPB. Application of a dosage before the removal of the aortic cross-clamp and
521 reperfusion might achieve the minimal ROS-scavenging plasma-levels of 1 – 10 mmol/l [15].

522 In one study, the cardiac index was significantly higher in the first 6 hours after the operation in
523 patients receiving a mega-dose of 125 mg/kg, suggesting that the effect of Vit C might wear off after
524 that period of time [55]. Ruemelin et al. showed a rapid decrease in plasma concentration after the
525 end of the infusion [155]. In the study by Tanaka [21], serum levels of Vit C increased quickly under
526 continuous infusion, remained elevated until 12 hours after infusion and decreased rapidly.

527

528 5.2.3. Mode of Administration

529 One possibility to counteract the rapid metabolic clearance and drop of plasma Vit C levels
530 would be a continuous infusion, which is feasible and effective under UV-protection [21]. However,
531 Vit C's lability allows for degradation of the vitamin before it enters the patient. Another option
532 might be frequent bolus dosing, as used in the trial by Fowler et al. [17].

533 Another question not yet answered is the route of administration. Through enteral
534 supplementation, serum Vit C cannot be raised to physiological levels, even if the highest tolerated
535 dosage is administered enterally [12]. When Vit C is supplemented parenterally, supraphysiological
536 dosages can safely be administered and the antioxidant effects of Vit C may be increased. [15]. On
537 the other hand, even an oral application of Vit C has shown to be beneficial in the RCTs by
538 Sadeghpour [113], and Dehghani [139].

539 5.2.4. Monitoring

540 As outlined before, Vit C can be measured in its oxidized form DHA. When monitoring DHA in
541 blood samples, it has to be kept in mind that ascorbic acid is sensitive to oxidation and degradation
542 during blood sampling, handling, storage and analysis. Therefore, the handling, storage and
543 following shipment to reference laboratories may be problematic [156]. Factors influencing the
544 stability of DHA in whole blood and serum are temperature, light-exposure, pH, contamination with
545 copper or iron and anticoagulant of the blood sample [157, 158], as well as dissolved oxygen, solvent,
546 ionic strength, trace metals and oxidizing enzymes. In a refrigerator at 4 °C, the degradation of Vit C
547 within 24 hours is 1.8 % in serum tubes and 7.2 % in plasma tubes [159].

548 Therefore, blood samples should be drawn immediately pushed into crushed ice in a light
549 protected box and be delivered within 2 hours for reliable Vit C measurements [160]. When whole
550 blood is immediately centrifuged, acidified and stored at -70 °C, ascorbic acid degrades very slowly
551 and can be analyzed for at least 6 years. However, due to different degradation rates depending on
552 the acid and anticoagulant used in sampling tubes, a quick analysis seems preferable [157, 161]. High
553 performance liquid chromatography (HPLC) with electrochemical detection is the current gold
554 standard of Vit C measurement, which usually requires the stabilization of Vit C through acid or
555 alcohol precipitation usually combined with a metal chelator [158]. Robitaille and Hoffer showed that
556 the simpler UV light detection is equivalent to the electrochemical detection [156]. A recent study by
557 Pullar et al. demonstrated a good stability of DHA for up to a year at -80°C both as plasma, as well
558 as in extracts with perchloric acid (PCA) containing 100 µmol/l of the metal chelator
559 diethylenetriaminepentaacetic acid (DTPA) extracts, with a loss of 8 % in 12 months [158].

560 Considering these influencing factors, the measurement of Vit C is elaborate and costly and
561 therefore, not readily accessible in the ICU.

562 5. Conclusion and Future Directions

563 The many ways of Vit C to attenuate inflammation and oxidative damage lead to an increasing
564 interest in its clinical application. Preclinical as well as preliminary clinical studies demonstrated
565 beneficial effects of Vit C on the organ function during inflammation and oxidative stress.

566 Until now, no serious adverse events have been reported in any of the cited studies, highlighting
567 the safety of this pharmaco-nutrient. However, the number of studies investigating the effect of Vit C
568 in cardiac surgery is very small and results are inconclusive, yet. This might be due to the
569 heterogeneity of dosage, route of administration, time points, choice of endpoints and settings.
570 Importantly, neither the specific population, nor dosage and timing of Vit C application have yet to
571 be elucidated in cardiac surgery. Despite the outlined pleiotropic effects on different organ functions,
572 no study investigated the impact of Vit C on clinical outcomes after cardiac surgery. Yet, given the
573 summarized promising evidence, further trials in cardiac surgery patients with complex surgical
574 procedures are encouraged.

575 Any conclusive evidence of the benefits in cardiac surgery patients would lead to rapid
576 implementation of this promising therapy for four reasons: 1) the overall well safety profile of vitamin

577 C which may enable a broad use; 2) the feasibility of the Vit C administration without any dose
578 adjustments; 3) familiarity to clinicians and patients as a therapy for cancer and in some burn units;
579 4) low costs to produce and to administer.

580 **Author Contributions:** A.H., and C.S. equally contributed to the conception and design of the research together
581 with D.H., P.M. and C.B. A.H. and S.B. drafted the manuscript together with C.B., C.N. and C.S. Graphics were
582 provided by AH. A.H., S.B., C.B., C.N., P.L., D.H. and C.S., contributed to the acquisition of data. N.A., D.H.,
583 and C.B. contributed to the study selection. All authors contributed to analysis and interpretation of the reviewed
584 data, critically revised the manuscript, agree to be fully accountable for ensuring the integrity and accuracy of
585 the work, and read and approved the final manuscript.

586 **Acknowledgments:** No funding was received for this review.

587 **Conflicts of Interest:** The authors declare no conflict of interest that may be perceived as inappropriately
588 influencing the representation or interpretation of reported research results.

589 Appendix A: Abbreviations

AA	Ascorbic Acid
AF	Atrial Fibrillation
AKI	Acute Kidney Injury
CABG	Coronary Artery Bypass Graft
CI	Cardiac Index
CK	Creatine Phosphokinase
CK-MB	Creatine Kinase-Muscle/Brain
CPB	Cardiopulmonary Bypass
CRP	C-reactive Protein
DHA	Dehydroascorbate
DTPA	Diethylenetriaminepentaacetic acid
GI	Gastrointestinal
HPLC	High Performance Liquid Chromatography
ICU	Intensive Care Unit
IL	Interleukin
iNOS	Inducible Nitric Oxide Synthetase
I/R	Ischemia/Reperfusion
i.v.	Intravenous
LCOS	Low Cardiac Output Syndrome
LDH	Lactate Dehydrogenase
LOS	Length of Stay
N.A.	Not Available
NADPH	Nicotinamide Adenine Dinucleotide Phosphate
NF κ B	Nuclear Factor kappa-light-chain enhancer of activated B cells
nNOS	Neuronal Nitric Oxide Synthetase
NO	Nitric Oxide
PCA	Perchloric Acid
PCT	Procalcitonin
PN	Parenteral Nutrition
p.o.	Per Os
POCD	Postoperative Cognitive Dysfunction
Postop	Before Surgery
Preop	After Surgery
PUFA	Poly Unsaturated Fatty Acids
QOL	Quality of Life
RCT	Randomized Controlled Trial
ROS	Reactive Oxygen Species
Sign.	Significantly
SIRS	Systemic Inflammatory Response Syndrome
SOFA	Sequential Organ Failure Assessment
SVCT2	Sodium-dependent Vitamin C Transporter-2

TNF α	Tumor Necrosis Factor α
Vit C	Vitamin C
Vit E	Vitamin E / α -Tocopherol
WVC	White Blood Count

590 **References**

591 [1] Sheldon Magder. Reactive oxygen species: toxic molecules or spark of life? *Critical care (London, England)*,
592 10:208, February 2006. DOI: 10.1186/cc3992

593 [2] Erich Roth, Nicole Manhart, and Barbara Wessner. Assessing the antioxidative status in critically ill
594 patients. *Current opinion in clinical nutrition and metabolic care*, 7:161–168, March 2004.

