
Article

First Steps towards Data-driven Adversarial
Deduplication

Jose N. Paredes 1,†, Gerardo I. Simari 1,2,†,∗ ID

Maria Vanina Martinez 3,† and Marcelo A. Falappa 1,†

1 Department of Computer Science and Engineering, Universidad Nacional del Sur (UNS) and
Institute for Computer Science and Engineering (CONICET–UNS); {jose.paredes,gis,mfalappa}@cs.uns.edu.ar
2 Arizona State University; gsimari@asu.edu
3 Department of Computer Science, Universidad de Buenos Aires (UBA) and
Institute for Computer Science (CONICET–UBA); mvmartinez@dc.uba.ar
* Correspondence: gis@cs.uns.edu.ar; Tel.: +54-291-459-5101 ext. 2628
† These authors contributed equally to this work.

Abstract: In traditional databases, the entity resolution problem (which is also known as
deduplication), refers to the task of mapping multiple manifestations of virtual objects to its
corresponding real-world entity. When addressing this problem, in both theory and practice, it
is widely assumed that such sets of virtual object appear as the result of clerical errors, transliterations,
missing or updated attributes, abbreviations, and so forth. In this paper, we address this problem
under the assumption that this situation is caused by malicious actors operating in domains in which
they do not wish to be identified, such as hacker forums and markets in which the participants are
motivated to remain semi-anonymous (though they wish to keep their true identities secret, they find
it useful for customers to identify their products and services). We are therefore in the presence of a
different, even more challenging problem that we refer to as adversarial deduplication. In this paper,
we study this problem via examples that arise from real-world data on malicious hacker forums and
markets arising from collaborations with a cyber threat intelligence company focusing on understanding
this kind of behavior. We argue that it is very difficult—if not impossible—to find ground truth data
on which to build solutions to this problem, and develop a set of preliminary experiments based on
training machine learning classifiers that leverage text analysis to detect potential cases of duplicate
entities. Our results are encouraging as a first step towards building tools that human analysts can
use to enhance their capabilities towards fighting cyber threats.

Keywords: Adversarial Deduplication; Machine Learning Classifiers; Cyber Threat Intelligence

1. Introduction and Motivation

The classical problem of entity resolution—or deduplication—in databases seeks to address situations
in which seemingly distinct records are stored that actually refer to the same entity (object, person,
place, etc.) in the real world. Typically, the goal is to identify and merge such records [1,2]; see
Section 4 for a discussion of related work.

The characteristic that is overwhelmingly shared among these traditional approaches is that they
assume that the existence of multiple records for the same real entity is the product of involuntary
situations like simple typos during data entry procedures, ambiguity in attribute values such as
transliterations and abbreviations, and inconsistency and incompleteness due to overspecification and
underspecification (two addresses for the same person, or address completely missing), respectively, or
evolving values such as address changes. In this paper, we are interested in situations in which these
assumptions simply cannot be made because there are actors who may purposefully be taking actions
towards hiding their identity behind multiple profiles. Take, for instance, the setting of malicious hacker
forums on the dark/deep Web, in which participants seek to buy and sell different kinds of goods such

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 June 2018 doi:10.20944/preprints201806.0425.v1

© 2018 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0003-3185-4992
http://dx.doi.org/10.20944/preprints201806.0425.v1
http://creativecommons.org/licenses/by/4.0/

2 of 13

User Name: Hexxx

Last Access: 2018/05/29

Location: USA

Posts: 543

User Name: Wit

Last Access: 2018/06/10

Location: Russia

Posts: 412

User Name: Av0id

Last Access: 2018/06/15

Location: USA

Posts: 701

User Name: Dox

Last Access: 2018/06/15

Location: Canada

Posts: 701

User Name: tekio

Last Access: 2018/06/11

Location: USA

Posts: 301

User Name: pirat

Last Access: 2018/06/21

Location: Ukraine

Posts: 613

User Name: Crew

Last Access: 2018/06/23

Location: India

Posts: 988

User Name: freek

Last Access: 2018/06/24

Location: India

Posts: 577

Figure 1. In real-world applications such as Dark Web forums and marketplaces, it may not always
be clear who is behind user profiles; in particular, there may be two or more profiles that correspond
to the same person.

as malware, passwords, credit card numbers, and other illicit materials. There is an interesting dynamic
that arises among the participants in these forums and marketplaces: though of course they wish to
remain anonymous–especially from government agents who may be watching—they on the other hand
also wish to maintain their reputation within the community, and must therefore remain identifiable.
The same actor typically operates using different profiles, but keeping certain characteristics constant;
perhaps most importantly, they also leave involuntary traces behind that can be analyzed and leveraged
by deduplication tools. We refer to this as the adversarial deduplication/entity resolution problem.
Figure 1 illustrates this situation via a simple visualization—consider the problem of trying to determine
clues that point to the conclusion that a given pair of faces might correspond to the same real-world
user (or perhaps to the opposite conclusion).

The following is a simplified example of the kind of information that we can obtain from dark web
forums and marketplaces.

