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J. C. Maxwell, B. Riemann and H. Poincaré have proposed the idea that all microscopic particles
are sink flows in a fluidic aether. Following this research program, a previous theory of gravitation
based on a mechanical model of vacuum and a sink flow model of particles is generalized by methods
of special relativistic continuum mechanics. In inertial reference frames, we construct a tensorial
potential which satisfies the wave equation. Inspired by the equation of motion of a test particle,
a definition of a metric tensor of a Riemannian spacetime is introduced. Applying Fock’s theorem,
generalized Einstein’s equations in inertial systems are derived based on some assumptions. These
equations reduce to Einstein’s equations in case of weak field in harmonic reference frames. In
some special non-inertial reference frames, generalized Einstein’s equations are derived based on
some assumptions. If the field is weak and the reference frame is quasi-inertial, these generalized
Einstein’s equations reduce to Einstein’s equations. Thus, this theory may also explains all the
experiments which support the theory of general relativity. There exists some differences between
this theory and Einstein’s theory of general relativity.
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I. INTRODUCTION

The Einstein’s equations of gravitational fields in the
theory of general relativity can be written as [1, 2]

Rµν − 1

2
gµνR = −κTm

µν , (1)

where gµν is the metric tensor of a Riemannian space-
time, Rµν is the Ricci tensor, R ≡ gµνRµν is the s-
calar curvature, gµν is the contravariant metric tensor,
κ = 8πγN/c

4, γN is Newton’s gravitational constant,
c is the speed of light in vacuum, Tm

µν is the energy-
momentum tensor of a matter system.
The Einstein’s equations (1) is a fundamental assump-

tion in the theory of general relativity [1, 2]. It is remark-
able that Einstein’s theory of general relativity, born in
1915, has held up under every experimental test, refers
to, for instance, [3].
R. P. Feynman once said:”What I cannot create, I do

not understand.” ([4], p. xxxii). New theories which can
derive Einstein’s field equations of gravitation and thus
explain all known experiments of gravitational phenome-
na may be interesting. The reasons may be summarized
as follows.
1. Many attempts to reconcile the theory of general rel-

ativity and quantum mechanics by using the techniques
in quantum electrodynamics meet some mathematical d-
ifficulties ([5], p. 101). J. Maddox speculates that the
failure of the familiar quantization procedures to cope
with Einstein’s equations may stem from two possible
reasons. One possibility is that Einstein’s equations are
incomplete. The other possible reason may be that some
underlying assumptions in Einstein’s theory about the
character of the space or time may be not suitable ([5],
p. 101).
2. The value of the cosmological constant is a puz-

zle [6]. In 1917, A. Einstein thought that his equations

should be revised to be ([2], p. 410)

Rµν − 1

2
gµνR+ Λgµν = −κTm

µν , (2)

where gµν is the metric tensor of a Riemannian space-
time, Rµν is the Ricci tensor, R ≡ gµνRµν is the s-
calar curvature, gµν is the contravariant metric tensor,
κ = 8πγN/c

4, γN is Newton’s gravitational constant,
c is the speed of light in vacuum, Tm

µν is the energy-
momentum tensor of a matter system, Λ is the cosmo-
logical constant.

However, it seems that the cosmological constant Λ
is unnecessary when Hubble discovered the expansion of
the universe. Thus, Einstein abandoned the term Λgµν
in Eq. (2) and returned to his original equations ([2], p.
410). The value of the cosmological constant Λ is also
related to the energy-momentum tensor of vacuum ([2],
p. 411). Theoretical interpretation of the small value of
Λ is still open [6].

3. The problem of the existence of black hole is still
controversy [7]. Einstein believed that black hole can
not exist in the real world [8]. Recently, the Event
Horizon Telescope Collaboration (EHTC) reconstructed
event-horizon-scale images of the supermassive black hole
candidate in the center of the giant elliptical galaxy M87
[9]. EHTC reports that the observed image is consisten-
t with predictions for the shadow of a Kerr black hole
based on the theory of general relativity.

4. The existences and characters of dark matter and
dark energy are still controversy, refers to, for instance,
[10–14].

5. The existence and characters of gravitational aether
are still not clear. Sir I. Newton pointed out that his
inverse-square law of gravitation did not touch on the
mechanism of gravitation ([15], p. 28;[16], p. 91). New-
ton warned ([17], p. 204):”That Gravity should be innate,
inherent and essential to Matter, so that one Body may



act upon another at a Distance thro’ a Vacuum, without
the Mediation of any thing else, by and through which
their Action and Force may be conveyed from one to an-
other, is to me so great an Absurdity, that I believe no
Man who has in philosophical Matters a competent Fac-
ulty of thinking, can ever fall into it. ” He conjectured
that gravitation may be explained based on the action
of an aether pervading the space ([15], p. 28;[16], p. 92).
In the years 1905-1916, Einstein abandoned the concepts
of electromagnetic aether and gravitational aether in his
theory relativity ([18], p. 27-61). However, H. A. Lorentz
believed that general relativity could be reconciled with
the concept of an ether at rest and wrote a letter to A. E-
instein ([18], p. 65). Einstein changed his view later and
introduced his new concept of ether ([18], p. 63-113). In
1920, Einstein said ([18], p. 98):”According to the gen-
eral theory of relativity, space is endowed with physical
qualities; in this sense, therefore, there exists an ether.
According to the general theory of relativity, space with-
out ether is unthinkable;”. In 1954, Einstein said ([18],
p. 149):”There is no such thing as an empty space, i.e., a
space without field. Space-time does not claim existence
on its own, but only as a structural quality of the field.”
Unfortunately, Einstein did not tell us how to derive his
equations theoretically based on his new concept of the
gravitational aether.

