1 Review

2 Olive oil and diabetes: from molecules to lifestyle

disease prevention

- 4 Ahmad Alkhatib 1,*, Catherine Tsang 2 and Jaakko Tuomilehto 1
- 5 Dasman Diabetes Institute, Kuwait. PO. Box 1180, Dasman 15462, Kuwait; drahmadalkhatib@gmail.com (AA); jaakko.tuomilehto@dasmaninstitute.org (J.T.)
 - ² Faculty of Health and Social Care, Edge Hill University, St. Helens Road, Ormskirk, Lancashire L39 4QP, UK; Tsangc@edgehill.ac.uk (C.T.)
 - * Correspondence: drahmadalkhatib@gmail.com; Tel.: +965-2224-2999 Ext. 2213

9 10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

7

8

Abstract: Lifestyle is the primary prevention of diabetes, especially type-2 diabetes (T2D). Nutritional intake of olive oil (OO), the key Mediterranean diet component has been associated with the prevention and management of many chronic diseases including T2D. Several OO bioactive compounds such as monounsaturated fatty acids, and key polyphenols including hydroxytyrosol and oleuropein, have been associated with preventing inflammation and cytokine-induced oxidative damage, glucose lowering, reducing carbohydrate absorption and increasing insulin sensitivity and related gene expression. However, research into the interaction of OO nutraceuticals with lifestyle components, especially physical activity is lacking. Promising postprandial effects have been reported when OO or other similar monounsaturated fatty acids was the main dietary fat compared with other diets. Animal studies have shown a potential anabolic effect of oleuropein. Such effects could be further potentiated via exercise, especially strength training, which is an essential exercise prescription for individuals with T2D. There is also an evidence from in vitro, animal and limited human studies for a dual preventative role of OO polyphenols in diabetes and cancer, especially that they share similar risk factors. Putative anti-oxidative and anti-inflammatory mechanisms and associated gene expressions resulting from OO phenolics, have produced paradoxical results making suggested inferences from dual prevention T2D and cancer outcomes difficult. Well-designed human interventions and clinical trials are needed to decipher such a potential dual anti-cancer and anti-diabetic effects of OO nutraceuticals. Exercise combined with OO consumption, individually or as part of a healthy diet is likely to induce reciprocal action for T2D prevention outcomes.

Keywords: olive nutraceuticals; functional foods; exercise; nutrition; type-2 diabetes

31 32

33

1. Introduction

- 34 Diabetes is a major health problem and one of the leading causes of morbidity and mortality
- worldwide [1]. The current estimated prevalence has already reached over 400 million people [2].
- Preventing type 2 diabetes (T2D) is possible mainly through lifestyle adjustments. Large
- 37 prospective studies have all shown remarkable reduction in T2D incidence through combinations of
- dietary and physical activity modifications [3,4]. Reduced T2D diabetes incidence rates have also
- 39 been found more recently in the PREDIMED follow up study, which also demonstrated key
- 40 benefits of the Mediterranean diet (MD) adherence in reducing cardiovascular disease and
- 41 mortality rates [5,6]. Such interest has made it important to review the T2D preventative role of
- 42 functional foods and bioactive components present within MD including vegetables and fruit, olive
- oil, fish and tree nuts [7]. Given that olive oil (OO), especially in its extra-virgin form, is the distinct

- 44 macronutrient lipid and key culinary ingredient characterizing MD, it would be important to
- 45 review the T2D preventative bioactive ingredients of OO from molecular to whole body level.
- 46 At a molecular level, several bioactive ingredients within OO have been repeatedly linked with
- 47 anti-oxidant and anti-inflammatory preventative functions, particularly including
- 48 monounsaturated fatty acids (MUFA), hydroxytyrosol (HT) and key polyphenols such as
- 49 oleuropein [8]. The health benefits of OO in T2D prevention and management continues to be of a
- 50 growing research interest and a simple search on PubMed using OO and diabetes as keywords
- 51 revealed 417 entries, and this was increased to 1667 entries with the search of OO and health.
- 52 Readers can also refer to recent systematic reviews for virgin OO effects in T2D prevention [9].
- 53 However, there is a lack of research on how such OO and its phenolic components function as part
- 54 of lifestyle prevention of T2D, especially when combined with physical activity regimes.
- 55 Augmenting the benefits of healthy nutritional food components, or functional food, with adding
- 56 lifestyle approaches such as exercise can extend a comprehensive model for T2D prevention and
- 57 management previously presented [7]. This review aims to investigate key molecular components
- 58 of OO ingredients and how they interact with lifestyle approaches to prevent disease, especially
- 59 T2D. It will also discuss recent findings of novel molecular functions of OO, and how they can be
- 60 augmented in the lifestyle prevention of T2D and associated diseases.

61 2. Bioactive compounds, polyphenols and key functions of olive oil: Relevance for diabetes.

- 62 Over 30 hydrophillic phenolic compounds have been identified in OO derived from the olive tree
- 63 fruit (Olea europaea L., Oleaceae family), most of which are responsible for the organoleptic
- 64 properties; bitter and pungent flavours and aromas, and oxidative stability of the oil [10-12].
- 65 Phenolics are a diverse and heterogenous group of compounds characterized by an aromatic
- 66 benzene ring attached to one or more hydroxyl groups in their structure. They are synthesized as
- 67 secondary plant metabolites via the shikimate, polyketide and acetate biosynthetic pathways,
- 68 producing C6-C3, and C6-C3-C6 derivatives, and aromatic terpenoids, respectively [13]. Several
- 69 enzymatic transformations including condensation, cyclisation, glycosylation, hydroxylation,
- 70 acylation, methylation, and prenylation, contribute to the structural diversity of phenylalanine-
- 71 derived metabolites [14] and tyrosol (4-(2-Hydroxyethyl) phenol), one of the major phenylethanoids
- 72 derived from OO, has ability to form esters with fatty acids [15]. Levels of phenolics in OO are
- 73 highly variable and influenced by several factors including different varietal cultivars, degree of
- 74 fruit ripening, stage of maturation, storage conditions, and processing methods [16,17].
- 75 Nonetheless, studies have shown that extra virgin OO contain greater levels of phenolics (ca. 50–
- 76 800 mg/kg) compared with those of refined OO (ca. 62-198 mg/kg), which undergo further and
- 77 more extensive processing [18]. HT (3,4-DHPEA) and tyrosol (p-HPEA) comprise over 90% of the
- 78 total phenolic content of OO, in addition to their secoiridoid derivatives - dialdehydic forms of
- 79 elenolic acid (EA) linked to HT (oleacein: 3,4-DHPEA-EDA) and tyrosol (oleocanthal: p-HPEA-
- 80 EDA), aglycones of oleuropein (3,4-DHPEA-EA) and ligstroside (p-HPEA-EA). Hydrophilic esters
- 81 of EA; tyrosol, HT, oleocanthal and oleuropein, and their associated compounds; 10-
- 82 hydroxyoleuropein, ligstroside and 10-hydroxyligstroside are the most prevalent [19] Lignans, (+)-
- 83 1-acetoxypinoresinol and (+)-1-hydroxypinoresinol, and their respective glucosides have been
- 84 detected in the bark of the olive tree, and in OO, and levels have been reported to be in the region of
- 85 ca. 100 mg/kg [20]. Phenolic acids; sinapic, vanillic, caffeic, ferulic, p-hydroxybenzoic, p-coumaric
- 86 acid, protocatechuic acid, and hydroxy-isocromans; 1-phenyl-6,7-dihydroxy-isochroman and 1-(3'-
- 87 methoxy-4'-hydroxy)-6,7-dihydroxy-isochroman, synthesized from reactions with HT,
- 88 benzaldehyde and vanillin, have also been detected in OO, however levels rarely exceed ca. 1
- 89 mg/kg [21]. Similarly, flavonoids, luteolin and apigenin are present in levels much lower in
- 90 comparison to other phenolics derived from OO [22]. HT, tyrosol and oleuropein are of scientific

Peer-reviewed version available at Int. J. Mol. Sci. 2018, 19, 2024; doi:10.3390/ijms19072024

3 of 15

91 interest due to their significant effects on several molecular, genetic and biological mechanisms

which could potentially be responsible for the prevention of chronic diseases such as T2D.