595 [3] Ron Kohen and Abraham Nyska. Oxidation of biological systems: oxidative stress phenomena,
596 antioxidants, redox reactions, and methods for their quantification. *Toxicologic pathology*, 30:620–650, 2002. DOI:
597 10.1080/01926230290166724

598 [4] Cristiane Ritter, Michael Andrade, MÁrcio Guerreiro, Leonardo Zavaschi, Daniel Pens Gelain,
599 Luis Fernando Souza, Cyntia A Ribeiro, Nadine Clausell, SÁrgio Menna-Barreto, JosÁ ClÁudio F Moreira,
600 and Felipe Dal-Pizzol. Plasma oxidative parameters and mortality in patients with severe burn injury. *Intensive
601 care medicine*, 29:1380–1383, August 2003. DOI: 10.1007/s00134-003-1833-9

602 [5] W A C Kristine Koekkoek and Arthur R H van Zanten. Antioxidant vitamins and trace elements in critical
603 illness. *Nutrition in clinical practice : official publication of the American Society for Parenteral and Enteral Nutrition*,
604 31:457–474, August 2016. DOI 10.1177/0884533616653832

605 [6] Ettore Crimi, Vincenzo Sica, Arthur S Slutsky, Haibo Zhang, Sharon Williams-Ignarro, Louis J Ignarro, and
606 Claudio Napoli. Role of oxidative stress in experimental sepsis and multisystem organ dysfunction. *Free radical
607 research*, 40:665–672, July 2006.

608 [7] Christian Stoppe, Bernard McDonald, Carina Benstoem, Gunnar Elke, Patrick Meybohm, Richard
609 Whitlock, Stephen Fremes, Robert Fowler, Yoan Lamarche, Xuran Jiang, Andrew G Day, and Daren K Heyland.
610 Evaluation of persistent organ dysfunction plus death as a novel composite outcome in cardiac surgical patients.
611 *Journal of cardiothoracic and vascular anesthesia*, 30:30–38, January 2016. DOI: 10.1053/j.jvca.2015.07.035

612 [8] Mette M Berger and Heleen M Oudemans-van Straaten. Vitamin c supplementation in the critically ill
613 patient. *Current opinion in clinical nutrition and metabolic care*, 18:193–201, March 2015.
614 DOI: 10.1097/MCO.0000000000000148

615 [9] Min Han, Suresh Pendem, Suet Ling Teh, Dinesh K Sukumaran, Feng Wu, and John X Wilson. Ascorbate
616 protects endothelial barrier function during septic insult: Role of protein phosphatase type 2a. *Free radical biology
617 & medicine*, 48:128–135, January 2010. DOI: 10.1016/j.freeradbiomed.2009.10.034

618 [10] Karel Tyml. Vitamin c and microvascular dysfunction in systemic inflammation. *Antioxidants*, 6(3):49, 2017.
619 DOI: 10.3390/antiox6030049

620 [11] Tetsuo Yamamoto, Manabu Kinoshita, Nariyoshi Shinomiya, Sadayuki Hiroi, Hidekazu Sugasawa,
621 Yoshitaro Matsushita, Takashi Majima, Daizoh Saitoh, and Shuhji Seki. Pretreatment with ascorbic acid prevents
622 lethal gastrointestinal syndrome in mice receiving a massive amount of radiation. *Journal of radiation research*,
623 51:145–156, 2010.

624 [12] Anitra C Carr, Patrice C Rosengrave, Simone Bayer, Steve Chambers, Jan Mehrtens, and Geoff M Shaw.
625 Hypovitaminosis c and vitamin c deficiency in critically ill patients despite recommended enteral and parenteral
626 intakes. *Critical Care*, 21(1):300, 2017. DOI: 10.1186/s13054-017-1891-y

627 [13] John X Wilson. Evaluation of vitamin c for adjuvant sepsis therapy. *Antioxidants & redox signaling*,
628 19(17):2129–2140, 2013. DOI: 10.1089/ars.2013.5401

629 [14] CL Long, KI Maull, RS Krishnan, HL Laws, JW Geiger, L Borghesi, W Franks, TC Lawson, and
630 HE Sauberlich. Ascorbic acid dynamics in the seriously ill and injured. *Journal of surgical research*, 109(2):144–148,
631 2003.

632 [15] Angelique M E Spoelstra-de Man, Paul W G Elbers, and Heleen M Oudemans-van Straaten. Making sense
633 of early high-dose intravenous vitamin c in ischemia/reperfusion injury. *Critical care (London, England)*, 22:70,
634 March 2018. DOI: 10.1186/s13054-018-1996-y

635 [16] Emma Borrelli, Pascale Roux-Lombard, Georges E Grau, Eric Girardin, Bara Ricou, Jean-Michel Dayer, and
636 Peter M Suter. Plasma concentrations of cytokines, their soluble receptors, and antioxidant vitamins can predict
637 the development of multiple organ failure in patients at risk. *Critical care medicine*, 24(3):392–397, 1996.

638 [17] Alpha A Fowler, Aamer A Syed, Shelley Knowlson, Robin Sculthorpe, Don Farthing, Christine DeWilde,
639 Christine A Farthing, Terri L Larus, Erika Martin, Donald F Brophy, Seema Gupta, Medical Respiratory
640 Intensive Care Unit Nursing, Bernard J Fisher, and Ramesh Natarajan. Phase i safety trial of intravenous ascorbic
641 acid in patients with severe sepsis. *Journal of translational medicine*, 12:32, January 2014. DOI: 10.1186/1479-5876-
642 12-32

643 [18] Mohadeseh Hosseini Zabet, Mostafa Mohammadi, Masoud Ramezani, and Hossein Khalili. Effect of high-
644 dose ascorbic acid on vasopressor's requirement in septic shock. *Journal of research in pharmacy practice*, 5:94–100,
645 2016. DOI: 10.4103/2279-042X.179569

646 [19] Avery B Nathens, Margaret J Neff, Gregory J Jurkovich, Patricia Klotz, Katherine Farver, John T Ruzinski,
647 Frank Radella, Iris Garcia, and Ronald V Maier. Randomized, prospective trial of antioxidant supplementation
648 in critically ill surgical patients. *Annals of surgery*, 236:814–822, December 2002.

649 [20] Steven Alexander Kahn, Ryan J Beers, and Christopher W Lentz. Resuscitation after severe burn injury
650 using high-dose ascorbic acid: a retrospective review. *Journal of burn care & research : official publication of the*
651 *American Burn Association*, 32:110–117, 2011. DOI: 10.1097/BCR.0b013e318204b336

652 [21] H Tanaka, T Matsuda, Y Miyagantani, T Yukioka, H Matsuda, and S Shimazaki. Reduction of resuscitation
653 fluid volumes in severely burned patients using ascorbic acid administration: a randomized, prospective study.
654 *Archives of surgery (Chicago, Ill. : 1960)*, 135:326–331, March 2000.

655 [22] Emmanouil Bouras, Michael Chourdakis, Maria G Grammatikopoulou, and Daren K Heyland. Nutrition
656 therapy practices applied on severe burn patients: Results from the ins 2014 survey. *Clinical nutrition ESPEN*,
657 24:182, April 2018. DOI: 10.1016/j.clnesp.2018.01.042

658 [23] Xiaolan Hu, Linhui Yuan, Hongtao Wang, Chang Li, Junying Cai, Yanhui Hu, and Changhua Ma. Efficacy
659 and safety of vitamin c for atrial fibrillation after cardiac surgery: A meta-analysis with trial sequential analysis
660 of randomized controlled trials. *International Journal of Surgery*, 37:58–64, 2017. DOI: 10.1016/j.ijsu.2016.12.009

661 [24] Evangelos Polymeropoulos, Pantelis Bagos, Maria Papadimitriou, Ioannis Rizos, Efstratios Patsouris, and
662 Ioannis Toumpoulis. Vitamin c for the prevention of postoperative atrial fibrillation after cardiac surgery: a meta-
663 analysis. *Advanced pharmaceutical bulletin*, 6(2):243, 2016. DOI: 10.15171/apb.2016.033

664 [25] Jun Geng, Ju Qian, Weijun Si, Hao Cheng, Fuhai Ji, and Zhenya Shen. The clinical benefits of perioperative
665 antioxidant vitamin therapy in patients undergoing cardiac surgery: a meta-analysis. *Interactive cardiovascular*
666 *and thoracic surgery*, 25(6):966–974, 2017. DOI: 10.1093/icvts/ivx178

667 [26] Abdulrahman Khazim Al-Asmari, Abdul Quaiyoom Khan, Amal Mohammad Al-Qasim, and Yara Al-
668 Yousef. Ascorbic acid attenuates antineoplastic drug 5-fluorouracil induced gastrointestinal toxicity in rats by
669 modulating the expression of inflammatory mediators. *Toxicology reports*, 2:908–916, 2015.
670 DOI: 10.1016/j.toxrep.2015.06.006

671 [27] Kim A Eagle, Robert A Guyton, Ravin Davidoff, Fred H Edwards, Gordon A Ewy, Timothy J Gardner,
672 James C Hart, Howard C Herrmann, L David Hillis, Adolph M Hutter, Bruce Whitney Lytle, Robert A Marlow,
673 William C Nugent, Thomas A Orszulak, American College of Cardiology, and American Heart Association.
674 Acc/aha 2004 guideline update for coronary artery bypass graft surgery: a report of the american college of
675 cardiology/american heart association task force on practice guidelines (committee to update the 1999 guidelines
676 for coronary artery bypass graft surgery). *Circulation*, 110:e340–e437, October 2004.

