

1 Article

2

Real Exchange Rate Misalignment and Economic 3 Growth: The Case of Trinidad and Tobago

4 Daren Conrad¹, and Jaymieon Jagessar^{2,*}5 ¹ Department of Economics, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago;
6 daren.conrad@sta.uwi.edu7 ² Department of Economics, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago;
8 jay_jagessar@yahoo.com

9 * Correspondence: jay_jagessar@yahoo.com; Tel.: (1868)-662-2002 ext.83053

10

11 **Abstract:** Conventional economic theory outlines that developing countries experience economic
12 growth through an undervalued exchange rate and that exchange rate overvaluations has negative
13 long term effects on economic growth. This paper examined the impact of exchange rate
14 movements as well as exchange rate misalignments on economic growth for the Trinidad and
15 Tobago economy over the period 1960 to 2016. We find statistically significant evidence that both
16 exchange rate appreciation and misalignments impact negatively on economic growth in the T&T
17 economy. Drilling deeper we find interestingly that there exist no non-linear effects of exchange
18 rate misalignments on growth. Specifically we find statistically significant evidence that both
19 overvaluations and undervaluations hamper economic growth in the Trinidad and Tobago
20 economy. We attribute this to T&T's small and underdeveloped manufacturing sector that tends to
21 be overlooked on account of its energy resources, in addition to the fact that its manufacturing
22 sector is highly import oriented. A major policy recommendation would be for the critical
23 reassessment of the rules governing the HSF, as government expenditure was allowed to follow
24 energy revenues due to its current limitations.25 **Keywords:** exchange rate misalignment; real effective exchange rate; undervaluation;
26 overvaluation; growth; autoregressive distributed lag bounds testing approach; Trinidad and
27 Tobago28 **JEL Classification:** F31; O47; C23

29

30

1. Introduction

31 Exchange rates powerfully affect cross-border economic transactions Frieden (2008). "Trade,
32 investment, finance, tourism, migration, and more are inextricably linked to and influenced by international
33 monetary policy Frieden (2008, p.344). To this end, there is an abundance of theoretical and empirical
34 evidence that overwhelmingly highlights the increasing importance of exchange rates in the face of
35 globalization, Frieden (2008). A competitive exchange rate is a condition for economic growth Gala
36 (2006). Yet, since the 1990s, this condition is not present in most developing countries Bresser-Pereira
37 (2008). Most developing countries do not have the "relatively devaluated" exchange rate which
38 Bresser-Pereira referred to as a competitive exchange rate. The idea of the competitive real exchange
39 rate has received a lot of attention in both academic and political circles Sokolova (2015). In the
40 Caribbean, Blackman (2002) noted that the exchange rate is the most important price since it
41 determines the terms of trade as well as the relative prices within an economy.42 The Exchange rate is one of the commonly used determinants to assess the performance of an
43 economy. Doroodian et al. (2002) notes that it is general consensus amongst researchers that the state
44 must pursue an appropriate exchange rate policy as part of its liberalization effort in order to

45 strengthen the competitiveness of domestic firms against established foreign firms. In other words,
46 maintaining the real exchange rate at the 'wrong' level can have negative effects on the nation's
47 competitiveness. The authors further highlights that the inadequacy of economic performance has
48 been the result of inappropriate exchange rate policies. Johnson et al. (2006) argues that exchange rate
49 policy is a "lever for growth" even in countries with relatively weak institutions.

50 The policy advice that governments usually receive on exchange rates have been typically
51 presented as theoretical solutions to economic problems. However, we cannot ignore the fact that
52 exchange rate policy is a politically charged issue since it impacts all citizens – some favourably and
53 some not so favourably. As such, policy-makers are generally more concerned with the impact of
54 currency policy on electoral conditions and potentially, pressures from special interest groups.

55 Within recent times, T&T's foreign reserves have been waning on account of the unexpected
56 decline in oil prices experienced in mid-2014; with the state doing its best to manage the currency float.
57 The price of oil took a severe turn in mid 2014, plummeting to all time lows in over ten years;
58 remaining depressed over the last couple of years, barring a slight recovery in recent times¹. This
59 decline in reserves resulted in foreign currency shortages in the banking sector in Trinidad and
60 Tobago which has ignited a debate on whether T&T's exchange rate is overvalued or not. The
61 International Monetary Fund Article IV 2016 for the Trinidad and Tobago economy found that that
62 the Trinidad and Tobago currency is substantially overvalued in the range of 21.3 to 50%.

63 Edwards (1989) argues that real exchange rate misalignments may affect growth and welfare.
64 Maintaining the REER at the wrong level may create distortions in the relative price of traded to
65 non-traded goods, which can generate incorrect signals to economic agents and result in greater
66 economic instability. This essentially results in the suboptimal allocation of resources across the
67 various sectors of the economy. Furthermore, sustained REER overvaluations constitute an early
68 warning indicator of possible currency crashes, (Krugman, 1979; Frankel and Rose, 1996; Kaminsky
69 and Reinhart, 1999). Furthermore, overvaluations have also been empirically found to have a negative
70 impact on growth in the literature. Though this seems to be a long way off for the Trinidad and
71 Tobago economy given its relatively large buffer of foreign reserves and a still healthy position of 9.7
72 months of import cover as of 2017, this can easily dissipate in the absence of greater exchange rate
73 flexibility as noted by the IMF. Specifically, the IMF report noted that in the absence of greater
74 exchange rate flexibility the country's healthy external position of 10.9 months of import cover as of
75 July 2016 could steadily deteriorate to under 3½ months by 2021.

76 The question now arises: Is the Trinidad and Tobago currency really overvalued and to the
77 extent outlined in the IMF Article IV report for 2016 for the T&T economy? In this paper, we focus our
78 attention to a discussion on the issue of currency misalignment in the T&T economy for the period
79 1960 to 2016. We empirically examine T&T's exchange rate misalignments for the period 1960 to 2016
80 as its deviations away from its equilibrium long run fundamentals. The paper utilizes the ARDL
81 approach to assessing cointegration, i.e. to assess whether a long run relation exists amongst the real
82 exchange rate and its fundamentals, which was proposed by Pesaran and Smith (1995) and further
83 developed by Pesaran and Shin (1997) and Pesaran et al. (2001). The paper also examines the impact
84 of exchange rate misalignments on economic growth for the Trinidad and Tobago economy. We also
85 examine whether these effects are linear or non-linear; by testing the theoretical and empirical notion
86 that an overvaluation is harmful to economic growth whilst an undervaluation is beneficial to
87 economic growth. The paper is unique as it is the first paper to the best of our knowledge, to
88 empirically examine T&T's real effective exchange rate misalignments and its potential impact on
89 economic growth.

90 In this regard, the rest of this paper is organized in the following way. In section 2 of the paper,
91 we review the evolution of the exchange rate in the Trinidad and Tobago economy. Section 3 provides
92 a comprehensive review of the literature on the relationship between real exchange rate
93 misalignments and economic growth. Section 4 outlines the methodology used in the paper, and

¹ This recovery however, is in no relation to the prices enjoyed by OPC's over the last decade, adding to severe macro-economic pressures currently being face by most of these OPC's.

94 briefly outlines the data and their respective sources used in the study. Section 5 provides a discussion
95 on the empirical results obtained, whilst section 5 concludes and provides several key policy
96 recommendations.

97 **2. Evolution of the Exchange Rate Regime in Trinidad and Tobago**

98 In discussing currency valuation for Trinidad and Tobago, the natural point of departure for
99 this discussion is the country's dependence on oil and natural gas exports. Trinidad and Tobago has
100 been a significant exporter of oil for many decades and more recently a major producer of natural
101 gas². The volatility in prices for these natural resources impacts significantly on T&T's economy, and
102 by extension its exchange rate value as well. During the period 1974 and 1982 T&T benefitted
103 immensely from positive oil shocks which led to economic boom conditions in Trinidad and Tobago.
104 Real GDP growth for the period averaged 4.60 percent whilst foreign exchange reserves climbed
105 from 768.3 million TT\$ in 1974 to 7.16 billion TT\$ in 1982, peaking at 7.69 billion in 1981. Along with
106 this, government expenditures rose sharply and there was a commensurate fall in unemployment.
107 The unprecedented boom was followed by an adverse movement in the country's terms of trade
108 which was precipitated by falling oil prices from a peak of US\$39.60 per barrel in 1981 to less than
109 US\$15 in 1986. This led to declining government revenues and mounting fiscal deficits which grew
110 from 1.4 percent to 13.1 percent of GDP in 1983. The reaction of the Government of the Republic of
111 Trinidad and Tobago (GORTT) was to control imports rather than devalue the local currency.
112 Consequently, there was a system of *ex ante* Central Bank controls over imports and the
113 implementation of a wide array of tariffs, taxes, and subsidies.