6. Whether Newton’s gravitational constant γN de-
pends on time and space is still not clear. It is known
that γN is a constant in Newton’s and Einstein’s the-
ory of gravitation. P. A. M. Dirac speculates that γN
may depend on time based on his large number hypoth-
esis [19]. R. P. Feynman thought that if γN decreases
on time, then the earth’s temperature a billion years a-
go was about 48◦C higher than the present temperature
([4], p. 9). D. R. Long reports that γN depends on the
distance between matters [20].

Furthermore, there exists some other problems relat-
ed to the theories of gravity, for instance, gravitational
waves [21], the speed of light in vacuum [22–24], the def-
inition of inertial system, origin of inertial force, the ve-
locity of the propagation of gravity [25], the velocity of
individual photons [23, 24], unified field theory, etc.

There is a long history of researches of derivations or
interpretations of Einstein’s theory of general relativity.
For instance, C. Misner et al. introduce six derivations
of the Einstein’s equations (1) in their great book ([2], p.
417). S. Weinberg proposed two derivations ([1], p. 151).

However, these theories still face the aforementioned
difficulties. The gravitational interaction seems to differ
in character from other interactions. Thus, it seems that
new ideas about the gravitational phenomena are needed.
In 1949, Einstein wrote in a letter to Solovine [26]:”I am
not convinced of the certainty of a simple concept, and
I am uncertain as to whether I was even on the right
track.” Following Einstein, it may be better for us to
keep an open and critical mind to explore all possible
theories about gravity.

The purpose of this manuscript is to propose a deriva-

tion of the Einstein’s equation (1) in some special refer-
ence frames based on a mechanical model of vacuum and
a sink flow model of particles [27].

II. INTRODUCTION OF A PREVIOUS
THEORY OF GRAVITATION BASED ON A SINK
FLOW MODEL OF PARTICLES BY METHODS

OF CLASSICAL FLUID MECHANICS

The idea that all microscopic particles are sink flows in
a fluidic substratum is not new. For instance, in order to
compare fluid motions with electric fields, J. C. Maxwell
introduced an analogy between source or sink flows and
electric charges ([15], p. 243). B. Riemann speculates
that:”I make the hypothesis that space is filled with a
substance which continually flows into ponderable atom-
s, and vanishes there from the world of phenomena, the
corporeal world”([28], p. 507). H. Poincaré also suggests
that matters may be holes in fluidic aether ([29], p. 171).
A. Einstein and L. Infeld said ([30], p. 256-257):”Matter
is where the concentration of energy is great, field where
the concentration of energy is small. · · · What impress-
es our senses as matter is really a great concentration of
energy into a comparatively small space. We could regard
matter as the regions in space where the field is extremely
strong.”

Following these researchers, we suppose that all the
microscopic particles were made up of a kind of elemen-
tary sinks of a fluidic medium filling the space [27]. Thus,
Newton’s law of gravitation is derived by methods of hy-
drodynamics based on the fluid model of vacuum and the
sink flow model of particles [27].

We briefly introduce this theory of gravitation [27].
Suppose that there exists a fluidic medium filling the in-
terplanetary vacuum. For convenience, we may call this
medium as the Ω(0) substratum, or gravitational aether,
or tao [27]. Suppose that the following conditions are
valid: (1) the Ω(0) substratum is an ideal fluid; (2) the
ideal fluid is irrotational and barotropic; (3) the density
of the Ω(0) substratum is homogeneous; (4) there are no
external body forces exerted on the fluid; (5) the fluid is
unbounded and the velocity of the fluid at the infinity is
approaching to zero.

An illustration of the velocity field of a sink flow can
be found in Figure 1.

If a point source is moving with a velocity vs, then
there is a force [27]

FQ = −ρ0Q(u− vs) (3)

is exerted on the source by the fluid, where ρ0 is the
density of the fluid, Q is the strength of the source, u
is the velocity of the fluid at the location of the source
induced by all means other than the source itself.

We suppose that all the elementary sinks were created
simultaneously [27]. For convenience, we may call these
elementary sinks as monads. The initial masses and the
strengths of the monads are the same. Suppose that (1)

2



FIG. 1: an illustration of the velocity field of a sink flow.

vi ≪ ui, i = 1, 2, where vi is the velocity of the particle
with mass mi, ui is the velocity of the Ω(0) substratum
at the location of the particle with mass mi induced by
the other particle; (2) there are no other forces exerted on
the particles, then the force F21(t) exerted on the particle
with mass m2(t) by the velocity field of Ω(0) substratum
induced by the particle with mass m1(t) is [27]

F21(t) = −γN (t)
m1(t)m2(t)

r2
r̂21, (4)

where ˆr21 denotes the unit vector directed outward along
the line from the particle with mass m1(t) to the particle
with mass m2(t), r is the distance between the two par-
ticles, m0(t) is the mass of monad at time t, −q0(q0 > 0)
is the strength of a monad, and

γN (t) =
ρ0q

2
0

4πm2
0(t)

. (5)

For continuously distributed matter, we have

∂ρ0
∂t

+∇ · (ρ0u) = −ρ0ρs, (6)

where u is the velocity of the Ω(0) substratum, ∇ =
i∂/∂x+ j∂/∂y+ k∂/∂z is the nabla operator introduced
by Hamilton, i, j,k are basis vectors, −ρs(ρs > 0) is the
density of continuously distributed sinks, i.e.,

−ρs = lim
△V→0

△Q
△V

, (7)

where △Q is the source strength of the continuously dis-
tributed matter in the volume △V of the Ω(0) substra-
tum.
Since the Ω(0) substratum is homogeneous, i.e.,

∂ρ0/∂t = ∂ρ0/∂x = ∂ρ0/∂y = ∂ρ0/∂z = 0, and irro-
tational, i.e., ∇× u = 0, Eq. (6) can be written as [31]

∇2φ = −ρs, (8)

where φ is a velocity potential such that u = ∇φ, ∇2 =
∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplace operator.
We introduce the following definitions

Φ = −ρ0q0
m0

φ, ρm =
m0ρs
q0

, (9)

where ρm denotes the mass density of continuously dis-
tributed particles.