677 [28] Fausto Biancari, Tuomas Tauriainen, Andrea Perrotti, Magnus DalÃ©n, Giuseppe Faggian, Ilaria Franzese,
678 Sidney Chocron, Vito G Ruggieri, Karl Bounader, Helmut Gulbins, Daniel Reichart, Peter Svenarud, Giuseppe
679 Santarpino, Theodor Fischlein, Tamas Puski, Daniele Maselli, Carmelo Dominici, Saverio Nardella, Giovanni
680 Mariscalco, Riccardo Gherli, Francesco Musumeci, Antonino S Rubino, Carmelo Mignosa, Marisa De Feo, Ciro
681 Bancone, Giuseppe Gatti, Luca Maschietto, Francesco Santini, Antonio Salsano, Francesco Nicolini, Tiziano
682 Gherli, Marco Zanobini, Matteo Saccoccia, Paola D'Errigo, Eeva-Maija Kinnunen, and Francesco Onorati.
683 Bleeding, transfusion and the risk of stroke after coronary surgery: A prospective cohort study of 2357 patients.
684 *International journal of surgery (London, England)*, 32:50–57, August 2016. DOI: 10.1016/j.ijsu.2016.06.032

685 [29] Christopher Cropsey, Jason Kennedy, Jin Han, and Pratik Pandharipande. Cognitive dysfunction,
686 delirium, and stroke in cardiac surgery patients. *Seminars in cardiothoracic and vascular anesthesia*, 19:309–317,
687 December 2015. DOI: 10.1177/1089253215570062

688 [30] Stephan C Knipp, Christian Weimar, Marc Schlamann, Sebastian Schweter, Daniel Wendt, Matthias
689 Thielmann, Jaroslav Benedik, and Heinz Jakob. Early and long-term cognitive outcome after conventional
690 cardiac valve surgery. *Interactive cardiovascular and thoracic surgery*, 24:534–540, April 2017.
691 DOI: 10.1093/icvts/ivw421

692 [31] Ola A Selnes, Rebecca F Gottesman, Maura A Grega, William A Baumgartner, Scott L Zeger, and Guy M
693 McKhann. Cognitive and neurologic outcomes after coronary-artery bypass surgery. *The New England journal of*
694 *medicine*, 366:250–257, January 2012. DOI: 10.1056/NEJMra1100109

695 [32] AE Van Harten, TWL Scheeren, and AR Absalom. A review of postoperative cognitive dysfunction and
696 neuroinflammation associated with cardiac surgery and anaesthesia. *Anaesthesia*, 67(3):280–293, 2012.
697 DOI: 10.1111/j.1365-2044.2011.07008.x

698 [33] Ralph Francis Mangus, Vallire Hooper, Sheri A Denslow, and Lucille Travis. Outcomes associated with
699 postoperative delirium after cardiac surgery. *American journal of critical care : an official publication, American*
700 *Association of Critical-Care Nurses*, 24:156–163, March 2015. DOI: 10.4037/ajcc2015137

701 [34] Ronald A Bronicki and Mark Hall. Cardiopulmonary bypass-induced inflammatory response:
702 Pathophysiology and treatment. *Pediatric critical care medicine : a journal of the Society of Critical Care Medicine and*
703 *the World Federation of Pediatric Intensive and Critical Care Societies*, 17:S272–S278, August 2016.
704 DOI: 10.1097/PCC.0000000000000759

705 [35] C F Eldridge, M B Bunge, R P Bunge, and P M Wood. Differentiation of axon-related schwann cells in vitro.
706 i. ascorbic acid regulates basal lamina assembly and myelin formation. *The Journal of cell biology*, 105:1023–1034,
707 August 1987.

708 [36] Burkhard Gess, Christina Lohmann, Hartmut Halfter, and Peter Young. Sodium-dependent vitamin c
709 transporter 2 (svct2) is necessary for the uptake of l-ascorbic acid into schwann cells. *Glia*, 58:287–299, February
710 2010. DOI: 10.1002/glia.20923

711 [37] Fiona E Harrison and James M May. Vitamin c function in the brain: vital role of the ascorbate transporter
712 svct2. *Free radical biology & medicine*, 46:719–730, March 2009. DOI: 10.1016/j.freeradbiomed.2008.12.018

713 [38] P T Henry and M J Chandy. Effect of ascorbic acid on infarct size in experimental focal cerebral ischaemia
714 and reperfusion in a primate model. *Acta neurochirurgica*, 140:977–980, 1998.

715 [39] J Huang, D B Agus, C J Winfree, S Kiss, W J Mack, R A McTaggart, T F Choudhri, L J Kim, J Mocco, D J
716 Pinsky, W D Fox, R J Israel, T A Boyd, D W Golde, and E S Connolly. Dehydroascorbic acid, a blood-brain barrier
717 transportable form of vitamin c, mediates potent cerebroprotection in experimental stroke. *Proceedings of the*
718 *National Academy of Sciences of the United States of America*, 98:11720–11724, September 2001.
719 DOI: 10.1073/pnas.171325998

720 [40] Ashfaq Ahmad, Shahid A Shah, Haroon Badshah, Min J Kim, Tahir Ali, Gwang H Yoon, Tae H Kim,
721 Nouman B Abid, Shafiq Ur Rehman, Sohail Khan, and Myeong O Kim. Neuroprotection by vitamin c against
722 ethanol-induced neuroinflammation associated neurodegeneration in the developing rat brain. *CNS &*
723 *neurological disorders drug targets*, 15:360–370, 2016.

724 [41] Monika Lagowska-Lenard, Zbigniew Stelmasiak, and Halina Bartosik-Psujek. Influence of vitamin c on
725 markers of oxidative stress in the earliest period of ischemic stroke. *Pharmacological reports : PR*, 62:751–756, 2010.

726 [42] Dominique Bonnefont-Rousselot, Allal Mahmoudi, Nathalie Mougenot, Odile Varoquaux, Gilles
727 Le Nahour, Pierre Fouret, and Philippe Lechat. Catecholamine effects on cardiac remodelling, oxidative stress
728 and fibrosis in experimental heart failure. *Redox report*, 7(3):145–151, 2002. DOI: 10.1179/135100002125000389

729 [43] Christoph Ellenberger, Tornike Sologashvili, Mustafa Cikirkcioglu, Gabriel Verdon, John Diaper, Tiziano
730 Cassina, and Marc Licker. Risk factors of postcardiotomy ventricular dysfunction in moderate-to-high risk
731 patients undergoing open-heart surgery. *Annals of cardiac anaesthesia*, 20:287–296, 2017.
732 DOI: 10.4103/aca.ACA_60_17

733 [44] Vladimir V Lomivorotov, Sergey M Efremov, Mikhail Y Kirov, Evgeny V Fominskiy, and Alexander M
734 Karaskov. Low-cardiac-output syndrome after cardiac surgery. *Journal of cardiothoracic and vascular anesthesia*,
735 31:291–308, February 2017. DOI: <https://doi.org/10.1053/j.jvca.2016.05.029>

736 [45] WenJun Ding, Qiang Ji, YunQing Shi, and RunHua Ma. Predictors of low cardiac output syndrome after
737 isolated coronary artery bypass grafting. *International heart journal*, 56:144–149, 2015. DOI: 10.1536/ihj.14-231

738 [46] Conrad L Epting, Mary E McBride, Eric L Wald, and John M Costello. Pathophysiology of post-operative
739 low cardiac output syndrome. *Current vascular pharmacology*, 14:14–23, 2016.