Example 1.1. Consider the database schemas shown for the tables in Figure 2, where we have a table
for forums, topics, and posts. In this paper, we focus on the latter since it is the main source of material
that can be used towards identifying potential duplicates. �

This information is based on the system developed in [3] and CYR3CON1 for cyber threat
intelligence, which scrapes data from various social platforms, especially in the dark net and deep net.
They collect and store information from hacker forum discussions and marketplaces offering products
and services that focus on malicious hacking, such as sales of malware/exploits (including CVE numbers,
which are identifiers given by the National Vulnerability Database [4,5]) and hacker forums (discussions
regarding services and threats). The crawling and parsing of these sites yields time-varying data, since
the system returns periodically to the same sites.

The rest of this paper is organized as follows: Section 2 presents our method to train machine
learning classifiers to recognize posts made by users based on text analysis techniques, Section 3
presents our empirical evaluation consisting of two main experiments (a first phase consisting of a
broad evaluation of different classifiers and hyperparameter settings, and a second phase analyzing the

1 https://cyr3con.ai/Home

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 June 2018 doi:10.20944/preprints201806.0425.v1

https://cyr3con.ai/Home
http://dx.doi.org/10.20944/preprints201806.0425.v1

3 of 13

postId postContent postedDate scrapedDate forumsId recordedDate userId topicId
11e9d297a29899f6a69c3da05391acaa [u'', the only good way to work in computer security straight is to be

a "black hat" then at some point (arrested a few to many times, you
get a wife/family) you decide you can't do it any more. the other
way is to go into sysadmin and at some point, once you have
experience going into nothing but security. , u'', i see way to
many people about trying to sell themselves as pen-testers and
security consultants and know fuck all, don't be one of those
people., u'']

11/10/2008 1/22/2017 56 11/10/2008 352820 481581

da1a4e396af0e1b87ba0d3a81b1e6277 your only recourse is using a second 3.60 or updated unit, or ps3 to
download the games, then transfer them to your vita or qcma. and
that only works for games you purchased, it isn't a gateway to
piracy.

6/3/2017 6/5/2017 134 6/3/2017 75065 821237

92ac4e1e3cdb886080c6af2a528673eb and i don^t particularly agree with touting this method either. why
use wm_vsh_menu to call wmm functions to prepare the cfw when
psnpatch does a fine job...?it^s not explained here but i assume it^s
to run jb folder games to go online. however there is a good reason
for psnpatch to remove cobra hooks stopping many jb folder games
from working. bypassing this feature is not a smart idea for most
users. i don^t recommend to do it. cfw users should always stick to
iso & the psnpatch method. as to the title given the fact that the
only users who require jb folders are cheaters & modders i
wouldn^t actually hold my breath when telling them they will
"never" get banned if they follow these steps... assuming that these
steps will prevent a ban is not the same as knowing they will....

3/19/2017 6/23/2017 93 3/19/2017 1807 946623

forumsId boardsName
56 null
134 vitahacks
93 thread locked

topicId topicName
481581 [u'white hat hacker carrer']
821237 bought psn games on 3.63question (self.vitahacks)
946623 thread locked

Figure 2. Snippets of the hackingPosts, forums, and topics tables from our dataset.

effectiveness of the best two in finding pairs of entities), and Sections 4 and 5 discuss related work and
conclusions, respectively.

2. Deduplication Leveraging Text-based Features

We now present a proposal for applying machine learning techniques towards solving adversarial
deduplication problem; note that the general approach is not novel since it has been applied in several
other problems such as malware identification and attribution, among others (cf. Section 4 for a
discussion); however, this is to the best of our knowledge the first such proposal for this problem.
Essentially, we wish to develop a lightweight method by which posts written by users can be automatically
analyzed and deduplication hypotheses can be generated so that human analysts can step in to provide
a more in-depth analysis. The workflow can be summarized in the following steps:

• Procure information from online discussions in forums and marketplaces; this is an ongoing effort
that is generally carried out in a semi-automatic manner by specialists [6].

• Prepare the data by performing several cleaning processes (see below).
• Train one or more machine learning classifiers to recognize posts written by each user. For this
step, we assume that posts made under different user names correspond to different users—we
come back to this assumption when analyzing the results yielded in the testing phase.

• Apply the classifiers to pairs of new posts by users X and Y ; if either X’s classifier states that a
post written by Y was written by X, or vice versa, then we generate a deduplication hypothesis.

• The set of deduplication hypotheses are sent to human analysts for further treatment.

Note that if we have no further information about the authors of posts, for n users we would have to
analyze (n

2) pairs to see if they actually correspond to the same user; for 50 users, this amounts to
1, 225, and for 100 we have 4, 950, which are already intractable numbers—clearly, scaling such a brute
force analysis to larger numbers of users is impossible (cf. Figure 3). The general goal of our method is
therefore to greatly reduce the set of pairs that humans must actually look at.

Analyzing text via n-grams. In order to extract basic elements from text, one common tool is the
use of n-gram, which are can be defined in different ways; here, we adopt the commonly used definition
of n-gram as a sequence of n characters. The advantage of using n-grams instead of directly analyzing
a text is that typos, spelling variations, and other kinds of differences yield sets of n-grams that are
closely related.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 June 2018 doi:10.20944/preprints201806.0425.v1

http://dx.doi.org/10.20944/preprints201806.0425.v1

4 of 13

Number of users n Number of possible pairs (n
2)

50 1,225
100 4,950
150 11,175
200 19,900
500 124,750
1,000 499,500
2,000 1,999,000
5,000 12,497,500
10,000 49,995,000

Figure 3. Numbers of unordered pairs of users needed to be inspected by brute force analysis.