114 In 1986, when international oil prices fell to less than US\$15 per barrel, Trinidad and Tobago
115 experienced a precipitous fall in foreign exchange reserves. Reserves fell to the equivalent of less
116 than two months of import cover. Between 1982 and 1987, earnings from the petroleum sector fell by
117 almost 50 percent and the rate of unemployment doubled from 10 to 22 percent. Realizing that
118 approaching the IMF was inevitable in order to finance the growing fiscal deficit, the government
119 then further devalued the currency to a unified rate of US\$1.00 = TT\$3.60. However, the decline in
120 the economic standing of Trinidad and Tobago eventually led to the signing of a stand-by agreement
121 with the International Monetary Fund (IMF) in 1987 with an additional agreement signed in 1990.

122 The design of the stabilization program emphasized tax reform, making the exchange rate more
123 competitive, liberalizing the trade regime, increasing privatization, and reducing the external
124 account and fiscal deficits. It was thought that these policies would create an environment conducive
125 to increasing production and exports. Consequently, the government reduced the public sector wage
126 bill by 10 percent, privatized and liquidated parts of state owned enterprises, and introduced the
127 15 percent value added tax (VAT) covering all goods and services except for exports and some basic
128 commodities. The government also introduced selective credit controls, reserve requirements, and
129 limited open market operation to control the availability of credit. In 1988, faced with even further
130 declines in petroleum prices and a significant cluster of external debt service payments, the
131 government adopted a more comprehensive program which included a 15 percent devaluation in
132 the currency which led to a cumulative depreciation in real effective terms of over 40 percent since
133 the beginning of 1985.

134 Fast forward to 1993, the government decided to abolish controls on the current and capital
135 transactions in favour of having the value of the Trinidad and Tobago dollar be determined within
136 the context of an interbank market whose major players would have then been the authorized
137 foreign exchange dealers. Since then, the value of the Trinidad and Tobago dollar appreciates or
138 depreciates in response to changes in supply and demand conditions in the foreign exchange market

² Commercial oil production in Trinidad and Tobago began in 1908; however the first well was drilled in 1857 by the Merrimac Company. In 1999, the commissioning of the first of four Atlantic LNG trains, led to a shift in the economy from being highly oil dependent, to being heavily dependent on natural gas as well according to Hosein et al. (2017).

139 and the intervention policy of the Bank, therefore in practice, the foreign exchange system is a
 140 managed float. Under the free float system, the central bank would adopt a passive stance and let the
 141 exchange rate be determined freely in the foreign exchange markets. In this instance, the central
 142 bank's non-intervention in the foreign exchange markets means that the balance of payments and
 143 reserves transactions are zero³. Therefore, under a managed float, the official reserves are not equal
 144 to zero. In looking at figure 1, we see that the managed float exchange rate regime provided stability
 145 in the currency value which should have been reflected in price stability in Trinidad and Tobago.
 146

147 **Figure 1.** Displaying the Real Effective Exchange Rate and Nominal Exchange Rate in Trinidad and
 148 Tobago for the period 1966 to 2016.
 149

150
 151 *Source:* World Bank, World Development Indicators

152 **3. Literature Review: The relationship between real exchange rate misalignments and economic
 153 growth**

154 This section of the paper presents a brief overview of the evidence in the literature on the link
 155 between REER misalignments and economic growth. Johnson et al. (2006) argues that the exchange
 156 rate policy acts as a "lever for growth" even in countries with relatively weak institutions. According
 157 to Habib et al. (2017), whilst politicians are often convinced that a lower exchange rate will spur
 158 economic growth, economists on the other hand are generally sceptical that the relative price of two
 159 currencies may be a fundamental driver of economic growth over the long run. However, several
 160 studies have put forth theoretical arguments in favour of this relationship, see studies done by
 161 Rodrik (2008), Aizenman and Lee (2010), Nino et al. (2011), McLeod & Miliva (2011) and Glüzmänn
 162 et al. (2012). Whilst on the other hand, there has been a plethora of empirical literature in recent
 163 times confirming this relationship, see Aguirre and Calderon (2005), Rodrik (2008), Rapetti et al.
 164 (2012), and Bereau et al. (2012), Missio et al. (2015). Furthermore, recent empirical literature
 165 surrounding this topic has highlighted that there exists a non-linear effect of a currency or exchange
 166 rate misalignment on economic growth, see Aguirre and Calderon (2005).

167 An approach outlined in (Krueger, 1983; Edwards, 1989; Williamson, 1990; Berg and Miao,
 168 2010) which is often referred to as the "Washington consensus view", holds that the value of the

³ The exchange rate will always adjust to make the capital and current accounts sum to zero.

169 exchange rate should be determined by both internal and external balances. According to Mbaye
170 (2013), deviations away from this equilibrium level, i.e. exchange rate misalignments are associated
171 with macroeconomic disequilibrium irrespective of the direction of the misalignment. In sum, under
172 this view, both undervaluations and overvaluations are argued to be harmful to growth. An
173 overvalued currency is associated with a loss of external competitiveness, a squeeze on the tradable
174 sector and increased likelihood of balance of payments and currency crises (see for example Cottani
175 et al., 1990; Ghura and Grennes, 1993; Loayza et al., 2004; Krugman, 1979; Frankel and Rose, 1996;
176 Kaminsky and Reinhart, 1999). Furthermore, Rodrik (2008) argues that an overvaluation is
177 associated with foreign currency shortages, rent seeking and corruption, unsustainably large current
178 account deficits, balance of payment crises, and stop-and-go macroeconomic cycles, all of which are
179 damaging to economic growth.

180 Conversely, undervaluations are discredited on the grounds that it could produce unnecessary
181 inflationary pressures and also limit the resources available for domestic investment, and for this
182 reason curb the growth of supply-side potential according to Williamson (1990). Furthermore, as
183 pointed out by Nunnenkamp and Schweickert (1990), cost push inflation can occur in the export
184 sector and even diminish the competitiveness of a country's exports if the country's export sector
185 relies heavily on imported inputs. Krugman and Taylor (1978) notes that production may suffer on
186 account of the fact that imported inputs get costlier following a real devaluation.

187 However, recent empirical studies proffer that overvaluations should be avoided as they
188 impact negatively on economic growth whilst an undervaluation impacts positively on growth.
189 Majority of the recent literature points to the latter, i.e. an undervalued real exchange rate on account
190 of the fact that it leads to increases in private investment in the traded goods sector. An
191 undervalued exchange rate affects growth through two main transmission channels, namely the
192 "capital accumulation channel" and the "total factor productivity (TFP) growth channel" according
193 to Mbaye (2013). Under the "capital accumulation channel" an undervalued exchange rate impacts
194 positively on economic growth through an increase in the stock of capital in the economy. The
195 second transmission channel on the other hand places the structure of domestic production at the
196 core of the analysis. An undervalued exchange rate results in an increase in the prices of tradable
197 goods relative to non-tradables, thereby resulting in increased profitability of the tradable goods
198 sector. This results in a shift in production away from non-tradables to tradable good which are
199 assumed to be characterized by a higher level of marginal social productivity, with the end result
200 being an overall increase in productivity in the economy, Mbaye (2013). *"Such economy-wide
201 productivity improvement ultimately fosters growth"* Mbaye (2013, pg 3).

202 Nino et al. (2011) concluded that undervaluation can lead to increased export activity,
203 particularly in highly productivity sectors. In such an instance, there is an incentive to maintain the
204 relative price of traded goods high enough to make it attractive to shift resources into their
205 production. In Aizenman and Lee (2010), McLeod & Miliva (2011) and Benigno et al. (2015), the
206 existence of learning by doing externalities to individual firms in the traded goods sector, calls for a
207 weak exchange rate, i.e. an undervalued exchange rate to support the production of tradables. In
208 these models, exchange rate undervaluation acts as a subsidy to the more efficient tradables sector
209 according to Habib et al. (2017).

210 McLeod & Miliva (2011) were able to show through a two-sector open economy growth model
211 that a combination of "learning by doing" in the traded goods sector along with a weak REER which
212 acts as a policy lever that moves workers into traded goods production faster, can lead to a surge in
213 total factor productivity (TFP) growth⁴. Specifically, their findings indicate that a 10% real
214 depreciation of the exchange rate leads to a 0.2% increase in average annual TFP growth rate. Whilst
215 results generated from a dynamic panel model indicate that the impact can be twice as large, ranging

⁴ Mbaye (2013) defines the "learning by doing effect" as a firm's capability to improve their productivity as they accumulate experience on production, i.e. productivity gains are typically achieved through practice and self-perfection.

216 between 0.3% and 0.5%⁵. Empirical results derived in Mbaye (2013) offer strong support to the TFP
217 growth channel; whereby a 10% increase in undervaluation enhances growth on average by 0.14%
218 via an improvement in productivity⁶. Conversely, a 1% increase in overvaluation is associated with a
219 0.021% contraction in growth on average.

220 Rodrik (2008) posited that a weak real exchange rate compensates for institutional weaknesses
221 and market failures which lead to underinvestment in the traded goods sector in developing
222 countries. Under both circumstances, Rodrik notes that an increase to the relative price of traded
223 goods (i.e. through the weakening of the real exchange rate) *“acts as a second-best mechanism to partly
224 alleviate the relevant distortion, foster desirable structural change, and spur growth”* (pg.370). A policy
225 measure of this nature encourages structural change, enhances export capacities and improves
226 economic growth by shifting the internal terms of trade in favour of the tradable sector Rodrik (2009)
227 and Freund and Pierola (2008). Rodrik provides evidence via the use of a simple growth model for a
228 small open economy, to support the fact that both institutional weaknesses and market failures
229 (distortions) affects the traded sector more than it affects the non-traded sector. Rodrik is able to
230 demonstrate through his model, that when the distortion in traded sector is larger than in the
231 non-traded sector; the traded sector is too small in equilibrium and hence a weakening of the
232 exchange rate through a policy or other exogenous shock will have a growth-promoting effect.