740 [47] Giovanni Peretto, Alessandro Durante, Luca Rosario Limite, and Domenico Cianflone. Postoperative
741 arrhythmias after cardiac surgery: incidence, risk factors, and therapeutic management. *Cardiology research and*
742 *practice*, 2014:615987, 2014. DOI: 10.1155/2014/615987

743 [48] Tomosaburo Takahashi, Bernadette Lord, P Christian Schulze, Ryan M Fryer, Satinder S Sarang, Steven R
744 Gullans, and Richard T Lee. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac
745 myocytes. *Circulation*, 107:1912–1916, April 2003. DOI: 10.1161/01.CIR.0000064899.53876.A3

746 [49] Nan Cao, Zumei Liu, Zhongyan Chen, Jia Wang, Taotao Chen, Xiaoyang Zhao, Yu Ma, Lianju Qin, JiuHong
747 Kang, Bin Wei, Liu Wang, Ying Jin, and Huang-Tian Yang. Ascorbic acid enhances the cardiac differentiation of
748 induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells. *Cell research*,
749 22:219–236, January 2012. DOI: 10.1038/cr.2011.195

750 [50] Varun Saran, Vijay Sharma, Richard Wambolt, Violet G Yuen, Michael Allard, and John Hugh McNeill.
751 Combined metoprolol and ascorbic acid treatment prevents intrinsic damage to the heart during diabetic
752 cardiomyopathy. *Canadian journal of physiology and pharmacology*, 92:827–837, October 2014. DOI: 10.1139/cjpp-
753 2014-0078

754 [51] C-C Hsu and J-J Wang. L-ascorbic acid and alpha-tocopherol attenuates liver ischemia-reperfusion induced
755 of cardiac function impairment. In *Transplantation proceedings*, volume 44, pages 933–936. Elsevier, 2012.
756 DOI: 10.1016/j.transproceed.2012.01.098

757 [52] James M May and Fiona E Harrison. Role of vitamin c in the function of the vascular endothelium.
758 *Antioxidants & redox signaling*, 19(17):2068–2083, 2013. DOI: 10.1089/ars.2013.5205

759 [53] Thomas Kremer, Patrick Harenberg, Frederick Hernekamp, Katrin Riedel, Martha M Gebhardt, Guenter
760 Germann, Christoph Heitmann, and Andreas Walther. High-dose vitamin c treatment reduces capillary leakage
761 after burn plasma transfer in rats. *Journal of burn care & research: official publication of the American Burn Association*,
762 31:470–479, 2010. DOI: 10.1097/BCR.0b013e3181db5199

763 [54] Ammar W Ashor, Jose Lara, John C Mathers, and Mario Siervo. Effect of vitamin c on endothelial function
764 in health and disease: a systematic review and meta-analysis of randomised controlled trials. *Atherosclerosis*,
765 235(1):9–20, 2014. DOI: 10.1016/j.atherosclerosis.2014.04.004

766 [55] H Dingchao, Q Zhiduan, H Liye, and F Xiaodong. The protective effects of high-dose ascorbic acid on
767 myocardium against reperfusion injury during and after cardiopulmonary bypass. *The Thoracic and cardiovascular
768 surgeon*, 42:276–278, October 1994. DOI: 10.1055/s-2007-1016504

769 [56] Deepanwita Das, Chaitali Sen, and Anupam Goswami. Effect of vitamin c on adrenal suppression by
770 etomidate induction in patients undergoing cardiac surgery: A randomized controlled trial. *Annals of cardiac
771 anaesthesia*, 19(3):410, 2016. DOI: 10.4103/0971-9784.185522

772 [57] Moataz E Rezk. Role of ascorbic acid in reduction of the incidence of the atrial fibrillation in patients under
773 b-blocker and undergoing coronary artery bypass graft operation in early post-operative period. *Journal of the
774 Egyptian Society of Cardio-Thoracic Surgery*, 2017. DOI: 10.1016/j.jescts.2017.04.003

775 [58] Sadegh Ali-Hassan-Sayegh, Seyed Jalil Mirhosseini, Mohammad Rezaeisadrabadi, Hamid Reza Dehghan,
776 Farbod Sedaghat-Hamedani, Elham Kayvanpour, Aron-Frederik Popov, and Oliver J Liakopoulos. Antioxidant
777 supplementations for prevention of atrial fibrillation after cardiac surgery: an updated comprehensive
778 systematic review and meta-analysis of 23 randomized controlled trials. *Interactive cardiovascular and thoracic
779 surgery*, 18:646–654, May 2014. DOI: 10.1093/icvts/ivu020

780 [59] William L Baker and Craig I Coleman. Meta-analysis of ascorbic acid for prevention of postoperative atrial
781 fibrillation after cardiac surgery. *American Journal of Health-System Pharmacy*, page ajhp160066, 2016.
782 DOI: 10.2146/ajhp160066

783 [60] Rui Shi, Zhen-Han Li, Dan Chen, Qing-Chen Wu, Xiao-Li Zhou, and Hong-Tao Tie. Sole and combined
784 vitamin c supplementation can prevent postoperative atrial fibrillation after cardiac surgery: A systematic
785 review and meta-analysis of randomized controlled trials. *Clinical cardiology*, March 2018. DOI: 10.1002/clc.22951

786 [61] Harri Hemilae and Timo Suonsyrjae. Vitamin c for preventing atrial fibrillation in high risk patients: a
787 systematic review and meta-analysis. *BMC cardiovascular disorders*, 17:49, February 2017. DOI: 10.1186/s12872-
788 017-0478-5

789 [62] Harri Hemilae. Publication bias in meta-analysis of ascorbic acid for postoperative atrial fibrillation.
790 *American journal of health-system pharmacy: AJHP: official journal of the American Society of Health-System Pharmacists*,
791 74:372–373, March 2017. DOI: 10.2146/ajhp160999

792 [63] Manuel Garcia-Delgado, Ines Navarrete-Sanchez, and Manuel Colmenero. Preventing and managing
793 perioperative pulmonary complications following cardiac surgery. *Current opinion in anaesthesiology*, 27:146–152,
794 April 2014. DOI: 10.1097/ACO.0000000000000059

795 [64] Ovidiu Horea Bedreag, Alexandru Florin Rogobete, Mirela Sarandan, Alina Carmen Cradigati, Marius
796 Papurica, Maria Corina Dumbuleu, Alexandru Mihai Chira, Oana Maria Rosu, and Dorel Sandesc. Oxidative
797 stress in severe pulmonary trauma in critical ill patients. antioxidant therapy in patients with multiple trauma-
798 a review. *Anaesthesiology intensive therapy*, 47:351–359, 2015. DOI: 10.5603/AIT.a2015.0030

799 [65] John D Lang, Philip J McArdle, Philip J O'Reilly, and Sadis Matalon. Oxidant-antioxidant balance in acute
800 lung injury. *Chest*, 122:314S–320S, December 2002.

801 [66] Margaret S Herridge, Catherine M Tansey, Andrea Matté, George Tomlinson, Natalia Diaz-Granados,
802 Andrew Cooper, Cameron B Guest, C David Mazer, Sangeeta Mehta, Thomas E Stewart, et al. Functional
803 disability 5 years after acute respiratory distress syndrome. *New England Journal of Medicine*, 364(14):1293–1304,
804 2011. DOI: 10.1056/NEJMoa1011802

805 [67] Alexander Kogan, M Segel, S Levin, L Sternik, and E Raanani. Incidence of ards following cardiac surgery:
806 comparison between american-european consensus conference definition and berlin definition. *Journal of*
807 *Cardiothoracic and Vascular Anesthesia*, 31:S79–S80, 2017. DOI: 10.1053/j.jvca.2017.02.167

808 [68] Calvin SH Ng, Song Wan, Anthony PC Yim, and Ahmed A Arifi. Pulmonary dysfunction after cardiac
809 surgery. *CHEST Journal*, 121(4):1269–1277, 2002. DOI: 10.1378/chest.121.4.1269

810 [69] R Scott Stephens, Ashish S Shah, and Glenn JR Whitman. Lung injury and acute respiratory distress
811 syndrome after cardiac surgery. *The Annals of thoracic surgery*, 95(3):1122–1129, 2013.
812 DOI: 10.1016/j.athoracsur.2012.10.024

813 [70] Rochelle Wynne and Mari Botti. Postoperative pulmonary dysfunction in adults after cardiac surgery with
814 cardiopulmonary bypass: clinical significance and implications for practice. *American journal of critical care*,
815 13(5):384–393, 2004.