Example 2.1. Consider the word software and some common misspellings/intentional variations used
by online communities: sofware, softwarez, and sophwarez. If we consider the 2-grams and 3-grams for
each of these terms, we arrive at the following sets:

2-grams 3-grams
software so, of, ft, tw, wa, ar, re sof, oft, ftw, twa, war, are
sofware so, of, fw, wa, ar, re sof, ofw, fwa, war, are
softwarez so, of, ft, tw, wa, ar, re, ez sof, oft, ftw, twa, war, are, rez
sophwarez so, op, ph, hw, wa, ar, re, ez sop, oph, phw, hwa, war, are, rez

Clearly, even the two most different variations (software and sophwarez) still share several n-grams.
The value of n is a parameter to be tuned—a range within [3,7] has been found to work well in this
kind of analysis [3]. �

Our working hypothesis is therefore that properly trained machine learning classifiers can detect
unintentional traces left behind in the writing of people who are trying to hide behind multiple profiles in
online forums and markets. In the next section we present the design and results of a set of experiments
carried out as a preliminary attempt towards proving this hypothesis.

3. Empirical Evaluation

We adopted the following basic setup for the evaluation of our approach with real-world data,
which was carried out in two main experiments (see below):

• Dataset: posts table, which contains 89, 766 posts users table, which contains 128 users.
• Data cleaning and preparation: We removed HTML tags from posts using the BeautifulSoup tool2,
removed URLs, extra spaces, and strings that contained a combination of letters and numbers.
Finally, we discarded posts that either contain less than 140 characters or any of the following
strings “quote from:”, “quote:”, “wrote:”, “originally posted by”, “re:”, or “begin pgp message”.
This yielded 40, 453 clean posts corresponding to 54 users.
• Feature generation: We used the well-known TF-IDF (term frequency-inverse document frequency)

technique to produce vectors of features based on n-grams, which essentially consists of assigning
weights to features in such a way that they increase proportionally to the number of times it
occurs in a document, and also takes into account the number of times the feature occurs in the
whole corpus.
• Classifiers: Different standard machine learning approaches implemented with a standard Python
library3:

2 https://www.crummy.com/software/BeautifulSoup/
3 http://scikit-learn.org/stable/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 June 2018 doi:10.20944/preprints201806.0425.v1

https://www.crummy.com/software/BeautifulSoup/
http://scikit-learn.org/stable/
http://dx.doi.org/10.20944/preprints201806.0425.v1

5 of 13

Table 1. Complete description of hyperparameter settings for all classifier instances

ID Classifier Type max_df n-grams
SVC1 SVM–lin. kernel 0.02 [3,3]
SVC2 SVM–lin. kernel 0.03 [3,3]
SVC3 SVM–lin. kernel 0.02 [4,4]
SVC4 SVM–lin. kernel 0.01 [4,4]
SVC5 SVM–lin. kernel 0.03 [5,5]
SVC6 SVM–lin. kernel 0.03 [3,4]
SVC7 SVM–lin. kernel 0.06 [3,4]
SVC8 SVM–rbf kernel 0.01 [3,3]
SVC9 SVM–rbf kernel 0.05 [3,3]
SVC10 SVM–rbf kernel 0.03 [3,3]
SVC11 SVM–rbf kernel 0.05 [4,4]
SVC12 SVM–rbf kernel 0.08 [4,4]
SVC13 SVM–rbf kernel 0.05 [5,5]
SVC14 SVM–rbf kernel 0.03 [5,5]
DT1 Decision Tree 0.05 [3,3]
DT2 Decision Tree 0.05 [3,3]
DT3 Decision Tree 0.05 [3,3]
DT4 Decision Tree 0.02 [3,3]
DT5 Decision Tree 0.03 [3,3]
DT6 Decision Tree 0.03 [3,3]
DT7 Decision Tree 0.009 [3,3]
DT8 Decision Tree 0.03 [4,4]
DT9 Decision Tree 0.03 [4,4]
DT11 Decision Tree 0.02 [4,4]
DT12 Decision Tree 0.05 [4,4]
DT13 Decision Tree 0.01 [4,4]
DT14 Decision Tree 0.05 [5,5]
DT15 Decision Tree 0.03 [5,5]
DT16 Decision Tree 0.02 [5,5]
DT17 Decision Tree 0.01 [5,5]
DT18 Decision Tree 0.01 [5,5]

ID Classifier Type max_df n-grams
MNB1 Multinom. BN 0.02 [3,3]
MNB2 Multinom. BN 0.01 [3,3]
MNB3 Multinom. BN 0.008 [3,3]
MNB4 Multinom. BN 0.007 [3,3]
MNB5 Multinom. BN 0.005 [3,3]
MNB6 Multinom. BN 0.005 [3,3]
MNB7 Multinom. BN 0.005 [4,4]
MNB8 Multinom. BN 0.005 [4,4]
MNB9 Multinom. BN 0.003 [5,5]
LR1 Log. Regression 0.03 [3,3]
LR2 Log. Regression 0.02 [3,3]
LR3 Log. Regression 0.03 [4,4]
LR4 Log. Regression 0.01 [4,4]
LR5 Log. Regression 0.03 [5,5]
LR6 Log. Regression 0.01 [5,5]
RF1 Random Forest 0.03 [3,3]
RF2 Random Forest 0.02 [3,3]
RF3 Random Forest 0.03 [4,4]
RF4 Random Forest 0.02 [4,4]
RF5 Random Forest 0.03 [5,5]
RF6 Random Forest 0.02 [5,5]

– Decision Trees
– Logistic Regression
– Multinomial Bayesian Networks
– Random Forests
– Support Vector Machines

• Hyperparameters: We explored different values of two main hyperparameters: max_df and n_gram
range. The former is a bound on the frequency with which a feature occurs in a post (essentially,
as frequency increases the information content of a feature becomes lower), while the latter
determines the length of the substrings into which the text is split. This yielded a set of 52
classifier instances (cf. Table 1).

