

1 Article

2

Probiotic Functional Carbonated Whey Beverages:

3

Development and Quality Evaluation

4 **Adriana T. Silva e Alves ^{1,*}, Leila M. Spadoti ¹, Patrícia B. Zacarchenco ¹ and Fabiana K. H.S. Trento¹**5 ¹ Dairy Technology Center (TECNOLAT) of the Food Technology Institute (ITAL), Av. Brasil, 2880, Jardim
6 Chapadão, Campinas, São Paulo, Brasil; atorres@ital.sp.gov.br

7 * Correspondence: atorres@ital.sp.gov.br; Tel.: +55-19-3743-1860

8

9 **Abstract:** Whey proteins have excellent nutritional characteristics due to their levels of essential amino acids
10 with high bioavailability. However, it has a high biochemical oxygen demand (BOD) and a considerable
11 polluting potential, thus food manufacturers have opted to add whey to food formulations. The demand for
12 beverages containing vitamins, probiotics, prebiotics, minerals, and bioactive compounds (antioxidants) with
13 health benefits has increased and driven market growth. Therefore, this study aimed to develop a probiotic
14 functional carbonated beverage from cheese whey and evaluate its microbiological, and physicochemical
15 characteristics soon after the production and during storage. The viability and stability of probiotic, the
16 microbiological characteristics, titratable acidity and sedimentation of the beverage were monitored during
17 refrigerated storage for a month. The probiotic to be added to the formulation was established in a preliminary
18 step. The production of this beverage proved to be a simple technology and the product was suitable for
19 incorporation of the probiotic *Bifidobacterium animalis* subsp. *lactis*. The probiotic showed good viability and
20 stability during storage. The microbiological quality of the beverage met the Brazilian legal standards. The pH
21 and titratable acidity of the probiotic carbonated beverage remained stable during storage, and slight
22 sedimentation was observed after one week of refrigerated storage.23 **Keywords:** Functional food, whey, byproducts, beverages, probiotics

24

25

26

1. Introduction

27 Whey is a byproduct of the cheese industry, with a high world production (around 200 million
28 tons/year), and is characterized as an industrial effluent with high biochemical oxygen demand (BOD) due to its
29 high levels of organic compounds, making it the most polluting by-products of food manufacturing [1]. On the
30 other hand, despite the possible polluting effect, whey can also have great applicability as an ingredient in the
31 food industry due to its great nutritional profile.32 Whey retains more than half of the nutrient in milk, consisting of salts, vitamins, lactose, enzymes, and
33 proteins rich in essential amino acids with high bioavailability. In addition, whey proteins stand out as
34 precursors of biologically active peptides, which can produce various beneficial physiological effects in the
35 human body, acting on the immune, nervous, and especially on the cardiovascular system [2].36 The increase in environmental concern by industries, business groups, government entities and
37 consumers aware of the importance of preserving the environment has led to studies about the use of
38 by-products of the food industry that have functional and biological properties, such as cheese whey, in the
39 production of beverages.40 The international beverage market points to a total volume of commercialized beverages (alcoholic
41 and non-alcoholic) of 923 billion liters, of which 74.7% are non-alcoholic beverages, classified into different
42 categories, with an expressive volume of soft drinks and waters [3]. However, although the carbonated
43 beverages represent a high proportion of the non-alcoholic beverages market in Brazil, Mintel [4] carried out a

44 study on marketing research and found that 61% of Brazilians stated they would like to consume healthier
45 alternative beverages rather than soft drinks. In this regard, whey-based carbonated beverages can meet this
46 demand.

