

A Simple Unified Equation for Accurate and Rapid Quantification of $\text{Fe}^{3+}/\Sigma\text{Fe}$ Obtained from Room Temperature Mössbauer Spectroscopic Measurements

Jacob Adetunji; College of Sciences, University of Derby, Kedleston Road, Derby. DE22 1GB, UK

e-mail; j.adetunji@derby.ac.uk

Abstract

The accurate quantification of $\frac{\text{Fe}^{3+}}{\Sigma\text{Fe}}$ ratios for Mössbauer spectroscopic room temperature measurements involves many steps and, when shown in a composite Mössbauer data table, does not allow enough space for more Mössbauer parameters to be presented in the composite table. So a simple formula is derived, (presented as a short communication) which users will find helpful when they have to determine corrected $\frac{\text{Fe}^{3+}}{\Sigma\text{Fe}}$ ratios in their room temperature Mössbauer experiments.

Key words: Mössbauer spectroscopy, Recoilless fractions, Corrected $\frac{\text{Fe}^{3+}}{\Sigma\text{Fe}}$ ratios, Room temperature measurements

Introduction

The recoilless fractions f_2 and f_3 of Fe^{2+} and Fe^{3+} ions in tetrahedral and octahedral sites, respectively, are not equal and are also temperature dependent. This imposes some limitations

on the Mossbauer technique when measurements are made at room temperature. In fact,

inaccuracies of overestimation as high as 25% have been reported for $\frac{Fe^{3+}}{\Sigma Fe}$ ratios obtained

from room temperature Mössbauer measurements [1].

The correction needed involves many steps and, when included in a composite Mössbauer data table, does not allow enough space for major Mössbauer parameters.

However, the equation 5 below, when used to calculate corrected $\frac{Fe^{3+}}{\Sigma Fe}$, would not only

alleviate this problem but also help calculations to be carried more quickly, especially when many samples are being analyzed.

Derivation of the formula

Starting from a dimensionally correct expression similar to the one obtained in [1, 2]

$$\left(\frac{Fe^{3+}}{\Sigma Fe} \right)_{corrected} = \frac{f_2}{f_3} \left(\frac{Fe^{3+}}{Fe^{2+}} \right)_{observed\ measurement} * \left(\frac{Fe^{2+}}{\Sigma Fe} \right)_{corrected} \quad 1$$

where f_2 and f_3 are correction factors for Fe^{2+} and Fe^{3+} , respectively, in a clean single crystal Mössbauer sample.

Equation 1 can be written as

$$\left(\frac{Fe^{3+}}{\Sigma Fe} \right)_{corr} = \frac{1}{C} \left(\frac{Fe^{3+}}{Fe^{2+}} \right)_{ob_ms} * \left(\frac{Fe^{2+}}{Fe^{2+} + Fe^{3+}} \right)_{corr} \quad 2$$

Where $C = f_3/f_2$

$$\left(\frac{Fe^{3+}}{\Sigma Fe} \right)_{corr} = \frac{1}{C} \left(\frac{Fe^{3+}}{Fe^{2+}} \right)_{ob_ms} * \left(\frac{1}{1 + \frac{Fe^{3+}}{Fe^{2+}}} \right)_{corr} \quad 3$$

$$\begin{aligned}
&= \frac{1}{C} \left(\frac{Fe^{3+}}{Fe^{2+}} \right)_{ob_ms} * \left[1 - \left(\frac{\frac{Fe^{3+}}{Fe^{2+}}}{1 + \left(\frac{Fe^{3+}}{Fe^{2+}} \right)_{corr}} \right) \right] \\
&= \frac{1}{C} \left(\frac{Fe^{3+}}{Fe^{2+}} \right)_{ob_ms} * \left[1 - \left(\frac{Fe^{3+}}{\Sigma Fe} \right)_{corr} \right] \\
&= \frac{1}{C} \left(\frac{Fe^{3+}}{Fe^{2+}} \right)_{ob_ms} - \frac{1}{C} \left(\frac{Fe^{3+}}{Fe^{2+}} \right)_{ob_ms} * \left(\frac{Fe^{3+}}{\Sigma Fe} \right)_{corr} \\
\therefore \left(\frac{Fe^{3+}}{\Sigma Fe} \right)_{corr} * \left[1 + \frac{1}{C} \left(\frac{Fe^{3+}}{Fe^{2+}} \right)_{ob_ms} \right] &= \frac{1}{C} \left(\frac{Fe^{3+}}{Fe^{2+}} \right)_{ob_ms}
\end{aligned}$$

Hence

$$\left(\frac{Fe^{3+}}{\Sigma Fe} \right)_{corr} = \frac{\frac{1}{C} \left(\frac{Fe^{3+}}{Fe^{2+}} \right)_{ob_ms}}{1 + \frac{1}{C} \left(\frac{Fe^{3+}}{Fe^{2+}} \right)_{ob_ms}} \quad 4$$

The r.h.s. of eqn 4 can be written as: $1 - \frac{1}{\left[1 + \frac{1}{C} \left(\frac{Fe^{3+}}{Fe^{2+}} \right)_{ob_ms} \right]}$

Finally, the required equation can therefore be written as:

$$\left(\frac{Fe^{3+}}{\Sigma Fe} \right)_{corr} = 1 - \frac{1}{\left[1 + \frac{1}{C} \left(\frac{Fe^{3+}}{Fe^{2+}} \right)_{ob_ms} \right]} \quad 5$$

Conclusion

The *r.h.s.* of equation 5 can be written into the *Excel spreadsheet function-box* as:

$$= (1-(1/(1+(C_o*R))))$$

where $C_o = f_2/f_3$; and R refers to the cell into which the value of the calculated observed (Fe^{3+}/Fe^{2+}) ratio is located in the spreadsheet.

Alternatively, if Fe^{3+}/Fe^{2+} are not calculated beforehand, then the expression to be put in the Excel function box is: $=(1-(1/(1+(C_o*(X3/X2))))$

where, X_1 and X_2 refer to the cells into which the values of the observed Fe^{3+} and Fe^{2+} , respectively, are located in the spreadsheet.

Example: For clean single crystal chromites, the values reported in [3] for f_2 and f_3 are 0.687 and 0.887, respectively. Therefore, $C = 1.291$, i.e. $(C_o = 1/C = 0.7745)$

If the corrected $(Fe^{2+}/\Sigma Fe)$ is required, then Fe^{2+} and Fe^{3+} in the formula can be interchanged and, C is then f_2/f_3 .

The formula given in equation 5 has been tested many times and the results obtained are consistent when compared with LN temperature measurements results when chi squared is in acceptable range, $0.95 < \chi^2 < 1.5$. It is also very useful, especially if many samples are to be analyzed.

References

[1] Quintiliani, M.

^{57}Fe Mössbauer spectroscopy analysis of spinels: Fe^{3+}/Fe_{total} quantification accuracy and consequences on fo_2 estimate. Per. di Mineral 74 (2) (2005)

pp 139-146

[2] Oh, S.J. **Mössbauer effect determination of relative recoilless fractions for iron**

oxides (J. Appl. Phys. 85, (1999) pp 329-332

[3] M.D. Dyar, S.J. Mackwell, A.V. McGuire, L.R. Cross and J.D. Robertson. **Crystal**

chemistry of Fe^{3+} and H^+ in mantle kaersuites: Implication for mantle

metasomatism. American Mineralogist, 78, (1993) pp 968-979.