For some instances, we also applied a bound on the number of features taken into account. by
the classifier(max_features):

– DT2 is DT1 with max_features = 2,500
– DT3 is DT1 with max_features = 2,000
– DT9 is DT8 with max_features = 3,000
– DT5 has max_features = 3,000
– DT6 has max_features = 2,000
– DT18 is DT17 with max_features = 5,000

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 June 2018 doi:10.20944/preprints201806.0425.v1

http://dx.doi.org/10.20944/preprints201806.0425.v1

6 of 13

352792 20307 117723 43315 161133 282143 353596 352809 13585 146319
C352792 19 0 0 1 1 0 0 0 0 1
C20307 7 17 6 5 9 9 2 3 2 9
C117723 5 5 19 6 4 3 4 6 1 9
C43315 9 2 1 17 2 0 2 6 1 8
C161133 5 4 4 7 17 2 5 0 0 13
C282143 4 9 9 8 2 14 4 4 0 9
C353596 12 7 11 16 8 3 17 8 6 14
C352809 3 6 4 8 4 3 8 10 0 9
C13585 1 2 9 4 4 7 9 2 17 9
C146319 12 5 7 10 10 4 9 5 1 17

Figure 4. Example of a confusion matrix for Experiment 1; columns correspond to users and rows to
classifiers. Each cell M(i, j) contains the number of posts (out of 20) for which classifier Ci answered
yes for a post actually authored by user uj . The diagonal is highlighted in boldface.

– MNB6 is MNB5 with max_features = 3,000

This set of classifier instances was generated by means of manual exploration of the
hyperparameters, looking for the combinations that had the most potential to yield high values
for precision and recall.

3.1. Experiment 1: Broad evaluation of different classifiers and hyperparameter settings

The goal of the first set of experiments was to find the best-performing classifier instances among
the 52 shown in Table 1; towards this end, we conducted three trials of the following set of steps:

• Choose 10 users at random.
• Training phase: For each user ui, train a classifier Ci using between 200 and 500 sample posts
written by them (positive examples, actual number of posts depended on availability) and the
same number of posts written under other screen names (presumed negative examples).

• Testing phase: For each user, take 20 test posts that were not used to train any of the classifiers
and query each resulting classifier. This yields a confusion matrix M where each row corresponds
to a user and each column to a classifier; M (i, j) contains the number of posts classified by
classifier Cj as corresponding to user ui. Note that a perfect confusion matrix in this case should
have a value of 20 along the diagonal, and values of zero in all other cells. Figure 4 shows an
actual instance of such a matrix.

• In order to evaluate the performance of each classifier, we make use of the following notions:

– True positives (tp): A test post written by user ui is classified correctly by classifier Ci; the
number of true positives for Ci is found at position M (i, i).

– False positives (fp): A test post written by user ui is classified incorrectly by a classifier
Cj 6= Ci; the number of false positives for Ci can be found by calculating

∑
j 6=i M (i, j).

– True negatives (tn): A test post written by user ui is classified correctly by a classifier Cj 6= Ci;
the number of true negatives for each classifier is simply (10− 1) · 20−

∑
i 6=j M(i, j) =

180−
∑

i 6=j M (i, j).
– False negatives (fn): A test post written by user ui is classified incorrectly by classifier Ci;

the number of false negatives for Ci is calculated as 20−M (i, i).

Based on the confusion matrix M and the above calculations, we can then derive:

precision(Ci) =
tp(Ci)

tp(Ci) + fp(Ci)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 June 2018 doi:10.20944/preprints201806.0425.v1

http://dx.doi.org/10.20944/preprints201806.0425.v1

7 of 13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DT2 DT1 DT3 DT12 DT14 DT8 DT15 DT9 DT6 DT5 DT4 DT16 DT11 DT17 DT13 DT18 DT7

Classifier Instance

Precision/Recall/F1 (Decision Trees)

Precision Recall F1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LR6 LR4 LR2 LR5 LR3 LR1

Classifier Instance

Precision/Recall/F1 (Logistic Regression)

Precision Recall F1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MNB7 MNB2 MNB8 MNB3 MNB4 MNB9 MNB1 MNB5 MNB6

Classifier Instance

Precision/Recall/F1 (Multinomial Bayesian Networks)

Precision Recall F1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RF6 RF4 RF1 RF5 RF3 RF2

Classifier Instance

Precision/Recall/F1 (Random Forests)

Precision Recall F1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SVC13 SVC14 SVC11 SVC12 SVC7 SVC9 SVC5 SVC3 SVC10 SVC6 SVC4 SVC2 SVC1 SVC8

Classifier Instance

Precision/Recall/F1 (SVMs)

Precision Recall F1

Figure 5. Precision, recall and F1 values for all classifiers evaluated in Experiment 1; in each graph,
classifier instances are sorted in descending order of F1 measure.

and
recall(Ci) =

tp(Ci)

tp(Ci) + fn(Ci)
,

which are standard metrics used to evaluate classifier performance; finally the harmonic mean
of these two values, known as the F1 measure, is typically used as a good way to compare the
performance of a set of classifiers.