233 Aguirre and Calderón (2005) provide empirical evidence on the relationship between exchange
234 rate misalignments and economic growth. Specifically the authors find that real exchange rate
235 misalignment hinders growth, however this effect is nonlinear, the larger the size of the
236 misalignments, the larger the decline in growth. Several studies have provided empirical evidence
237 showing that an overvaluation is associated with a negative impact on growth, Dollar (1992), Razin
238 and Collins (1999), Aguirre and Calderón (2005), Rodrik (2008), Elbadawi et al. (2012), Mbaye (2013)
239 among many others. Conversely, the empirical literature is replete with evidence that a weak or
240 undervalued exchange rate impacts positively on economic growth, in particular developing
241 economies, Aguirre and Calderón (2005), Rodrik (2008), Elbadawi et al. (2012), Mbaye (2013) among
242 many others. Most empirical work continues to show that there is a positive correlation between
243 weak real exchange rates and economic growth, Habib et al. (2017).

244 Dollar (1992) empirically illustrated that an overvalued exchange rate hampers economic
245 growth. Conversely, whilst an undervalued exchange rate can spur economic growth, if the
246 exchange rate is grossly undervalued this in turn can harm growth whereas modest undervaluation
247 enhances growth prospects, Aguirre & Calderon (2005). Aguirre & Calderon (2005) implemented a
248 generalized method of moments (GMM) model for dynamic models of panel data developed by
249 Arellano and Bond (1991) and Arellano and Bover (1995). The study consisted of a sample of 60
250 countries and the analysis spanned the time period 1965-2003. Specifically, the authors find that a
251 small undervaluation of up to 12 percent is associated with a positive growth response. The authors
252 also calculate the effect an additional 5% real undervaluation has on economic growth for countries
253 with differing initial levels of exchange rate undervaluation. The results highlight that for a country
254 with an initial undervaluation of 10%, a further 5% increase to the undervaluation of the exchange
255 rate would result in a negligible increase in economic growth of only 4 basis points per year.
256 However, an increase in the degree of real undervaluation from 20 to 25% would reduce the growth
257 rate by 43 basis points per year, while a further increase in the undervaluation from 30 to 35 percent
258 leads to an even more severe decline in economic growth (approximately 0.9 percent per year).

259 4. Model and Data

260 This study seeks to primarily examine T&T's exchange rate misalignments over the period 1960
261 to 2016, and its impact on economic growth. The common thread in the literature to examine
262 exchange rate misalignments is to estimate its deviations away from its equilibrium component
263 utilizing a long run model, see studies by Aguirre and Calderón (2005) and Elbadawi et al. (2012).

⁵ The panel model estimated consisted of 58 developing countries and spanned the period 1975 - 2004.

⁶ The analysis is conducted on a panel of 72 countries over the period 1970 to 2008.

264 Montiel (1999) argued that the long run equilibrium real exchange rate emerges from
 265 macroeconomic equilibrium in an economy where policy and exogenous variables are sustainable in
 266 the long run. Furthermore, an understanding of the fundamental factors that affect or influence a
 267 country's exchange rate is vital. A proper understanding of those factors that influences an
 268 economies exchange rate, i.e. those factors that have an effect on the long run equilibrium exchange
 269 rate is key for policy makers on account of the fact that previous research has shown that
 270 maintaining REER close to its equilibrium rate is key to ensure growth and stability of the economy
 271 along with maintaining the overall external competitiveness of the economy, see studies by
 272 Elbadawi & Helleiner (2005) and Aguirre and Calderon (2005). Moreover, as noted earlier in the
 273 study, not only avoiding overvaluation is necessary for growth but a mild undervaluation may be
 274 good for growth, see Aguirre & Calderon (2005).

275 Following several studies in the literature, we model the fundamentals of T&T's equilibrium
 276 exchange rate for the period 1960 to 2016 using the following econometric specification:
 277

$$278 \ln REER_t = \alpha + \beta_1 \ln Y_t + \beta_2 \ln G_t + \beta_3 \ln NFA_t + \beta_4 \ln CRP_t + \beta_5 \ln OILP_t + \beta_6 \ln RESERVES_t + \varepsilon_t \quad (1)$$

280 where REER is the real effective exchange rate index; Y is real GDP per capita in US dollars
 281 2010; G is government consumption expenditure as a percent of GDP; NFA is net foreign assets as a
 282 percentage of GDP; CRP is domestic credit to the private sector as a percent of GDP; OILP is the real
 283 oil price; RESERVES is total reserves as a percentage of GDP and α and ε are the constant and error
 284 term respectively. All variables are taken from the World Bank's World Development Indicators
 285 (WDI) online database with the exception of REER which is taken from Darvas (2012).

286 To estimate equation 1, we implement the Autoregressive Distributed Lag (ARDL) approach to
 287 assessing cointegration, i.e. whether a long run relation exists amongst our variables, which was
 288 introduced by Pesaran and Smith (1995) and further developed by Pesaran and Shin (1997) and
 289 Pesaran et al. (2001). We choose to utilize this model over other cointegration tests such as the
 290 Johansen cointegration test given the number of advantages of using the ARDL approach, which are
 291 outlined by Pesaran et al. (2001), Acaravci and Ozturk (2012) and Gasmi and Laourari (2017). A
 292 major benefit to utilizing this model is that is that it can be applied irrespective of whether the series
 293 under investigation are stationary at I(0) or I(1) or mixture of both. In contrast to the Johansen
 294 cointegration procedure, the ARDL approach can accommodate different orders of integration of the
 295 variables and pre-testing for a unit root is only necessary to ensure there are no I(2) variables, (Salim
 296 et al., 2015; Gasmi and Laourari, 2017; Nguyen, 2017). Another advantage of the ARDL model is the
 297 fact that it takes into account the error correction model, which enables the model to simultaneously
 298 estimate both short and long-run coefficients, Pesaran et al (2001), Villavicencio and Bara (2008) and
 299 Sami and Kreishan (2012). As such, the ARDL model of equation (1) is outlined below:
 300

$$301 \Delta \ln REER_t = \alpha + \beta_1 \ln Y_{t-1} + \beta_2 \ln G_{t-1} + \beta_3 \ln NFA_{t-1} + \beta_4 \ln CRP_{t-1} + \beta_5 \ln OILP_{t-1} + \\ 302 \beta_6 \ln RESERVES_{t-1} + \sum_{i=1}^p \lambda_i \Delta \ln Y_{t-i} + \sum_{i=1}^p \gamma_i \Delta \ln G_{t-i} + \sum_{i=1}^p \theta_i \Delta \ln NFA_{t-i} + \sum_{i=1}^p \mu_i \Delta \ln CRP_{t-i} + \\ 303 \sum_{i=1}^p \pi_i \Delta \ln OILP_{t-i} + \sum_{i=1}^p \sigma_i \Delta \ln RESERVES_{t-i} + \varepsilon_t \quad (2)$$

304 where Δ is the difference operator, α and ε are the constant and error term respectively and
 305 p is the optimal lag length which will be determined using Akaike Information Criteria (AIC) and
 306 Schwartz Information criteria (SIC) respectively. The coefficients on the differenced terms,
 307 represents the short run relationships, whereas, the coefficients on the level terms, i.e. β_1 to β_7
 308 correspond to the long-run relationships.

309 To assess whether there exists a long run relation amongst our variables, i.e. whether there
 310 exists a cointegrating relation, the ARDL bound test is implemented. If the calculated F-statistic of
 311 the coefficients on the variables in levels is greater than the critical value bounds provided by
 312 Pesaran et al. (2001), we conclude that there is cointegration among our variables. On the other hand,
 313 if the F-statistic falls between the critical value bounds, the results are inconclusive, or, if the
 314 F-statistic is less than the critical value bounds, there is no evidence of cointegration among the
 315 variables. "However, if the Wald or F-statistic falls inside these bounds, inference is inconclusive and
 316

317 knowledge of the order of the integration of the underlying variables is required before conclusive inferences can
318 be made", Pesaran et al. (2001,p.290). When the order of integration of the variables under
319 consideration is known and that all the variables are integrated to the order of one, the decision is
320 made based on the upper bound, whilst if all the variables under control are integrated of order zero
321 I(0), the decision is made based on the lower bound, Pesaran et al. (2001).