Using Eq. (9) and Eq. (5), Eq. (8) can be written as

∇2Φ = 4πγNρm. (10)

III. A MECHANICAL MODEL OF VACUUM

According to our previous paper [32] we suppose that
vacuum is filled with a kind of continuously distributed
material which may be called Ω(1) substratum or elec-
tromagnetic aether. Maxwell’s equations in vacuum are
derived by methods of continuum mechanics based on
this mechanical model of vacuum and a source and sink
flow model of electric charges [32]. We speculate that the
electromagnetic aether may also generate gravity. Thus,
we introduce the following assumption.

Assumption 1 The particles that constitute the Ω(1)
substratum, or the electromagnetic aether, are sinks in
the Ω(0) substratum.

Then, according to the previous theory of gravitation
[27], these Ω(1) particles gravitate with each other and
also attract with matters. Thus, vacuum is composed
of at least two kinds of interacting substratums, i.e., the
gravitational aether Ω(0) and the electromagnetic aether
Ω(1).

From Eq. (3), we see that there exists a following u-
niversal damping force Fd = −ρ0q0mvp/m0 exerted on
each particle by the Ω(0) substratum [27], where vp is the
velocity of the particle. Based on this universal damping
force Fd and some assumptions, we derive a generalized
Schrödinger equation for microscopic particles [33]. For
convenience, we may call these theories [27, 32, 33] as the
theory of vacuum mechanics.

IV. CONSTRUCTION OF A LAGRANGIAN
FOR FREE FIELDS OF THE Ω(0) SUBSTRATUM
BASED ON A TENSORIAL POTENTIAL IN THE

GALILEAN COORDINATES

There exists some approaches ([4], page vii;[2], p. 424),
which regards Einstein’s general relativity as a special rel-
ativistic field theory in an unobservable flat spacetime, to
derive the Einstein’s equations (1). However, these theo-
ries can not provide a physical definition of the tensorial
potential of gravitational fields, refers to, for instance,
[2, 34, 35]. Thus, similar to the theory of general relativ-
ity, these theories may be regarded as phenomenological
theories of gravitation.

Inspired by these special relativistic field theories of
gravitation, we explore the possibility of establishing a
similar theory based on the theory of vacuum mechanics
[27, 32, 33]. Thus, first of all, we need to construct a
Lagrangian for free fields of the Ω(0) substratum based
on a tensorial potential in the Galilean coordinates. In
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this section, we will regard the Ω(0) substratum in the
previous theory of gravitation [27] as a special relativis-
tic fluid. Then, we will study the Ω(0) substratum by
methods of special relativistic continuum mechanics [36].
In this article, we adopt the mathematical framework

of the theory of special relativity [1]. However, the phys-
ical interpretation of the mathematics of the theory of
special relativity may be different from Einstein’s theo-
ry. It is known that Maxwell’s equations are valid in the
frames of reference that attached to the Ω(1) substra-
tum [32]. We introduce a Cartesian coordinate system
{o, x, y, z} for a three-dimensional Euclidean space that
attached to the Ω(1) substratum. Let {0, t} be a one-
dimensional time coordinate. We denote this reference
frame as SΩ(1).
Based on the Maxwell’s equations, the law of propa-

gation of an electromagnetic wave front in this reference
frame SΩ(1) can be derived and can be written as ([37],p.
13)

1

c2

(
∂ω

∂t

)2

−
(
∂ω

∂x

)2

−
(
∂ω

∂y

)2

−
(
∂ω

∂z

)2

= 0, (11)

where ω(t, x, y, z) is an electromagnetic wave front, c is
the velocity of light in the reference frame SΩ(1).
An electromagnetic wave front is a characteristics.

According to Fock’s theorem of characteristics ([37],
p. 432), we obtain the following metric tensor ηαβ =
diag[c2,−1,−1,−1] of a Minkowski spacetime for vac-
uum ([38], p. 57).
For convenience, we introduce the following Galilean

coordinate system

x0 ≡ ct, x1 ≡ x, x2 ≡ y, x3 ≡ z. (12)

We will use Greek indices α, β, µ, ν, etc., denote the
range {0, 1, 2, 3} and use Latin indices i, j, k, etc., denote
the range {1, 2, 3}. We will use Einstein’s summation
convention, that is, any repeated Greek superscript or
subscript appearing in a term of an equation is to be
summed from 0 to 3. We introduce the following defini-
tion of spacetime interval

ds2 = ηµνdx
µdxν , (13)

where ηµν is the metric tensor of the Minkowski space-
time defined by ηµν = diag[1,−1,−1,−1].
Suppose that the Ω(0) substratum is an incompress-

ible viscous fluid. Then, there is no elastic deformation-
s in the fluid and the internal stress states depend on
the instantaneous velocity field. Thus, we can choose
the reference frame SΩ(1) as the co-moving coordinate
system. The internal energy U is the sum of the inter-
nal elastic energy Ue and the dissipative energy Ud, i.e.,
U = Ue + Ud. Since there is no elastic deformations in
the fluid, we have Ue = 0. We introduce the following
definition of deviatoric tensor of strain rate γ̇ij ([39],p.
331)

γ̇ij = Ṡi
j − Ṡk

kδ
i
j , (14)

where Ṡi
j is the tensor of strain rate, Ṡk

k is the rate of

volume change, δij is the Kronecker delta.