Finally, we take the average of the three runs to obtain the final results, which we report next.

3.2. Results for Experiment 1

The results of this set of experiments are shown in Figure 5. Each graph shows the values obtained
for precision, recall, and F1 measure, sorted by the latter; the typical tradeoff between precision and
recall can be observed in each graph—though all instances have quite high values for recall, the classifiers
that do best with respect to this measure do so at a high cost in precision (cf. MNB2, which boasts a
recall of 0.96 but only 0.2 in precision. Figure 6 groups together the two best performers for each type
of classifier.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 June 2018 doi:10.20944/preprints201806.0425.v1

http://dx.doi.org/10.20944/preprints201806.0425.v1

8 of 13

0.49

0.57 0.58 0.56

0.35 0.34

0.25
0.20

0.36
0.32

0.91

0.80
0.74 0.74

0.93 0.91 0.93 0.96

0.80 0.83

0.70 0.68 0.66 0.65 0.64 0.63
0.59 0.58 0.58 0.58

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SVC13 SVC14 LR6 LR4 DT2 DT1 MNB7 MNB2 RF6 RF4

Classifier Instance

Precision/Recall/F1 (Overall Best Performers)

Precision Recall F1

Figure 6. Best two performers from each chart in Figure 5, sorted by F1 measure.

It should be noted that choosing users uniformly at random to attribute authorship would succeed
with probability 0.1 in this setting; therefore, the classifiers with the best precisions in Figure 6, which
are the first four, are 4.9 to 5.8 times better than this baseline.

3.3. Experiment 2: Seeding known duplicates

We now select two classifiers from the first set of experiments and evaluate their capability to find
duplicates. The choice was made among those shown in Figure 6 mostly by their performance with
respect to F1 measure, which would yield SVC13 and SVC14; however, even though SVC14 performed
slightly better than LR6, we chose the latter in order to favor diversity in classifiers.

Since, as discussed earlier, in this domain it is very difficult—or impossible—to obtain ground
truth data, we engineer pairs of duplicates by simply dividing k users’ posts into two sets and training
independent classifiers with this data. Now, the definition of true/false positive and true/false negative
depends on the type of pair being considered:

• For a pair of users that is known (or, rather, assumed) to be different:

– True negative: classifier says no
– False positive: classifier says yes

True positives and false negatives are impossible in this case.
• For a pair of users that is known to correspond to a duplicate:

– True positive: classifier says yes
– False negative: classifier says no

True negatives and false positives are impossible in this case.

Now, consider the task of choosing p pairs of users (ui, uj) at random and presenting 20 test posts
for each user to the classifier corresponding to the opposite user (so, ui’s posts to Cj , and vice versa).
For k = 2, given that we have 54 + 2 = 56 users (the original plus the duplicates), we have(

54 + 2 = 56
2

)
= 1, 540

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 June 2018 doi:10.20944/preprints201806.0425.v1

http://dx.doi.org/10.20944/preprints201806.0425.v1

9 of 13

0

25

50

75

100

125

150

175

200

225

250
SV

C1
3

SV
C1

4
SV

C1
1

SV
C1

2
SV

C7
SV

C9
SV

C5
SV

C3
SV

C1
0

SV
C6

SV
C4

SV
C2

SV
C1

SV
C8 DT
2

DT
1

DT
3

DT
12

DT
14 DT
8

DT
15 DT
9

DT
6

DT
5

DT
4

DT
16

DT
11

DT
17

DT
13

DT
18 DT
7

M
N
B7

M
N
B2

M
N
B8

M
N
B3

M
N
B4

M
N
B9

M
N
B1

M
N
B5

M
N
B6 LR
6

LR
4

LR
2

LR
5

LR
3

LR
1

RF
6

RF
4

RF
1

RF
5

RF
3

RF
2

Ti
m

e
(s

ec
s.

)

Classifier Instance

Running Times (Training + Test)

Figure 7. Running time taken to train and test each classifier instance from Experiment 1, sorted
by their F1 measure in the charts from Figure 5.

possible pairs. In order to simulate a reasonable percentage of duplicates in the number of pairs tested,
we conducted four runs varying p ∈ {20, 40, 60, 80} and calculated the resulting precision, recall, and
F1 values—the results are presented in Figure 8.

3.4. Results for Experiment 2

The first thing that is evident when analyzing the results is that both classifiers’ performance
with respect to precision is quite lower than before. This can be explained by the sharp increase in
the number of users with respect to the previous experiment (from 10 to 56)—there are now many
more opportunities for the classifiers to yield false positives. It should be noted, as before, that a
classifier working by randomly answering yes one out of n times (for n users) would only have precision
1/56 ≈ 0.0178; therefore, the values of 0.125 (SVC13) and 0.267 (LR6) when p = 20 are 7.022 and 15
times higher, respectively. Furthermore, precision becomes lower as p increases, reaching 0.034 (SVC13)
and 0.095 (LR6) for p = 80 (still 1.91 and 5.337 times better than chance, respectively). On the other
hand, recall remains quite good for both classifiers, irrespective of the value of p, and is consistently
better for SVC13 compared with LR6 (which has higher precision).