93 Several important biological properties have been ascribed to phenolics derived from OO, including 94 antioxidant; free-radical scavenging and cardio-protective effects, and their ability to modulate pro-95 inflammatory cytokines and markers of inflammation, which could mitigate modifiable risk factors 96 associated with T2D [23-25]. The cardio-protective role of HT and their derivatives, particularly 97 oleuropein, in their ability to improve high-density lipoproteins (HDL) [26], reduce low-density 98 lipoprotein (LDL), inhibit platelet aggregation and improve endothelial function [27] are well 99 recognized. Health claims exist in the EU for the role of OO derived phenolics in their protection 100 against the oxidation of blood lipids, and maintenance of normal blood LDL-cholesterol levels [28], 101 and current recommendations suggest a daily intake of ca. 20 g of extra-virgin OO (of which 5 mg is 102 derived from HT and its derivatives) to protect from CVD [29]. Such recommendations do not yet 103 exist for T2D. Evidence from in vitro, in vivo and clinical studies indicate significant anti-104 inflammatory effects of HT in their ability to reduce the expression of adhesion and signaling 105 molecules, and inflammatory markers [30,31]. These effects are well documented in those at risk for 106 CVD; however, few studies have been tested in T2D populations. Nonetheless, OO derived 107 phenolics may reduce postprandial inflammation by decreasing the activation of nuclear-factor 108 kappa B (NF-κB) and lipopolysaccharide (LPS) absorption. Camargo et al. [32] administered a 109 virgin OO enriched meal with different concentrations of phenolics (398 mg/kg, 149 mg/kg and 70 110 mg/kg) to subjects with metabolic syndrome (MetS) including T2D. Inhibition of NF-κB and 111 decreased expression of interleukin - IL-1 β and IL-6 was observed following the meal enriched with 112 the highest concentration (398 mg/kg) of OO. Reduced fasting plasma glucose concentrations, 113 glycated haemoglobin A1c (HbA1c), body weight, and inflammatory adipokines have also been 114 demonstrated in a small-scale study with overweight T2D patients following intake of extra-virgin 115 OO (equivalent to 577 mg/kg, mainly as HT) [33]. Phenolics could exert potential anti-diabetic 116 effects due to their potent free-radical scavenging and antioxidative properties, and animal models 117 and in vitro evidence demonstrate their interaction with intracellular signaling pathways, such as 118 nuclear transcription factor (erythroid-derived 2)-like 2 (Nrf2), which is involved in the regulation 119 of the expression of antioxidant proteins that protect against oxidative damage. In vitro studies 120 indicate the potential role of HT and oleuropein in their ability to protect cells against oxidative 121 stress by activating the Nrf2/ARE pathway in a dose-dependent manner, with HT exhibiting potent 122 radical scavenging capacity [34] and ability to upregulate protective enzymes including thioredoxin 123 reductase [35]. Evidence from a recent meta-analysis on OO consumption in T2D patients reported 124 a lower production of advanced glycosylated end products (AGE's) [9] and HT supplementation 125 (10 mg/kg/day for 5 weeks) enhanced glucose tolerance and insulin sensitivity leading to a decrease 126 of homeostatic model assessment-insulin resistance [36]. Further potential anti-diabetic mechanisms 127 have been demonstrated in experimental in vitro studies for flavonoids and phenolic acids e.g. 128 chlorogenic, ferulic, caffeic and tannic acids, in their ability to inhibit α -amylase, α -glucosidase 129 enzymes and the sodium dependent SGLT1-mediated glucose transport, thus potentially 130 influencing glucose metabolism by inhibiting carbohydrate digestion and absorption [37,38]. HT 131 has a high degree of bioavailability as evidenced by their high rates of absorption following 132 ingestion of extra virgin OO (40%–95%) in humans; oleuropein-glycoside and oleuropein and 133 ligstroside-aglycones are converted to HT or tyrosol and excreted in urine, and HT and tyrosol 134 themselves are sometimes conjugated to glucuronic acid and excreted in urine as glucuronides [39]. 135 It is also thought that ingestion in this formulation (i.e. oil) could further mitigate the breakdown of 136 phenolics in the gastrointestinal tract. The mechanisms of absorbing and exerting key OO bioactive 137 compounds may explain its fate and preventative effects in T2D and other cardiometabolic 138 diseases. It is likely that phenolics may influence glucose metabolism via several mechanisms; 139 inhibition of carbohydrate digestion and glucose absorption in the intestine, activation of insulin 140 receptors and glucose uptake in the tissues, antioxidative properties and immunomodulatory 141 effects.

Peer-reviewed version available at Int. J. Mol. Sci. 2018, 19, 2024; doi:10.3390/ijms19072024

4 of 15

142 Several T2D protective mechanisms of OO and similar olive leaves polyphenols have been reported 143 from cell culture, animal and human studies and summarized in detail elsewhere [40]. Those 144 include oleuropein effects on reducing amyloid aggregation and preventing inflammation and 145 cytokine-induced oxidative damage of pancreatic β -cells and enhancing β -cells capacity; olive 146 leaves extracts effects on lowering glucose and cholesterol levels; modifying gene expression 147 implicated in lipogenesis, thermogenesis and insulin resistance; reducing digestion and intestinal 148 absorption of dietary carbohydrates in the mucosal and in serosal sides of the intestine; reducing 149 HbA1c and fasting plasma insulin; acutely enhancing insulin sensitivity and related gene 150 expression by OO ingestion [41]; oleacein preventing inflammatory response and cytokine-151 mediated oxidative cell damage with downregulation of a number of genes involved in adipocyte 152 differentiation. It is however unclear at this juncture, the precise role of phenolics derived from OO, 153 and further investigations, especially in humans are necessary to fully elucidate their mechanisms 154 in T2D. 155 3. Olive oil T2D preventative benefits longitudinally, independently and as part of a healthy 156 diet? 157 Attributing health benefits to OO cannot be investigated in isolation of other healthy dietary and 158 lifestyle components, especially since OO has been the defining food characterizing MD, which 159 contains other healthy foods such as seafood, fruits and vegetables and nuts [42]. However, 160 longitudinal prospective studies which OO to households who consumed MD reported better 161 cardio protective outcomes compared with MD supplemented with nuts, despite both diets 162 showing better risk-reduction outcomes than low-fat control diet [5]. In the 10-year follow-up of 163 this study, T2D incidence was lower when OO supplemented MD compared with MD 164 supplemented with nuts or low-fat diet control (80, 92, and 101), and this corresponded to lower 165 hazard ratios (0.60 vs. 0.82) in the MD supplemented with OO compared with the MD with nuts [6]. 166 Another longitudinal study has also reported lower 10-year incidence of T2D and CVD events in 167 prediabetic individuals who had a higher adherence to MD components [43]. However, OO was 168 part of 11 other components in the 55-score Greek MD scales used in the latter compared with OO 169 being part of 9 other components in the Spanish 14-item MD scale used in the PREDIMED follow-170 up study [44,6]. Other MD interventions have also shown relevant T2D biomarkers improvements 171 such as enhanced microvascular, and cardiorespiratory outcomes when MD was combined with an 172 8-week exercise intervention and a one-year follow up, with OO being the key ingredient 173 implemented as part of the MD 9 components followed by an older adults and postmenopausal 174 women cohorts [45-47]. MD-induced enhancement in endothelial function and markers of vascular 175 inflammation has been associated with improved glucose tolerance in individuals with MetS [48]. 176 In a sub-group of the PREDIMED study follow up (after 1 year), the cardio protective anti-177 inflammatory benefits were attributed to OO only based on lower plasma tumor necrosis factor 178 receptor (TNFR60) concentration found in individuals allocated in the highest tertile of OO and 179 vegetables consumption compared with those in tertile 1 [49]. This was combined by an overall 180 MD-components induced reduction in plasma IL-6, TNFR60 and TNFR80, compared with an 181 increase in those who followed a low-fat diet. Thus, there is a convincing evidence that consuming 182 OO as part of a healthy MD diet is protective of T2D in high-risk individuals with prediabetes and 183 with high CVD risk. However, more research is needed to understand the unique OO preventative 184 effects longitudinally. 185 The current evidence from cohort studies on OO in T2D prevention stems from meta-analyses 186 which have shown that OO is the key MUFA, and that MUFA from vegetable sources are

201

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

5 of 15

187 responsible for alleviating T2D metabolic risk factors and reducing all-cause mortality, stroke and 188 CVD events [25, 9]. Nevertheless, evidence from randomized controlled trials has often focused on 189 testing the main OO phenolic compounds (oleuropein, tyrosol, HT, flavonoids, lignans) and other 190 MUFA compounds. These compounds have been reviewed recently for various T2D preventative 191 effectiveness, especially showing increased HDL, enhance endothelial vascular activity, inhibit 192 carbohydrate metabolism and reduce glucose release from liver, increase glucose uptake in 193 peripheral tissues, which can reduce HbA1c [9]. When compared with other healthy oils with 194 similar constituents such as a-linoleic acid in rapeseed oil (common in Nordic diet), OO 195 constituents, especially oleuropein, have been suggested to be superior in their anti-oxidation and 196 effects on blood lipids [50]. For example, EPIC-Interact study has shown that phospholipid a-197 linoleic acid (compound found only in oleic acid of olive oil) is inversely associated with T2D [51]. 198 Further anti-cancer and cardioprotective properties within α -linolenic acid of OO have been 199 suggested to be superior than a-linoleic acid found in rapeseed oil, especially when such oils are 200 consumed as part of a healthy diet such as MD [9,50].