816 [71] Bernard J Fisher, Donatas Kraskauskas, Erika J Martin, Daniela Farkas, Jacob A Wegelin, Donald Brophy,
817 Kevin R Ward, Norbert F Voelkel, Alpha A Fowler, and Ramesh Natarajan. Mechanisms of attenuation of
818 abdominal sepsis induced acute lung injury by ascorbic acid. *American journal of physiology. Lung cellular and*
819 *molecular physiology*, 303:L20–L32, July 2012. DOI: 10.1152/ajplung.00300.2011

820 [72] Wei Li, Nobuyo Maeda, and Melinda A Beck. Vitamin c deficiency increases the lung pathology of
821 influenza virus-infected gulo-/- mice. *The Journal of nutrition*, 136:2611–2616, October 2006.
822 DOI: 10.1093/jn/136.10.2611

823 [73] Ahmet Baltalarli, Vefa Ozcan, Ferda Bir, Bir Ferda, Hulya Aybek, Mustafa Sacar, Gokhan Onem, Ibrahim
824 Goksin, Suleyman Demir, Zafer Teke, and Teke Zafer. Ascorbic acid (vitamin c) and iloprost attenuate the lung
825 injury caused by ischemia/reperfusion of the lower extremities of rats. *Annals of vascular surgery*, 20:49–55,
826 January 2006. DOI: 10.1007/s10016-005-9284-0

827 [74] Xiaoting Jin, Ruijun Su, Ruijin Li, Li Song, Meilan Chen, Long Cheng, and Zhuoyu Li. Amelioration of
828 particulate matter-induced oxidative damage by vitamin c and quercetin in human bronchial epithelial cells.
829 *Chemosphere*, 144:459–466, February 2016. DOI: 10.1016/j.chemosphere.2015.09.023

830 [75] Indranil Gupta, Souradipta Ganguly, Christine R Rozanas, Dennis J Stuehr, and Koustubh Panda.
831 Ascorbate attenuates pulmonary emphysema by inhibiting tobacco smoke and rtp801-triggered lung protein
832 modification and proteolysis. *Proceedings of the National Academy of Sciences of the United States of America*,
833 113:E4208–E4217, July 2016. DOI: 10.1073/pnas.1600056113

834 [76] Todd W Rice, Arthur P Wheeler, B Taylor Thompson, Bennett P deBoisblanc, Jay Steingrub, Peter Rock,
835 NIH NHLBI Acute Respiratory Distress Syndrome Network of Investigators, and NHLBI ARDS Clinical Trials
836 Network. Enteral omega-3 fatty acid, gamma-linolenic acid, and antioxidant supplementation in acute lung
837 injury. *JAMA*, 306:1574–1581, October 2011. DOI: 10.1001/jama.2011.1435

838 [77] J E Gadek, S J DeMichele, M D Karlstad, E R Pacht, M Donahoe, T E Albertson, C Van Hoozen, A K
839 Wennberg, J L Nelson, and M Noursalehi. Effect of enteral feeding with eicosapentaenoic acid, gamma-linolenic
840 acid, and antioxidants in patients with acute respiratory distress syndrome. enteral nutrition in ards study
841 group. *Critical care medicine*, 27:1409–1420, August 1999.

842 [78] Carlos Corredor, Rebekah Thomson, and Nawaf Al-Subaie. Long-term consequences of acute kidney injury
843 after cardiac surgery: A systematic review and meta-analysis. *Journal of cardiothoracic and vascular anesthesia*,
844 30:69–75, January 2016. DOI: 10.1053/j.jvca.2015.07.013

845 [79] Qiankun Shi, Liang Hong, Xinwei Mu, Cui Zhang, and Xin Chen. Meta-analysis for outcomes of acute
846 kidney injury after cardiac surgery. *Medicine*, 95:e5558, December 2016. DOI: 10.1097/MD.0000000000005558

847 [80] Alejandro Ferreiro and RaÃºl Lombardi. Acute kidney injury after cardiac surgery is associated with mid-
848 term but not long-term mortality: A cohort-based study. *PloS one*, 12:e0181158, 2017.
849 DOI: 10.1371/journal.pone.0181158

850 [81] Charles E Hobson, Sinan Yavas, Mark S Segal, Jesse D Schold, Curtis G Tribble, A Joseph Layon, and Azra
851 Bihorac. Acute kidney injury is associated with increased long-term mortality after cardiothoracic surgery.
852 *Circulation*, 119:2444–2453, May 2009. DOI: 10.1161/CIRCULATIONAHA.108.800011

853 [82] Jason B O'Neal, Andrew D Shaw, and Frederic T Billings. Acute kidney injury following cardiac surgery:
854 current understanding and future directions. *Critical care (London, England)*, 20:187, July 2016. DOI:
855 10.1186/s13054-016-1352-z

856 [83] John W Pickering, Matthew T James, and Suetonia C Palmer. Acute kidney injury and prognosis after
857 cardiopulmonary bypass: a meta-analysis of cohort studies. *American journal of kidney diseases: the official journal
858 of the National Kidney Foundation*, 65:283–293, February 2015. DOI: 10.1053/j.ajkd.2014.09.008

859 [84] Sophie Provenchere, Gaetan Plantefève, Gilles Hufnagel, Eric Vicaut, Cyrille De Vaumas, Jean-Baptiste
860 Lecharny, Jean-Pol Depoix, Francois Vrtovsnik, Jean-Marie Desmonts, and Ivan Philip. Renal dysfunction after
861 cardiac surgery with normothermic cardiopulmonary bypass: incidence, risk factors, and effect on clinical
862 outcome. *Anesthesia and analgesia*, 96:1258–64, table of contents, May 2003.

863 [85] Konstantinos Spargias, Elias Alexopoulos, Stamatios Kyrgopoulos, Panayiotis Iokovis, Panayiotis Iacovis,
864 Darren C Greenwood, Athanassios Manginas, Vassilis Voudris, Gregory Pavlides, Christopher E Buller,
865 Dimitrios Kremastinos, and Dennis V Cokkinos. Ascorbic acid prevents contrast-mediated nephropathy in
866 patients with renal dysfunction undergoing coronary angiography or intervention. *Circulation*, 110:2837–2842,
867 November 2004. DOI: 10.1161/01.CIR.0000146396.19081.73

868 [86] Umar Sadat, Ammara Usman, Jonathan H Gillard, and Jonathan R Boyle. Does ascorbic acid protect against
869 contrast-induced acute kidney injury in patients undergoing coronary angiography: a systematic review with
870 meta-analysis of randomized, controlled trials. *Journal of the American College of Cardiology*, 62:2167–2175,
871 December 2013. DOI: 10.1016/j.jacc.2013.07.065

872 [87] Harmeet Gurm, Mohamed Ali Sheta, Noel Nivera, and Allan Tunkel. Vitamin c-induced oxalate
873 nephropathy: a case report. *Journal of community hospital internal medicine perspectives*, 2, 2012.
874 DOI: 10.3402/jchmp.v2i2.17718

875 [88] Vasu Sunkara, Timothy D Pelkowski, Darren Dreyfus, and Anjali Satoskar. Acute kidney disease due to
876 excessive vitamin c ingestion and remote roux-en-y gastric bypass surgery superimposed on ckd. *American
877 journal of kidney diseases : the official journal of the National Kidney Foundation*, 66:721–724, October 2015.
878 DOI: 10.1053/j.ajkd.2015.06.021

879 [89] M Levine, S C Rumsey, R Daruwala, J B Park, and Y Wang. Criteria and recommendations for vitamin c
880 intake. *JAMA*, 281:1415–1423, April 1999.

881 [90] Miha Antonic. Effect of ascorbic acid on postoperative acute kidney injury in coronary artery bypass graft
882 patients: A pilot study. *The heart surgery forum*, 20:E214–E218, October 2017.

883 [91] Kenan Sever, Cihan Ozbek, Burce Goktas, Serap Bas, Murat Ugurlucan, and Denyan Mansuroglu.
884 Gastrointestinal complications after open heart surgery: incidence and determinants of risk factors. *Angiology*,
885 65:425–429, May 2014. DOI: 10.1177/0003319713482357

886 [92] M M Berger, M Berger-Gryllaki, P H Wiesel, J P Revelly, M Hurni, C Cayeux, L Tappy, and R Chiolero.
887 Intestinal absorption in patients after cardiac surgery. *Critical care medicine*, 28:2217–2223, July 2000.

888 [93] D R Goldhill, R Whelpton, J A Winyard, and K A Wilkinson. Gastric emptying in patients the day after
889 cardiac surgery. *Anaesthesia*, 50:122–125, February 1995.

