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Abstract: Star block-copolymers (SBCs) are macromolecules formed by a number of diblock
copolymers anchored to a common central core, being the internal monomers solvophilic and the end
monomers solvophobic. Recent studies have demonstrated that SBCs constitute a self-assembling
building blocks with specific softness, functionalization, shape, and flexibility. Depending on different
physical and chemical parameters the SBCs can behave as flexible patchy particles. In this paper, we
study the rotational dynamics of isolated SBCs using a hybrid mesoscale simulation technique. We
compare three different approaches to analyse the dynamics: the laboratory frame, the non-inertial
Eckart’s frame, and a geometrical approximation relating the conformation of the SBC to the velocity
profile of the solvent. We find that the geometrical approach is adequate when dealing with very soft
systems while in the opposite extreme, the dynamics is best explained using the laboratory frame.
On the other hand, the Eckart frame is found to be very general and to reproduced well both extreme
cases. We also compare the rotational frequency and the kinetic energy with the definitions of the
angular momentum and inertia tensor different from recent publications.

Keywords: Star block-copolymers; hybrid mesoscale simulation technique; rotational frequency;
laboratory frame; Eckart frame; geometrical approach

1. Introduction

Polymer solutions have an important role from both fundamental and applied point of views.
The addition of a small amount of polymers to a liquid can be use to tune the stability and rheological
properties on multiple commercial systems as paints, pharmaceutical products, food and oils. As
consequence of the polymer flexibility, a field flow can provoke large conformational changes which in
turn influences back the flow field. In this way, to understand the coupling between conformational
and dynamical properties of isolated polymers immersed in a field flow is an important first step
to elucidate the rheological behaviour of (dilute and semi-dilute) polymer solutions. [1,2]. To date
there has been a considerable amount of work on the response of flexible polymers with different
architectures (e.g., linear, ring, hyperbranched and star polymers) to shear stress, which has revealed
generic and specific properties of such systems. On top of experimental techniques, the development
of simulation methods allowing to efficiently couple the solvent particles and monomers, a wide
spectrum of behaviors has been found regarding the average deformation and the orientation as a
function of the shear rate, as well as, multiple dynamic responses [3–8]. The latter encompass stretching
and recoil, tumbling, tank-treading, rupture, and collapse of polymers and ultimately determine the
(complex) viscoelastic response of dilute bulk phases.

In this work, we consider the dynamics of isolated star block copolymers (SBCs), which can be
exploited as versatile building blocks as they self-assemble into structures with one or multiple clusters
of their solvophobic segments, i.e., they behave as self-associating patchy particles, featuring tunable
softness, functionalization, shape, and flexibility [9,10]. Recently, the structural properties of isolated
SBCs under (linear) shear flow were analysed by means of particle-based multiscale simulations for
a wide set of parameters, which include the functionality of the star, the amphiphilicity degree, the
solvent quality, and the shear rate. In particular, the formation of attractive patches on the SBC corona
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as a function of the shear rate was analysed. Three mechanisms of patch reorganization under shear
were identified, which determine the dependence of the patch numbers and orientations on the shear
rate, namely, free arms joining existing patches, fusion of medium-sized patches into bigger ones, and
fission of large patches into two smaller ones at high shear rates [11].

Along with these studies, the dynamic behaviour of single SBCs must be considered to gain some
insights about the influence of these patch rearrangements on the rheology of dilute suspensions.
Motivated by a very recent work on the rotational dynamics of star polymers in shear flow [12,13],
this work focuses on the dynamics of sheared SBCs analyzed by means of the so-called Eckart frame,
which allows to separate pure rotational and vibrational motions. We show that SBCs display a richer
structural and dynamical behavior than athermal star polymers in a shear flow and therefore they
are also interesting candidates to tune the viscoelastic properties of complex fluids. The rest of the
manuscript is organized as follows: in Section 2 we present the model and the employed tools. In
Section 3 the simulation results are displayed and the ensuing dynamic properties are discussed.
Finally, in Section 4, we summarize and draw our conclusions.

2. Materials and Methods

2.1. Model and Simulation Method

2.1.1. Coarse-Grained Model for the Star Block Copolymer

As mentioned above, the dynamics of a single SBC immersed in a sheared (Newtonian) solvent is
studied by means of a hybrid Multiparticle Collision Dynamics-Molecular Dynamics (MPCD-MD)
method, as described in detail in Refs. [10,11]. Briefly, the star polymer and the solvent particles are
modeled at a coarse-grained level. Each arm of the SBC is represented as a bead-spring chain having
NA inner and NB outer monomers, thereby defining the degree of polymerization Npol = NA + NB
and the amphiphiphilicity α = NB/Npol. The monomers are represented as soft spheres of diameter
σ and mass M interacting through pair potentials VAA(r) = VAB(r) = V(r; 0) and VBB(r) = V(r; λ),
where

V(r; λ) =

{
V0(r) + (1− λ)ε r ≤ rc

λV0(r) r > rc.
(1)

Here, V0(r) = 4ε
[
(σ/r)48 − (σ/r)24

]
, rc = 21/24σ, r is the monomer-monomer distance, and λ is an

attraction-coupling constant. The latter allows us to tune the solvent quality for the B-monomers; as
explained in Ref. [10]. In particular, increasing the value of λ enhances the attraction between the
B-monomers. Sufficiently large values of this parameter, λ > 0.92, are equivalent to considering that
a homopolymer made of B-monomers is below its θ-temperature. The bonding between connected
monomers is introduced by a FENE potential

Ubond(r) = −
1
2

K R2
0 ln

[
1−

(
r

R0

)2
]

, (2)

where K = 30(ε/σ2) and R0 = 1.5σ.