47 Carbonated beverages are products with great consumer acceptability, and whey can be one of the raw
48 materials used in the manufacture of this product. The carbonation process is inexpensive, safe, and apparently
49 has no negative effect on dairy products [5]. In addition, the use of probiotics in whey-based products may
50 enhance its functionality. The development of dairy products containing probiotic bacteria is a major focus of
51 the industrial sector, and generally, the production of food containing specific probiotic strains that maintain an
52 adequate concentration of viable cells during the shelf life is a technological challenge [6]. Probiotics have been
53 defined by FAO/UNO (Food and Agriculture Organization/United Nations Organization) and WHO (World
54 Health Organization) [7] as “live microorganisms that, when administered in adequate amounts, confer benefits
55 on their hosts”.

56 Thus, this study aimed to develop a probiotic functional carbonated beverage from cheese whey, and
57 evaluate its microbiological and physicochemical characteristics, soon after manufacture and during the
58 refrigerated storage. The viability and stability of probiotic cultures, the microbiological characteristics,
59 titratable acidity, and sedimentation of the beverage were monitored during the refrigerated storage for a
60 month.

61

62 **2. Materials and Methods**

63 **2.1 Microbial cultures**

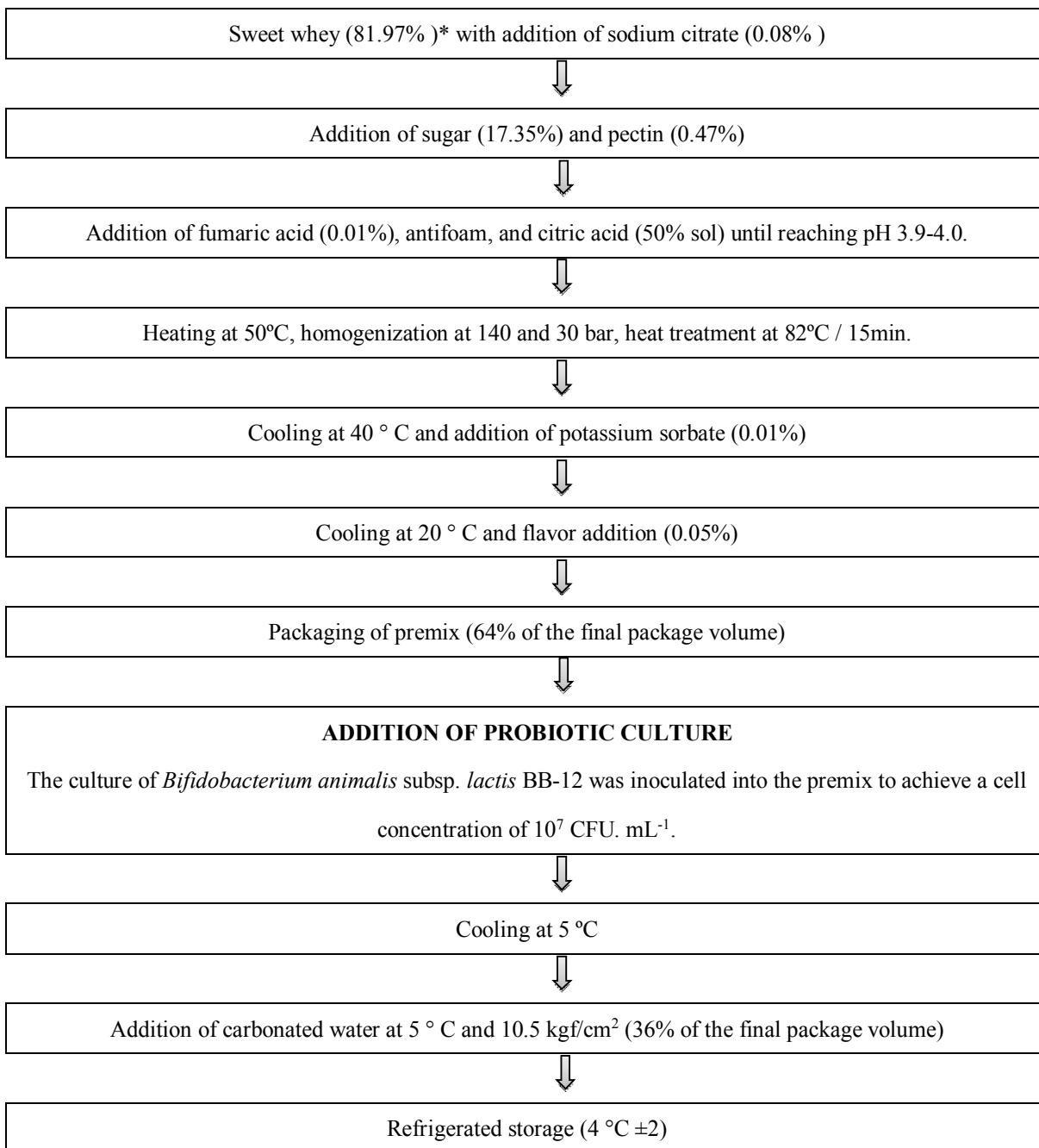
64 The experiments were conducted with DVS (direct vat set) cultures of *Lactobacillus acidophilus* La-5
65 and *Bifidobacterium animalis* subsp. *lactis* BB-12 (Chr. Hansen/Valinhos/Brazil). The probiotic cultures were
66 suspended separately in 1L sterile milk before use.