Finally, let’s consider the last two steps of the workflow presented in Section 2, which involve
the generation of deduplication hypotheses. Recall that what we are calling false positives in these
experiments can actually be manifestations of unknown duplicates—pairs of user names that actually
correspond to the same person. In order to deal with the relatively high incidence of such false positives
that we saw above when we computed precision, we could set a threshold value t consisting of the
number of times that posts presented to a different classifier trigger a positive response before we issue
a deduplication hypothesis. For the same setting used in this experiment, we computed the number of
deduplication hypotheses generated by each classifier (recall that the total number of unordered pairs
is 1, 540 in this case):

• For SVC13, with t = 10, a total of 1, 468 hypotheses were generated (95.32% of the total), while
for t = 15 the number was 1, 411 (91.62%).

• For LR6, with t = 10, 380 hypotheses were generated (24.67%), while for t = 15 the total was
reduced to 111 (7.2%).

Two conclusions can be drawn from these results: first, the lower precision yielded by SVC13 in both
Experiments 1 and 2 actually have farther-reaching causes than one might initially suspect by looking

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 June 2018 doi:10.20944/preprints201806.0425.v1

http://dx.doi.org/10.20944/preprints201806.0425.v1

10 of 13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SVC13 LR6

Classifier Instance

Precision/Recall/F1 (Experiment 2, k = 2, p = 20)

Precision Recall F1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SVC13 LR6

Classifier Instance

Precision/Recall/F1 (Experiment 2, k = 2, p = 40)

Precision Recall F1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SVC13 LR6

Classifier Instance

Precision/Recall/F1 (Experiment 2, k = 2, p = 60)

Precision Recall F1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SVC13 LR6

Classifier Instance

Precision/Recall/F1 (Experiment 2, k = 2, p = 80)

Precision Recall F1

Figure 8. Evaluation of performance for the SVC13 and LR6 classifiers over 54 users plus 2
duplicates engineered by splitting two of the original users, varying the number of pairs p sampled at
random (guaranteed to contain the duplicate pairs).

at the final quality measures, since clearly the false positive rate is quite high (as evidenced by the slight
change in number of hypotheses when increasing the value of t); second, even though the performance
of LR6 is also low in Experiment 2, it is nonetheless capable of reducing the number of pairs to inspect
by about 75% for t = 10 (i.e., at least half of the test posts), and over 92% for t = 15 (i.e., at least
three quarters of the test posts).

Example 3.1. The following posts are a few examples from a pair of users that, according to LR6,
could have been written by the same person:

• Posts by user 353596:

“lol i have that pasted to the front door of my officebut if we really want to get technical here...these
are all "cheap" translations of binary. i will type up a full explanation from home tonight. i also
dug up and old piece of software that i have that is wonderful for quick lookups. i will post that as
well.”

“well "%path%" is the variable name. "path" is a term. it is always more important to learns terms
and concepts rather than syntax that is specific to an environment.but yeah”

“didnˆt mean to burst your bubble about the script. i also saw some of the samples but none of
them conviced me that the user thought they were really talking to a human being. most were
prolly playing along like i do there are some msn ones also... anyone has visited they didnˆt sign
up for the forums. but thatˆs ok they can lurk for a while :whatsup:”
• Posts by user 352820:

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 June 2018 doi:10.20944/preprints201806.0425.v1

http://dx.doi.org/10.20944/preprints201806.0425.v1

11 of 13

“there are a few newish tools for but the issues with bt in the first place was poor implementation
on behalf of the manufacturers, most of which were fixed.”

“well if talking about power friendly then a hd in lan enclosure would be best. you could build
something that would consume less power but it would be more expensive, unless you are looking
for and upwards.”

“the only good way to work in computer security straight is to be a "black hat" then at some point
(arrested a few to many times, you get a wife/family) you decide you can’t do it any more. the
other way is to go into sysadmin and at some point, once you have experience going into nothing
but security. , u”, i see way to many people about trying to sell themselves as pen-testers and
security consultants and know fuck all, don’t be one of those people.”

Having identified this pair of users as a deduplication hypothesis, human expert analysts can then take
a closer look into their posts, activities, and other data in order to confirm or reject it. �

4. Related work

Though there have been several approaches in the general areas of databases and security informatics
that tackle problems similar to adversarial deduplication, there are important differences.

Most of the research carried out towards solving deduplication/entity resolution problems has
been carried out in the databases community; traditional approaches involve leveraging pairwise
similarity over entity attributes [7], but other promising proposals are based on so-called collective entity
resolution [8], which exploits additional relational information in the data since references to different
entities may co-occur. An example of such an approach is called iterative blocking [9], which is based on
iteratively grouping together matching records in blocks; this allows the use of the information processed
so far to inform further decisions. Other approaches take a similar techniques to the ones adopted here,
in which machine learning classifiers are learned from examples and later used to determine whether or
not an arbitrary pair of records are duplicates of each other based on a wide variety of features [8,10].
Recently, [11] has defined a declarative framework for entity resolution based on matching dependencies
(MDs). This formalism, which was first introduced in [12,13], consists of declarative rules that generalize
entity resolution tasks, eliminating duplicates via a matching process. These rules state that certain
attribute values in relational tuples, under certain similarity conditions over possibly other attribute
values in those tuples, must be made the same. The original semantics for MDs, defined in [13], was
redefined and extended in [14].