Suppose that the rate of dissipative energy U̇d is the
Rayleigh type, then, we have ([39],p. 332)

U̇d = µ0γ̇
i
j γ̇

j
i , (15)

where µ0 is the coefficient of viscosity.
Since the Ω(0) substratum is incompressible, we have

Ṡk
k = 0. Thus, from Eqs. (15) and Eqs. (14), we have

U̇d = µ0Ṡ
i
jṠ

j
i . (16)

In the low velocity limit, i.e., u/c ≪ 1, where u = |u|,
the Lagrangian LΩ(0) for free fields of the Ω(0) substra-
tum can be written as ([39],p. 332)

LΩ(0) =
1

2
ρ0u

2 +

∫ t

t0

U̇d(Ṡ
i
j)dt, (17)

where u = |u|, t0 is an initial time.
Suppose that the Ω(0) substratum is a Newtonian flu-

id and the stress tensor σi
j is symmetric, then we have

([40],p. 46)

σi
j = −pδij + 2µ0Ṡ

i
j , (18)

where p is the pressure of the Ω(0) substratum.
Using Eqs. (18) and Eqs. (16), Eqs. (17) can be written

as

LΩ(0) =
1

2
ρ0u

2 +

∫ t

t0

(σi
j + pδij)

Ṡj
i

2
dt, (19)

For a macroscopic observer, the relaxation time tε of
the Ω(0) substratum is so small that the tensor of strain

rate Ṡi
j may be regarded as a slow varying function of

time, i.e., ∂Ṡi
j/∂t ≪ 1. Thus, in a small time interval

[t0, t], we have Ṡi
j ≥ 0, or, Ṡi

j ≤ 0. Then, it is possible to

choose a value σ̄i
j + p̄δij of σi

j + pδij in the time interval
[t0, t] such that Eqs. (19) can be written as

LΩ(0) =
1

2
ρ0u

2 + (σ̄i
j + p̄δij)

∫ t

t0

Ṡj
i

2
dt. (20)

We introduce the following definition

ψij
△
=

∫ t

t0

Ṡij

2f0
dt, (21)

where f0 is a parameter to be determined.
Using Eqs. (21), Eqs. (20) can be written as

LΩ(0) =
1

2
ρ0u

2 + f0ψ
j
i (σ̄

i
j + p̄δij). (22)

Since the coefficient of viscosity µ0 of the Ω(0) sub-
stratum may be very small, we introduce the following
assumption.
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Assumption 2 In the low velocity limit, i.e., u/c ≪ 1,
where u = |u|, u is the velocity of the Ω(0) substratum, we
suppose that µ0 ≈ 0 and we have the following conditions

ψij ≈ 0, ∂µψij ≈ 0, ∂µ∂νψij ≈ 0, (23)

where

∂µ ≡
(

∂

∂x0
,
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
. (24)

According to the Stokes-Helmholtz resolution theo-
rem, refers to, for instance, [41], every sufficiently s-
mooth vector field can be decomposed into irrotational
and solenoidal parts. Thus, there exists a scalar function
φ and a vector function R such that the velocity field u
of the Ω(0) substratum can be represented by [41]

u = ∇φ+∇×R, (25)

where ∇× φ = 0, ∇ ·R = 0.
We introduce the following definition of a vector func-

tion ξ⃗

∂ξ⃗

∂(ct)
= ∇×R. (26)

Putting Eq. (26) into Eq. (25), we have

u = ∇φ+
∂ξ⃗

∂(ct)
. (27)

Based on Assumption 2 and using Eq. (9) and Eq. (27),
Eq. (22) can be written as

LΩ(0) =
1

2
ρ0u

2 =
1

2
ρ0

(
∇φ+

∂ξ⃗

∂(ct)

)2

=
1

2
ρ0

(
− m0

ρ0q0
∇Φ+

∂ξ⃗

∂(ct)

)2

. (28)

We introduce the following definitions

ψ00 = a00Φ, ψ0i = ψi0 = a0iξi, (29)

ψ⃗0 = ψ01i+ ψ02j+ ψ03k. (30)

where a00 > 0 and a0i > 0 are 4 parameters to be deter-
mined.
Eqs. (29) and Eqs. (21) have defined a rank 2 symmet-

ric tensor ψµν . We require that for some special values
of a00 and a0i, Eq. (28) can be written as

LΩ(0) =

(
m0

q0
√
2ρ0

1

a00
∇ψ00 −

√
ρ0
2

∂(ψ0i/a0i)

∂(ct)
ei
)2

≡

(
∇ψ00 −

∂ψ⃗0

∂(ct)

)2

, (31)

where e1 ≡ i, e2 ≡ j, e3 ≡ k.

Comparing the left- and right-hand parts of Eq. (31),
we have

a00 =

√
m2

0

2ρ0q20
, a0i =

√
ρ0
2
. (32)

In order to construct the Lagrangian LΩ(0) described in
Eq. (31) based on the tensorial potential ψµν , we should
consider all the possible products of derivatives of the
tensor ψµν . If we require that the two tensor indices
of ψµν are different from each other and the two tensor
indices of ψµν are different from the derivative index, we
have the following two possible products ([4], p. 43):

L1 = ∂σψµν∂
σψµν , L2 = ∂σψµν∂

µψσν , (33)

where ψµν = ηµληνσψλσ is the corresponding contravari-
ant tensor of ψµν .

If there are two indices of ψµν which are equal, or one
of the indices of ψµν is the same as the derivative index,
we may have the following three possible products ([4],
p. 43):

L3 = ∂νψ
µν∂σψ

σ
µ, L4 = ∂µψµν∂

νψ, (34)

L5 = ∂λψ∂
λψ. (35)

where ψ is the trace of ψµν , i.e., ψ ≡ ψλ
λ = ηαβψ

αβ ,

∂µ ≡ ηµν∂ν =

(
∂

∂x0
,− ∂

∂x1
,− ∂

∂x2
,− ∂

∂x3

)
. (36)

L3 may be omitted because it can be converted to L2

by integration by parts ([4], p. 43).