4. New scope for olive oil, physical activity and lifestyle approaches in T2D prevention:

The synergistic effects between healthy food components including OO and other lifestyle factors, especially physical activity is integral to the prevention and management of T2D. Better T2D outcomes can be achieved, whether through combining nutritional ingestions with exercise, or with other lifestyle approaches to augment the mechanistic preventative effects of functional foods (molecular, metabolic, vascular, behavioral), and has been shown effective as part of a model we recently developed for the prevention and management of T2D [52].

However, only limited number of studies have tested the effectiveness of OO synergy with exercise interventions on relevant T2D outcomes. For example, combining moderate endurance exercise (1 hour continuous) with consuming an OO breakfast meal (saturated fat 15 % and unsaturated fat 85 %) produced a 26% lower postprandial triglyceride than a butter-no exercise meal (saturated fat 71 % and unsaturated fat 29 %), [53]. Such combined effects suggest positive mechanisms on lipid abnormalities associated with T2D or "diabetes dyslipidemia" such as the high concentration of TG and small dense LDL and a low concentration of HDL cholesterol [54]. Another study using animal models has shown that diet with OO intake induced a better exercise-induced oxidative-stress counteracting benefits (26% vs. 17% increase in area under curve) compared with butter-based diet trial [55]. This suggests that OO benefits can be significantly augmented when combined with exercise due to reciprocal actions on T2D outcomes and exercise-induced oxidative-stress. Other studies encompassing extra virgin OO as part of MD have also shown effectiveness in combining MD with supervised moderate exercise training in enhancing microcirculatory vascular activity in high-risk individuals [45,46]. A multi-component lifestyle school-based program consisting of four different lifestyle approaches (physical activity, nutrition education, combined, combined with substituting normally taken oil with extra virgin OO) found that glycemic and diastolic blood pressure were only reduced with the intervention group who adopted extra virgin OO, during a 6months intervention [56]. OO consumption as part of a health dietary plan is likely to produce better T2D prevention outcomes when combined with exercise, but less investigated when ingested independently.

Enhancing the anabolic effects of strength training through novel OO compounds effects is another interesting area in T2D prevention, especially given the importance of strength training for patients with T2D patients or those at high-risk [2]. Recent evidence from animal studies suggested novel anabolic enhancing effects of OO compounds on androgen function. For example, supplementing

Peer-reviewed version available at Int. J. Mol. Sci. 2018, 19, 2024; doi:10.3390/ijms19072024

6 of 15

232 oleuropein has been recently shown to increase rat testicular testosterone, decrease plasma 233 corticosterone, and increase plasma LH in rat models [57]. These anabolic effects were observed 234 following adding 0.1g/100g oleuropein to a high protein (40%), diet (40, 25 and 10 g /100g casein) 235 levels for 28 days high-protein diet [58]. 236 Oleuropein has also been found to be responsible to a higher resistance to oxidation of extra-virgin 237 OO when compared with other healthy oils such as rapeseed oil [50,51]. Whether and how 238 oleuropein potentiates anabolic effects can be enhanced via exercise, especially strength training is 239 yet to be investigated in T2D prevention. 240 For example, testosterone deficiency promotes insulin resistance and increases the risk of T2D [59]. 241 Testosterone plays a critical role in the regulation of body composition in males and exhibits 242 potential anti-obesity effects mediated by the androgen receptor (AR) [60]. Emerging research from 243 knockout mice indicates a protective mechanism of AR signaling in adipocytes and are critical in 244 the regulation of insulin action and glucose homeostasis, independent of adiposity [61]. This new 245 insight into the importance of AR activity could potentially lead to the development of new 246 multicomponent lifestyle strategies targeted at insulin resistance associated with testosterone 247 deficiency, for which OO could play an important therapeutic role. 248 Additionally, to the OO anabolic potential, OO derived phenolics may play a role in augmenting 249 strength training outcomes as part of T2D prevention by additional modulation of the anti-250 inflammatory, anti-oxidation and pro-hypertrophy mechanism, especially when OO was ingested 251 as part of a dietary plan. A recent rodent study reported an increase in muscle hypertrophy, 252 articular cartilage recovery, and reduced IL-6 in rats with early osteoarthritis when exercise (daily 253 treadmill running 5 days a week for 10 min) was combined with ingesting a standardized diet 254 enriched with Extra virgin OO for 12 weeks [62]. The combined anti-inflammatory and pro-255 hypertrophy mechanism induced by conjugated OO and exercise could be effective in preventing 256 and treating T2D and associated complications. For example, reducing inflammatory cytokines, 257 could counteract muscle catabolism via actions on monocyte adhesion proteins such as monocyte 258 chemoattractant protein-1 molecule (MCP1) [63]. Joint exercise and OO induced molecular 259 mechanisms require further investigation. 260 In the context of lifestyle T2D prevention, effects of OO are not exclusive to exercise and diet. 261 Disease-related detriments to other lifestyle behaviors such as sleep disturbance, fatigue and 262 depression, stiffness have also been shown to improve when OO was combined with exercise 263 intervention in women with fibromyalgia [64]. Such positive synergetic effects of OO and exercise 264 have been explained by the diet-mediated effects on oxidative stress especially on inflammatory 265 cytokines IL-6 and TNF-a [65], which are key biomarkers in T2D prevention and management. 266 Further research is needed to test such synergetic effects in high-risk and T2D individuals. 267 Another interesting lifestyle approach is to investigate whether polyphenols, including those in OO 268 can augment physiological exercise performance, especially cardiorespiratory exercise capacity. 269 Enhanced cardiorespiratory fitness is known to associate with disease prevention especially 270 cardiometabolic disease [66]. Recent review on the polyphenol effects on exercise performance did 271 not provide a convincing evidence onto whether polyphenols can enhance performance [67]. The 272 latter suggested that quercetins supplementation for at least 7 days could enhance aerobic capacity 273 and exercise time trial, but their meta-analysis relied on a small number of studies which used non-274 OO phenolics and may not apply to this review. Nonetheless, enhancing exercise-dependent

277

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

Peer-reviewed version available at Int. J. Mol. Sci. 2018, 19, 2024; doi:10.3390/ijms19072024

7 of 15

outcomes, especially cardio metabolic, through OO supplementation is likely to increase its

effectiveness for T2D prevention when adopted as part of a lifestyle approach.

5. Diabetes, cancer mechanisms and olive oil interrelationship:

associated with a higher risk of cancer development [72].

278 The link between hyperinsulinemia, T2D and cancer is of a growing interest and there is some 279 evidence that people with diabetes are at a significantly higher risk of developing many forms of 280 cancer given their similarities in risk factors, and pathophysiology, and some evidence indicates a 281 higher risk of more aggressive and metastatic forms of cancer, with poor prognosis in diabetics [68, 282 69]. Plausible biological mechanisms have been described to account for this link including the 283 effects of hyperglycemia, hyperinsulinemia, and inflammation on cancer etiology and progression 284 [70]. Insulin is a growth factor, which stimulates cell mitosis and migration, and inhibits apoptosis, 285 effects that could potentially become exacerbated under conditions of insulin resistance and 286 impairment of insulin-regulated metabolic pathways, as seen in T2D. Insulin resistance does not 287 inhibit cell-signaling pathways involving mitogen-activated protein kinase that promote cell 288 proliferation, and in vitro studies indicate the proliferative, anti-apoptotic and tumor growth 289 promoting properties of insulin in human breast cancer cell lines, such as T-47D, [71]. Moreover, 290 insulin-like growth factor-1 (IGF-1) is stimulated by high levels of insulin, which further enhances 291 cell proliferation and inhibition of apoptosis, and studies have shown that higher levels of IGF-1 are