890 [94] Rabail Chaudhry, John Zaki, Robert Wegner, Greesha Pednekar, Alex Tse, Roy Sheinbaum, and George W
891 Williams. Gastrointestinal complications after cardiac surgery: A nationwide population-based analysis of
892 morbidity and mortality predictors. *Journal of cardiothoracic and vascular anesthesia*, 31:1268–1274, August 2017.
893 DOI: 10.1053/j.jvca.2017.04.013

894 [95] Gail Cresci, A Christine Hummell, Sulieman Abdal Raheem, and Denise Cole. Nutrition intervention in the
895 critically ill cardiothoracic patient. *Nutrition in clinical practice : official publication of the American Society for
896 Parenteral and Enteral Nutrition*, 27:323–334, June 2012. DOI: 10.1177/0884533612444135

897 [96] Richard Hall. Identification of inflammatory mediators and their modulation by strategies for the
898 management of the systemic inflammatory response during cardiac surgery. *Journal of cardiothoracic and vascular
899 anesthesia*, 27:983–1033, October 2013. DOI: 10.1053/j.jvca.2012.09.013

900 [97] Fabiano F Viana, Yi Chen, Aubrey A Almeida, Heather D Baxter, Andrew D Cochrane, and Julian A Smith.
901 Gastrointestinal complications after cardiac surgery: 10-year experience of a single australian centre. *ANZ journal
902 of surgery*, 83:651–656, September 2013. DOI: 10.1111/ans.12134

903 [98] Goran Bjelakovic, Dimitrinka Nikolova, Rosa G Simonetti, and Christian Gluud. Antioxidant supplements
904 for preventing gastrointestinal cancers. *The Cochrane database of systematic reviews*, page CD004183, July 2008.
905 DOI: 10.1002/14651858.CD004183.pub3

906 [99] Jane E Freedman. Oxidative stress and platelets. *Arteriosclerosis, thrombosis, and vascular biology*, 28(3):s11–
907 s16, 2008. DOI: 10.1161/ATVBAHA.107.159178

908 [100] M Levi. Platelets at a crossroad of pathogenic pathways in sepsis. *Journal of Thrombosis and Haemostasis*,
909 2(12):2094–2095, 2004. DOI: 10.1111/j.1538-7836.2004.01004.x

910 [101] Cornelius Dyke, Solomon Aronson, Wulf Dietrich, Axel Hofmann, Keyvan Karkouti, Marcel Levi, Gavin J
911 Murphy, Frank W Sellke, Linda Shore-Lesserson, Christian von Heymann, and Marco Ranucci. Universal
912 definition of perioperative bleeding in adult cardiac surgery. *The Journal of thoracic and cardiovascular surgery*,
913 147:1458–1463.e1, May 2014. DOI: 10.1016/j.jtcvs.2013.10.070

914 [102] Eeva-Maija Kinnunen, Marisa De Feo, Daniel Reichart, Tuomas Tauriainen, Giuseppe Gatti, Francesco
915 Onorati, Luca Maschietto, Ciro Bancone, Francesca Fiorentino, Sidney Chocron, Karl Bounader, Magnus Dalen,
916 Peter Svenarud, Giuseppe Faggian, Ilaria Franzese, Giuseppe Santarpino, Theodor Fischlein, Daniele Maselli,
917 Carmelo Dominici, Saverio Nardella, Riccardo Gherli, Francesco Musumeci, Antonino S Rubino, Carmelo
918 Mignosa, Giovanni Mariscalco, Filiberto G Serraino, Francesco Santini, Antonio Salsano, Francesco Nicolini,
919 Tiziano Gherli, Marco Zanobini, Matteo Saccoccia, Vito G Ruggieri, Jean Philippe Verhoye, Andrea Perrotti, and
920 Fausto Biancari. Incidence and prognostic impact of bleeding and transfusion after coronary surgery in low-risk
921 patients. *Transfusion*, 57:178–186, January 2017. DOI: 10.1111/trf.13885

922 [103] Marco Ranucci, Ekaterina Baryshnikova, Serenella Castelvecchio, Gabriele Pelissero, Surgical, and Clinical
923 Outcome Research (SCORE) Group. Major bleeding, transfusions, and anemia: the deadly triad of cardiac
924 surgery. *The Annals of thoracic surgery*, 96:478–485, August 2013. DOI: 10.1016/j.athoracsur.2013.03.015

925 [104] Chantal Gielen, Olaf Dekkers, Theo Stijnen, Jan Schoones, Anneke Brand, Robert Klautz, and Jeroen
926 Eikenboom. The effects of pre- and postoperative fibrinogen levels on blood loss after cardiac surgery: a
927 systematic review and meta-analysis. *Interactive cardiovascular and thoracic surgery*, 18:292–298, March 2014.

928 [105] P G Dayton and M Weiner. Ascorbic acid and blood coagulation. *Annals of the New York Academy of Sciences*,
929 92:302–306, April 1961. DOI: 10.1093/icvts/ivt506

930 [106] Yi-Dan Li, Bu-Qing Ye, Sheng-Xi Zheng, Jin-Tao Wang, Jian-Guo Wang, Ming Chen, Ji-Guo Liu, Xin-Hui
931 Pei, Li-Jing Wang, Zhi-Xin Lin, Kalpana Gupta, Nigel Mackman, Arne Slungaard, Nigel S Key, and Jian-Guo
932 Geng. Nf-kappab transcription factor p50 critically regulates tissue factor in deep vein thrombosis. *The Journal of
933 biological chemistry*, 284:4473–4483, February 2009. DOI: 10.1074/jbc.M806010200

934 [107] Charles T Esmon. The interactions between inflammation and coagulation. *British journal of haematology*,
935 131:417–430, November 2005. DOI: 10.1111/j.1365-2141.2005.05753.x

936 [108] M S Parahuleva, J Jung, M Burgazli, A Erdogan, B Parviz, and H Halschermann. Vitamin c suppresses
937 lipopolysaccharide-induced procoagulant response of human monocyte-derived macrophages. *European review
938 for medical and pharmacological sciences*, 20:2174–2182, May 2016.

939 [109] Dimitris Tousoulis, Charalambos Antoniades, Charalambos Tountas, Erini Bosinakou, Maria Kotsopoulou,
940 Pavlos Toutouzas, and Christodoulos Stefanidis. Vitamin c affects thrombosis/ fibrinolysis system and reactive
941 hyperemia in patients with type 2 diabetes and coronary artery disease. *Diabetes care*, 26:2749–2753, October 2003.

942 [110] Jan Kaebler, Katharina Koeke, Manuela Karstens, Reinhard Schneppenheim, Thomas Meinertz, and
943 Thomas Heitzer. Impaired capacity for acute endogenous fibrinolysis in smokers is restored by ascorbic acid.
944 *Free radical biology & medicine*, 44:315–321, February 2008. DOI: 10.1016/j.freeradbiomed.2007.08.023

945 [111] A R Cooke. The role of acid in the pathogenesis of aspirin-induced gastrointestinal erosions and
946 hemorrhage. *The American journal of digestive diseases*, 18:225–237, March 1973.

947 [112] Keunyoung Kim, Ok-Nam Bae, Sung-Hee Koh, Seojin Kang, Kyung-Min Lim, Ji-Yoon Noh, Sue Shin, Inho
948 Kim, and Jin-Ho Chung. High-dose vitamin c injection to cancer patients may promote thrombosis through
949 procoagulant activation of erythrocytes. *Toxicological sciences : an official journal of the Society of Toxicology*, 147:350–
950 359, October 2015. DOI: 10.1093/toxsci/kfv133

951 [113] Anita Sadeghpour, Azin Alizadehasl, Majid Kyavar, Tahereh Sadeghi, Jalal Moludi, Farhad Gholizadeh,
952 Ziae Totonchi, and Behshid Ghadrdoost. Impact of vitamin c supplementation on post-cardiac surgery icu and
953 hospital length of stay. *Anesthesiology and pain medicine*, 5(1), 2015. DOI: 10.5812/aapm.25337

954 [114] Annette C Gelijns, Alan J Moskowitz, Michael A Acker, Michael Argenziano, Nancy L Geller, John D
955 Puskas, Louis P Perrault, Peter K Smith, Irving L Kron, Robert E Michler, Marissa A Miller, Timothy J Gardner,
956 Deborah D Ascheim, Gorav Ailawadi, Pamela Lackner, Lyn A Goldsmith, Sophie Robichaud, Rachel A Miller,
957 Eric A Rose, T Bruce Ferguson, Keith A Horvath, Ellen G Moquette, Michael K Parides, Emilia Bagiella, Patrick T
958 O'Gara, Eugene H Blackstone, and Cardiothoracic Surgical Trials Network (CTSN). Management practices and

959 major infections after cardiac surgery. *Journal of the American College of Cardiology*, 64:372–381, July 2014.
960 DOI: 10.1016/j.jacc.2014.04.052

961 [115] Matthew E Cove, Denis W Spelman, and Graeme MacLaren. Infectious complications of cardiac surgery: a
962 clinical review. *Journal of cardiothoracic and vascular anesthesia*, 26:1094–1100, December 2012.
963 DOI: 10.1053/j.jvca.2012.04.021

964 [116] Olaf Wendler and Max Baghai. Infections post-cardiac surgery: new information during challenging times.
965 *Journal of the American College of Cardiology*, 64:382–384, July 2014. DOI: 10.1016/j.jacc.2014.04.050