322 In this study, due to data limitations we are forced to utilize a small sample size of 56
323 observations. However, as pointed out by Narayan (2005), the upper and lower critical values of the
324 F-distribution generated by Pesaran and Pesaran (1997) and Pesaran et al. (2001) were based on large
325 sample sizes of 500 and 1000, as well as 20,000 and 40,000 replications, respectively. As such,
326 Narayan (2004) and Narayan (2005) argued that the critical values generated by Pesaran and Pesaran
327 (1997) and Pesaran et al. (2001) are not applicable to small sample sizes. Narayan (2004) compared
328 the critical values generated for 31 observations and 4 regressors with the critical values reported in
329 Pesaran et al. (2001) and found that the upper bound critical value at the 5% significance level is 4.13
330 while the corresponding critical value for 1000 observations is 3.49, which is 18.3% lower than the
331 critical value for 31 observations. This along with the small sample size of 43 and 47 observations
332 respectively in his present study led Narayan (2005) to calculate critical values for sample sizes
333 ranging from 30 to 80 observations⁷. As such, in this paper we also utilize the critical values
334 generated by Narayan (2005) as a small sample size correction in order to ensure robustness of our
335 cointegration results.

336 At this stage, we discuss the apriori expectations between the dependent and each of the
337 independent variables. The literature highlights that an increase in government consumption can
338 have one of two effects on the real exchange rate. This effect on the equilibrium real exchange rate
339 depends on the composition of the consumption expenditure between tradable goods and
340 non-tradable goods, Ibrahim (2016). An increase in government consumption can either lead to an
341 appreciation or depreciation of the exchange rate depending on whether this increased consumption
342 is biased towards non-tradables or tradables respectively, Edwards (1989), Doroodian et al. (2002),
343 Naseem et al. (2009) and Wondemu and Potts (2016).

344 Rodrik (2008) and Acosta et al. (2009) concluded that as GDP increases, the real exchange rate
345 appreciates. Similarly to Rodrik (2008), we regress the real exchange rate against the per capita GDP
346 to account for the Balassa-Samuelson effect. Reserves is expected to carry a negative sign, which
347 suggests that any increases or accumulation of foreign exchange reserves will entail a depreciation of
348 the exchange rate in order for the economy to be on its sustainable equilibrium level, Wondemu and
349 Potts (2016) and Habib et al. (2017). In regards to net foreign assets, Mariano et al. 2016 states that the
350 accumulation of net foreign assets will lead to an appreciation of the exchange rate. Excessive credit
351 to the private sector would boost domestic demand, worsen the CA, and appreciate the real
352 exchange rate.

353 The apriori expectation is that the equilibrium REER to be more appreciated with higher terms
354 of trade (TOT), Elbadawi et al. (2012) and Doroodian et al. (2002). Given T&T's large dependence on
355 energy exports, which accounts for on average over 80% of the country's total merchandise exports,
356 we proxy TOT using the oil price. Beckmann and Czudaj, (2013) expect that during periods of
357 increased oil prices that the currencies of oil-exporting countries will appreciate as wealth is
358 transferred to the oil exporting economies (in US dollar terms) on account of the fact that it is
359 reflected as an improvement in exports and the current account balance in domestic currency terms.
360 Koranchelian (2005) and Zalduendo (2006) examine the impact of oil price on the real exchange rate
361 in two oil exporters, Algeria and Venezuela, respectively. Both authors conclude that the real oil
362 price does have an impact on the real exchange rate for both countries. Koranchelian (2005) finds
363 that 1 percent increase in the real oil price is associated with an appreciation of the REER of about 0.2
364 percent in the Algerian economy, whilst Zalduendo (2006) finds that a 1 percent increase in oil prices
365 has almost a one-to-one effect on the real effective exchange rate (i.e., a 1¼ percent appreciation) in
366 the Venezuelan economy.

⁷ The critical values calculated can be found in the appendix of the paper.

367 **5. Discussion and Analysis**368 **5.1. ARDL Results:**

369 This section may be divided by subheadings. It should provide a concise and precise
 370 description of the experimental results, their interpretation as well as the experimental conclusions
 371 that can be drawn.

372 As a preliminary step, we investigate the unit root properties of each of the respective series
 373 employed in the study. As noted earlier, the ARDL approach only requires pre-testing of the unit
 374 root properties of the time series in order to ensure there are no variables integrated of the order two,
 375 i.e. I(2) or higher. We employ the use of two standard unit root tests; namely the Augmented
 376 Dickey-Fuller test (ADF) and the Phillips-Perron test (PP). Table 1, summarizes the results of both
 377 unit root tests respectively. All variables are generally found to be I(1)'s and thus we proceed to
 378 estimating equation 2 using the ARDL approach.

379 **Table 1.** Results generated by both the Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) Unit Root
 380 Tests.

Variables	ADF Test				PP Test			
	Level		First Difference		Level		First Difference	
	I	I&T	I	I&T	I	I&T	I	I&T
LREER	-0.27	-1.27	-6.42***	-6.52***	-0.56	-1.54	-6.42***	-6.52***
LY	-0.82	-1.72	-3.76***	-3.73**	-0.97	-1.59	-3.71***	-3.68**
LG	-2.66*	-2.62	-8.30***	-8.22***	-2.64*	-2.59	-8.51***	-8.42***
LNFA	-3.05**	-3.87**	-9.23***	-9.16***	-2.90*	-3.81**	-10.32***	-10.26***
LCRP	-2.31	-1.62	-7.35***	-7.75***	-2.35	-1.57	-7.35***	-7.92***
LOILP	-1.60	-1.54	-6.54***	-6.54***	-1.70	-1.80	-6.53***	-6.53***
LRESERVES	-1.39	-1.75	-6.11***	-6.06***	-1.53	-1.88	-6.04***	-5.98***

381 *, **, *** denotes levels of significance at 10%, 5% and 1% respectively

382 Note: I denotes the unit root test with only an intercept term. I&T denote the unit root test with both an
 383 intercept term and trend.

384 Prior to the estimation of equation 2 using the ARDL approach, we must first determine the
 385 optimal lag length for the ARDL model. Correct specification of the lag length to be employed is
 386 pivotal, on account of the sensitivity of the bounds tests to the lags chosen and by extension finding a
 387 cointegrating relationship between our variables. As noted by Pesaran et al. (2001), there is a delicate
 388 balance between choosing a lag order that is sufficiently large in order to mitigate the residual serial
 389 correlation problem and, at the same time, sufficiently small so that the conditional error correction
 390 model (ECM) is not unduly over-parameterized. The latter is particularly important in this study,
 391 given the limited time series data which are available. To determine the appropriate lag length to be
 392 employed, equation 1 is estimated using a maximum of three (3) lags given the small sample size.
 393 Both the Akaike Information Criteria (AIC) and the Schwarz Bayesian Information Criteria (SBIC)
 394 tests are employed to determine the optimal lag length. However, in small sample cases, it is
 395 advisable to rely on the SBIC criterion (Pesaran and Shin 1999; Fatai et al. 2003). The optimal ARDL
 396 specification is found to be (1,2,0,2,3,1,3).

397 Based on the above ARDL specification, the results of the ARDL bounds test is presented in
 398 Table 2 below. The F-statistic exceeds the upper bound of both the critical values generated by
 399 Pesaran et al. (2001) and Narayan (2005) at all conventional levels of statistical significance, which
 400 signifies that there does in fact exist a cointegrating relationship amongst the REER and its
 401 fundamentals outlined in equation 1.

402

Table 2. ARDL Bounds Test of Cointegration

	Pesaran et al. (2001) ^a	Narayan (2005) ^b
At the 1% significance level:	3.15	4.43
At the 5% significance level:	2.45	3.61
At the 10% significance level:	2.12	3.23
Calculated F-statistic	5.19***	5.19***

403 Note: ^a shows lower and upper bound critical values for Bounds test derived by Pesaran et al. (2001). ^b
 404 shows lower and upper bound critical values for Bounds test proposed by Narayan (2005), which corresponds
 405 to the 60 observations case. *, **, *** denotes levels of significance at 10%, 5% and 1% respectively.
 406

407 Having found a cointegrating relationship, the results from the ARDL model along with the
 408 corresponding diagnostic tests are as presented in Table 3 below.
 409

Table 3. ARDL estimation results.

Panel A: Estimated Long-Run Coefficients				
Variables	Coefficient	Std. Error	t-Statistic	Probability
LY	0.59	0.14	4.32	0.00
LG	0.41	0.26	1.57	0.13
LCRP	-0.13	0.09	-1.42	0.16
LNFA	0.18	0.07	2.56	0.02
LOILP	0.22	0.10	2.21	0.03
LRESERVES	-0.30	0.11	-2.66	0.01
C	-1.90	1.53	-1.24	0.22
ECT	-0.39	0.10	3.78	0.00

Panel B: Residuals Diagnostics Tests Results				
JB _N = 54.35 [0.00]				
χ^2 ARCH(4) = 1.63 [0.80]				
χ^2 SC(4) = 2.27 [0.69]				
F _{FF} (2,33) = 2.28 [0.12]				

410 Note: The regression is based on the conditional error correction model (ECM) given by equation 2 using
 411 an ARDL(1,2,0,2,3,1,3) specification with the dependent variable REER. JB_N and F_{FF} (2,33) denotes the
 412 Jarque-Bera Normality and the Ramsey RESET Test statistics to test the null hypotheses of the normal
 413 distribution and no functional form misspecification respectively whilst the χ^2 ARCH(4), χ^2 SC(4) denotes the
 414 chi-squared statistics to test the null hypotheses of no serial correlation and no heteroscedasticity respectively in
 415 the residuals using the ARCH Heteroskedasticity test and the Breusch-Godfrey Serial Correlation LM Test
 416 respectively. The p-values are given in brackets.