Therefore, the potential of OO as a protective agent in both diabetes and cancer makes it interesting to decipher their underlying mechanisms, and to pave the way to develop effective treatment approaches, especially for patients with co-morbidities. Evidence from epidemiological studies indicate a potential role of OO in certain cancers, especially those affecting the breast and colon [73,74]. Potential anti-cancer effects of OO derived phenolics have been shown in experimental studies, whereby oleuropein inhibited cancer cell growth and induced apoptosis in human breast cancer cell lines, T-47D and MCF-7 via the p53-dependent pathway and via regulation of Bax and Bcl2 genes [75,76]. Similarly, HT reduces hydrogen peroxide induced DNA damage in human peripheral blood mononuclear cells (PBMC) and promyelocytic leukemia cells (HL60) [77]. The prevention of ROS-induced DNA damage is a potential mechanism of defense against the multistage process of carcinogenesis, and DNA mutations arising from damage caused to DNA is a common feature in carcinogenesis. Pathophysiological manifestations of diabetes, i.e. increased plasma glucose, insulin, AGEs and free fatty acids, enhance reactive oxygen species (ROS) and oxidative stress, and increase DNA damage, which has been reported to be considerably higher in people with poor glycemic control, and diabetes [78,79]. Potential anti-cancer and anti-diabetic effects of OO derived phenolics are thus likely mediated, in part, by their potent antioxidant and free radical scavenging properties, and human intervention studies albeit limited, have shown decreased levels of urinary 8-oxo-7,8-dihydro-2'deoxyguanosine (8-OHdG), a known biomarker of DNA damage, after short-term consumption of OO [80].

- 312 Secoiridoid from OO especially oleocanthal, have been shown to inhibit the proliferation,
- 313 migration, and invasion of various human breast, prostate cancer, and multiple myeloma cells [81].
- 314 Oleocanthal is the OO compound responsible for the pungent sensation at the back of the throat, is
- thought to exert similar non-steroidal anti-inflammatory activity to that within ibuprofen,
- especially in inhibiting harmful cyclooxygenase (COX) 1 and COX2 enzymes [82]. Inhibition of
- 317 COX2 and matrix metalloproteinases through OO compounds oleuropein and HT has been shown
- 318 to reduce angiogenesis in cultured endothelial cells [83]. Differences in the gene expression profile
- 319 of breast tissue has been demonstrated in an animal model of breast cancer susceptibility following

ingestion of OO compared with corn oil. Expression of metabolism genes related to mitochondrial uncoupling proteins, were found only after OO ingestion, suggesting a reduction in the balance of intake and expenditure, alongside a down-regulation of the expression of S100 genes [84]. S100 genes have been associated with the progression of breast tumorigenesis. The inflammatory transduction of S100 protein signaling is mediated by receptor for advanced glycation end products" (RAGE), in a variety of cell types [85]. RAGE is a multi-ligand cell-surface receptor that propagates cellular dysfunction in several inflammatory disorders, in tumors and in diabetes [86]. It is also a marker for oxidative stress through its interaction with advanced glycation end products (AGEs), where its accelerated formation due to increased concentration of circulating glucose is a feature of T2D [87]. The associated metabolic abnormalities between diabetes and cancer is significant and of clinical importance, and therefore mandatory counselling and/or screening for changes linked with cancer could be one strategy to accompany lifestyle approaches in patients presenting with obesity, pre-diabetes and diabetes.

Anti-inflammatory and anti-oxidative mechanisms which have a dual anti-diabetic and anti-cancer effects require further investigation. Evidence from in vitro, animal and limited human studies suggest potential benefit of OO derived phenolics via putative anti-oxidative and antiinflammatory mechanisms involving NF-κB inhibition with COX-2, IL-6, IL-8, IL-1β (down-stream products of NF-κB) expressed at lower levels. This may account for the lower prevalence of cancer in people consuming a MD. However, there is a long way still before such mechanisms are deciphered for each disease. For example, improving insulin sensitivity by inducing the inhibition of NFkB expression is also thought to mediate muscle wasting seen with disuse, denervation, and some systemic diseases (e.g., cancer, sepsis) [88]. High phenolic content OO (398 ppm) has been shown to inhibit NF-κB and decrease IL-1β and IL-6 postprandially in individuals with metabolic syndrome [31]. Human studies are needed to understand whether such positive effects in T2D can be detrimental for people with cancer comorbidities. Clinical evidence showing dual anti-diabetic and anti-cancer effects is limited and somewhat inconclusive, however intervention studies have reported some benefit of OO mostly based on changes in biomarkers associated with immunomodulatory and anti-oxidative capacity in healthy, diabetic and cancer patients [32,49,80,89,90] (Table 1). However, these findings remain inconsistent and this could be due in part to a lack of robust and well-designed clinical trials. Nonetheless, there is some indication of potential anti-cancer and anti-diabetic effects following OO ingestion, and this warrants further investigation.

352

353

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

Table 1. Potential anti-diabetic and anti-cancer dual effects of olive oil in human studies.

Reference	Patients	Dose and formulation	Outcomes
Carmargo et	n 49 with MetS, age	40 mL VOO intake over 24 h,	High dose: Decrease
al. [32]	range: 36–71y (19 men,	provided as a breakfast of high	NF-κB, IL-6, TLR4
	30 women); mean BMI:	(398 ppm), intermediate (149	protein, IL-1β
	$38.59 \pm 0.58 \text{ kg m}^2$	ppm) or low (70 ppm) TP	expression
			Low dose: Increase NF-
			kB p65 subunit, IL-6;
-			TLR4 protein, TNF-α.

Urpi-Sarda et al. [49]	n 106 sub-cohort at high risk of CVD, from the	VOO (1 L/wk) compared with a control low-fat diet at 3 months	At 3 months: Reduced IL-6 and CRP with
	PREDIMED trial	and 1 y follow-up	VOO
			At 1 y: Reduced TNFR
			60, IL-6, TNFR80
			Increase: IL-6,
			TNFR60, TNFR80 with
			low-fat diet
Weinbrenner	n 12 Healthy men, age	25 mL/day VOO: Subjects	Decrease: 8-oxo-dG in
et al. [80]	range: 20–22 y, mean	received 1 of the 3 treatments (25	mitochondrial DNA and
	BMI: $22.9 \pm 1.7 \text{ kg/m}^2$	mL/d) over 4 days with a washout	urine, MDA in urine
		period of 10 d between treatments.	Increase: GSH-Px
		low, moderate and high TP	No effect: GR
		content (10-486 mg/kg TP)	
De Bock et al.	n 46 Overweight	OLE provided as capsules	28% Increase Beta cell
2013 [89]	patients, mean BMI:	containing 51.1 mg oleuropein and	function
	$28.0\pm2.0 \text{ kg/m}^2$	9.7 mg HT	Increase: IL-6
			No effect: IL-8, TNF- α ,
			high-sensitive CRP
Oliveras-	n 45 healthy men and	50 mL EVOO for 30 days, two	Increase: Plasma AOX
López et al	women (age: 21-45 y),	doses ingested at breakfast (30	capacity, AOX
[90]	mean BMI:	mL) and lunch (20 mL)	enzymes - CAT, GPX;
	$21.4 \pm 0.5 \text{ kg/m}^2$		improved gene
			expression SOD

¹ AOX: antioxidant; VOO: virgin olive oil; EVOO: extra virgin olive oil; OLE: olive oil leaf extract; 8-oxo-dG: 8-oxo-7,8-dihydro-2'deoxyguanosine; GR: glutathione reductase; HT: hydroxytyrosol; GSH-Px: glutathione peroxidase; IL-6: interleukin-6; IL-1B: interleukin-1beta; CRP: C-reactive protein; MDA: malonaldehyde; NF-κB: nuclear factor kappa B; ROS: reactive oxygen species; SOD: superoxide dismutase; TLR4: toll-like receptor 4; TNF-α: tumor necrosis factor-alpha; TP: total phenolics.

6. Conclusion:

Lifestyle prevention of diabetes necessitates investigating nutritional dietary bioactive compounds. OO intake as part of the diet has been associated with the prevention and management T2D. OO contains an abundance of phenolic derived components; oleuropein, HT and their derivatives, and several anti-diabetic mechanisms have been ascribed to their potential immunomodulatory, anti-proliferative, anti-oxidative, and androgenic effects. There is a promising evidence that such effects can be further augmented with combining physical activity lifestyle components with OO consumption. OO mechanisms have mainly emanated from in vitro studies and animal models, with limited clinical studies. Nonetheless, their potential effects on T2D and associated co-morbidities is encouraging. Robust human intervention and clinical trials are necessary to fully elucidate the role of OO in T2D and their associated co-morbidities, especially when combined with exercise.