2.1.2. Multiparticle Collision Dynamics (MPCD) and Molecular Dynamics (MD)

Multi-particle collision dynamics (MPCD) was employed to mesoscopically simulate the solvent
[14,15]. The latter is assumed to be composed of Ns point-like particles of mass m, whose dynamics
follows two steps: a streaming step, in which the solvent particles move ballistically, and a collision
step, in which the solvent particles exchange linear momentum. To do that, particles are sorted into
cubic cells with length a, and their relative velocities with respect to the cell center-of-mass are rotated
by an angle χ around a random axis [5,14,15]. The number of solvent particles per MPCD-collision
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Figure 1. Schematic illustration of the simulation setup, demonstrating the shear (ê1), gradient (ê2), and
vorticity (ê3) directions of planar, Couette flow. Yellow, red, and blue spheres correspond respectively
to the star core, solvophilic (A type) monomers, and solvophobic (B type) monomers.

cell is ρ = 5 and their mass is m = M/ρ, serving as the unit of mass of the simulation; a convenient
timescale is defined as τ =

√
mσ2/ε. In what follows, we choose m = σ = ε = 1, setting thereby

the units of mass, length and energy, respectively; accordingly, τ serves as the unit of time. For the
temperature T, we choose the value kBT = ε/2, where kB is the Boltzmann constant. The remaining
MPCD-parameters were set as follows: the time between collisions is ∆tmpcd = 0.1τ, the rotation
angle is χ = 130◦, and the cell size a = σ, making the presence of two monomers in the collision
cell very unlikely. Lees- Edwards boundary conditions were used to generate a shear velocity field
v(x2) = γ̇ x2 ê1, characterized by the shear rate γ̇, as schematically depicted in Figure 1.

In the MD-section of the hybrid technique, time evolution of the monomers follows the Newtonian
equations of motion, which are integrated by means of the velocity-Verlet scheme [16] with an
integration time step ∆tmd = 10−3τ. The coupling between the monomers of the SBC and the solvent
particles is achieved during the collision step, in which the former are included as point particles
in the evaluation of the center-of-mass velocity of each cell and their velocities are also randomly
rotated. This interaction is strong enough to keep the monomers at the desired temperature, once a
thermostat for the solvent particles has been introduced, which in the present case corresponds to a
cell-level, Maxwell-Boltzmann scaling [17]. During the collision step mass, momentum and energy are
conserved, leading to correlations among the particles and giving rise to hydrodynamic interactions.
As a dimensionless measure of the shear rate, we consider the Weissenberg number Wi, which is the
product of the shear rate with the longest relaxation time of the polymer. For the latter, we take the
longest Zimm relaxation time τZ of a polymer with Npol monomers, which is given by the expression
[5,18]

τZ =
ηs

kBT
σ3N 3ν

pol, (3)

where ηs is the (MPCD) solvent viscosity and ν = 3/5 is the Flory exponent for self-avoiding chains.
We obtain τZ ' 1.3× 104 τ for the specific choices of the MPCD collision parameters and the value
Npol = 40 employed here. Although we neglect any dependence of the relaxation time on star
functionality and attraction strength along the arms, the results justify a posteriori the choice of a
common relaxation time, in the sense that we are able to obtain results for the shape parameters that
mostly collapse on one another when plotted against Wi = γ̇τZ.

We performed a total of 14 independent runs with different initial conditions for each set of
parameters { f , α, λ} investigated, covering a broad range of Wi, from the linear (Wi . 1) all the
way to the strongly nonlinear (Wi ' 103) regime. We focus on the following three particular sets
of parameters: { f , α, λ} = {12, 0.3, 1.0} (Case 1), {15, 0.5, 1.1} (Case 2) and {18, 0.7, 1.1} (Case 3).
According to our previous study, these parameters represent the typical trends found in regard to the
patchiness of the SBCs, namely, no patches are formed, several patches are formed having a small
population, and few (one or two) bulky patches are formed [11]. For each run, a preparation cycle
of 5× 106 MD steps was executed in first place, which was long enough for the SBC to reach its
stationary state and then, a production cycle of 1.5× 107 MD steps took place. Depending on the shear
rate, the simulation box has dimensions 60σ ≤ D1 ≤ 110σ and D2 = D3 = 60σ. Configuration data
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were saved every Nsave = 2× 104 MD steps during the production cycle. As in this work there exist
various physical systems and they are looked upon at various frames of reference and at different
levels of approximations as regards their rotational dynamics, we use in what follows a number of
abbreviations, whose meaning is summarized in Table 1 below.

Table 1. List of shorthands and abbreviations for systems and methods used in this work.