67

68 **2.2 Preliminary study**

69 This study was carried out at the Dairy Technology Center of the Food Technology Institute (ITAL) -
70 Campinas - Brazil. In the initial stage, preliminary tests were done to establish the probiotic culture, additives
71 and process parameters, according to Paula [5], with adaptations. Two types of probiotic cultures were
72 evaluated: *Bifidobacterium animalis* subsp. *lactis* BB12 and *Lactobacillus acidophilus* La-5, both purchased
73 from Chr. Hansen.

74 Based on the results, the parameters were selected as follows: the culture of *Bifidobacterium animalis*
75 subsp. *lactis*, due to the greater viability and less acidification during storage; a blend containing pectin (0.47%)
76 and sodium citrate (0.08%) as a stabilizer; water cooling at 5°C, and working pressure of 10.5 Kgf / cm², due to
77 the higher carbonation rate and lower losses during storage.


78

79 **2.3. Manufacture of the beverage**

80 The beverage was produced from a premix with subsequent addition of carbonated water, at two
81 different periods of the year, according to the flowchart shown in Figure 1.

82 For elaboration of the premix, cheese whey from enzymatic coagulation of low-fat *Minas Frescal*
83 cheese (a typical Brazilian cheese) produced at ITAL was used; refined sugar (União); sodium citrate (Synth);
84 fumaric acid (Synth); potassium sorbate (Clariant); natural green lemon flavor (Duas Rodas ref.
85 405504880001); pectin GENU PECTIN YM-150H (CPKelco); defoamer (Gemacom Tech Tate&Lyle); citric

86 acid (Synth); probiotic bacteria *Bifidobacterium animalis* subsp. *lactis* (BB12) (Chr. Hansen). The beverages
87 were packaged in 500 mL Shott Duran bottles.
88
89

90 *The amount of whey and the other constituents of the beverage were calculated as a % w/w of premix

91 **Figure 1.** Manufacture of the probiotic functional carbonated beverage.

92

93 **2.4. Analytical determinations**

94 Immediately after the manufacture, the probiotic functional carbonated beverage was subjected to the
95 following determinations: coliforms at 30 °C and 45 °C or thermotolerant coliforms counts, mesophilic and
96 psychrotrophic aerobic bacteria counts, molds and yeasts counts, detection of *Salmonella* sp, probiotic culture
97 counts, proximate composition, pH, titratable acidity, and sedimentation test. In addition, further

98 determinations were carried out every 7 days during storage (28 days): total mesophilic and psychrotrophic
99 counts, coliforms at 30-35°C, coliforms at 45°C, yeasts and molds counts, the viability of the probiotic culture,
100 pH, titratable acidity, and sedimentation test.