- Acknowledgments: The open access cost to publish this manuscript is covered by the Research Division at the Dasman Diabetes Institute, Kuwait.
- 375 **Author Contributions:** A.A. conceived the idea, coordinated and wrote the full manuscript. C.T. contributed to
- writing the manuscript. J.T. contributed to critical editing the manuscript. All authors approved the final version
- 377 before submitting.
- 378 **Conflicts of Interest:** No conflict of interest or otherwise is declared as part of this work.

379 Abbreviations

AGEs Advanced glycosylated end products

AR Androgen receptor

ARE Antioxidant response element

COX Cyclooxygenase
CRP C-reactive protein
CVD Cardiovascular disease

EA Elenolic acid

GSH-Px Glutathione peroxidase
HbA1c Haemoglobin A1c
HDL High-density lipoprotein

HT Hydroxytyrosol

IGF-1 Insulin like growth factor 1

IL Interleukin

LDL Low-density lipoprotein
LPS Lipopolysaccharide
T2D Type 2 diabetes
OO Olive oil

8-OHdG 8-oxo-7,8-dihydro-2'-deoxyguanosine MCP1 Monocyte chemoattractant protein-1

MD Mediterranean diet MDA Malonaldehyde MetS Metabolic syndrome

MUFA Monounsaturated fatty acids NF-κB Nuclear-factor kappa B

Nrf2 Nuclear transcription factor (erythroid-derived-2)-like 2

PMBC Peripheral blood mononuclear cells

RAGE Receptor for advanced glycation end products

ROS Reactive oxygen species

SGLT-1 Sodium dependent mediated glucose transporter

SOD Superoxide dismutase TNF α Tumor necrosis factor alpha TNFR60 Tumor necrosis factor receptor

380 References

- 381 1. WHO. World Health organization (WHO) Global Report on Diabetes. 2016, Available from: http://www.who.int/diabetes/global-report/en/
- 2. IDF Diabetes Atlas. [(accessed on 12 September 2017)]; **2015**, 7th Edition. Available online: http://www.diabetesatlas.org/
- 385 3. Knowler, W.C.; Barrett-Connor, E.; Fowler, S.E.; Hamman, R.F.; Lachin, J.M.; Walker, E.A. et al. Reduction 386 in the incidence of type 2 diabetes with lifestyle intervention or metformin. *N Engl J Med.* **2002**, 346(6): 393-403. doi: 10.1056/NEJMoa012512.
- 4. Tuomilehto, J.; Lindström, J.; Eriksson, J.G.; Valle, T.T.; Hämäläinen, H.; Ilanne-Parikka, P.; Keinänen-Kiukaanniemi, S.; Laakso, M.; Louheranta, A.; Rastas, M.; Salminen, V.; Uusitupa, M. Finnish Diabetes Prevention Study Group. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001, 344(18):1343-50. doi: 10.1056/NEJM200105033441801.

- 5. Estruch, R.; Ros, E.; Salas-Salvado, J.; Covas, M.I.; Corella, D.; Aros, F.; Gomez-Gracia, E.; Ruiz-Gutierrez, V.; Fiol, M.; Lapetra, J.; Lamuela-Raventos, R.M.; Serra-Majem, L.; Pinto, X.; Basora, J.; Munoz, M.A.; Sorli, J.V.; Martinez, J.A.; Martinez-Gonzalez, M.A.; and Investigators, P.S. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013, 368(14): 1279-90. doi: 10.1056/NEJMoa1200303.
- 396 6. Salas-Salvadó, J.; Bulló, M.; Estruch, R.; Ros, E.; Covas, M.I.; Ibarrola-Jurado, N.; Corella, D.; Arós, F.;
 397 Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Romaguera, D.; Lapetra, J.; Lamuela-Raventós, R.M.; Serra-Majem,
 398 L.; Pintó, X.; Basora, J.; Muñoz, M.A.; Sorlí, J.V.; Martínez-González, M.A. Prevention of diabetes with
 399 Mediterranean diets: a subgroup analysis of a randomized trial. *Ann Intern Med.* 2014, 160(1):1-10. doi:
 400 10.7326/M13-1725.
- 401 7. Alkhatib, A.; Tsang, C.; Tiss, A.; Bahorun, T.; Arefanian, H.; Barake, R.; Khadir, A.; Tuomilehto, J. Functional Foods and Lifestyle Approaches for Diabetes Prevention and Management. *Nutrients.* **2017**, *1*; 9(12). pii: E1310. doi: 10.3390/nu9121310.
- 404 8. Gorzynik-Debicka, M.; Przychodzen, P.; Cappello, F.; Kuban-Jankowska, A.; Marino Gammazza, A.; Knap, 405 N.; Wozniak, M.; Gorska-Ponikowska, M. Potential Health Benefits of Olive Oil and Plant Polyphenols. *Int J Mol Sci.* 2018, 28; 19(3). pii: E686. doi: 10.3390/ijms19030686.
- 407 9. Schwingshackl, L.; Lampousi, A.M.; Portillo, M.P.; Romaguera, D.; Hoffmann, G.; Boeing, H. Olive oil in the prevention and management of type 2 diabetes mellitus: a systematic review and meta-analysis of cohort studies and intervention trials. *Nutr Diabetes.* **2017**, 7(4): e262. doi.org/10.1038/nutd.2017.12.
- 410 10. Genovese, A.; Caporaso, N.; Villani, V.; Paduano, A.; Sacchi, R. Olive oil phenolic compounds affect the release of aroma compounds. *Food Chem.* **2015**, *81*: 284–94. doi: 10.1021/acs.jafc.5b00148.
- 412 11. Bendini, A.; Cerretani, L.; Carrasco-Pancorbo, A.; Gómez-Caravaca, A.M.; Segura-Carretero, A.; 413 Fernández-Gutiérrez, A.; Lercker, G. Phenolic molecules in virgin olive oils: a survey of their sensory 414 properties, health effects, antioxidant activity and analytical methods. An overview of the last decade. 415 *Molecules.* 2007,12(8):1679-719. doi.org/10.3390/12081679.
- 416 12. Cicerale, S.; Conlan, X.A.; Sinclair, A.J.; Keast, R.S. Chemistry and health of olive oil phenolics. *Crit Rev Food* 417 *Sci Nutr.* **2009**, 49: 218–236. doi: 10.1080/10408390701856223.
- 418 13. Knaggs, A. The biosynthesis of shikimate metabolites. *Nat Product Reports.* **2001**, *18*(3): 334–55. doi:10.1039/B001717P.
- 420 14. Noel, J.P.; Austin, M.B.; and Bomati, E.K. Structure–function relationships in plant phenylpropanoid biosynthesis. *Curr Opin Plant Biol.* **2005**; *8*(3): 249–253. doi:10.1016/j.pbi.2005.03.013.
- 422 15. Ricardo, L.; Comelles, F.; Alcántara, D.; Maldonado, O.S.; Curcuroze, M.; Parra, J.L.; Morales, J.C. Surface-423 active properties of lipophilic antioxidants tyrosol and hydroxytyrosol fatty acid esters: A potential 424 explanation for the non-linear hypothesis of the antioxidant activity in oil-in-water emulsions. *J Agric Food* 425 *Chem.* 2010, 58 (13): 8021–6.
- 426 16. Gómez-Rico, A.; Inarejos-García, A.M.; Salvador, M.D.; Fregapane, G. Effect of malaxation conditions on phenol and volatile profiles in olive paste and the corresponding virgin olive oils (Olea europaea L. Cv. Cornicabra) *J Agric Food Chem.* **2009**, *57*: 3587–3595. doi: 10.1021/jf803505w.
- 429 17. Krichene, D.; Salvador, M.D.; Fregapane, G. Stability of virgin olive oil phenolic compounds during long-term storage (18 Months) at temperatures of 5–50 °C. *J Agric Food Chem.* **2015**, *63*: 6779–6786. doi: 10.1021/acs.jafc.5b02187.
- 432 18. Perona, J.S.; Cabello-Moruno, R.; Ruiz-Gutierrez, V. The role of virgin olive oil components in the modulation of endothelial function. *J Nutr Biochem.* **2006**, 17: 429–445. doi: 10.1016/j.jnutbio.2005.11.007.
- 434 19. Cicerale, S.; Lucas, L.; Keast, R. Biological activities of phenolic compounds present in virgin olive oil. *Int J Mol Sci.* **2010**, *2*,11(2):458-79. doi: 10.3390/ijms11020458.
- 436 20. Antonini, E.; Farina, A.; Scarpa, E.S.; Frati, A.; Ninfali, P. Quantity and quality of secoiridoids and lignans in extra virgin olive oils: The effect of two- and three-way decanters on Leccino and Raggiola olive cultivars.