Abbreviation Meaning

Case 1 { f , α, λ} = {12, 0.3, 1.0}
Case 2 { f , α, λ} = {15, 0.5, 1.1}
Case 3 { f , α, λ} = {18, 0.7, 1.1}

LF Laboratory frame
EF Eckart frame
GA Geometric approximation

2.2. Rotational Dynamics

Soft colloids and polymers under shear flow deform and undergo a succession of complex motion
patterns, such as tumbling and tank-treading, which are hard to decouple from one another and analyze
quantitatively. Recent studies aimed to a better understanding of the complex dynamics of (athermal)
star polymers in shear flow, have demonstrated that Eckart’s formalism allows to separates correctly
the different characteristic motions of the polymer, i.e., pure rotation, vibration with no-angular
momentum and vibrational angular momentum [12,13]. In the following, a brief description of this
formalism is given, which will be subsequently employed to analyze our simulation results.

2.2.1. Laboratory frame (LF)

Here, the frame of reference is fixed in space and it is customarily and conveniently chosen in
such a way that the first axis lies along the flow direction, the second along the gradient direction and
the third along the vorticity direction, as shown in Figure 1. Taking rk and ṙk as the position and the
velocity of the k-th monomer in the laboratory frame of reference, the total angular momentum of a
star polymer with respect to its center of mass is, by definition

L = M
Nmon

∑
k=1

∆rk × ∆ṙk, (4)

with k = 1, . . . , Nmon = f Npol + 1, Nmon the total number of monomers, ∆rk = rk − rcm and ∆ṙk =

ṙk − ṙcm. Here rcm and ṙcm are, respectively, the position and the velocity of the center of mass, i.e.,

rcm =
1

Nmon

Nmon

∑
k=1

rk. (5)

The time evolution of the k-th monomer position can be evaluated as [12,13,19,20]

ṙk = ṙcm + (ω× ∆rk) + ṽk, (6)

where ṽk denotes a purely vibrational motion which is angular momentum-free in the laboratory
frame, i.e., ṽk and ∆rk are parallel [cf. Eq. (4)]. The angular frequency ω can be expressed as

ω = J−1L, (7)
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with the components of the moment of inertia tensor J being defined as

Jµν = M
Nmon

∑
k=1

[
∆r2

kδµν − ∆rk,µ∆rk,ν

]
(µ, ν = 1, 2, 3), (8)

with δµν the Kronecker delta and rk,µ the µ-th component of position vector of the k-th monomer. In
the case of rigid-body motion, ṽ = 0 and ω coincides with the rotational angular velocity.

The full kinetic energy Ekin of the sheared polymer results from Eq. (6) and reads as

Ekin =
1
2

M ∑
k

ṙk · ṙk

=
1
2

Ms ṙcm · ṙcm +
1
2

ω · J ·ω +
1
2

M ∑
k

ṽk · ṽk , (9)

where Ms = NmonM is the total mass of the polymer. The three terms at the r.h.s of Eq. (9) represent
the translational, rotational, and vibrational contributions to the kinetic energy, respectively. We
emphasize, though, that the velocity contribution ṽk in the motion of a monomer is not the only
vibrational contribution but just the one that does not contribute to the (instantaneous) angular
momentum; there are, in general, additional vibrational contributions included in ω. Therefore, ω is
the apparent angular velocity and it is not possible to separate rotation from vibrational with angular
momentum motion within the lab frame.

2.2.2. Eckart frame (EF)

The Eckart’s formalism makes use of a non-inertial frame which co-rotates with the polymer
at angular velocity Ω (see Eq. (16) below) [21,22]. The first step to built up the Eckart frame is to
choose one initial configuration of the SBC as reference, accompanied by an initial frame of reference
spanned by the basis vectors {f1(0), f2(0), f3(0)}. The origin of this frame is located at the center
of mass of the chosen reference configuration of the polymer and, as a matter of convenience, the
three axes {f1(0), f2(0), f3(0)} also coincide with the orientation of the laboratory frame. Due to the
choice of the origin, in this system of coordinates the position vectors of the monomers at time t = 0,
{ak = ∆rk(0); k = 1, 2, . . . , Nmon}, satisfy the relation

Nmon

∑
k=1

ak = 0. (10)

This reference configuration is frozen and co-rotates with the Eckard frame of reference, the latter
evolving with time as explained below. In the second step of the process, the unit base (column) vectors
{f1(t), f2(t), f3(t)} of the instantaneous Eckart frame are evaluated. To achieve that, the vectors

Fµ(t) = M ∑
k

ak,µ∆rk(t) (µ = 1, 2, 3), (11)

are introduced, which are completely defined in terms of the instantaneous positions ∆rk(t) and the
Cartesian components ak,µ of the reference position vectors ak for each monomer. In what follows, we
drop the explicit time-dependence from the notation of the various vectors. The right-handed triad of
unit vectors {f1, f2, f3} is determined as

[f1, f2, f3] = [F 1,F 2,F 3]F−1/2, (12)
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where the elements of the symmetric (Gram) matrix F are defined as [F]µν = Fµ · F ν and
F−1/2F−1/2 = F−1. In this way, the position vector ck of the k-th monomer in the co-rotating reference
configuration, decomposed onto the unit vectors of the rotating Eckart frame of reference, is given by

ck =
3

∑
µ=1

ak,µfµ , (13)

the coefficients ak,µ being fixed, time-independent quantities set by the reference configuration, and the
triad {f1, f2, f3} depending on time as explained above. In this way, the ck are constant vectors when
looked upon from within the rotating Eckart frame and describe the original, rigid configuration.

        ᐃt = 250τ        ᐃt = 150τ         ᐃt = 200τ

        ᐃt = 100τ        ᐃt = 50τ           ᐃt = 0

Wi = 10

Figure 2. Time evolution of the (fixed) reference configuration in the Eckart’s frame as seen in the
laboratory frame for Case 1 and Wi = 10.