417 Source: Author's calculations using EViews.
 418

419 The results of the ARDL model highlights that all of the independent variables with the
 420 exception of credit to the private sector has the expected sign. Although credit to the private sector
 421 carries the wrong expected sign, it is not statistically significant from zero up to the 10% level of
 422 statistical significance. We find a strong Balassa-Samuelson effect for the T&T economy, whereby a
 423 1% increase in output results in an appreciation of REER by 0.59%. Government consumption also
 424 leads to an appreciation of the REER in the T&T economy, whereby a 1% increase in government
 425 consumption results in a 0.41% appreciation of the REER, although not significant up to the 10% level
 426 of statistical significance. This result is in line with economic theory, highlighting that government

427 consumption in the T&T economy has been highly geared towards expenditure on non-tradables.
428 Both the magnitude of the signs may need to be examined with care. As expected, the real oil price
429 has a positive effect on the REER, i.e. a 1% rise in oil prices results in a 0.22% appreciation in the
430 REER in the T&T economy⁸. A 1% increase in reserves results in a depreciation of the REER by
431 0.3%, whilst a 1% increase in net foreign assets to GDP results in a 0.18% appreciation of the REER.

432 The Speed of Adjustment coefficient, i.e., the coefficient on the error correction term (ECT) is
433 negative and statistically significant at the 1% significance level, which is indicative of a stable
434 long-run relationship between the real effective exchange rate and the right hand side variables in
435 equation 2. The negative sign indicates a move back towards equilibrium if there is a shock in the
436 system. The results show that in the short run, deviations from our long-run equilibrium are
437 corrected at roughly 39% every year. In other words, the REER is estimated to take on average a little
438 over two and a half years to return to its equilibrium level following a shock in the system
439 which can have negative impacts on the external competitiveness of the economy.

440 The final specification of the ARDL model successfully passes the residual diagnostics tests of
441 the heteroscedasticity, autocorrelation or serial correlation tests and the Ramsey RESET
442 misspecification test, which are highlighted in the lower part Table 3. The stability of the parameters
443 in equation 2 were assessed using the cumulative sum of the recursive residuals (CUSUM) and the
444 cumulative sum of the squares of recursive residuals (CUSUMSQ) tests proposed by Brown *et al.*
445 (1975), and are presented in figures A1 and A2 respectively in the appendix. The CUSUM and
446 CUSUMSQ tests implemented show that this estimated equilibrium model is dynamically and
447 structurally stable at the five percent significance level, and the specification is stable towards the
448 end of the period, which is desirable. Overall, the diagnostic tests all support that the long-run
449 equations are robust.

450 6. Exchange rate misalignment

451 Upon estimation of equation 2, we estimate the exchange rate misalignments (REERmis) as the
452 difference between the natural log of REER and the natural log of the estimated equilibrium real
453 effective exchange rate (EREER). We follow the works of both Aguirre and Calderón (2005) and
454 Elbadawi *et al.* (2012) and compute the EREER by feeding the estimated model with the permanent
455 components of the fundamentals, that is we multiply the estimated coefficients generated by the
456 ARDL for equation 2 by the permanent values of the fundamentals. To estimate the permanent
457 component of the fundamentals, we utilize the Hodrick-Prescott (HP) filter (1997) technique as
458 suggested by Edwards (1989) and Alberola (2003)⁹. According to Elbadawi *et al.* (2012, p.689) “*these*
459 *permanent components are characterized as sustainable levels and are, therefore, consistent with the concept of*
460 *equilibrium*”. The results of the exchange rate misalignment are presented in figure 2.

461

⁸ A Study by Hasanov *et al.* (2017) finds similar results. The authors find that a 1% increase in the real price of oil results in a 0.26%, 0.28% and a 0.56% appreciation of the real effective exchange rate for the Azerbaijan, Kazakhstan and Russian economies respectively.

⁹ The HP filter is commonly and widely utilized in the literature to extract the long run or permanent component of a series. To estimate the permanent component, we utilize the smoothing parameter λ of 100 outlined by Hodrick and Prescott (1997).

462

Figure 2. REER misalignment over the period 1960 to 2016 in the T&T economy.

463

464

Note: above zero line is an overvaluation.

465

466

Figure 2 depicts the extent of overvaluation (above zero in the vertical scale; i.e., depreciation pressures) and undervaluation (below zero in the vertical scale; i.e., appreciation pressures) for the T&T economy for the period 1960 to 2016. Figure 2 illustrates that the REER had been significantly overvalued from the 1960's to mid 1970's, partly on account of the fixed or pegged nominal exchange rate system adopted in T&T over this period. From 1967 onwards the exchange rate began to move back to equilibrium which can be attributed to several devaluations that took place. Figure 2 indicates that the real exchange rate was significantly overvalued in the period 1982 to 1985, peaking at 32.73% in 1985 which may have been on account of the drastic decline in growth and foreign exchange reserves experienced in the T&T economy during this time period. Real GDP growth for the period 1983 to 1985 averaged minus 6.73 percent, with growth declining from 3.8 percent in 1982 to minus 10.31 percent in 1983. Foreign reserves also declined rapidly in this period, falling from 7.16 billion TT\$ in 1982 to 3.58 billion TT\$ in 1985¹⁰.

477

Post 1985, there was a drastic devaluation of the currency which was much more drastic and severe as a result of the recessionary pressures on account of depressed oil prices. In 1986, when international oil prices fell to less than US\$15 per barrel, Trinidad and Tobago experienced a precipitous fall in foreign exchange reserves. The Trinidad and Tobago currency was devalued from 2.45TT\$ to 1US\$ in 1985 to 3.60TT\$ to 1US\$ in 1986. These factors outlined contributed significantly for the sharp decline of the equilibrium REER in the short space of one year, which saw the REER moving from being overvalued by 32.73% in 1985 to an undervaluation of 4.62% by 1986. Fiscal adjustments and the implementation of the IMF package as outlined in section 2 of the paper resulted in the exchange rate moving back to equilibrium in 1992.

487

488

489

490

491

492

493

494

495

However, in 1993, when CBTT devalued the nominal exchange rate and shifted to a managed float regime, the REER was undervalued by 8.54%. The exchange rate was further undervalued over the period 2002 to 2008, which was during the second oil boom which resulted in the T&T economy experiencing rapid growth and development, in addition to building up a large stock of foreign reserves which grew from 2 billion US\$ in 2002 to 10.6 billion US\$ in 2008. The exchange rate has been overvalued since 2014, with majority of this owing to the decline in oil prices which occurred in mid 2014 which subsequently also resulted in a decline in foreign reserves in the T&T economy. This overvaluation can also be linked to the state's intervention which continues to maintain the nominal exchange rate at a relatively fixed level to the US dollar through the Central Bank of Trinidad and

¹⁰ Foreign reserves declined further to 1.19 billion TT\$ in 1986 and by 1987 it had fallen to 304.1 million TT\$.

496 Tobago. Furthermore real economic activity has stalled in the T&T economy which recorded
497 negative growth rates of 0.58, 0.58 and 2.27 percent respective for the years 2014, 2015 and 2016.

498 *6.1. The relationship between real exchange rate misalignment and economic growth in T&T*

499 In this section we seek to examine the impact of exchange rate misalignments on the growth
500 performance of T&T. Furthermore we also test for non-linear effects by examining the impacts of
501 overvaluations and undervaluations on economic growth. As noted earlier, majority of the literature
502 highlights that an overvalued exchange rate hampers or negatively affects economic growth whilst
503 an undervalued exchange rate is generally thought of to be growth enhancing in developing
504 economies. However, we first examine the impact of movements in the real exchange rate on
505 economic growth prior as a preliminary step in our analysis. In short, we aim to investigate the
506 effects of appreciations (increases in the REER) and depreciations (decreases in REER) on economic
507 growth in the Trinidad and Tobago economy which is susceptible to large appreciations due mainly
508 to significant swings in oil prices (see table 3 in section 5). Other variables that were found to be
509 positive and significant include output, government expenditure and net foreign assets however the
510 volatility in these variables are not as pronounced as compared to oil prices in the Trinidad and
511 Tobago economy.

512 Examining the impact that exchange rate movements has on economic growth is of particular
513 importance in the case of T&T given its large dependence on the energy sector, which can result in
514 the economy experiencing Dutch Disease type effects. The term Dutch Disease was first used by the
515 Economist Magazine in 1977 to describe Netherlands declining manufacturing sector as the Dutch
516 Guilder appreciated and is formally outlined and documented in Corden and Neary (1982). In the
517 early 1960's the Dutch economy experienced an export boom that was initiated by massive gas
518 discoveries that led to an appreciation of the Dutch Guilder, which led to an overall reduction in the
519 competitiveness of the Dutch manufacturing and industrial sectors as the real exchange rate further
520 appreciated. A Dutch Diseased economy also tends to result in a more service based economy as
521 activity in the non-tradable or services sector picks up due to the influx of foreign exchange in the
522 domestic economy which increases prices and profitability within the sector. The data in table A1 in
523 the appendix highlights this taking place in the T&T economy, as following windfall in the energy
524 sector and a more gradual dependence on the energy sector, both manufacturing and agricultural
525 output fell whilst the services sector as a share of GDP increased.