 438 Int J Food Sci. Nutr. 2016, 67: 9–15. doi.org/10.3109/09637486.2015.1121473.
- 439 21. Lopes de Souza, P.A.; Marcadenti, A.; and Lúcia Portal, V. Effects of olive oil phenolic compounds on inflammation in the prevention and treatment of coronary artery disease. *Nutrients*. **2017**, 9(10): 1087. doi: 10.3390/nu9101087.
- 442 22. Carrasco-Pancorbo, A.; Gómez-Caravaca, A.M.; Cerretani, L.; Bendini, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. A simple and rapid electrophoretic method to characterize simple phenols, lignans, complex phenols, phenolic acids, and flavonoids in extra-virgin olive oil. *J Sep Sci.* 2006, 29: 2221–

445 2233.

- 446 23. Del Carlo, M.; Sacchetti, G.; Di Mattia, C.; Compagnone, D.; Mastrocola, D.; Liberatore, L.; Cichelli, A. Contribution of the phenolic fraction to the antioxidant activity and oxidative stability of olive oil. *J Agric Food Chem.* **2004**, 52: 4072–4079. doi: 10.1021/jf049806z.
- 449 24. Owen, R.W.; Mier, W.; Giacosa, A.; Hull, W.E.; Spiegelhalder, B.; Bartsch, H. Phenolic compounds and squalene in olive oils: The concentration and antioxidant potential of total phenols, simple phenols, secoiridoids, lignans and squalene. *Food Chem Toxicol.* 2000, 38: 647–659. doi.org/10.1016/S0278-6915(00)00061-2.
- 453 25. Schwingshackl, L.; Hoffmann, G. Monounsaturated fatty acids, olive oil and health status: A systematic review and meta-analysis of cohort studies. *Lipids in Health and Disease*. **2014**, *13*: 154. doi: 10.1186/1476-455 511X-13-154.
- 456 26. Hernáez, Á.; Fernández-Castillejo, S.; Farràs, M.; Catalán, Ú.; Subirana, I.; Montes, R.; Solà, R.; Muñoz-Aguayo, D.; Gelabert-Gorgues, A.; Díaz-Gil, Ó.; Nyyssönen, K.; Zunft, H.J.; de la Torre, R.; Martín-Peláez, S.; Pedret, A.; Remaley, A.T.; Covas, M.I.; Fitó, M. Olive oil polyphenols enhance high-density lipoprotein function in humans: A randomized controlled trial. *Arterioscler Thromb Vasc Biol.* 2014, 34: 2115–2119. doi: 10.1161/ATVBAHA.114.303374.
- 461 27. Moreno-Luna, R.; Muñoz-Hernandez, R.; Miranda, M.L.; Costa, A.F.; Jimenez-Jimenez, L.; Vallejo-Vaz, A.J.; Muriana, F.J.; Villar, J;, Stiefel, P. Olive oil polyphenols decrease blood pressure and improve endothelial function in young women with mild hypertension. *Am J Hypertens.* **2012**, 25: 1299–1304. doi: 10.1038/ajh.2012.128.
- 465 28. Schwingshackl, L.; Christoph, M.; Hoffmann, G. Effects of olive oil on markers of inflammation and endothelial function. A systematic review and meta-analysis. *Nutrients.* **2015**, 7: 7651–7675. doi: 10.3390/nu7095356.
- 468 29. European Food Safety Authority. Scientific Opinion on the substantiation of health claims related to polyphenols in olive. *EFSA Journal*. **2011**, *9*(4): 2033. doi: 10.2903/j.efsa.2011.2033.
- 470 30. Manna, C.; Napoli, D.; Cacciapuoti, P.; Porcelli, M.; Zappia, V. Olive oil phenolic compounds inhibit homocysteine-induced endothelial cell adhesion regardless of their different antioxidant activity. *J Agric Food Chem.* **2009**, *13*; 57(9): 3478-82. doi: 10.1021/jf8037659.
- 473 31. Castañer, O.; Covas, M.I.; Khymenets, O.; Nyyssonen, K.; Konstantinidou, V.; Zunft, H.F.; de la Torre, R.; 474 Muñoz-Aguayo, D.; Vila, J.; Fitó, M. Protection of LDL from oxidation by olive oil polyphenols is associated 475 with a downregulation of CD40-ligand expression and its downstream products in vivo in humans. *Am J Clin Nutr.* **2012**, *95*(5):1238-44. doi: 10.3945/ajcn.111.029207.
- 477 32. Camargo, A.; Rangel-Zuñiga, O.A.; Haro, C.; Meza-Miranda, E.R.; Peña-Orihuela, P.; Meneses, M.E.; Marin, C.; Yubero-Serrano, E.M.; Perez-Martinez, P.; Delgado-Lista, J.; et al. Olive oil phenolic compounds decrease the postprandial inflammatory response by reducing postprandial plasma lipopolysaccharide levels. *Food Chem.* **2014**, *162*: 161–171. doi: 10.1016/j.foodchem.2014.04.047.
- 481 33. Visioli, F.; Bellomo, G.; Galli, C. Free radical-scavenging properties of olive oil polyphenols. *Biochem Biophys* 482 *Res Commun.* 1998, 247: 60–64. doi: 10.1006/bbrc.1998.8735.
- 483 34. Peng, S.; Zhang, B.; Yao, J.; Duan, D.; Fang, J. Dual protection of hydroxytyrosol, an olive oil polyphenol, against oxidative damage in PC12 cells. *Food Funct.* **2015**, *6*: 2091–2100. doi: 10.1039/c5fo00097a.
- 485 35. Santangelo, C.; Filesi, C.; Varì, R., Scazzocchio, B., Filardi, T.; Fogliano, V.; D'Archivio, M.; Giovannini, C.;
 486 Lenzi, A.; Morano, S.; et al. Consumption of extra-virgin olive oil rich in phenolic compounds improves
 487 metabolic control in patients with type 2 diabetes mellitus: A possible involvement of reduced levels of
 488 circulating visfatin. *J Endocrinol Invest.* 2016, 39: 1295–1301. doi: 10.1007/s40618-016-0506-9.
- 489 36. Pirozzi, C.; Lama, A.; Simeoli, R.; Paciello, O.; Pagano, T.B.; Mollica, M.P.; Di Guida, F.; Russo, R.; 490 Magliocca, S.; Canani, R.B.; et al. Hydroxytyrosol prevents metabolic impairment reducing hepatic inflammation and restoring duodenal integrity in a rat model of NAFLD. *J Nutr Biochem.* 2016, 30:108–115. doi: 10.1016/j.jnutbio.2015.12.004.
- 493 37. Narita, Y.; Inouye, K. Kinetic analysis and mechanism on the inhibition of chlorogenic acid and its components against porcine pancreas alpha-amylase isozymes I and II. *J Agric Food Chem.* **2009**, *57*: 9218–9225. doi: 10.1021/jf9017383.
- Welsch, C.A.; Lachance, P.; Wasserman, B.P. Effects of native and oxidized phenolic compounds on sucrase activity in rat brush border membrane vesicles. *J Nutr.* **1989**, *119*: 1737–1740. doi: 10.1093/jn/119.11.1698.
- 498 39. Visioli, F.; Galli, C.; Bornet, F.; Mattei, A.; Patelli, R.; Galli, G.; Caruso, D. Olive oil phenolics are dosedependently absorbed in humans. *FEBS Lett.* **2000**, *468*: 159–160.