        ᐃt = 250τ

Wi = 100

        ᐃt = 150τ
        ᐃt = 200τ

        ᐃt = 100τ        ᐃt = 50τ           ᐃt = 0

Figure 3. Time evolution of the (fixed) reference configuration in the Eckart’s frame as seen in the
laboratory frame for Case 1 and Wi = 100.

Using the initial configuration of the SBC in the production run as the (fixed) reference
configuration for the Eckart’s frame, Figs. 2–4 show its time evolution as it is seen in the laboratory
frame for Case 1 and different shear rates. For Wi = 10, the reference configuration is seen in the
lab frame as a rigid body rotating mainly around the vorticity axes. As the shear rate increases, the
rotation takes place faster and around all three axes in lab frame, as illustrated by the cases Wi = 100
and Wi = 400. For the latter, Fig. 3 and 4 show a significant change of the Eckart frame orientation
with respect to the lab frame. The polymer is expected to have a relatively high rotation frequency
around the vorticity axis in the lab frame, which is found in the Eckart frame as well (see Appendix C).
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       ᐃt = 50τ

        ᐃt = 200τ

       ᐃt = 100τ

Wi = 400

       ᐃt = 250τ        ᐃt = 150τ

           ᐃt = 0

Figure 4. Time evolution of the (fixed) reference configuration in the Eckart’s frame as seen in the
laboratory frame for Case 1 and Wi = 400.

In this frame, the inertia tensor can be written as [21,22]

Ĵµν = M ∑
k

[
c2

kδµν − ck,µck,ν

]
. (14)

On the other hand, the angular momentum, can be determined by performing a transformation
between the laboratory and the Eckart’s frames [22],

L̂ =
3

∑
µ=1

(
L · fµ

)
fµ. (15)

As explained in detail in Refs. [21,22], the angular velocity of the Eckart coordinate system is given by

Ω = Ĵ−1L̂, (16)

providing an expression for the (instantaneous) angular velocity Ω of rotation of the Eckart frame.
At this point, it is worth noting that the inertia tensor Ĵ and the angular momentum L̂ defined above
are different from the definitions given in Refs. [13,19,20]. In the present case, both the inertia tensor
and the angular momentum are completely defined in terms of variables in the Eckart frame, and
consequently so does the kinetic energy, as explained below.

In Eqs. (13) and (14), ck denotes the position vector of the k-th monomer of a (rigid) reference
configuration of the polymer measured in the the instantaneous Eckart’s frame. Note that for a rigid
molecule, J in Eq. (8) and Ĵ in Eq. (14) become equivalent and so do ω and Ω [Eqs. (7) and (16)]. In this
frame, the kinetic energy of the polymer can be written as (see Appendix A)

Ekin =
1
2

Ms ṙcm · ṙcm +
1
2

Ω · Ĵ ·Ω +
1
2

M ∑
k

ṽk · ṽk +
1
2

M ∑
k

uk · uk + M ∑
k
(Ω× ck) · uk , (17)

where uk represents the angular contribution of the vibrational motion, i.e., the part of k-th monomer
vibrational motion coupled with rotations if the angular velocity is calculated by the (lab frame)
standard approach. The last four terms of Eq. (17) represent the kinetic energy contributions
from, respectively, pure rotation, vibrations without angular momentum, vibrations with angular
momentum, and the Coriolis coupling (see Table 2). As can be seen, application of the Eckart frame
formalism allows to distinguish between vibrations without and with angular momentum contribution,
the latter being displacements with respect to the pure rotation of the reference configuration [13].
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2.2.3. Geometrical approach (GA)

A third, complementary approach to estimate the rotational frequency of soft colloids under shear
is the so-called geometrical approximation (GA). This is based on two assumptions about the behavior
of the polymers in linear shear flow [23,24]. First, it is assumed that the velocity of the monomers is
entirely defined by the local, undisturbed velocity profile of the flow according to

∆ṙk ' γ̇∆rk,yê1. (18)

Under this assumption the instantaneous angular momentum of the polymer is given by the expression

L = M ∑
k

∆rk × ∆ṙk ' Msγ̇ (G23ê2 − G22ê3) , (19)

where Gµν = N−1
mon ∑k ∆rk,µ∆rk,ν denotes the µν-component of the gyration tensor, which measures

the overall conformation of the SBC. Furthermore, a long-time average is then performed in Eq. (19),
whereupon the non-diagonal element of the gyration tensor disappears and thus the average angular
momentum has a single component, along the vorticity axis. Finally, it is assumed that the rotation of
the SBC takes place mainly around the vorticity axis ê3, i.e., ω1 = ω2 ≈ 0. Within these approximations
ω3 = ωG has a constant value and using Eq. (7) it results into

ωG ' −Msγ̇
〈G22〉
〈J33〉

= −γ̇
〈G22〉

〈G11〉+ 〈G22〉
. (20)

Though clear by the construction of the GA, it is worth emphasizing once again that the
so-obtained estimate for the angular frequency is a result of averaging the polymer motion over very long
time intervals while at the same time making the a priori assumption that the instantaneous velocities
of the monomers only have a component along the shear direction, dictated by the undistorted solvent
velocity profile, see Eq. (18). The final result, Eq. (20), corresponds to the tumbling (rotation) frequency
of a rigid body whose shape is similar to the average shape of the SBC and which also have an angular
momentum equal to the value given by the mean flow [12,13]. At the same time, however, due to
Eq. (18), the estimate ωG is also valid for a tank-treading (TT)-type of motion, in which the SBC does
not rotate as a whole but rather the individual arms rotate by tank-treading around the geometrical
star center, which remains at rest. This is a different, prototypical type of motion, for which the overall
shape of the star remains fixed in time, i.e., no tumbling of the soft colloid as a whole takes place.