As mentioned in the introduction, most of the approaches developed in the literature operate
under the assumption that duplications are the effect of clerical errors in data entry, inherent ambiguity
in names or other attributes, inconsistent abbreviations and formatting, etc., rather than the fact that
the objects (users in this case) are explicitly trying to obfuscate their identities [8–10]. As a result of
this, and the nature of the information that can be collected from the type of source we are looking at
(forums and other sites in the Dark Web), the data set does not contain the relational information and
structure needed for these proposals to be applied.

To the best of our knowledge, the work that is most related to ours is that of [15]; in that paper,
the authors focus on the related problem of authorship matching, which seeks to validate whether two
accounts having the same username on multiple Dark Web forums belong to the same person or not
through writing style analysis (stylometry) and SVMs. An N two-way classification model, where N is
the number of authors being tested, was trained with a set of ten active users (the ones with at least
400 posts and around 6000 words), divided into two parts, each of which contains half the posts of each
user. In a validation phase, the best parameters for the model where found, in order to test it against
the forum post of another set of accounts in a different Dark Web forum having the same username
as the ones used in the validation phase. Using different types of similarity functions to evaluate the
performance, their approach yields around 80% accuracy. The authorship matching problem is based
on the assumption that there is a tendency in users to adopt similar usernames f or their accounts in

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 June 2018 doi:10.20944/preprints201806.0425.v1

http://dx.doi.org/10.20944/preprints201806.0425.v1

12 of 13

different sites. Though the results are promising, this assumption is quite strong and is not always
valid in adversarial settings where users try to obfuscate their identities. In such scenarios, looking for
equal or syntactically similar users names does not seem to be reasonable.

Stylometry is, historically, one of the more widely used methods for authorship analysis; it studies
the personal characteristics of individuals’ writing style—a survey of recent approaches to the authorship
problem can be found in [16]. For instance, in [17], the authors apply stylometry techniques towards
attributing authorship of instant messages, making use of features such as frequency distributions for
characters, words, emoticons, function words, short words, abbreviations, and punctuation, average
word length and average words per sentence, whether or not the message contains a greeting/farewell,
and spelling/grammatical errors. It is possible that extending our approach with a deeper analysis of
features such as these for specific forums and marketplaces will help us improve the accuracy of our
methods. One of the problems with the application of such technique(s) to the kind of data we seek to
analyze is the length of the texts, which are considerably short and therefore accuracy of identification
(classification) suffers. Not surprisingly, even just a few short sentences can carry a great deal of
information that a human analyst can use for identification, but that information goes beyond the style
of the writing. Additional techniques that are capable of exploiting specific domain information are
needed; the work of [18] suggests that contextual analysis and tolerance to uncertainty are especially
needed for the identification of individuals in social media forensics.

Finally, the same kind of analysis based on applying machine learning techniques like classifiers and
clustering algorithms has been successfully adopted in other problems related to cyber security, such as
identification of product offerings in malicious hacker markets [19], at-risk system identification [20]
and exploit prediction [21]. Though these are difficult problems, their advantage over adversarial
deduplication is the availability of some kind of ground truth that can be used to evaluate and tune
proposed solutions.

5. Conclusions and Future Work

In this paper we tackle the so-called adversarial deduplication problem, which seeks to identify
pairs of users who are actively trying to hide their identity by creating multiple profiles. We argue
that this problem is fundamentally different from the closely related to the traditional entity resolution
or deduplication problem in databases since this problem is assumed to arise as a consequence of
unintentional errors. We focus on the cyber-security setting of malicious hacker forums and marketplaces
on the dark web, where such intentional obfuscation is the norm.

As a first step towards developing tools to address this problem, we proposed the use of machine
learning classifiers trained to identify text-based features, and designed a set of experiments to evaluate
their effectiveness. Our preliminary results are promising in that reasonably high precision and recall
can be obtained in an initial training and evaluation phase with few users; in a second phase with over
50 users, the precision becomes much lower due to the incidence of false positives—however, since the
overall goal of the approach is to create deduplication hypotheses that are then passed on to human
analysts for further review, an additional threshold parameter can be applied to manage the number
generated hypotheses.

Future work includes carrying out further experiments with other datasets, and identifying/learning
other features (potentially quite complex) to incorporate them to the task aiming to capture the context
in which these post are issued, such as topics in which users post, co-occurrence with other users,
abnormality in learned behaviors, etc.
Author Contributions: Conceptualization, Jose Paredes, Gerardo Simari, Maria Vanina Martinez and
Marcelo Falappa; Data curation, Jose Paredes; Formal analysis, Gerardo Simari and Maria Vanina Martinez;
Funding acquisition, Marcelo Falappa; Methodology, Jose Paredes, Gerardo Simari and Maria Vanina Martinez;
Project administration, Marcelo Falappa; Resources, Marcelo Falappa; Software, Jose Paredes; Supervision,
Gerardo Simari and Marcelo Falappa; Validation, Gerardo Simari and Maria Vanina Martinez; Writing – original
draft, Gerardo Simari and Maria Vanina Martinez; Writing – review & editing, Gerardo Simari, Maria Vanina
Martinez and Marcelo Falappa.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 June 2018 doi:10.20944/preprints201806.0425.v1

http://dx.doi.org/10.20944/preprints201806.0425.v1

13 of 13

Funding: This research was funded by Universidad Nacional del Sur (UNS) and CONICET, Argentina, by
the U.S. Department of the Navy, Office of Naval Research, grant N00014-15-1-2742, and by the EU H2020
research and innovation programme under the Marie Sklodowska-Curie grant agreement 690974 for the project
“MIREL”.