- 40. Rigacci, S.; Stefani, M. Nutraceutical properties of olive oil polyphenols. An itinerary from cultured cells through animal models to humans. *Int J Mol Sci.* **2016**, *17*(6): 843. doi: 10.3390/ijms1706084.
- 502 41. Konstantinidou V.; Kymenets, O.; Covas, M.I.; de la Torre, R.; Muñoz-Aguayo, D.; Anglada, R.; Farré, M.; 503 Fito, M. Time course of changes in the expression of insulin sensitivity genes after an acute load of virgin olive oil. *OMICS.* 2009, *13*:431–438. doi: 10.1089/omi.2008.0085.
- 505 42. Trichopoulou, A.; Martínez-González, M.A.; Tong, T.Y.; Forouhi, N.G.; Khandelwal, S.; Prabhakaran, D.; 506 Mozaffarian, D.; de Lorgeril, M. Definitions and potential health benefits of the Mediterranean diet: views 507 from experts around the world. *BMC Med.* 2014, 24; 12:112. doi: 10.1186/1741-7015-12-112.
- 508 43. Filippatos, T.D.; Panagiotakos, D.B.; Georgousopoulou, E.N.; Pitaraki, E.; Kouli, G.M.; Chrysohoou, C.; 509 Tousoulis, D.; Stefanadis, C.; Pitsavos, C. ATTICA study group. Mediterranean diet and 10-year (2002-2012) incidence of diabetes and cardiovascular disease in participants with prediabetes: The ATTICA study. 8ev Diabet Stud. 2016, 13(4):226-235. doi: 10.1900/RDS.2016.13.226.
- 44. Martinez-Gonzalez, M.A.; Garcia-Arellano, A.; Toledo, E.; Salas-Salvado, J.; Buil-Cosiales, P.; Corella, D.; Covas, M.I.; Schroder, H.; Aros, F.; Gomez-Gracia, E.; Fiol, M.; Ruiz-Gutierrez, V.; Lapetra, J.; Lamuela-Raventos, R.M.; Serra-Majem, L.; Pinto, X.; Munoz, M.A.; Warnberg, J.; Ros, E.; Estruch, R.; and Investigators, P.S. A 14-item Mediterranean diet assessment tool and obesity indexes among high-risk subjects: the PREDIMED trial. *PLoS One.* 2012, 7(8): e43134. doi: 10.1371/journal.pone.0043134.
- 517 45. Alkhatib, A.; Klonizakis, M. Effects of exercise training and Mediterranean diet on vascular risk reduction in post-menopausal women. *Clin Hemorheol Microcirc.* **2014**, *57*(1):33-47. doi: 10.3233/CH-131770.
- 519 46. Klonizakis, M.; Alkhatib, A.; Middleton, G.; Smith, M.F. Mediterranean diet-and exercise-induced improvement in age-dependent vascular activity. *Clin Sci.* 2013, 124(9):579-87. doi: 10.1042/CS20120412.
- 521 47. Klonizakis, M.; Alkhatib, A.; Middleton, G. Long-term effects of an exercise and Mediterranean diet intervention in the vascular function of an older, healthy population. *Microvasc Res.* **2014**, 95:103-7. doi: 10.1016/j.mvr.2014.07.015.
- 48. Esposito, K.; Marfella, R.; Ciotola, M.; Di Palo, C.; Giugliano, F.; Giugliano, G.; D'Armiento, M.; D'Andrea, F.; Giugliano, D. Effect of a mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: A randomized trial. *JAMA*. **2004**, 292:1440–1446. doi: 10.1001/jama.292.12.1440.
- 49. Urpi-Sarda, M.; Casas, R.; Chiva-Blanch G.; Romero-Mamani, E.S.; Valderas-Martinez, P.; Arranz, S.;
 Andres-Lacueva, C.; Llorach, R.; Medina-Remon, A.; Lamuela-Raventos, R.M.; et al. Virgin olive oil and
 nuts as key foods of the Mediterranean diet effects on inflammatory biomarkers related to atherosclerosis.

 Pharmacol Res. 2012, 65:577–583. doi: 10.1016/j.phrs.2012.03.006.
- 532 50. Hoffman, R.; Gerber, M. Can rapeseed oil replace olive oil as part of a Mediterranean-style diet? *Br J Nutr.* **2014**, *14*;112(11):1882-95. doi: 10.1017/S0007114514002888.
- 534 51. Forouhi, N.G.; Imamura, F.; Sharp, S.J.; Koulman, A.; Schulze, M.; Zheng, J.; et al. Association of plasma phospholipid n-3 and n-6 polyunsaturated fatty acids with type 2 diabetes: The EPIC-InterAct Case-Cohort Study. *PLoS Med.* **2016**, *13*: e1002094.
- 537 52. Alkhatib, A.; Tuomilehto, J. Lifestyle Diabetes Prevention. in Huhtaniemi I and Martini L (Eds)
 538 Encyclopaedia of Endocrine Diseases, Second Edition. Elsevier, Amsterdam, Netherlands. 2018, ISBN: 978539 0-12-812200-6.
- 540 53. Sasahara, C.; Burns, S.F.; Miyashita, M.; Stensel, D.J. Beneficial effects of combined olive oil ingestion and acute exercise on postprandial TAG concentrations in healthy young women. *Br J Nutr.* **2012**, 28;108(10):1773-9. doi: 10.1017/S0007114511007380.
- 543 54. Bitzur, R.; Cohen, H.; Kamari, Y.; Shaish, A.; Harats, D. Triglycerides and HDL cholesterol: stars or second leads in diabetes? *Diabetes Care*. **2009**, 32 Suppl 2:S373-7. doi: 10.2337/dc09-S343.
- 545 55. Musumeci, G.; Maria Trovato, F.; Imbesi, R.; Castrogiovanni, P. Effects of dietary extra-virgin olive oil on oxidative stress resulting from exhaustive exercise in rat skeletal muscle: a morphological study. *Acta Histochem.* **2014**, *116*(1):61-9. doi: 10.1016/j.acthis.2013.05.006.
- 548 56. Muros, J.; Zabala, M.; Oliveras-López, M.J.; Bouzas, P.R.; Knox, E.; Rufián-Henares, J.Á.; López-García de la Serrana, H. Effect of physical activity, nutritional education, and consumption of extra virgin olive oil on lipid, physiological, and anthropometric profiles in a pediatric population. *J Phys Act Health*. 2015,12(9):1245-52. doi: 10.1123/jpah.2014-0236.
- 552 57. Alhazza, I.M.; and Bashandy, S.A.E. Hypoglycemic, hypolipidemic, antioxidant and male sexual improvement potentials of olive oil in alloxan treated rats. *J Pharmacol and Toxicol.* **2007**, *2* (5): 427-436.