101

102 **2.4.1 Microbiological characterization**

103 The total aerobic mesophilic counts were performed on standard plate count agar (Difco PCA agar)
104 containing triphenyl tetrazolium chloride (TTC) and incubated at 32±1°C/48h [8]. The most probable number
105 procedure (MPN) was used to determine coliforms at 30-35°C and at 45°C with lauryl sulfate tryptose broth
106 (LST from Difco) and brilliant green bile lactose broth (BGBLB from Difco), incubating at 35±1°C for 24-48h
107 for determination of coliforms at 30-35°C [9] (ISO 4831:2006) and *Escherichia coli* broth (EC from Difco)
108 incubating at 44±1°C for 24 h [10] (ISO 7251:2005) for determination of heat tolerant coliforms. Dichloran rose
109 bengal chloramphenicol agar (DRBC from Difco) was used for the yeast and mold counts, incubating at 25±1°C
110 for 5 days [11] (ISO/IDF, 2004, number ISO6611). PCA (Difco), was used for the aerobic psychrotrophic
111 counts, incubating at 7±1°C for 7 days [8]. The presence of *Salmonella* was determined according to the
112 procedures recommended by Henning *et al.* [12]. The results of the microbial counts were expressed as log
113 CFU.mL⁻¹, with the exception of the coliform counts, expressed as MPN.mL⁻¹ and the presence of *Salmonella*,
114 expressed as present or absent.

115

116 **2.4.2 Enumeration of probiotic cultures in selective media**

117 *Lactobacillus acidophilus* La5 was counted according to the methodology of Technical Bulletin P-10
118 from Chr-Hansen, with an adaptation of the standard ISO 20128/IDF 192:2006 methodology [13]. MRS agar
119 culture medium (Difco) was used, with 0.5mL of clindamycin stock solution (Sigma) per liter of medium,
120 inoculating using the pour plate technique with anaerobic incubation (Anaerogen, Oxoid) at 37°C/72 hours. The
121 methodology of Technical Bulletin P-12 from Chr-Hansen was used for *Bifidobacterium animalis* subsp. *lactis*
122 counts, with adaptations of the standard IDF No. 411/2007 methodology [14]. An aliquot of 5 mL of
123 dicloxacillin stock solution (Sigma), 10 mL of LiCl stock solution (Merck), and 5mL of CyHCl stock solution
124 (Merck) were added to each liter of medium. The pour plate technique was used, with anaerobic incubation
125 (Anaerogen, Oxoid) at 37°C for 72 hours. Catalase test and Gram staining (LABORCLIN) were performed for
126 confirmation of Gram-positive bacteria, and verification of the typical morphology [15].

127

128 **2.4.3 Proximate composition, pH, acidity, and sedimentation test**

129 The following parameters were evaluated: total solids (TS) [16], fat (F) [17], ash (A) [18], and total
130 nitrogen content [19]. The total protein content (TP) was calculated by multiplying the total nitrogen content
131 by the conversion factor 6.38. The carbohydrate (CH) content was calculated by difference, according to the
132 Equation 1:

$$(CH = TS - (F+A+TP)) \quad (1)$$

133 The pH was measured in a Micronal - B-375 digital potentiometer. The acidity was performed by
134 titration with 0.1 N NaOH and expressed as a percentage of lactic acid (% LA) [20].

135 The sediment deposition was determined through the direct measurement of the sedimented phase,
136 expressed as a percent, according to the methodologies described by Angelucci [21] and Oliveira *et al.* [22].

137

138 **3. Results**139 **3.1 Proximate composition of the beverage**

140

141 The mean composition ($n = 2$) of the probiotic whey beverage immediately after manufacture is
142 shown in Table 1.

143

144 **Table 1.** Mean composition ($n=2$) of probiotic functional carbonated beverage.