3. Results and Discussion

3.1. Global conformation and dynamics

As flexible polymers generically behave in shear flow, the SBC are stretched along the shear
direction, compressed along the orthogonal (gradient and vorticity) directions, and exhibit a preferred
(average) orientation with respect to the flow. These global features are quantified by the average values

Table 2. The various contributions to the total kinetic energy in both the laboratory and the Eckart
frames.

Rotational Vibrational Tu=Vibrational with angular momentum +
without angular momentum Coriolis coupling

Laboratory frame 1
2 ω · J ·ω M

2 ∑k ṽk · ṽk –

Eckart frame 1
2 Ω · Ĵ ·Ω M

2 ∑k ṽk · ṽk
M
2 ∑k uk · uk + M ∑k(Ω× ck) · uk
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of the gyration tensor G and the orientational angle χG, both of which can be measured experimentally.
The latter measures the flow-induced alignment of the polymer and is defined as the angle formed
between the eigenvector ĝ1 associated with the largest eigenvalue of G and the flow direction ê1, and
can be evaluated as

tan (2χG) =
2〈G12〉

〈G11〉 − 〈G22〉
≡ mG

Wi
, (21)

defining this way the orientational resistance mG of the stars in shear flow.

100

101

G
µµ

 (W
i)/

G
µµ

 (0
)

α = 0.0
α = 0.3
α = 0.5
α = 0.7

G11

10-1

100

G22

10-1

100

G33

10-1 100 101 102

Wi

100

101

G
µµ

 (W
i)/

G
µµ

 (0
)

10-1 100 101 102

Wi
10-1

100

10-1 100 101 102 103

Wi
10-1

100

Figure 5. Diagonal components of the (average) gyration tensor of a SBC with f = 18, Npol = 40,
λ = 1.0 (top row), and λ = 1.1 (bottom row). For athermal stars, the scalings G11 ∼ Wi0.4 and
G22 ∼Wi−0.32 are found at high Wi.

At low values of Wi, the SBCs are hardly distorted, whereas for Wi & 10, they become increasingly
anisotropic, expanding in the flow direction and shrinking most strongly in the shear direction and in
minor proportion along the vorticity axis, as demonstrated by the diagonal components of the gyration
tensor in Fig. 5. Similarly, Fig. 6 displays the average alignment angle as a function of the shear rate.
At low shear rates (Wi < 1) the scaling tan(2χG) ∼Wi−0.83 is found, while for Wi > 10 it behaves as
tan(2χG) ∼Wi−0.3, which is in agreement with previously reported values [5].

The overall (equilibrium) shape of a SBC depends on the number of patches formed and the
compactness of the latter, which in turns depends on f , Npol, α, and λ. Depending on the values of
these parameters, three general cases can be recognized. At low α and λ (α < 0.3 and λ < 1.0) the star
block copolymers behave very similar ot athermal stars (α = 0) with no formation of patches or very
weak, breakable ones (Case 1). On the other opposite limit, at high α and λ (α & 0.6 and λ & 1.1), the
macromolecule acquires cylindrical symmetry around its principal axis, since it self-assembles into
dumbbell-like structures with one or two massive patches (Case 3). At intermediate values of α and λ,
the SBCs form a number of patches that can break-up and/or merge as a consequence of shear (Case 2)
[9–11]. These three tendencies can be also observed from the dynamical point of view, as displayed
in Fig. 7, where characteristic snapshots are shown, helping to visualize the time evolution of the
SBCs under shear. As can be seen there, for low amphiphilicity and good solvent, the SBC behaves
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Figure 6. Reduced orientational resistance mG/Wi for stars with f = 18, Npol = 40 and values of
λ and α as indicated on the panels. For athermal stars, we find mG/Wi ∼ Wi−0.83 at small Wi, and
mG/Wi ∼Wi−0.30 at large Wi.

in a similar way as athermal stars and then the arms perform tank-treading-like (TT) motions. As
the contribution of the attractive interaction increases, patches begin to form and TT rotation is also
found, but this time the motion is simultaneously performed by all arms forming the cluster. Finally
for high α and λ, the SBC motion closely resembles that of a rigid dumbbell. We will explore, in what
follows, the ways in which these statements based on impressions from simulation snapshots acquire
quantitative character through the comparison of characteristic quantities among different reference
frames and approximations.

3.2. Reference configuration update

In the original Eckart formalism, the rigid reference configuration of (small) molecules is assumed
to be the equilibrium one (all forces on all monomers vanishing) and its dynamics is governed by the
time evolution of the positions of the atoms forming the molecule, which are defined by vectors ck, see
Eq. (13). Since thermally fluctuating (star) polymers do not have such a rigid equilibrium configuration
but rather a multitude of typical configurations related to the given conditions (temperature and shear
rate), it is plausible to think that, as the simulation advances, the reference configuration needed to
built up the Eckart frame must be updated at regularly spaced numbers of MD steps. The period of
updating the characteristic, reference configuration is denoted as tEckart and it can vary at will, from a
very frequent update of the reference configuration that tries to follow the details of the particle motion
to a rare one, for which the average, time-coarsened rotational dynamics of the molecule is captured.