Acknowledgments: We are grateful to CYR3CON (https://cyr3con.ai/) for providing access to the dataset
used in our experiments. Images in Figure 1 designed by Freepik from Flaticon (http://www.freepik.com)—used
with permission.

Conflicts of Interest: The funding sponsors had no role in the design of the study, in the collection, analyses,
or interpretation of data, in the writing of the manuscript, and in the decision to publish the results.

References

1. Elmagarmid, A.K.; Ipeirotis, P.G.; Verykios, V.S. Duplicate Record Detection: A Survey. Proc. of
IEEE TKDE 2007, 19, 1–16.

2. Bleiholder, J.; Naumann, F. Data Fusion. ACM Comput. Surv. 2009, 41, 1–41.
3. Nunes, E.; Diab, A.; Gunn, A.T.; Marin, E.; Mishra, V.; Paliath, V.; Robertson, J.; Shakarian, J.; Thart,

A.; Shakarian, P. Darknet and deepnet mining for proactive cybersecurity threat intelligence. Proc. ISI,
2016, pp. 7–12.

4. NIST. National Vulnerability Database. https://nvd.nist.gov/, 2018.
5. CVE. Common Vulnerabilities and Exposures: The Standard for Information Security Vulnerability

Names. http://cve.mitre.org/, 2018.
6. Shakarian, J.; Gunn, A.T.; Shakarian, P. Exploring Malicious Hacker Forums. In Cyber Deception,

Building the Scientific Foundation; 2016; pp. 261–284.
7. Getoor, L.; Machanavajjhala, A. Entity Resolution: Theory, Practice and Open Challenges. PVLDB

2012, 5, 2018–2019.
8. Bhattacharya, I.; Getoor, L. Collective Entity Resolution in Relational Data. ACM Trans. Knowl.

Discov. Data 2007, 1.
9. Whang, S.E.; Menestrina, D.; Koutrika, G.; Theobald, M.; Garcia-Molina, H. Entity Resolution with

Iterative Blocking. SIGMOD 2009. Stanford, 2009.
10. Bhattacharya, I.; Getoor, L. Query-time entity resolution. Journal of Artificial Intelligence Research

2007, 30, 621–657.
11. Bahmani, Z.; Bertossi, L.E.; Vasiloglou, N. ERBlox: Combining matching dependencies with machine

learning for entity resolution. Int. J. Approx. Reasoning 2017, 83, 118–141.
12. Fan, W. Dependencies Revisited for Improving Data Quality. Proc. of ACM PODS, 2008, pp. 159–170.
13. Fan, W.; Jia, X.; Li, J.; Ma, S. Reasoning About Record Matching Rules. Proc. VLDB Endow. 2009,

2, 407–418.
14. Bertossi, L.E.; Kolahi, S.; Lakshmanan, L.V.S. Data Cleaning and Query Answering with Matching

Dependencies and Matching Functions. Theory Comput. Syst. 2013, 52, 441–482.
15. Ho, T.N.; Ng, W.K. Application of Stylometry to DarkWeb Forum User Identification. In Information

and Communications Security; Springer, 2016; pp. 173–183.
16. Swain, S.; Mishra, G.; Sindhu, C. Recent approaches on authorship attribution techniques: An overview.

2017 International conference of Electronics, Communication and Aerospace Technology (ICECA), 2017,
Vol. 1, pp. 557–566.

17. Orebaugh, A.; Allnutt, J. Classification of instant messaging communications for forensics analysis. The
International Journal of Forensic Computer Science 2009, 1, 22–28.

18. Rocha, A.; Scheirer, W.J.; Forstall, C.W.; Cavalcante, T.; Theophilo, A.; Shen, B.; Carvalho, A.R.B.;
Stamatatos, E. Authorship Attribution for Social Media Forensics. IEEE Transactions on Information
Forensics and Security 2017, 12, 5–33.

19. Marin, E.; Diab, A.; Shakarian, P. Product offerings in malicious hacker markets. Proc. ISI, 2016, pp.
187–189.

20. Nunes, E.; Shakarian, P.; Simari, G.I. At-risk system identification via analysis of discussions on the
darkweb. Proc. eCrime, 2018, pp. 1–12.

21. Tavabi, N.; Goyal, P.; Almukaynizi, M.; Shakarian, P.; Lerman, K. DarkEmbed: Exploit Prediction
With Neural Language Models. Proc. AAAI, 2018.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 June 2018 doi:10.20944/preprints201806.0425.v1

https://cyr3con.ai/
http://www.freepik.com
http://dx.doi.org/10.20944/preprints201806.0425.v1

	Introduction and Motivation
	Deduplication Leveraging Text-based Features
	Empirical Evaluation
	Experiment 1: Broad evaluation of different classifiers and hyperparameter settings
	Results for Experiment 1
	Experiment 2: Seeding known duplicates
	Results for Experiment 2

	Related work
	Conclusions and Future Work
	References