966 [117] Emelia J Benjamin, Michael J Blaha, Stephanie E Chiuve, Mary Cushman, Sandeep R Das, Rajat Deo,
967 Sarah D de Ferranti, James Floyd, Myriam Fornage, Cathleen Gillespie, Carmen R Isasi, Monik C Jimenez,
968 Lori Chaffin Jordan, Suzanne E Judd, Daniel Lackland, Judith H Lichtman, Lynda Lisabeth, Simin Liu, Chris T
969 Longenecker, Rachel H Mackey, Kunihiro Matsushita, Dariush Mozaffarian, Michael E Mussolini, Khurram
970 Nasir, Robert W Neumar, Latha Palaniappan, Dilip K Pandey, Ravi R Thiagarajan, Mathew J Reeves, Matthew
971 Ritchey, Carlos J Rodriguez, Gregory A Roth, Wayne D Rosamond, Comilla Sasson, Amytis Towfighi, Connie W
972 Tsao, Melanie B Turner, Salim S Virani, Jenifer H Voeks, Joshua Z Willey, John T Wilkins, Jason Hy Wu,
973 Heather M Alger, Sally S Wong, Paul Muntner, American Heart Association Statistics Committee, and
974 Stroke Statistics Subcommittee. Heart disease and stroke statistics-2017 update: A report from the american heart
975 association. *Circulation*, 135:e146–e603, March 2017. DOI: 10.1161/CIR.0000000000000485

976 [118] A Diegeler. Externe stationaere qualitaetssicherung herz- und lungentransplantation
977 herzunterstuetzungssysteme/kunstherzen. 8. Qualitaetssicherungskonferenz des Gemeinsamen Bundesausschusses
978 Berlin, 29. September 2016, 2016.

979 [119] James K Kirklin, Francis D Pagani, Robert L Kormos, Lynne W Stevenson, Elizabeth D Blume, Susan L
980 Myers, Marissa A Miller, J Timothy Baldwin, James B Young, and David C Naftel. Eighth annual intermacs
981 report: Special focus on framing the impact of adverse events. *The Journal of heart and lung transplantation: the
982 official publication of the International Society for Heart Transplantation*, 36:1080–1086, October 2017.
983 DOI: 10.1016/j.healun.2017.07.005

984 [120] Julianna F Lampropulos, Nancy Kim, Yun Wang, Mayur M Desai, Jose Augusto S Barreto-Filho, John A
985 Dodson, Daniel L Dries, Abeel A Mangi, and Harlan M Krumholz. Trends in left ventricular assist device use
986 and outcomes among medicare beneficiaries, 2004–2011. *Open heart*, 1:e000109, 2014. DOI: 10.1136/openhrt-2014-
987 000109

988 [121] E Bouza, J Hortal, P Munoz, J Pascau, M J Perez, M Hiesmayr, European Study Group
989 on Nosocomial Infections, and European Workgroup of Cardiothoracic Intensivists. Postoperative infections
990 after major heart surgery and prevention of ventilator-associated pneumonia: a one-day european prevalence
991 study (esgni-008). *The Journal of hospital infection*, 64:224–230, November 2006. DOI: 10.1016/j.jhin.2006.06.019

992 [122] Siyi He, Bocheng Chen, Wei Li, Junyan Yan, Lin Chen, Xuefeng Wang, and Yingbin Xiao. Ventilator-
993 associated pneumonia after cardiac surgery: a meta-analysis and systematic review. *The Journal of thoracic and
994 cardiovascular surgery*, 148:3148–55.e1–5, December 2014. DOI: 10.1016/j.jtcvs.2014.07.107

995 [123] Javier Hortal, Patricia Munoz, Gregorio Cuerpo, Hector Litvan, Peter M Rosseel, Emilio Bouza, European
996 Study Group on Nosocomial Infections, and European Workgroup of Cardiothoracic Intensivists. Ventilator-
997 associated pneumonia in patients undergoing major heart surgery: an incidence study in europe. *Critical care*
998 (London, England), 13:R80, 2009. DOI: 10.1186/cc7896

999 [124] J Ibanez, M Riera, R Amezaga, J Herrero, A Colomar, C Campillo-Artero, J I Saez de Ibarra, and O Bonnin.
1000 Long-term mortality after pneumonia in cardiac surgery patients: A propensity-matched analysis. *Journal of
1001 intensive care medicine*, 31:34–40, January 2016. DOI: 10.1177/0885066614523918

1002 [125] Wei Sheng, Quan-Sheng Xing, Wen-Ming Hou, Long Sun, Zhao-Zhuo Niu, Ming-Shan Lin, and Yi-Fan Chi.
1003 Independent risk factors for ventilator-associated pneumonia after cardiac surgery. *Journal of investigative
1004 surgery: the official journal of the Academy of Surgical Research*, 27:256–261, October 2014.
1005 DOI: 10.3109/08941939.2014.892652

1006 [126] C Hunt, N K Chakravorty, G Annan, N Habibzadeh, and C J Schorah. The clinical effects of vitamin c
1007 supplementation in elderly hospitalised patients with acute respiratory infections. *International journal for vitamin
1008 and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsorschung. Journal international de
1009 vitaminologie et de nutrition*, 64:212–219, 1994.

1010 [127] Anitra C Carr and Silvia Maggini. Vitamin c and immune function. *Nutrients*, 9(11):1211, 2017. DOI:
1011 10.3390/nu9111211

1012 [128] Harri Hemilae. Vitamin c and infections. *Nutrients*, 9, March 2017. DOI: 10.3390/nu9040339

1013 [129] Harri Hemilae and Pekka Louhiala. Vitamin c for preventing and treating pneumonia. *The Cochrane database of systematic reviews*, page CD005532, August 2013. DOI: 10.1002/14651858.CD005532.pub3

1014 [130] Reza Jouybar, Hiva Kabgani, Hamid Kamalipour, Shahrbanoo Shahbazi, Elaheh Allahyary, Manoocher Rasouli, Seyd Hedayatallah Akhlagh, Masih Shafa, Mohammad Ghazinoor, Mohammad Taghi Moeinvaziri, et al. The perioperative effect of ascorbic acid on inflammatory response in coronary artery bypass graft surgery; a randomized controlled trial coronary artery bypass graft surgery. *International Cardiovascular Research Journal*, 10(3):61–83, 2012.

1015 [131] Robert G Knodell, Mary Ann Tate, BF Akl, and John W Wilson. Vitamin c prophylaxis for posttransfusion hepatitis: lack of effect in a controlled trial. *The American journal of clinical nutrition*, 34(1):20–23, 1981.

1016 [132] CC Li. Changes of creatine phosphokinase and malondialdehyde in the serum and clinical use of large doses of vitamin c following open heart surgery. *Zhonghua wai ke za zhi [Chinese journal of surgery]*, 28(1):16–7, 1990. DOI: 10.1093/ajcn/34.1.20

1017 [133] Cynthia A Carnes, Mina K Chung, Tomohiro Nakayama, Hitomi Nakayama, Reshma S Baliga, Shengfu Piao, Anne Kanderian, Steven Pavia, Robert L Hamlin, Patrick M McCarthy, et al. Ascorbate attenuates atrial 1018 pacing-induced peroxynitrite formation and electrical remodeling and decreases the incidence of postoperative 1019 atrial fibrillation. *Circulation research*, 89(6):e32–e38, 2001.

1020 [134] K Demirag, FZ Askar, M Uyar, A Cevik, D Ozmen, I Mutaf, and O Bayindir. The protective effects of high 1021 dose ascorbic acid and diltiazem on myocardial ischaemia-reperfusion injury. *Middle East journal of 1022 anaesthesiology*, 16(1):67–79, 2001.

1023 [135] Masoud Eslami, Roya Sattarzadeh Badkoubeh, Mehdi Mousavi, Hassan Radmehr, Mehrdad Salehi, 1024 Nafiseh Tavakoli, and Mohamad Reza Avadi. Oral ascorbic acid in combination with beta-blockers is more 1025 effective than beta-blockers alone in the prevention of atrial fibrillation after coronary artery bypass grafting. 1026 *Texas Heart Institute Journal*, 34(3):268, 2007.