526 To examine the impact of real exchange rate movements on economic growth in the T&T
527 economy, we estimate the following model:

$$528 Y = f(\text{REER}, \text{Controls}) \quad (3)$$

529 where Y is real GDP per capita growth, and the control variables include inflation
530 (INFLATION), gross domestic savings (SAVINGS), trade openness defined as the sum of exports
531 and imports over GDP (OPENNESS), and credit to the private sector as a percent of GDP (CRP)¹¹. The
532 variables SAVINGS and OPENNESS were deflated using the CPI which was sourced from World
533 Databank's World Development Indicators (WDI) in order to take into account the effects of
534 inflation on the respective time series.

535 Table 4 highlights that an increase (appreciation) of the REER impacts negatively on growth
536 whilst on the other hand a decrease (depreciation) of the REER impacts positively on economic
537 growth in the T&T economy. In particular, a 1% appreciation of the REER is associated with a 0.09%
538 decline in economic growth. All coefficient signs are in line with our apriori expectation with the
539 exception of the coefficient signs on trade openness and credit to the private sector, however both
540 are not statistically significant.

541

¹¹ All variables were sourced from World Bank's World Development Indicators (WDI) online database.

542

Table 4. REER movement and economic growth.

Panel A: Estimated OLS Coefficients				
Variables	Coefficient	Std. Error	t-Statistic	Probability
LREER	-9.12	3.37	-2.71	0.01
DOPENESS	-0.57	4.88	-0.12	0.91
DLSAVINGS	2.50	2.70	0.92	0.36
INFLATION	-0.43	0.12	-3.44	0.00
DLCRP	-7.07	5.69	-1.24	0.22
C	47.25	15.30	3.09	0.00

Panel B: Residuals Diagnostics Tests Results				
$JB_N = 0.98$	[0.61]			
$\chi^2 BPG = 1.81$	[0.88]			
$\chi^2 SC(2) = 12.68$	[0.00]			
$F_{FF} = 0.46$	[0.50]			

543 Note: The dependent variable real GDP per capita growth. JB_N and F_{FF} denotes the Jarque-Bera Normality
 544 and the Ramsey RESET Test statistics to test the null hypotheses of the normal distribution and no functional
 545 form misspecification respectively whilst the $\chi^2 BPG$, $\chi^2 SC(2)$ denotes the chi-squared statistics to test the null
 546 hypotheses of no serial correlation and no heteroscedasticity respectively in the residuals using the
 547 Breusch-Pagan-Godfrey Heteroskedasticity test and the Breusch-Godfrey Serial Correlation LM Test
 548 respectively. The p-values are given in brackets.

549 Source: Author's calculations using EViews.

550

551 To examine the impact of exchange rate misalignments on economic growth in the T&T
 552 economy, we follow the works of Aguirre and Calderon (2005), Elbadawi et al. (2012), Habib et al.
 553 (2017) and estimate the following model:

554 $Y = f(REERmis, Controls)$ (4)

555 where REERmis is the real exchange rate misalignment variable estimated in section 6 and
 556 the control variables are the same as in equation 3.

557

Table 5. REER misalignment and economic growth.

Panel A: Estimated OLS Coefficients				
Variables	Coefficient	Std. Error	t-Statistic	Probability
REERmis	-16.93	4.72	-3.58	0.00
DOPENESS	-2.70	4.74	-0.57	0.57
DLSAVINGS	6.99	2.41	2.90	0.01
INFLATION	-0.44	0.12	-3.75	0.00
DLCRP	3.52	5.63	0.63	0.53
C	5.51	1.09	5.04	0.00

Panel B: Residuals Diagnostics Tests Results				
$JB_N = 1.75$	[0.42]			
$\chi^2 BPG = 4.13$	[0.53]			
$\chi^2 SC(2) = 5.52$	[0.06]			
$F_{FF} (1,48) = 0.11$	[0.74]			

558 Note: The dependent variable real GDP per capita growth. JB_N and F_{FF} denotes the Jarque-Bera Normality
 559 and the Ramsey RESET Test statistics to test the null hypotheses of the normal distribution and no functional
 560 form misspecification respectively whilst the $\chi^2 BPG$, $\chi^2 SC(2)$ denotes the chi-squared statistics to test the null
 561 hypotheses of no serial correlation and no heteroscedasticity respectively in the residuals using the
 562 Breusch-Pagan-Godfrey Heteroskedasticity test and the Breusch-Godfrey Serial Correlation LM Test
 563 respectively. The p-values are given in brackets.

564 Source: Author's calculations using EViews.

565 The results from table 5 highlight that real exchange rate misalignments impact negatively on
 566 economic growth in the T&T economy. Specifically a 1% increase in the misalignment is associated
 567 with a -0.12% decline in economic growth in the T&T economy.

568 6.2. Non-Linear effects of exchange rate misalignment on economic growth in T&T

569 We now examine whether the effects of real exchange misalignments on economic growth in
570 the T&T economy display any non-linear effects. Specifically, we examine the impact of
571 overvaluations and undervaluations respectively on economic growth in the economy. In order to
572 test these hypotheses, we define the dummy variable D_t that takes the value of 1 when the REER is
573 overvalued and 0 otherwise. Then, we define our variables of overvaluation and undervaluation of
574 the REER as $OVERVAL = REERmis * D_t$ and $UNDEVAL = REERmis * (1 - D_t)$.

575 To examine the impact of overvaluations and undervaluations respectively on economic
576 growth in the T&T economy, we estimate the following two models:

$$Y = f(OVERVAL, \text{Controls}) \quad (5)$$

$$Y = f(UNDERVAL, \text{Controls}) \quad (6)$$

577 where OVERVAL and UNDERVAL denotes the overvaluation and undervaluation indices
578 of the REER respectively and the control variables are the same as in equation 3.

579 The results surprisingly does not point to any non-linear effects, with both the dummy for
580 overvaluations and undervaluations returning negative signs (see tables 6 and 7 respectively). Table
581 6 highlights that an overvaluation of 1% is associated with a decline in economic growth in the T&T
582 economy to the order of -0.27%. Table 7 on the other hand highlights that an undervaluation of 1% is
583 associated with a decline in economic growth in the T&T economy to the order of -0.23%. A possible
584 reason for the fact that we find that an undervaluation does not promote economic growth in the
585 T&T economy is due to its small and underdeveloped manufacturing sector which accounts for
586 roughly 7.4 percent of GDP for the period 1966 to 2014¹². Furthermore, T&T's manufacturing sector
587 is heavily import oriented, i.e. the sector relies heavily on imported materials/inputs in its
588 production process. As such, undervaluations can result in an increase in cost push inflation in
589 T&T's manufacturing sector which ultimately reduces the competitiveness and profitability of the
590 sector in line with the arguments put forth by Nunnenkamp and Schweickert (1990).

591 The literature highlights that an undervalued exchange rate promotes economic growth in
592 developing economies through an increase in investment in the traded goods sector or
593 manufacturing which is ultimately assumed to be the most productive sector in the economy, which
594 ultimately boosts overall economic growth. However, unlike other developing economies in
595 particular China and other east-Asian economies that experienced rapid and sustained growth
596 through currency undervaluations, T&T as with other resource rich economies tend to be heavily
597 dependent and reliant on its natural resources for both export and output growth in the economy.
598 As such, this study proffers that the recommendation of maintaining a moderately undervalued
599 currency in developing economies proffered in the literature may not be applicable to developing
600 resource rich economies where the manufacturing sector tends to be small and underdeveloped.
601 Indeed these results serves as a stepping stone for the conduct of further research into this findings
602 for a panel of resource rich developing economies.

603

604

605

606

607

608

609

610

611

612

613

614

615

616

¹² The share of manufacturing in GDP has been declining in the T&T economy since 1998, averaging 6.4% over the period 1998 to 2014.

617

Table 6. REER overvaluation and economic growth.

Panel A: Estimated OLS Coefficients				
Variables	Coefficient	Std. Error	t-Statistic	Probability
OVERVAL	-26.47	7.86	-3.37	0.00
DLOPENESS	-2.81	4.83	-0.58	0.56
DLSAVINGS	7.27	2.46	2.96	0.00
INFLATION	-0.47	0.12	-3.91	0.00
DLCRP	2.42	5.62	0.43	0.67
C	7.14	1.16	6.16	0.00

Panel B: Residuals Diagnostics Tests Results				
$J_{BN} = 1.22$	[0.54]			
$\chi^2 BPG = 4.52$	[0.48]			
$\chi^2 SC(2) = 6.86$	[0.03]			
$F_{FF} = 0.25$	[0.62]			

618

Note: The dependent variable real GDP per capita growth. J_{BN} and F_{FF} denotes the Jarque-Bera Normality and the Ramsey RESET Test statistics to test the null hypotheses of the normal distribution and no functional form misspecification respectively whilst the χ^2 BPG, χ^2 SC(2) denotes the chi-squared statistics to test the null hypotheses of no serial correlation and no heteroscedasticity respectively in the residuals using the Breusch-Pagan-Godfrey Heteroskedasticity test and the Breusch-Godfrey Serial Correlation LM Test respectively. The p-values are given in brackets.