Proposition 3 Suppose that we have the following con-
ditions

∂ψ00

∂(ct)
≈ 0,

∂ψ0i

∂xj
≈ 0. (37)

If we set

c1 =
1

2
, c2 = −2, c4 = −6, c5 = −3

2
, (38)

then we have

c1L1 + c2L2 + c4L4 + c5L5 ≈

(
∇ψ00 −

∂ψ⃗0

∂(ct)

)2

=
1

2
ρ0u

2. (39)

Proof of Proposition 3. Based on Eqs. (23) and Eqs.
(37) and noticing ψ00 = ψ00, ψ

0i = −ψ0i, we have

L1 ≈ −(∇ψ00)
2 − 2

(
∂ψ⃗0

∂(ct)

)2

, (40)

L2 ≈ −2(∇ψ00) ·
∂ψ⃗0

∂(ct)
−

(
∂ψ⃗0

∂(ct)

)2

, (41)
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L3 ≈ (∇ψ00) ·
∂ψ⃗0

∂(ct)
, (42)

L4 ≈ −(∇ψ00)
2. (43)

Using Eqs. (40-43) and Eqs. (38), we obtain Eq. (39).
�
Inspired by W. Thirring [34] and R. P. Feynman ([4],

p. 43), we introduce the following assumption.

Assumption 4 The Lagrangian LΩ(0) for free fields of
the Ω(0) substratum can be written as

LΩ(0) = c1L1 + c2L2 + c4L4 + c5L5 + Lmore, (44)

where c1 = 1/2, c2 = −2, c4 = −6, c5 = −3/2,
Lmore denotes those terms involving more than two
derivatives of ψµν .

V. INTERACTION TERMS OF THE
LAGRANGIAN OF A SYSTEM OF THE Ω(0)

SUBSTRATUM, THE Ω(1) SUBSTRATUM AND
MATTER

In order to derive the field equations, we should ex-
plore the possible interaction terms of the Lagrangian of
a system of the Ω(0) substratum, the Ω(1) substratum
and matter. According to Assumption 2, the coefficient
of viscosity µ0 of the Ω(0) substratum may be very s-
mall. Thus, we may regard the Ω(0) substratum as an
ideal fluid approximately. Then from Eq. (25) we have
u = ∇φ. Ignoring the damping force ρ0Qvs in Eq. (3)
and using u = ∇φ, Eq. (3) can be written as

FQ = −ρ0Q∇φ. (45)

A particle is modelled as a point sink of the Ω(0) sub-
stratum [27, 32, 33]. Thus, the interaction term of the
Lagrangian of a system of the Ω(0) substratum and a
particle can be written as

Lint1 = ρ0Qφ. (46)

Therefore, the interaction term of the Lagrangian of
a system of the Ω(0) substratum and continuously dis-
tributed particles can be written as

Lint = −ρ0ρsφ. (47)

Putting Eq. (9) into Eq. (47), we have

Lint = ρmΦ. (48)

The 00 term of the energy-momentum tensor Tm
µν of a

matter system is T 00
m = ρmc

2. Thus, using Eqs. (29), Eq.
(48) can be written as

Lint = f0ψ00T
00
m , (49)

where

f0 =
1

a00c2
. (50)

From Eq. (50), Eq. (32) and Eq. (5), we have

f0 =

√
2ρ0q20
m2

0c
4
=

√
8πγN
c4

,
1

a200
= 8πγN . (51)

Inspired by Eq. (49) and Eq. (22), we introduce the
following assumption.

Assumption 5 The interaction terms of the Lagrangian
of a system of the Ω(0) substratum, the Ω(1) substratum
and matter can be written in the following form:

Lint = f0ψµνT
µν
m + f0ψµνT

µν
Ω(1) +O[(f0ψµν)

2], (52)

where Tµν
m and Tµν

Ω(1) are the contravariant energy-

momentum tensors of the system of the matter and the
Ω(1) substratum respectively, O[(f0ψµν)

2] denotes those
terms which are small quantities of the order of (f0ψµν)

2.

VI. FIELD EQUATIONS IN INERTIAL
REFERENCE FRAMES

Based on Assumptions 4 and 5, the total Lagrangian
Ltot of a system of the Ω(0) substratum, the Ω(1) sub-
stratum and matter can be written as

Ltot =
1

2
∂λψµν∂

λψµν − 2∂λψµν∂
µψλν − 6∂µψµν∂

νψ

−3

2
∂λψ∂

λψ + Lmore + f0ψµν(T
µν
m + Tµν

Ω(1))

+O[(f0ψµν)
2]. (53)

Theorem 6 If we ignore those terms which are small
quantities of the order of (f0ψµν)

2 and those terms in-
volving more than two derivatives of ψµν in Eq. (53),
i.e., O[(f0ψµν)

2] and Lmore, then the field equations for
the total Lagrangian Ltot in Eq. (53) can be written as

∂σ∂
σψαβ − 2(∂σ∂αψβσ + ∂σ∂βψασ)− 6(ηαβ∂σ∂λψ

σλ

+∂α∂βψ)− 3ηαβ∂σ∂
σψ = f0(T

m
αβ + T

Ω(1)
αβ ). (54)

Proof of Theorem 6. We have the following Euler-
Lagrange equations [42]

∂Ltot

∂ψαβ
− ∂

∂xσ

(
∂Ltot

∂(∂σψαβ)

)
= 0. (55)

We can verify the following results ([4], p. 43; [34])

∂

∂xσ

[
∂(∂λψµν∂

λψµν)

∂(∂σψαβ)

]
= 2∂σ∂

σψαβ , (56)