Determination	Value*
Total solids (%)	15.87 \pm 0.32
Ash (%)	0.29 \pm 0.02
Fat (%)	0.20 \pm 0.00
Protein (%)	0.53 \pm 0.03
Carbohydrates (%)	14.85 \pm 0.27

145 *mean \pm standard deviation

146

147 Similar protein and ash contents and higher total solids, fat, and carbohydrate contents were observed
148 in the present study, when compared to the results reported by Paula [5], who studied carbonated beverage
149 made with whey from *Minas Padrão* cheese or *Mozzarella* cheese, and found 14.16% total solids; 0.34% ash;
150 0.10% fat; 0.52% protein; and 13.20% carbohydrates.

151 Katke and Patil [23] produced carbonated beverages from unclarified, prefiltered, and ultrafiltered
152 shrikhand whey and mango, orange and pineapple juices, using a carbonation pressure of 30psi. The beverages
153 presented 0.25-2.8% protein; 0.42-0.60% ash, 15.9-17.5% total solids, and 0 (not detected) to 0.24% fat.

154

155

156 **3.2 Microbiological characterization**

157 The microbiological characterization of the probiotic functional carbonated beverage is presented in
158 Table 2, and the results of culture viability, cell morphology, pH, and titratable acidity are shown in Table 3.

159

160 **Table 2.** Microbiological characterization of probiotic functional carbonated beverage immediately after the manufacture,
 161 and during the refrigerated storage.

Microorganism	Microbial counts (log CFU.mL ⁻¹ or MPN.mL ⁻¹) during the refrigerated storage (days)				
	0	7	14	21	28
Total aerobic mesophilic bacteria	< 1*	< 1*	< 1*	< 1*	< 1*
Total aerobic psychrotrophic bacteria	< 1*	< 1*	< 1*	< 1*	< 1*
Coliforms at 30°C	< 0.3*	< 0.3*	< 0.3*	< 0.3*	< 0.3*
Coliforms at 45°C	< 0.3*	< 0.3*	< 0.3*	< 0.3*	< 0.3*
Yeast and molds	< 1*	< 1*	< 1*	< 1*	< 1*
Salmonella spp **	Absence	-	-	-	-

162 *estimated value, below the detection limit of the method.

163 ** presence/absence in 25 mL sample.

164 - not determined

165
 166 **Table 2.** Enumeration of *Bf animalis* subsp. *lactis* Bb-12 and determination of pH and titratable acidity of probiotic
 167 functional carbonated beverage immediately after the manufacture, and during the refrigerated storage.

Time (days)	Results (log CFU.mL ⁻¹)	Cell morphology and Gram staining	Catalase	pH	Titratable acidity (% lactic acid)
0	7.45	Short curved rods with a typical arrangement of bifidobacteria G +	Negative	3.98	0.52
7	6.81	Short curved rods with a typical arrangement of bifidobacteria G +	Negative	3.95	0.51
14	6.85	Short curved rods with a typical arrangement of bifidobacteria G +	Negative	3.95	0.47
21	6.90	Short curved rods with a typical arrangement of bifidobacteria G +	Negative	4.05	0.56
28	6.87	Short curved rods with a typical arrangement of bifidobacteria G +	Negative	4.07	0.58

168 G+ Gram-positive bacteria

169
 170 The microbiological quality is adequate for the product since the results in Table 2 are in accordance with
 171 the standards required by the Brazilian legislation for milk beverages. The addition of CO₂ may have

172 contributed to the inhibition of spoilage microorganisms in the beverage during the storage. In addition, as can
173 be seen in Table 3, the probiotic culture *B. animalis* showed good viability during the storage of the product,
174 with counts between 7.45 and 6.87 log CFU.mL⁻¹ (final storage period).

175 Jardim et al [24] studied four dairy beverages formulations: a control, a fermented beverage, a carbonated
176 beverage, and a carbonated fermented beverage. For the samples subjected to carbonation, the CO₂ dissolved in
177 drinking water was injected into the sample, and the cultures *Lactobacillus acidophilus-LA-5®*,
178 *Bifidobacterium BB-12®* and *Streptococcus thermophilus* (Chr. Hansen) were used for the fermented
179 beverages. According to the authors, only the carbonated fermented beverage was considered to be potentially
180 probiotic during the storage due to the presence of *Lactobacillus* spp. in viable counts.