- 554 58. Oi-Kano, Y.; Kawada, T.; Watanabe, T.; Koyama, F.; Watanabe, K.; Senbongi, R.; Iwai, K. Oleuropein supplementation increases urinary noradrenaline and testicular testosterone levels and decreases plasma corticosterone level in rats fed high-protein diet. *J Nutr Biochem.* **2013**, 24(5):887-93. doi: 10.1016/j.jnutbio.2012.06.003.
- 558 59. Kapoor, D.; Malkin, C.J.; Channer, K.S.; Jones, T.H. Androgens, insulin resistance and vascular disease in men. Clin Endocrinol. **2005**, *63*: 239–250.
- 560 60. Bojesen, A.; Kristensen, K.; Birkebaek, NH.; et al. The metabolic syndrome is frequent in Klinefelter's syndrome and is associated with abdominal obesity and hypogonadism. *Diabetes Care*. **2006**, 29: 1591–1598.
- 562 61. McInnes, K.J.; Smith, L.B.; Hunger, N.I.; Saunders, P.T.K.; Andrew, R.; and Walker, B. Deletion of the androgen receptor in adipose tissue in male mice elevates retinol binding protein 4 and reveals independent effects on visceral fat mass and on glucose homeostasis. *Diabetes.* **2012**, *61*(5): 1072-1081. doi: 10.2337/db11-1136.
- 566 62. Szychlinska, M.A.; Castrogiovanni, P.; Trovato, F.M.; Nsir, H., Zarrouk, M.; Lo Furno, D.; Di Rosa, M.; 567 Imbesi, R.; Musumeci, G. Physical activity and Mediterranean diet based on olive tree phenolic compounds from two different geographical areas have protective effects on early osteoarthritis, muscle atrophy and hepatic steatosis. *Eur J Nutr.* 2018,15. doi: 10.1007/s00394-018-1632-2.
- 570 63. Lim, J.P.; Leung, B.P.; Ding, Y.Y.; Tay, L.; Ismail, N.H.; Yeo, A.; Yew, S.; Chong, M.S. Monocyte chemoattractant protein-1: a proinflammatory cytokine elevated in sarcopenic obesity. *Clin Interv Aging*. 2015, 10:605-9. doi: 10.2147/CIA.S78901.
- 573 64. Rus, A.; Molina, F.; Ramos, M.M.; Martinez-Ramirez, M.J.; Del Moral, M.L. Extra virgin olive oil improves 574 oxidative stress, functional capacity, and health-related psychological status in patients with fibromyalgia: 575 A preliminary study. *Biol Res Nurs.* **2016**, *19*(1):106-115. doi: 10.1177/1099800416659370.
- 576 65. Yarla, N.S.; Polito, A.; Peluso, I. Effects of olive oil on TNF- α and IL-6 in humans: Implication in obesity and frailty. *Endocr Metab Immune Disord Drug Targets*.**2018**,*18*(1):63-74.doi: 10.2174/1871530317666171120150329.
- 579 66. Blair, S.N.; Brodney, S. Effects of physical inactivity and obesity on morbidity and mortality: current evidence and research issues. *Med Sci Sports Exerc.* **1999**, *31*(11 Suppl): S646-62.
- 581 67. Somerville, V.; Bringans, C.; Braakhuis, A. Polyphenols and Performance: A systematic review and meta-582 analysis. *Sports Med.* **2017**, 7(8): 1589-1599. doi: 10.1007/s40279-017-0675-5.
- 583 68. Johnson, J.A.; Carstensen, B.; Witte, D.; Bowker, S.L.; Lipscombe, L.; and Renehan, A.G. Diabetes and cancer 584 (1): evaluating the temporal relationship between type 2 diabetes and cancer incidence. *Diabetologia*. **2012**, 55: 1607–1618. doi: 10.1007/s00125-012-2525-1.
- 586 69. Vigneri, P.; Frasca, F.; Sciacca, L.; Pandini, G.; and Vigneri, R. Diabetes and cancer. *Endocrine-Related Cancer*. **2009**, *16*: 1103–1123. doi: 10.1677/ERC-09-0087.
- 588 70. Giovannucci, E.; Harlan, D.M.; Archer, M.C.; Bergenstal, R.M.; Gapstur, S.M.; Habel, L.A.; et al. Diabetes and cancer: A consensus report. *Diabetes Care*. 2010, 33: 1674–85. doi: 10.2337/dc10-0666.
- 590 71. Belfiore, A.; Costantino, A.; Frasca, F.; Pandini, G.; Mineo, R.; Vigneri, P.; Maddux, B.; Goldfine, I.D.; and Vigneri, R. Overexpression of membrane glycoprotein PC-1 in MDA-MB-231 breast cancer cells is associated with inhibition of insulin receptor tyrosine kinase activity. *Mol Endocrinol.* **1996**, *10*: 1318–1326.
- 593 72. Kaaks, R.; Johnson, T.; Tikk, K.; Sookthai, D.; et al. Insulin-like growth factor I and risk of breast cancer by age and hormone receptor status-A prospective study within the EPIC cohort. *Int J Cancer.* **2014**, *134*(11): 2683-90. doi: 10.1002/ijc.28589.
- 596 73. Granados-Principal, S.; Quiles, J.L.; Ramirez-Tortosa, C.L.; Sanchez-Rovira, P.; Ramirez-Tortosa, M.C. Hydroxytyrosol: from laboratory investigations to future clinical trials. *Nutr Rev.* **2010**, *68*(4): 191-206. doi:10.1111/j.1753-4887.2010.00278.x.
- 74. Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean diet and survival in a Greek population. *N Engl J Med.* **2003**, *348*:2599–2608. doi: 10.1056/NEJMoa025039.
- 601 75. Fayyaz, S.; Aydin, T.; Cakir, A.; Gasparri, M.L.; Panici, P.B.; Farooqi, A.A. Oleuropein Mediated Targeting of Signaling Network in Cancer. *Curr Top Med Chem.* **2016**, *16*(22): 2477-83. doi:10.2174/1568026616666160212123706.
- 604 76. Hassan, Z.K.; Elamin, M.H.; Omer, S.A.; Daghestani, M.H.; Al-Olayan, S.; Elobeid, M.A.; Virk, P. Oleuropein induces apoptosis via the p53 pathway in breast cancer cells. *Asian Pac J Cancer Prev.* 2013, 14: 6739–6742. doi:10.7314/APJCP.2013.14.11.6739.

- 607 77. Fabiani, R.; Rosignoli, P.; De Bartolomeo, A.; Fuccelli, R.; Servili, M.; Montedoro, G.F.; Morozzi, G.
 608 Oxidative DNA damage is prevented by extracts of olive oil, hydroxytyrosol, and other olive phenolic
 609 compounds in human blood mononuclear cells and HL60 cells. *J Nutr.* 2008, 138(8): 1411-6. doi:
 610 10.1093/jn/138.8.1411.
- 611 78. Tatsch, E.; Bochi, G.V.; Piva, S.J.; De Carvalho, J.; Kober, H.; Torbitz, V.D.; Duarte, T.; Signor, C.; Coelho, A.C.; Duarte, M.M.; Montagner, G.F.; Da Cruz, I.B.; Moresco, R.N. Association between DNA strand breakage and oxidative, inflammatory and endothelial biomarkers in type 2 diabetes. *Mutat Res.* 2012, 1; 732(1-2): 16-20.
- Dandona, P.; Thusu, K.; Cook, S.; Snyder, B.; Makowski, J.; Armstrong, N.; Nicotera, T. Oxidative damage to DNA in diabetes mellitus. *Lancet.* **1996**, 347(8999): 444-5.
- 617 80. Weinbrenner, T.; Fito, M.; de la Torre, R.; Saez, G.T.; Rijken, P.; Tormos, C.; Coolen, S.; Albaladejo, M.F.; 618 Abanades, S.; et al. Olive oils high in phenolic compounds modulate oxidative/antioxidative status in men. *J Nutr.* 2004, 134: 2314–21. doi: 10.1093/jn/134.9.2314.
- 620 81. Parkinson, L.; Keast, R. Oleocanthal, a phenolic derived from virgin olive oil: a review of the beneficial effects on inflammatory disease. *Int J Mol Sci.* **2014**, *15*(7): 12323-34.
- 622 82. Beauchamp, G.; Keast, R.S.; Morel, D.; Lin, J.; Pika, J.; Han, Q.; Lee, C.H.; Smith, A.B.; Breslin, P.A. Phytochemistry: ibuprofen-like activity in extra-virgin olive oil. *Nature.* **2005**, 437(7055): 45-6. doi: 10.1038/437045a.
- 625 83. Uchiyama, Y.; Suzuki, T.; Mochizuki, K.; Goda, T. Dietary supplementation with a low dose of (-)-626 epigallocatechin-3-gallate reduces pro-inflammatory responses in peripheral leukocytes of non-obese type 627 2 diabetic GK rats. *J Nutr Sci Vitaminol.* **2013**, 59(6): 541-7. doi.org/10.3177/jnsv.59.541.
- 628 84. Moral, R.; Escrich, R.; Solanas, M.; Vela, E.M.; Ruiz de Villa, C.; and Escrich, E. Diets high in corn oil or extra-virgin olive oil differentially modify the gene expression profile of the mammary gland and influence experimental breast cancer susceptibility. *Eur J Nutr.* **2016**, *55*: 1397–1409.
- 631 85. Donato, R.; Cannon, B.R.; Sorci, G.; Riuzzi, F.; Hsu, K.; Weber, D.J.; Geczy, C.L. Functions of S100 proteins. 632 *Curr Mol Med.* **2013**, *13*(1): 24-57.
- 633 86. Chavakis, T.; Bierhaus, A.; Nawroth, P.P. RAGE (receptor for advanced glycation end products): a central player in the inflammatory response. *Microbes Infect.* **2004**, *6* (13):1219-25. doi: 10.1016/j.micinf.2004.08.004.
- 87. Nowotny, K.; Jung, T.; Höhn, A.; Weber, D.; Grune, T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. *Biomolecules.* **2015**, *16*, 5(1):194-222. doi: 10.3390/biom5010194.
- 88. Zhang, N.; Valentine, J.M.; Zhou, Y.; Li, M.E.; Zhang, Y.; Bhattacharya, A.; Walsh, M.E.; Fischer, K.E.;
 Austad, S.N.; Osmulski, P.; Gaczynska, M.; Shoelson, S.E.; Van Remmen, H.; Chen, H.I.; Chen, Y.; Liang,
 H.; Musi, N. Sustained NFκB inhibition improves insulin sensitivity but is detrimental to muscle health.
 Aging Cell. 2017, 16(4): 847-858. doi: 10.1111/acel.12613.
- 641 89. De Bock, M.; Derraik, J.G.B.; Brennan, C.M.; Biggs, J.B.; Morgan, P.E.; et al. Olive (Olea europaea L.) Leaf 642 Polyphenols Improve Insulin Sensitivity in MiddleAged Overweight Men: A Randomized, Placebo-643 Controlled, Crossover Trial. *PLoS ONE*. **2013**, **8**(3), e57622. doi.org/10.1371/journal.pone.0057622.
- 644 90. Oliveras-Lópeza, M.J.; Bernáab, G.; Jurado-Ruizab, E.; de la Serrana, L.G.; Martínab, F. Consumption of extra-virgin olive oil rich in phenolic compounds has beneficial antioxidant effects in healthy human adults. *J Funct Foods.* **2014**, *10*: 475-484. doi.org/10.1016/j.jff.2014.07.013.