In Figures 8–10, we compare the behavior of the different contributions to the kinetic energy (see
Table 2) as a function of the Weissenberg number for different values of tEckart. For tEckart = 200 τ,
the rotational energy grows very slowly with Wi (it is essentially constant) and it coincides with the
value that it obtains at the laboratory. In this case, where the reference configuration is updated very
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Case 1 Case 2 Case 3

∆t = 0 ∆t = 0 ∆t = 0

∆t = 70τ ∆t = 40τ ∆t = 50τ

∆t = 170τ ∆t = 120τ ∆t = 120τ

∆t = 270τ ∆t = 210τ ∆t = 160τ

1

Figure 7. Representative simulation snapshots displaying the time evolution of the SBC in shear flow
for { f , α, λ} = {12, 0.3, 1.0} (Case 1), {15, 0.5, 1.1} (Case 2) and {18, 0.7, 1.1} (Case 3). In Case 1,
individual arms of the star perform tank-treading motion while in Case 3, the star tumbles as a whole.
Case 2 presents a tank-treading-like motion but it is performed by both individual and clustered arms.
Circles and squares are guides to follow the motion of arms. In all cases, Npol = 40 and Wi = 100. In
the panels, ∆t represent the elapsed time from the first configuration in τ units.

frequently, the rotational frequencies ω and Ω in the LF and the EF are very similar, i.e., ω ' Ω and
also Ĵ ' J, resulting into the approximate equality of rotational energies:

1
2

ω · J ·ω ' 1
2

Ω · Ĵ ·Ω (22)

Related to this approximate equality is the vanishingly small value of the kinetic energy contribution
Tu, which emerges as the sum of the angular-momentum-carrying contributions and the Coriolis
coupling, viz.:

Tu =
M
2 ∑

k
uk · uk + M ∑

k
(Ω× ck) · uk. (23)

The reason for the smallness of this term lies therein that the quantity uk itself is small. Indeed,
since uk = ω× ∆rk −Ω× ck [see Eq. (A3)], the proximities of angular velocities and configurations
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Figure 8. Comparison between the values of the kinetic energy for the Case 1 evaluated in both the lab
and Eckart frames at different Eckart times (Table 2).
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Figure 9. Comparison between the values of the kinetic energy for the Case 2 evaluated in both the lab
and Eckart frames at different Eckart’s times (Table 2).

(∆rk
∼= ck) implies the smallness of uk and of both terms at the right-hand side of Eq. (23) above.

Another useful way to look into the quanity Tu is to express it as (see Appendix B):

Tu =
1
2

ω · J ·ω− 1
2

Ω · Ĵ ·Ω. (24)
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Figure 10. Comparison between the values of the kinetic energy for the Case 3 evaluated in both the
lab and Eckart frames at different Eckart’s times (Table 2).

Evidently, Tu is the difference in the rotational energies between the LF and EF and its small value
affirms the similarity of the two for frequent updates of the reference configuration in the Eckart frame.

Upon increasing the time intervals between updates of the reference configuration, deviations
between the LF and the EF appear in the strongly nonlinear regime, Wi > 10. The EF rotational energy
grows much higher that its LF counterpart, signaling significant deviations between the (temporally
coarse) EF angular velocity Ω and its LF-counterpart ω. This phenomenon is consistently accompanied
by an increase in the magnitude of Tu as well as an increase in the magnitudes of the velocities uk,
leading to a growth of the angular-momentum carrying vibrational parts of the energy. The second
term at the right-hand side of Eq. (23) is the Coriolis term EC, which can be rewritten in the form

EC = EC,1 + EC,2

M ∑
k
(Ω× ck) · uk = −M ∑

k
(Ω× ρk) · uk + M ∑

k
(Ω× ∆rk) · uk, (25)

defining the partial terms EC,1 and EC,2 with the help of the vector ρk = ∆rk − ck, Eq. (A1). The
behavior of each term of the Eq. (25) is shown in Fig. 11 only for case 1 as representative for all other
cases as well. For tEckart = 200 τ, the Coriolis coupling is close to zero but for tEckart = 400 τ the
Coriolis coupling is negative and the contribution related to ρk, second term in the right Eq. (25), is the
dominant in the Coriolis coupling behavior.

Finally, the vibrational kinetic energy associated with the velocities carrying no angular
momentum, Evib = (M/2)∑k ṽk · ṽk, is very large and its value is essentially independent of tEckart:
the stars have a large number of breathing and fast oscillatory modes. Even for the case of short Eckart
times, for which the quantities ρk and uk are small, the quantities ρ̇k = ṽk + uk ' ṽk are significant,
and denote fast oscillations of the corresponding displacement variables.
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Figure 11. The Coriolis coupling for two different values of tEckart for the case 1 as a function of Wi.
For the meaning of the quantities EC, EC,1 and EC,2, see Eq. (25).