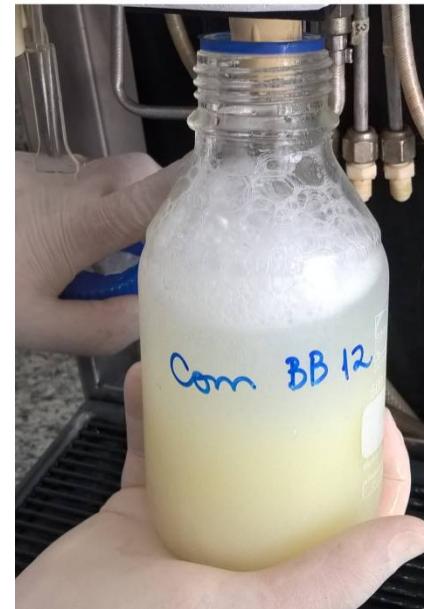
181 It has been suggested that probiotics should be present in the food product in minimal amounts of 10⁶
182 colony forming units (CFU)/g. This minimal count must provide the potential benefits to the host [25, 26]. This
183 amount can be translated into $\geq 10^6$ CFU/g/day of probiotics-containing product, given a daily serving portion
184 of 100 g. It is important how many cells are delivered per portion (e.g. total cfu per container consumed) [25].

185 Such high dosage is required to compensate for the cell loss during the passage through the upper
186 and lower parts of the GIT [25, 27]. For the probiotic beverage in question, a brazilian daily recommendation
187 of 200 mL (1 glass) refers to the consumption of 10⁸-10⁹ colony forming units (CFU) of *B. animalis*.

188 Higher pH and lower titratable acidity values were observed in the present study when compared to
189 the findings of Paula [5], who studied a carbonated whey-based beverage without the addition of probiotics,
190 stored at room temperature. The author found pH values ranging from 3.14 to 3.40, and acidity from 0.94 to
191 1.12% lactic acid. The pH of the beverage of the present study was higher than these values, once a mild
192 acidification was performed in the manufacturing process to allow the addition of the probiotics. Katle and
193 Patil [23] also studied carbonated whey-based beverages and found pH and acidity values ranging from 4.46
194 to 4.70, and 0.31 to 0.40%, respectively.

195

196 **3.3 Sedimentation test**


197

198 Although the immediately processed beverage (1 day after manufacture) did not present this defect,
199 sediments were observed in the beverage in the second evaluation period (7 days). However, the sedimentation
200 rate was only 1%, which is considered low and remained constant until the end of the storage (28 days).

201

202
203 **Figure 2.** Addition of the probiotic culture *Bifidobacterium*
204 *animalis* subsp. *lactis* Bb12 to the premix

205 **Figure 3.** Carbonation step of the
206 probiotic beverage

207 **4. Conclusions**

208 The probiotic culture *Bifidobacterium animalis* subsp. *lactis* Bb12 was selected for the pilot-plant scale
209 production of carbonated beverage, once it exhibited good viability and less acidification during the storage,
210 without conferring a strange flavor to the product.

211 The manufacture of probiotic carbonated whey proved to be a simple technology, and the
212 product was suitable for incorporation of the probiotic culture. The beverage had adequate microbiological
213 quality and stability during the storage.

214 The conditions and the level of probiotic culture used in the manufacturing process allowed that the viable
215 cells remained between 10^7 and 10^6 CFU mL⁻¹ during the refrigerated storage, which meets the values
216 recommended internationally to confer health benefits.