1027 [136] Jennifer A Colby, Wendy T Chen, William L Baker, Craig I Coleman, Kurt Reinhart, Jeffrey Kluger, and 1028 C Michael White. Effect of ascorbic acid on inflammatory markers after cardiothoracic surgery. *American Journal 1029 of Health-System Pharmacy*, 68(17), 2011. DOI: 10.2146/ajhp100703

1030 [137] Pavlos Papoulidis, Olga Ananiadou, Eleftherios Chalvatzoulis, Fotini Ampatzidou, Charilaos 1031 Koutsogiannidis, Theodoros Karaikos, Athanasios Madesis, and George Drossos. The role of ascorbic acid in 1032 the prevention of atrial fibrillation after elective on-pump myocardial revascularization surgery: a single-center 1033 experience—a pilot study. *Interactive cardiovascular and thoracic surgery*, 12(2):121–124, 2011. 1034 DOI: 10.1510/icvts.2010.240473

1035 [138] Paul M Bjordahl, Stephen D Helmer, Dawn J Gosnell, Gail E Wemmer, Walter W O'Hara, and Douglas J 1036 Milfeld. Perioperative supplementation with ascorbic acid does not prevent atrial fibrillation in coronary artery 1037 bypass graft patients. *The American Journal of Surgery*, 204(6):862–867, 2012. DOI: 10.1016/j.amjsurg.2012.03.012

1038 [139] Mohammad Reza Dehghani, Nader Madjidi, Alireza Rahmani, Behnam Asgari, and Yousef Rezaei. Effect 1039 of oral vitamin c on atrial fibrillation development after isolated coronary artery bypass grafting surgery: A 1040 prospective randomized clinical trial. *Cardiology journal*, 21(5):492–499, 2014. DOI: 10.5603/CJ.a2013.0154

1041 [140] Abdelhay Ebade, Walid S Taha, Riham H Saleh, Ashraf Fawzy, et al. Ascorbic acid versus magnesium for 1042 the prevention of atrial fibrillation after coronary artery bypass grafting surgery. *The Egyptian Journal of 1043 Cardiothoracic Anesthesia*, 8(2):59, 2014.

1044 [141] Jahanbakhsh Samadikhah, Samad EJ Golzari, Babak Sabermarouf, et al. Efficacy of combination therapy of 1045 statin and vitamin c in comparison with statin in the prevention of post-cabg atrial fibrillation. *Advanced 1046 pharmaceutical bulletin*, 4(1):97, 2014. DOI: 10.5681/apb.2014.015

1047 [142] Miha Antonic, Robert Lipovc, Franc Gregorcic, Peter Juric, and Gorazd Kosir. Perioperative ascorbic acid 1048 supplementation does not reduce the incidence of postoperative atrial fibrillation in on-pump coronary artery 1049 bypass graft patients. *Journal of cardiology*, 69(1):98–102, 2017. DOI: 10.1016/j.jcc.2016.01.010

1050 [143] Ettore Crimi, Vincenzo Sica, Sharon Williams-Ignarro, Haibo Zhang, Arthur S Slutsky, Louis J Ignarro, and 1051 Claudio Napoli. The role of oxidative stress in adult critical care. *Free radical biology & medicine*, 40:398–406, 1052 February 2006. DOI: 10.1016/j.freeradbiomed.2005.10.054

1053 [144] Kimberly P Howe, John M Clochesy, Lawrence S Goldstein, and Hugh Owen. Mechanical ventilation 1054 antioxidant trial. *American journal of critical care: an official publication, American Association of Critical-Care Nurses*, 1055 24:440–445, September 2015. DOI: 10.4037/ajcc2015335

1065 [145] E Barta, I Pechan, V Cornak, O Luknarova, V Rendekova, and P Verchovodko. Protective effect of alpha-
1066 tocopherol and l-ascorbic acid against the ischemic-reperfusion injury in patients during open-heart surgery.
1067 *Bratislavské lekarske listy*, 92(3-4):174–183, 1991.

1068 [146] Monika Angdin, Göran Settergren, Joel Starkopf, Mihkel Zilmer, Kersti Zilmer, and Jarle Vaage. Protective
1069 effect of antioxidants on pulmonary endothelial function after cardiopulmonary bypass. *Journal of cardiothoracic*
1070 and *vascular anesthesia*, 17(3):314–320, 2003.

1071 [147] Tevfik Gunes, Sahin Bozok, Mert Kestelli, Ismail Yurekli, Gokhan Ilhan, Berkan Ozpak, Mehmet Bademci,
1072 Barcin Ozcem, and Aykut Sahin. α -tocopherol and ascorbic acid in early postoperative period of
1073 cardiopulmonary bypass. *Journal of Cardiovascular Medicine*, 13(11):691–699, 2012.
1074 DOI: 10.2459/JCM.0b013e328356a2dc

1075 [148] J Westhuyzen, A D Cochrane, P J Tesar, T Mau, D B Cross, M P Frenneaux, F A Khafagi, and S J Fleming.
1076 Effect of preoperative supplementation with alpha-tocopherol and ascorbic acid on myocardial injury in patients
1077 undergoing cardiac operations. *The Journal of thoracic and cardiovascular surgery*, 113:942–948, May 1997.

1078 [149] Rodrigo Castillo, Ramon Rodrigo, Felipe Perez, Mauricio Cereceda, Rene Asenjo, Jaime Zamorano, Roberto
1079 Navarrete, Eli Villalabeitia, Juan Sanz, Cristian Baeza, and Ruben Aguayo. Antioxidant therapy reduces
1080 oxidative and inflammatory tissue damage in patients subjected to cardiac surgery with extracorporeal
1081 circulation. *Basic & clinical pharmacology & toxicology*, 108:256–262, April 2011. DOI: 10.1111/j.1742-
1082 7843.2010.00651.x

1083 [150] Ramon Rodrigo, Juan C Prieto, and Rodrigo Castillo. Cardioprotection against ischaemia/reperfusion by
1084 vitamins c and e plus n-3 fatty acids: molecular mechanisms and potential clinical applications. *Clinical science*
1085 (*London, England: 1979*), 124:1–15, January 2013. DOI: 10.1042/CS20110663

1086 [151] Olaf Stanger, Irene Aigner, Wolfgang Schimetta, and Willibald Wonisch. Antioxidant supplementation
1087 attenuates oxidative stress in patients undergoing coronary artery bypass graft surgery. *The Tohoku journal of*
1088 *experimental medicine*, 232(2):145–154, 2014.

1089 [152] Zach Sartor, Jenna Kesey, and Sharmila Dissanaike. The effects of intravenous vitamin c on point-of-care
1090 glucose monitoring. *Journal of burn care & research: official publication of the American Burn Association*, 36:50–56,
1091 2015. DOI: 10.1097/BCR.0000000000000142

1092 [153] Sumangala Vasudevan and Irl B Hirsch. Interference of intravenous vitamin c with blood glucose testing.
1093 *Diabetes care*, 37:e93–e94, 2014. DOI: 10.2337/dc13-2452

1094 [154] Andreas Rümelin, Urid Jaehde, Thomas Kerz, Walter Roth, Martin Krämer, and Ulrid Fauth. Early
1095 postoperative substitution procedure of the antioxidant ascorbic acid. *The Journal of nutritional biochemistry*,
1096 16(2):104–108, 2005. DOI: 10.1016/j.jnutbio.2004.10.005

1097 [155] A Rümelin, T Humbert, O Lühker, A Drescher, and U Fauth. Metabolic clearance of the antioxidant
1098 ascorbic acid in surgical patients. *Journal of Surgical Research*, 129(1):46–51, 2005. DOI: 10.1016/j.jss.2005.03.017

1099 [156] Line Robitaille and L John Hoffer. A simple method for plasma total vitamin c analysis suitable for routine
1100 clinical laboratory use. *Nutrition journal*, 15(1):40, 2015. DOI: 10.1186/s12937-016-0158-9

1101 [157] A Karlsen, R Blomhoff, and T E Gundersen. Stability of whole blood and plasma ascorbic acid. *European*
1102 *journal of clinical nutrition*, 61:1233–1236, October 2007. DOI: 10.1038/sj.ejcn.1602655

1103 [158] Juliet M Pullar, Simone Bayer, and Anitra C Carr. Appropriate handling, processing and analysis of blood
1104 samples is essential to avoid oxidation of vitamin c to dehydroascorbic acid. *Antioxidants*, 7(2):29, 2018.
1105 DOI: 10.3390/antiox7020029

1106 [159] T Key, S Oakes, G Davey, J Moore, L M Edmond, U J McLoone, and D I Thurnham. Stability of vitamins a,
1107 c, and e, carotenoids, lipids, and testosterone in whole blood stored at 4 degrees c for 6 and 24 hours before
1108 separation of serum and plasma. *Cancer epidemiology, biomarkers & prevention: a publication of the American*
1109 *Association for Cancer Research, cosponsored by the American Society of Preventive Oncology*, 5:811–814, October 1996.

1110 [160] Yifan Wang, Xing Jian Liu, Line Robitaille, Shaun Eintracht, Elizabeth MacNamara, and L John Hoffer.
1111 Effects of vitamin c and vitamin d administration on mood and distress in acutely hospitalized patients. *The*
1112 *American journal of clinical nutrition*, 98:705–711, September 2013. DOI: 10.3945/ajcn.112.056366

1113 [161] S A Margolis and D L Duewer. Measurement of ascorbic acid in human plasma and serum: stability,
1114 intralaboratory repeatability, and interlaboratory reproducibility. *Clinical chemistry*, 42:1257–1262, August 1996.