∂

∂xσ

[
∂(∂λψµν∂

µψλν)

∂(∂σψαβ)

]
= ∂σ∂αψβσ + ∂σ∂βψασ,(57)

∂

∂xσ

[
∂(∂µψµν∂

νψ)

∂(∂σψαβ)

]
= ∂α∂βψ + ηαβ∂σ∂λψ

σλ,(58)

∂

∂xσ

[
∂(∂λψ∂

λψ)

∂(∂σψαβ)

]
= 2ηαβ∂σ∂

σψ, (59)

∂Ltot

∂ψαβ
= f0(T

m
αβ + T

Ω(1)
αβ ). (60)
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Putting Eq. (53) into Eqs. (55) and using Eqs. (56-60),
we obtain Eqs. (54). �
For convenience, we introduce the following notation

Ψµν = ∂λ∂
λψµν − 2∂λ∂

µψνλ − 2∂λ∂
νψµλ

−6ηµν∂σ∂λψ
σλ − 6∂µ∂νψ − 3ηµν∂λ∂

λψ.(61)

Thus, the field equations (54) can be written as

Ψµν = f0(T
µν
m + Tµν

Ω(1)). (62)

We introduce the following definition of the total
energy-momentum tensor Tµν of the system of the mat-
ter, the Ω(1) substratum and the Ω(0) substratum

Tµν = Tµν
m + Tµν

Ω(1) + Tµν
Ω(0), (63)

where Tµν
Ω(0) is the energy-momentum tensor of the Ω(0)

substratum.
Adding the term f0T

µν
Ω(0) on both sides of Eqs. (62) and

using Eqs. (63), the field equations (62) can be written
as

Ψµν + f0T
µν
Ω(0) = f0T

µν . (64)

For the total system of matter, the Ω(1) substratum
and the Ω(0) substratum, the law of conservation of en-
ergy and momentum is ([36], p. 169; [38], p. 155)

∂µT
µν = 0. (65)

Comparing Eqs. (65) and Eqs. (64), we have

∂µ(Ψ
µν + f0T

µν
Ω(0)) = 0. (66)

Noticing Eqs. (56-60), we introduce the following no-
tation ([4], p. 43)

Hµν = f1∂λ∂
λψµν + f2(∂λ∂

µψνλ + ∂λ∂
νψµλ)

+f3(∂
µ∂νψ + ηµν∂σ∂λψ

σλ) + f4η
µν∂λ∂

λψ, (67)

where fi, i = 1, 2, 3, 4 are 4 arbitrary parameters.
If we require that

∂µH
µν = 0, (68)

then, we can verify the following relationships ([4], p. 44;
[34])

f1 + f2 = 0, f2 + f3 = 0, f3 + f4 = 0. (69)

We choose f1 = 1, f2 = −1, f3 = 1, f4 = −1 in Eqs.
(67) and introduce the following notation

Θµν = ∂λ∂
λψµν − (∂λ∂

µψνλ + ∂λ∂
νψµλ)

+(∂µ∂νψ + ηµν∂σ∂λψ
σλ)− ηµν∂λ∂

λψ. (70)

We can verify the following result ([4], p. 44; [34])

∂µΘ
µν = 0. (71)

From Eqs. (71) and Eqs. (66), we have

∂µ

(
1

f0
Ψµν − b0

f0
Θµν + Tµν

Ω(0)

)
= 0. (72)

where b0 is an arbitrary parameter.
Noticing Eqs. (72), it is convenient for us to introduce

the following definition of a tensor Tµν
ω

Tµν
ω =

1

f0
Ψµν − b0

f0
Θµν + Tµν

Ω(0), (73)

where b0 is a parameter to be determined.
From Eqs. (72), we have ∂µT

µν
ω = 0. In the present

stage, we have no idea about the physical meaning of the
tensor Tµν

ω . Later, once we have determined the value of
the parameter b0, we may explore the meaning of Tµν

ω .
Using Eqs. (73), the field equations (64) can be written
as

Θµν =
f0
b0

(Tµν − Tµν
ω ). (74)

Now our task is to determine the parameter b0 in the
field equations (74). A natural idea is that the 00 com-
ponent of Eqs. (74) reduces to the field equations (10)
in the case that the velocity of the Ω(0) substratum is
much smaller than c, i.e., in the low velocity limit. Thus,
it is necessary for us to introduce an estimation of the
value of Tµν − Tµν

ω on the right hand side of Eqs. (74)
in the low velocity limit. To this end, we introduce the
following speculation about the interaction between the
Ω(0) substratum and the Ω(1) substratum.

Assumption 7 In the low velocity limit, i.e., u/c ≪ 1,
where u = |u|, u is the velocity of the Ω(0) substratum,
the following relationship is valid

Ψµν − b0Θ
µν ≈ 0, (75)

where b0 is a parameter to be determined.

Using Eqs. (64), Eqs. (73) and Eqs. (75), we have the
following estimation of Tµν−Tµν

ω in the low velocity limit

Tµν − Tµν
ω ≈ Tµν

m + Tµν
Ω(1). (76)

Theorem 8 Suppose that (1) Assumption 7 is valid; (2)
Tµν
Ω(1) ≈ 0. Then, b0 = −1 and the field equations (54)

can be written as

∂λ∂
λψµν − ∂λ∂

µψνλ − ∂λ∂
νψµλ + ∂µ∂νψ

+ηµν∂σ∂λψ
σλ − ηµν∂λ∂

λψ = −f0(Tµν − Tµν
ω ).(77)

Proof of Theorem 8. Noticing Eqs. (70), the 00 com-
ponent of the field equations (74) is

∂λ∂
λψ00 − 2∂λ∂

0ψ0λ + ∂0∂0ψ

+ ∂σ∂λψ
σλ − ∂λ∂

λψ =
f0
b0

(T 00 − T 00
ω ).(78)
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Take the trace of the field equations (74), we have

∂σ∂λψ
σλ − ∂λ∂

λψ =
f0
2b0

(T − Tω), (79)

where T and Tω are the traces of Tµν and Tµν
ω respec-

tively, i.e., T ≡ Tλ
λ = ηαβT

αβ , Tω ≡ T λ
ωλ = ηαβT

αβ
ω .