217 **Author Contributions:** Conceptualization, A.T.S.A. and P.B.Z.; Data curation, A.T.S.A.; Formal analysis, A.T.S.A.,

218 L.M.S. and F.K.H.S.T.; Funding acquisition, L.M.S.; Investigation, A.T.S.A. and L.M.S.; Methodology, A.T.S.A., L.M.S.,
219 P.B.Z. and F.K.H.S.T.; Project administration, A.T.S.A. and L.M.S.; Resources, L.M.S.; Supervision, A.T.S.A.; Validation,
220 A.T.S.A.; Visualization, A.T.S.A.; Writing – original draft, A.T.S.A., L.M.S., P.B.Z. and F.K.H.S.T.; Writing – review &
221 editing, A.T.S.A., L.M.S., P.B.Z. and F.K.H.S.T.

222 **Acknowledgments:** The present study was carried out with the support of CNPq, the National Council for Scientific and
223 Technological Development – Brazil.

224 **Conflicts of Interest:** The authors declare no conflict of interest

225

224 **References**

225 1. Banaszewska, A.; Cruijssen, T.F.; Claassen, G.D.H.; Vorst, A.J. Van Dender. Effect and key factors of byproducts
226 valorization: The case of dairy industry. *J. Dairy Sci.* **2014**, *97*, 1893-1908.

227 2. Spadoti, L. M.; Moreno, I.; Silva e Alves, A.T.; Zacarchenco, P.B.; Gallina, D.A. Peptídeos bioativos obtidos de proteínas
228 do soro de queijo: potenciais ingredientes de alimentos promotores de saúde. *Ind. de Laticínios* **2011**, *15*, 80-83.

229 3. Euromonitor International. Functional Foods Market: Global Opportunities. In *Functional Foods*, São Paulo, Brasil,
230 13-14 fevereiro 2012.

231 4. Hare, I. *Category Insights: Sports & Energy Drinks*. October, 2012.

232 5. Paula, J.C.J. de. Elaboração e estabilidade de bebida carbonatada aromatizada a base de soro de leite. Magister Scientiae,
233 Universidade Federal de Viçosa, Viçosa, 2005.

234 6. Kourkoutas, Y.; Xolias, V.; Kallis, M.; Bezirtzoglou, E.; Kanellaki, M. *Lactobacillus casei* cell immobilization on fruit
235 pieces for probiotic additive, fermented milk and lactic acid production. *Process Biochem.* **2005**, *40*, 411- 416.

236 7. FAO/WHO. *Working Group Report on Drafting Guidelines for the Evaluation of probiotics in Food*. London, Ontario,
237 Canada, 2002.

238 8. Frank, J. F.; Yousef, A. E. Test for groups of microorganisms. In *Standard Methods for the Examination of Dairy Products*,
239 17th ed.; Wehr, H. M.; Frank, J. F., Eds.; APHA: Washington, USA, 2004; Chapter 8, pp. 227-248.

240 9. ISO 4831. *Microbiology of food and animal feeding stuff - Horizontal method for the detection and enumeration of*
241 *coliforms - Most probable number technique*, 3rd ed. The International Organization for Standardization: Geneva,
242 Switzerland, 2006.

243 10. ISO 7251. *Microbiology of food and animal stuff – Horizontal method for the detection and enumeration of presumptive*
244 *Escherichia coli – Most probable number technique*, 3rd ed.; The International Organization for Standardization: Geneva,
245 Switzerland, 2005.

246 11. ISO and IDF. ISO 6611 / IDF 94. *Milk and milk products – enumeration of colony-forming units of yeast and/or molds –*
247 *a colony-count technique at 25°C*. Geneva, Switzerland, 2004.

248 12. Henning, D.R.; Flowers, R.; Reiser, R.; Ryser, E.T. Pathogens in milk and milk products. In *Standard Methods for the*
249 *Examination of Dairy Products*, 17th ed.; Wehr, H. M.; Frank, J. F., Eds.; APHA: Washington, USA, 2004; Chapter 5, pp.
250 103-151.