3.3. Angular momentum and angular frequency

We now proceed to our results regarding the angular momenta and frequencies of the SBC
motions under shear flow. In Fig. (12) we compare the component of the total angular momentum
around the vorticity direction L3 in the laboratory frame from Eq. (4) to the value evaluated through
the geometric approximation, Eq. (19). The velocity of the monomers for intermediate values of Wi is
well approximated by Eq. (18), i.e., it is mainly determined by the velocity of the fluid, at least in the
average sense.
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100

101

102

103

L 3

Case 1,  LF
Case 2,  LF
Case 3,  LF
Case 1,  GA
Case 2,  GA
Case 3,  GA

Figure 12. Comparison between the exact value of the component L3 of the angular momentum, Eq. (4),
with the one obtained from the geometrical approximation, Eq. (19).

As mentioned before, the definitions of the angular momentum and the inertia tensor for the
Eckart’s frame given by Eqs. (4) and (8) are different from the presented ones in Refs. [13,19,20], that is,

L′ = M ∑
k

ck × ∆ṙk. (26)
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J′ = M ∑
k
[(∆rk · ck) I− ∆rk ⊗ ck] . (27)

It can be shown that the inertia tensor as defined in the above expression does not meet the symmetry
condition in general, i.e.,

∆rk,µck,ν 6= ∆rk,νck,µ, (28)

which is due to the definition of displacement vectors in the Eckart frame ρk, see Eq. (A1). In Figs. 13–15,
left panels, we demonstrate that employing Ĵ or J′ leads to different results for the associated rotational
frequencies (Ω and Ω′) and the rotational energy. Likewise, it is possible to find the relation between
the vector u′k = (ω−Ω′)× ∆rk of Ref. [13] and the quantity uk of Eq. (A3) as:

uk = u′k +
[(

Ω′ −Ω
)
× ∆rk

]
+ (Ω× ρk) , (29)
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Figure 13. Left panel: Rotational energy (LF → 1
2 ω · J ·ω, EF → 1

2 Ω · Ĵ ·Ω, EF′ → 1
2 Ω′ · J′ ·Ω′) for

two different schemes for the Eckart frame as a function of the Weissenberg number Wi. Right panel:
reduced angular frequency for case 1 (LF→ ω/γ̇, EF→ Ω/γ̇, GA→ ωG/γ̇) as a function of Wi for
different Eckart times. EF represents our analytical procedure, whereas EF′ represents the analytical
procedure from Refs. [13,19,20].
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Figure 14. Same as Figure 13 but for Case 2.

Results for the angular frequency as a function of Wi and the dependence of this function on the
frame of reference as well as on the configuration update time tEckart are shown in Figs. 13–15, right
panels. According to our analysis, since the block copolymer stars under consideration are very soft
systems, the frequency of rotation in the Eckart frame should be closer to the geometrical approach and
therefore one would expect that the decay law for high Wi should be the same in both approximations
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for sufficiently long updating intervals tEckart. It is interesting to confirm that, indeed, the Eckart
rotation frequencies are enclosed by the extreme cases, i.e., the geometric approximation as an upper
bound and laboratory frame as a lower bound. As tEckart grows, the Eckart rotation frequencies move
from the LF- towards the GA-curves, confirming the fact that at coarse time scales the stars, at least for
Cases 1 and 2, can be thought of as soft colloids with a tank-treading type of motion of the polymers in
their interior.
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Figure 15. Same as Figure 13 but for Case 3.
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Figure 16. The reduced angular frequencies for Case 1 (left) and Case 3 (right) evaluated at the LF, the
GA and the EF with the longest Eckart time employed, tEckart = 8000 τ.

Case 3 seems exceptional, in the sense that the angular frequency evaluated in the EF appears
to be almost independent of the parameter tEckart and always very close to the LF-result. This is
an indication of the fact that, contrary to the other two cases, these star block copolymers do not
behave as tank-treading soft colloids. On the contrary, and consistently with their rather compact,
elongated, dumbbell-shape, they rotate similarly to rigid prolate ellipsoids under constant shear flow.
In particular, the GA-assumption of isolated monomers, each of which is carried through the solvent
with the local velocity of the streaming solvent is not valid in this case, since the bulky patches at
the ends of these self-associated stars act as compact objects creating backflow and strongly affecting
the solvent. To emphasize the difference between Case 1 and Case 3, in Fig. 16 we plot the angular
frequencies for the two limiting frames, LF and GA, together with the EF-result at the longest Eckart
time, tEckart = 8000 τ. As it can be seen, whereas for Case 1 the EF is very close to the GA and far away
from the LS, for Case 3 the opposite is true. Differences in the power-law behavior for large values of
Wi between the two cases can also be seen.
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4. Conclusions

In this work, we analyze the rotational dynamics of an isolated star-shaped block copolymers
under shear flow for three representative set of parameters, i.e., a very flexible system (case 1), an
intermediate flexible-rigid system (case 2) and finally a rather rigid system (case 3). Motivated by very
recent studies on polymer dynamics [12,13], we explored the quantitative predictions emerging from
the employ of the Eckart frame formalism, and compare them to the resulting ones from two different
approaches (lab frame and geometrical approach). Additionally, we performed an analysis of each
term in the kinetic energy and the contributions of the various kinetic terms to it.