Subtracting Eq. (79) from Eq. (78), we have

∂λ∂
λψ00 − 2∂λ∂

0ψ0λ + ∂0∂0ψ

=
f0
b0

(
T 00 − T

2
− T 00

ω +
Tω
2

)
. (80)

If the field is time-independent, then Eq. (80) reduces
to

−∇2ψ00 =
f0
b0

(
T 00 − T

2
− T 00

ω +
Tω
2

)
. (81)

According to Eqs. (76), we have the following estima-
tions in the low velocity limit

T 00 − T 00
ω ≈ T 00

m + T 00
Ω(1) = ρmc

2, (82)

T − Tω ≈ Tm + TΩ(1) ≈ ρmc
2, (83)

where Tm is the trace of Tµν
m , i.e., Tm ≡ ηαβT

αβ
m , TΩ(1)

is the trace of Tµν
Ω(1),.

Noticing ψ00 = ψ00 and using Eqs. (29), Eq. (32), Eq.
(51) Eqs. (82) and Eqs. (83), Eq. (81) can be written as

−∇2Φ =
1

b0
4πγNρm. (84)

Comparing Eq. (84) and Eq. (10), we obtain b0 = −1.
Therefore, using Eqs. (70) and b0 = −1, the field equa-
tions (74) can be written as Eqs. (77). �
Now we discuss the physical meaning of Tµν

ω . Noticing
Eqs. (75) and Eqs. (73), we have the following estimation
in the low velocity limit

Tµν
ω ≈ Tµν

Ω(0). (85)

From Eqs. (85), we see that the tensor Tµν
ω is an esti-

mation of Tµν
Ω(0) when the velocity u of the Ω(0) substra-

tum is small comparing to c.
We can verify that the field equations (77) are invariant

under the following gauge transformation ([4], p. 45; [34])

ψµν → ψµν + ∂µΛν + ∂νΛµ, (86)

where Λµ is an arbitrary vector field.
We introduce the following definition

ϕµν = ψµν − 1

2
ηµνψ. (87)

Using Eqs. (87), the field equations (77) can be written
as

∂λ∂
λϕµν − ∂λ∂

µϕνλ − ∂λ∂
νϕµλ

+ ηµν∂σ∂λϕ
σλ = −f0(Tµν − Tµν

ω ). (88)

We introduce the following Hilbert gauge condition [34]

∂µ

(
ψµν − 1

2
ηµνψ

)
= 0. (89)

Using Eqs. (87), the Hilbert gauge condition Eqs. (89)
simplifies to

∂µϕ
µν = 0. (90)

Applying Eqs. (90) in Eqs. (88), we obtain the follow-
ing proposition [34].

Proposition 9 If we impose the Hilbert gauge condition
Eqs. (89) on the fields, then, the field equations (77)
simplifies to

∂λ∂
λ

(
ψµν − 1

2
ηµνψ

)
= −f0(Tµν − Tµν

ω ). (91)

If the tensorial potential ψµν does not satisfy the
Hilbert gauge condition Eqs. (89), then we can always
construct a new tensorial potential ψ̄µν by the following
gauge transformation [34]

ψ̄µν = ψµν + ∂µΛν + ∂νΛµ, (92)

such that the new tensorial potential ψ̄µν does satisfy the
Hilbert gauge condition Eqs. (89).

Using Eqs. (87), the field equations (91) can be written
as

∂λ∂
λϕµν = −f0(Tµν − Tµν

ω ). (93)

The field equations (93) can also be written as

ηαβ
∂2ϕµν

∂xα∂xβ
= −f0(Tµν − Tµν

ω ). (94)

We noticed that the tensorial field equations (94) are
similar to the wave equations of electromagnetic fields.

VII. CONSTRUCTION OF A TENSORIAL
POTENTIAL IN INERTIAL REFERENCE

FRAMES

The existence of the Ω(1) substratum allows us to
introduce the following definition of inertial reference
frames.

Definition 10 If a coordinates system S is static or
moving with a constant velocity relative to the reference
frame SΩ(1), then, we call such a coordinates system as
an inertial reference frame.

The field equations (88) and Eqs. (91) are valid in
the reference frame SΩ(1). We will explore the possi-
bility of constructing a tensorial potential in an arbi-
trary inertial system S′. In an inertial reference frame

8



S, an arbitrary event is characterized by the four s-
pacetime coordinates (t, x, y, z). In an inertial system
S′, this event is characterized by four other coordinates
(t′, x′, y′, z′). We assume that the origins of the Carte-
sian coordinates in the two inertial systems S and S′

coincide at the time t = t′ = 0. Then, the connec-
tions between these spacetime coordinates are given by a
homogeneous linear transformation keeping the quantity
s2 = c2t2 − x2 − y2 − z2 invariant, i.e., ([36], p. 90)

s2 = c2t2−x2−y2−z2 = c2t′2−x′2−y′2−z′2 = s′2. (95)

We introduce the following two coordinate systems

x0 = ct, x1 = x, x2 = y, x3 = z,

x′0 = ct′, x′1 = x′, x′2 = y′, x′3 = z′. (96)

The homogeneous linear transformation keeping the
quantity s2 invariant, which is usually called the Lorentz
transformation, can be written as ([43], p. 57; [36], p. 90)

x′µ = aµνx
ν , (97)

where aµν are coefficients depend only on the angles be-
tween the spatial axes in the two inertial systems S and
S′ and on the relative velocity of S and S′.
Applying the standard methods in theory of special

relativity [36], we have the following results.