619

Source: Author's calculations using EViews.

620

621

622

623

624

625

626

Table 7. REER undervaluation and economic growth .

Panel A: Estimated OLS Coefficients				
Variables	Coefficient	Std. Error	t-Statistic	Probability
UNDERVAL	-23.25	8.99	-2.59	0.01
DLOPENESS	-0.41	4.90	-0.08	0.93
DLSAVINGS	5.93	2.50	2.37	0.02
INFLATION	-0.43	0.13	-3.44	0.00
DLCRP	0.97	5.82	0.17	0.87
C	4.29	1.31	3.28	0.00

Panel B: Residuals Diagnostics Tests Results				
$J_{BN} = 1.29$	[0.52]			
$\chi^2 BPG = 6.44$	[0.27]			
$\chi^2 SC(2) = 7.86$	[0.02]			
$F_{FF} = 0.01$	[0.92]			

627

Note: The dependent variable real GDP per capita growth. J_{BN} and F_{FF} denotes the Jarque-Bera Normality and the Ramsey RESET Test statistics to test the null hypotheses of the normal distribution and no functional form misspecification respectively whilst the χ^2 BPG, χ^2 SC(2) denotes the chi-squared statistics to test the null hypotheses of no serial correlation and no heteroscedasticity respectively in the residuals using the Breusch-Pagan-Godfrey Heteroskedasticity test and the Breusch-Godfrey Serial Correlation LM Test respectively. The p-values are given in brackets.

628

Source: Author's calculations using EViews.

634

7. Conclusion and Policy Recommendations

635

636

637

638

639

640

This paper examined the impact of exchange rate movements as well as exchange rate misalignments on economic growth for the Trinidad and Tobago economy over the period 1960 to 2016. Conventional economic theory outlines that developing countries experience economic growth through an undervalued exchange rate and that exchange rate overvaluations has negative long-term effects on economic growth. Conversely, the "Washington consensus view" holds that deviations away from REER equilibrium, i.e. both over and undervaluations affect economic growth

negatively. In recent times, T&T's foreign exchange reserves have been on the decline on account of the unexpected decline in oil prices experienced in mid 2014. In addition to waning foreign exchange reserves, the T&T economy also experienced a rapid decline in growth, coupled with an increased stock of debt as fiscal deficits widened in addition to declining current account balances that deteriorated significantly. This resulted in added depreciation/devaluation pressures on the exchange rate for the T&T economy, resulting in agencies such as the IMF indicating that the currency has been significantly overvalued as the state maintained a relative fixed exchange rate to the US\$.

Therefore, this paper firstly examined T&T's exchange rate misalignments for the period 1960 to 2016 using an ARDL approach to assessing cointegration which was proposed by Pesaran and Smith (1995) and further developed by Pesaran and Shin (1997) and Pesaran et al. (2001). The results derived from the ARDL bound test indicated that there does in fact exist a cointegrating relationship amongst the REER and its fundamentals. In particular, the results of the ARDL model indicated that increases in output, government spending, net foreign assets and the oil price all results in an appreciation of the exchange rate in the T&T economy. Conversely, increases in credit to the private sector and the level of foreign exchange reserves has a depreciating impact on the exchange rate, however the former is not statistically significant at any conventional levels of statistical significance.

Given that a long run relationship was found, we subsequently estimated T&T's exchange rate misalignments as the difference between the natural log of REER and the natural log of the estimated equilibrium real effective exchange rate (EREER). The results highlighted that T&T's exchange rate has in fact been overvalued since 2014, with the average overvaluation amounting to 5.66 percent with a peak of 9.45 percent in 2015. The paper subsequently examined the impact of both exchange rate movements and misalignments on economic growth. The results highlighted that both exchange rate appreciation and misalignments impact negatively on economic growth in the T&T economy. Additionally, we find that there exist no non-linear effects of exchange rate misalignments on growth. Specifically we find statistically significant evidence that both overvaluations and undervaluations hamper economic growth in the Trinidad and Tobago economy.

Given T&T's heavily reliance on the energy sector, a major policy concern lies in relation to the impact fluctuations to the price of oil can have on its REER. As The effect of oil price fluctuations can be transmitted to the domestic economy through the fiscal channel, see Pieschacón (2012) and Lorde et al. (2012); the latter highlighted that oil price volatility is transmitted through the fiscal mechanism on T&T's domestic economy. Hosein et al. (2017) also provided empirical evidence that T&T followed a procyclical fiscal stance. This allowed the increase in oil prices to directly impact the exchange rate, whereby increases to the price of oil led to increases (appreciation) of the exchange rate which was also further exacerbated through the fiscal medium in T&T.

Raymond et al. (2017) investigated whether a SWF helps to reduce real exchange rate misalignments by dampening the transmission of energy prices. In particular, Raymond et al. (2017) examined the relationship between a SWF and the REER and found that a SWF reduces the volatility of REER misalignments by dampening the transmission of energy prices. As noted in Hosein et al. (2017), a SWF has a major role in economies such as T&T given its large dependence on these resources. A major policy recommendation stemming from these findings in the paper would be for the critical reassessment of the rules governing the Heritage and Stabilization Fund (HSF), T&T's SWF, as government expenditure was allowed to follow energy revenues due to its current limitations. It is pivotal that the current rules be amended to allow for a larger proportion of the petroleum revenues to be saved in the HSF, which would allow for the decoupling of these revenues from the budgetary process in order to dampen the transmission of energy prices in the domestic economy, see Hosein et al. (2017). The rules governing the HSF need to play a significant role, in reducing the effects of oil prices on the domestic economy as well as the REER in the T&T economy.

689 Author Contributions: Both authors contributed equally to the completion of this paper.

690 Funding: This research was funded by the Campus Research and Publication Fund Committee of the
691 University of the West Indies, St. Augustine campus.

692 **Acknowledgments:** Thanks are due to Dr. Roger Hosein and Dr. Bhoendradatt Tewarie for useful comments
 693 made on earlier drafts of this paper. The authors also acknowledge Ms. Akeeta Ali for her invaluable research
 694 assistance.

695 **Conflicts of Interest:** The authors declare no conflict of interest. The funders had no role in the design of the
 696 study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision
 697 to publish the results.

698 **Appendix A**

699 Table A1: Displaying the composition of GDP in the T&T economy over the period 1966 to 2014.

Year	Petroleum Industry Share of GDP	Agriculture Share of GDP	Manufacturing Share of GDP	Services Share of GDP
1966	26.5	6.7	7.0	61.4
1967	27.6	6.5	7.7	59.5
1968	29.6	6.8	7.9	57.6
1969	25.1	6.8	9.5	61.1
1970	22.3	6.6	10.3	62.6
1971	20.6	6.6	10.4	64.7
1972	20.8	7.1	10.7	63.4
1973	27.7	5.7	9.6	59.2
1974	44.3	4.6	6.7	46.6
1975	43.4	5.0	6.3	48.3
1976	42.2	4.9	6.9	49.8
1977	41.2	4.1	7.2	51.5
1978	34.8	3.7	7.2	58.7
1979	38.6	3.4	6.5	56.8
1980	42.8	2.6	5.3	54.3
1981	35.7	2.6	5.0	61.0
1982	26.1	2.4	5.2	70.3
1983	24.4	2.1	7.3	70.2
1984	27.2	1.3	7.4	68.2
1985	26.6	2.4	7.3	68.1
1986	22.7	2.8	8.2	70.7
1987	25.2	2.8	8.3	67.8
1988	24.1	2.7	8.7	68.2
1989	27.2	2.5	9.6	64.5
1990	29.6	2.5	8.6	57.6
1991	26.2	2.5	9.1	60.5
1992	23.6	2.5	9.2	65.0
1993	23.3	2.6	9.3	65.3
1994	29.9	2.2	7.8	59.0
1995	27.5	2.3	8.2	60.3
1996	29.1	2.1	7.0	60.3
1997	25.5	2.2	7.9	63.8
1998	18.5	2.1	9.1	68.4
1999	22.5	1.9	8.0	67.0
2000	31.3	1.4	7.1	60.7
2001	28.3	1.3	7.4	62.9
2002	26.2	1.4	8.0	64.0
2003	36.0	0.9	6.9	56.3
2004	38.7	0.8	7.5	52.9
2005	45.9	0.5	5.5	48.0

2006	47.0	0.6	5.6	46.3
2007	45.0	0.4	5.3	48.9
2008	50.8	0.4	4.0	44.3
2009	34.6	0.6	5.8	59.3
2010	42.0	0.6	5.5	51.8
2011	45.6	0.6	5.6	48.7
2012	41.2	0.6	6.2	51.3
2013	43.4	0.5	5.5	49.7
2014	42.1	0.5	5.6	50.9

700 Source: Own table using CBTT Handbook of Key Economic Indicators data.
 701

702 Figure A1: Cumulative Sum (CUSUM) stability test.

703 — CUSUM - - - 5% Significance

704

705

706

707

708

709

710

711

712

713

714 Figure A2: Cumulative Sum of Squares (CUSUMQ) stability test

742 International Monetary Fund, IMF Working Papers: 10/58.

743 Bresser-Pereira, L. C. (2008). The Dutch Disease and Its Neutralization: A Ricardian Approach. *Revista de*
744 *Economia Politica/Brazilian Journal of Political Economy*, 28(1), 47-71. doi:
745 http://www.rep.org.br/all_issue.asp

746 Brown, R. L., Durbin, J., & Evans, J. M. (1975). Techniques for Testing the Constancy of Regression Relationships
747 over Time. *Journal of the Royal Statistical Society. Series B (Methodological)*, 37(2), 149-192.