Based on the original formalism [21], we found some differences with respect to the treatment
presented in Refs. [13,19,20], which have consequences on the analytical definitions of the inertia tensor
and the angular momentum within the Eckart’s frame (Eqs. (27), (26) and (14), (15)). As consequence,
we obtained different analytical approximations for the total kinetic energy and for the numerical
value for the rotational frequency of the SBC, which we express using strictly the Eckart’s variables. It
is important to note that both treatments reproduce correctly the results for the laboratory frame for
small updating time tEckart (tEckart ∼ 200τ); however for tEckart > 200τ, we found differences between
both treatments, particularly for the rotational energy term. For Wi < 10, we found that the rotational
energy is independent of tEckart, which is not the case in Ref. [13]. Additionally, both the rotational
energy and frequency found in Ref. [13] are larger than the outcomes from our treatment.

The main result concerns the behavior of the associated rotational frequency Ω at high shear rate
(Wi > 100) for the three different systems. We found that for all cases Ω is bounded by the rotational
frequencies obtained in the lab frame (ω) and from the geometric approximation (ωG), specifically
ω . Ω . ωG. For the third case, i.e., self-assembled, dumbbell-like SBC, Ω ≈ ω independently of
the updating time tEckart, demonstrating that the rotation frequency mainly corresponds to tumbling
motion of the SBC induced by the shear flow. On the other hand, for case 1, which is closely related to
athermal star polymers, the results obtained from the geometrical approximation are consistent with
the Eckart frame only for long enough tEckart; therefore, the geometrical approximation only captures
the average, time-coarsened tank-treading rotational frequency of the polymer. These results agree
with the obtained for athermal stars with smaller polymerization degree (Npol = 6), for which was
found that the vibrational angular momentum has a larger contribution for softer polymers [13].

The dynamics of the case 2 is richer; although this system features four patches in average [11], the
shear causes those patches to break and to cluster over and over again. Therefore, here the rotational
frequency results from the average of the tank-treading motion of free and clustered arms. It remains
to establish a more detailed description regarding the statistic of the typical times between break-up
and rejoin events, which shed light on their influence on the rheology of semi-dilute suspensions, in
particular on the expected shear thinning behavior and how it can be tuned by the amphiphilicity and
the solvent quality [1].

Appendix A. Kinetic energy in the Eckart frame

The monomer displacement vectors compatible with the Eckart’s frame are defined as [13,21,22]

ρk = ∆rk − ck, (A1)

and therefore the time evolution of the k-th monomer in the Eckart’s frame results in [21,22]

ṙk = ṙcm + ċk + ρ̇k = ṙcm + (Ω× ck) + ρ̇k. (A2)

Defining ρ̇k = ṽk + uk with,

uk = ω× ∆rk −Ω× ck, (A3)
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the time evolution equation can be written as

ṙk = ṙcm + (Ω× ck) + ṽk + uk. (A4)

We note that for tEckart = 200 τ, ω ≈ Ω, ∆rk ≈ ck and uk ≈ 0 (see Section 3.2). Concomitantly with
Eq. (A4), the resulting kinetic energy is

M
2 ∑

k
ṙk · ṙk =

Ms

2
ṙcm · ṙcm +

M
2 ∑

k
(Ω× ck) · (Ω× ck) +

M
2 ∑

k
ṽk · ṽk +

M
2 ∑

k
uk · uk +

ṙcm · (Ω×M ∑
k

ck) + ṙcm ·M ∑
k

ṽk + ṙcm ·M ∑
k

uk + (A5)

M ∑
k
(Ω× ck) · ṽk + M ∑

k
(Ω× ck) · uk + M ∑

k
ṽk · uk.

Since the following equalities hold [21,22],

M ∑
k

ck = 0, (A6)

M ∑
k

∆ṙk = MΩ×∑
k

ck + M ∑
k

ṽk + M ∑
k

uk = 0→ M ∑
k

uk = 0, (A7)

and the definition of uk implies

M ∑
k

ṽk · uk = M ∑
k

ṽk · (ω× ∆rk)−M ∑
k

ṽk · (Ω× ck) = −M ∑
k

ṽk · (Ω× ck) , (A8)

then the kinetic energy can be expressed as in Eq (17).

Appendix B. Explicit calculation of Tu

Starting with the definition of vector uk, Eq. (A3), the energy Tu (Table 2) can be written as,

Tu =
M
2 ∑

k
uk · uk + M ∑

k
(Ω× ck) · uk (A9)

=
M
2 ∑

k
(ω× ∆rk −Ω× ck) · (ω× ∆rk −Ω× ck) + M ∑

k
(Ω× ck) · (ω× ∆rk −Ω× ck) .

Grouping in a convenient way,

Tu =
1
2
(
ω · J ·ω + Ω · Ĵ ·Ω− 2M(ω× ∆rk) · (Ω× ck)

)
+
(

M(ω× ∆rk) · (Ω× ck)−Ω · Ĵ ·Ω
)

,
(A10)

so that
Tu =

1
2

ω · J ·ω− 1
2

Ω · Ĵ ·Ω. (A11)

Appendix C. Rotation frequencies

We show results for all components of the angular frequency. In general, we find that the angular
velocity in the vorticity axis is dominant in the angular frequency vector, especially as Wi grows. The
vorticity component ω3 approaches a constant value at high values of Wi or even shows a decrease
there, in Case 3.
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Figure A1. Values of the average magnitudes of the components of the angular velocity, |ωµ|, and the
magnitude of the whole vector, |ω|, for case 1 as a function of Wi for two differents values of the tEckart

as indicated in the legend, for Cases 1,2, and 3.
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