251 13. ISO and IDF. ISO 20128 / IDF 192. *Milk products - Enumeration of presumptive Lactobacillus acidophilus on a*
252 *selective medium - Colony count technique at 37 degrees C*. Geneva, Switzerland, 2006

253 14. IDF-INTERNATIONAL DAIRY FEDERATION. IDF 411. Selective enumeration of Bifidobacteria in Dairy Products:
254 Development of a Standard Method. *Bulletin of the International Dairy Federation*, pp.1-17, 2007.

255 15. Harrigan, W.F. *Laboratory methods in food microbiology*. Academic Press: San Diego, USA, 1998.

256 16. IDF - INTERNATIONAL DAIRY FEDERATION. *Determination of the total solids content of cheese and processed*
257 *cheese*. FIL/IDF: Brussels, Belgium, 1982. (FIL-IDF, 4A).

258 17. Hooi, R.; Barbano, D. M.; Bradley, R. L. Budde, D.; Bulthaus, M.; Chettiar, M.; Lynch, J.; Reddy, R. Chemical and
259 Physical Methods. In *Standard Methods for the Examination of Dairy Products*, 17th ed.; Wehr, H. M.; Frank, J. F., Eds.;
260 APHA: Washington, USA, 2004; Chapter 15, pp. 363-536.

261 18. Bradley, R.L. Dairy Products. In *Official Methods of Analysis of AOAC International*, 18th ed.; Horwitz, W., Latimer Jr,
262 G.W., Eds; AOAC International: Maryland, USA, 2005; Chapter 33, pp.10.

263 19. IDF - INTERNATIONAL DAIRY FEDERATION. Determination of the total nitrogen content of milk by Kjeldahl
264 method. FIL/IDF Brussels, Belgium, 1962. (FIL-IDF, 20).

265 20. IAL - INSTITUTO ADOLFO LUTZ. *Métodos físico-químicos para análise de alimentos*, 4. ed.; Ministério da Saúde:
266 Brasília, Brasil, 2005; pp.103-105; ISBN 85-334-1038-7.

267 21. Angelucci, E. Análises físicas de bebidas não alcoólicas. In *Curso de analises de bebidas não alcoólicas*; Angelucci, E.,
268 Ed.; ITAL: Campinas, Brasil, 1977; pp.52-74.

269 22. Oliveira, M.N.; Sodini, I.; Remeuf, F.; Tissier, J.P.; Corrieu, G. Manufacture of fermented lactic beverages containing
270 probiotic cultures. *J. Food Sci.* **2002**, *67*, 2336-2341.

271 23. Kattle, S.D., Patil, P.S. *Carbonated whey beverages*. Research maGma Book Publication: Solapur, Índia, 2017;
272 pp.25-60; ISBN 978-1-387-00252-8.

273 24. Jardim, F. B. B.; Santos, E. N. F.; Rossi, D. A.; Melo, R. T.; Miguel, D. P.; Rossi, E. A.; Sylos, C. M.
274 Desenvolvimento de bebida láctea carbonatada. *Alim. Nutr.* **2012**, *23*, 275-286.

275 25. Tamime, A.Y.; Saarela, M.; Wszolek, M. ; Ghoddousi, H. ; Linares, D.M.; Shah, N.P. Production and Maintaining
276 Viability of Probiotic Microorganisms in Dairy Products. In: *Probiotic Dairy Products*; Tamime, A.Y., Thomas, L.V.,
277 Eds.; Wiley Blackwell: Hoboken, USA, 2018; Chapter 4, pp. 67-164

278 26. Vandenplas, Y.; Huys, G.; Daube, G. Probiotics: an update. *J. Pediatr.* **2015**, *91*, 6-21.

279 27. Granato, D., Branco, G.F., Cruz, A.G., Faria, J.A.F., Shah, N.P., 2010. Probiotic dairy products as functional foods.
280 *Comp. Rev. Food Sci. Food Saf.* **2010**, *9*, 455-470.

281