748 Corden, W. M., & Neary, J. P. (1982). Booming Sector and De-Industrialisation in a Small Open Economy. *The*
749 *Economic Journal*, 92(368), 825-848. doi: 10.2307/2232670

750 Cottani, J. A., Cavallo, D. F., & Khan, M. S. (1990). Real Exchange Rate Behavior and Economic Performance in
751 LDCs. *Economic Development and Cultural Change*, 39(1), 61-76. doi:
752 <http://www.journals.uchicago.edu/toc/edcc/current>

753 Darvas, Z. (2012). *Real effective exchange rates for 178 countries: A new database*. St. Louis: Federal Reserve Bank of
754 St Louis.

755 Dollar, D. (1992). Outward-Oriented Developing Economies Really Do Grow More Rapidly: Evidence from 95
756 LDCs, 1976-1985. *Economic Development and Cultural Change*, 40(3), 523-544. doi:
757 <http://www.journals.uchicago.edu/toc/edcc/current>

758 Doroodian, K., Jung, C., & Yucel, A. (2002). Estimating the Equilibrium Real Exchange Rate: The Case of
759 Turkey. *Applied Economics*, 34(14), 1807-1812. doi: <http://www.tandfonline.com/loi/raec20>

760 Edwards, S. (1989). Exchange Rate Misalignment in Developing Countries. *The World Bank Research Observer*,
761 4(1), 3-21.

762 Elbadawi, I., & Helleiner, G. (2005). "African Development in the Context of the New World Trade and
763 Financial Regimes: The Role of the WTO and its Relationship to the World Bank and IMF," (2005). In
764 A. Oyejide & W. Lyakurwa (Eds.), *Africa and the World Trading System*, Vol. I: Selected Issues of the
765 Doha Agenda. Africa World Press, Inc.

766 Elbadawi, I. A., Kaltani, L., & Soto, R. (2012). Aid, Real Exchange Rate Misalignment, and Economic Growth in
767 Sub-Saharan Africa. *World Development*, 40(4), 681-700. doi:
768 <https://doi.org/10.1016/j.worlddev.2011.09.012>

769 Fatai, K., Oxley, L., & Scrimgeour, F. G. (2003). Modeling and Forecasting the Demand for Electricity in New
770 Zealand: A Comparison of Alternative Approaches. *The Energy Journal*, 24(1), 75-102.

771 Frankel, J. A., & Rose, A. K. (1996). Currency crashes in emerging markets: An empirical treatment. *Journal of*
772 *International Economics*, 41(3), 351-366. doi: [https://doi.org/10.1016/S0022-1996\(96\)01441-9](https://doi.org/10.1016/S0022-1996(96)01441-9)

773 Freund, Caroline; Pierola, Martha Denisse. 2008. *Export Surges: The Power of a Competitive Currency*. Policy
774 Research Working Paper; No. 4750. World Bank, Washington, DC.

775 Frieden, Jeffry. "[Globalization and Exchange Rate Policy](#)". The Future of Globalization. Ed. Ernesto Zedillo.
776 New York: Routledge, 2008. 344-357.

777 Gasmi, F., & Laourari, I. (2017). Has Algeria suffered from the dutch disease?: Evidence from 1960-2013 data:
778 Toulouse School of Economics (TSE).

779 Ghura, D., & Grennes, T. J. (1993). The real exchange rate and macroeconomic performance in Sub-Saharan
780 Africa. *Journal of Development Economics*, 42(1), 155-174. doi:
781 [https://doi.org/10.1016/0304-3878\(93\)90077-Z](https://doi.org/10.1016/0304-3878(93)90077-Z)

782 Glüzmann, P. A., Levy-Yeyati, E., & Sturzenegger, F. (2012). Exchange rate undervaluation and economic
783 growth: Díaz Alejandro (1965) revisited. *Economics Letters*, 117(3), 666-672. doi:
784 <https://doi.org/10.1016/j.econlet.2012.07.022>

785 Habib, M. M., Mileva, E., & Stracca, L. (2017). The real exchange rate and economic growth: Revisiting the case
786 using external instruments. *Journal of International Money and Finance*, 73, 386-398. doi:
787 <https://doi.org/10.1016/j.jimonfin.2017.02.014>

788 Hodrick, R. J., & Prescott, E. C. (1997). Postwar U.S. Business Cycles: An Empirical Investigation. *Journal of
789 Money, Credit, and Banking*, 29(1), 1-16. doi:
790 <http://onlinelibrary.wiley.com/journal/10.1111/%28ISSN%291538-4616/issues>

791 Hosein, R., Jagessar, J., & Dialsingh, I. (2017). Procyclical Tendencies in a Small Oil Exporter. *Economia
792 Internazionale / International Economics*, 70(3), 319-331.

793 Ibrahim, W. (2016). Econometric analysis of determinants of real effective exchange rate in Nigeria
794 (1960-2015). *Timisoara Journal of Economics and Business*, 9(1), 62-80.

795 Johnson, Simon, Jonathan D. Ostry, and Arvind Subramanian, 2006, "Levers for Growth: Policy Lessons from
796 Earlier Bouts of Growth in Developing Countries," *Finance and Development*, Vol. 43 (March).

797 Kaminsky, G. L., & Reinhart, C. M. (1999). The Twin Crises: The Causes of Banking and Balance-Of-Payments
798 Problems. *The American Economic Review*, 89(3), 473-500.

799 Koranchelian, T. (2005). *The Equilibrium Real Exchange Rate in a Commodity Exporting Country: Algeria's Experience*.
800 International Monetary Fund, IMF Working Papers: 05/135.

801 Krueger, A., O., 1983. Exchange Rate Determination. Cambridge: Cambridge University Press.

802 Krugman, P. (1979). A Model of Balance-of-Payments Crises. *Journal of Money, Credit and Banking*, 11(3), 311-325.
803 doi: 10.2307/1991793

804 Krugman, P., & Taylor, L. (1978). Contractionary effects of devaluation. *Journal of International Economics*, 8(3),
805 445-456. doi: [https://doi.org/10.1016/0022-1996\(78\)90007-7](https://doi.org/10.1016/0022-1996(78)90007-7)

806 Loayza, Norman; Fajnzylber, Pablo; Calderon, Cesar. 2005. Economic growth in Latin America and the
807 Caribbean: stylized facts, explanations, and forecasts (English). *Washington, DC: World Bank*.

808 Lopez Villavicencio, A., & Raymond Bara, J. L. (2008). Short-Run and Long-Run Determinants of the Real
809 Exchange Rate in Mexico. *Developing Economies*, 46(1), 52-74. doi:
810 <http://onlinelibrary.wiley.com/journal/10.1111/%28ISSN%291746-1049>

811 Lorde, T., Jackman, M., & Thomas, C. (2009). The macroeconomic effects of oil price fluctuations on a small
812 open oil-producing country: The case of Trinidad and Tobago. *Energy Policy*, 37(7), 2708-2716. doi:
813 10.1016/j.enpol.2009.03.004

814 Mbaye, S. (2013). Currency undervaluation and growth: Is there a productivity channel? *International Economics*,
815 133, 8-28. doi: <https://doi.org/10.1016/j.inteco.2013.04.004>

816 McLeod Darryl & Eliza Mileva, 2011. "Real Exchange Rates and Growth Surges," Fordham Economics
817 Discussion Paper Series dp2011-04, Fordham University, Department of Economics.

818 Missio, F. J., Jayme, F. G., Jr., Britto, G., & Oreiro, J. L. (2015). Real Exchange Rate and Economic Growth: New
819 Empirical Evidence. *Metroeconomica*, 66(4), 686-714. doi:
820 <http://onlinelibrary.wiley.com/journal/10.1111/%28ISSN%291467-999X/issues>

821 Montiel P (1999) Determinants of the long-run equilibrium exchange rate: an analytical model. In: Hinkle L,
822 Montiel P (eds) *Exchange rate misalignment: concepts and measurement for developing countries*.
823 Oxford University Press, Oxford, pp 264-292

824 Naseem, N. A. M., Tan, H. B., & Hamizah, M. S. (2009). Exchange rate misalignment, volatility and import flows
825 in Malaysia. *International Journal of Economics and Management*, 3(1), 130-150.

826 Narayan, P. K. (2004) An econometric model of tourism demand and a computable general equilibrium analysis
827 of the impact of tourism: the case of the Fiji Islands, Unpublished PhD thesis, Department of