Proposition 11 Suppose that the field equations (93) is
valid in the the reference frame SΩ(1). Then, in an arbi-
trary inertial system S′, there exists a symmetric tensor
ϕ′µν satisfies the following wave equation

∂′λ∂
′λϕ′µν = −f0(T ′µν − T ′µν

ω ), (98)

where T ′µν and T ′µν
ω are corresponding tensors of Tµν

and Tµν
ω in the arbitrary inertial reference frame S′ re-

spectively.

Proposition 12 Suppose that the field equations (88) is
valid in the reference frame SΩ(1). Then, in an arbitrary
inertial system S′, there exists a symmetric tensor ϕ′µν
satisfies the following field equation

∂′λ∂
′λϕ′µν − ∂′λ∂

′µϕ′νλ − ∂′λ∂
′νϕ′µλ

+ ηµν∂′σ∂
′
λϕ

′σλ = −f0(T ′µν − T ′µν
ω ).(99)

VIII. THE EQUATIONS OF MOTION OF A
POINT PARTICLE IN A GRAVITATIONAL

FIELD AND INTRODUCTION OF AN
EFFECTIVE RIEMANNIAN SPACETIME

In this section, we study the equations of motion of
a free point particle in a gravitational field. The La-
grangian of a free point particle can be written as ([4], p.
57;[34])

L0 =
1

2
m
dxµ

dτ

dxµ
dτ

=
1

2
muµuµ =

1

2
mηµνu

µuν , (100)

where m is the rest mass of the point particle, dτ ≡
1
c

√
dxµdxµ is the infinitesimal proper time interval, uµ ≡

dxµ/dτ .
Suppose that Tµν

Ω(1) ≈ 0. Ignoring those higher terms

O[(f0ψµν)
2] in Eq. (52), the interaction term of the La-

grangian of a system of the Ω(0) substratum, the Ω(1)
substratum and the point particle can be written in the
following form ([4], p. 57;[34])

Lint = f0ψµνmu
µuν . (101)

Using Eq. (101) and Eq. (100), the total Lagrangian Lp

of a system of the Ω(0) substratum, the Ω(1) substratum
and the point particle can be written as ([4], p. 57)

Lp = L0 + Lint =
1

2
muµuµ + f0ψµνmu

µuν . (102)

The Euler-Lagrange equations for the total Lagrangian
Lp can be written as ([43],p. 111)

d

dτ

[
(ηµν + 2f0ψµν)

dxν

dτ

]
−f0

∂ψαβ

∂xµ
dxα

dτ

dxβ

dτ
= 0. (103)

We notice that the equations of motion (103) of a point
particle in gravitational field are similar to the equations
of a geodesic line (105) in a Riemannian spacetime. Thus,
it is natural for us to introduce the following definition
of a metric tensor gµν of a Riemannian spacetime ([4], p.
57)

gµν = ηµν + 2f0ψµν . (104)

Then, the equations of motion (103) can be written
as ([4], p. 58)

d

dτg

(
gµν

dxν

dτg

)
=

1

2

∂gαβ
∂xµ

dxα

dτg

dxβ

dτg
, (105)

where dτg is the infinitesimal proper time interval in the
Riemannian spacetime with a metric tensor gµν .

Eqs. (105) represent a geodesic line in a Riemannian
spacetime with a metric tensor gµν , which can also be
written as ([44], p. 51)

d2xµ

dτ2g
+ Γµ

νσ

dxν

dτg

dxσ

dτg
= 0, (106)

where

Γν
αβ

△
=

1

2
gµν

(
∂gµα
∂xβ

+
∂gµβ
∂xα

− ∂gαβ
∂xµ

)
(107)

are the Christoffel symbols.
Thus, we find that the equations of motion (103) of a

point particle in gravitational field represent a geodesic
line described in Eqs. (106) in a Riemannian spacetime
with a metric tensor gµν .

According to Assumption 1, the particles that consti-
tute the Ω(1) substratum are sinks in the Ω(0) substra-
tum. Thus, the movements of the Ω(1) substratum in
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gravitational field will be different from the Maxwell’s e-
quations. We notice that the equations of motion of a
point particle in gravitational field (105) are generaliza-
tions of the equations of motion of a point particle in
vacuum free of gravitational field. The law of propaga-
tion of an electromagnetic wave front in vacuum free of
gravitational field is Eqs. (11). Thus, the law of propa-
gation of an electromagnetic wave front in gravitational
field may be a kind of generalization of Eq. (11). There-
fore, we introduce the following assumption.

Assumption 13 To first order of f0ψµν , the law
of propagation of an electromagnetic wave fron-
t ω(x0, x1, x2, x3) in gravitational field is

gµν
∂ω

∂xµ
∂ω

∂xν
= 0, (108)

where ω(x0, x1, x2, x3) is the electromagnetic wave front,
gαβ is the metric tensor defined in Eqs. (104).

The measurements of spacetime intervals are carried
out using light rays and point particles, which are only
subject to inertial force and gravitation. Thus, according
to Eqs. (105) and Eq. (108), the physically observable
metric of spacetime, to first order of f0ψµν , is gµν . Thus,
the initial flat background spacetime with metric ηµν is
no longer physically observable [34].
If we can further derive the Einstein’s equations (1)

using the definition (104) of a metric tensor gµν of a Rie-
mannian spacetime, then, we may provide a geometrical
interpretation of Einstein’s theory of gravitation based
on the theory of vacuum mechanics [27, 32, 33]. This is
the task of the next section.

IX. GENERALIZED EINSTEIN EQUATIONS IN
INERTIAL REFERENCE FRAMES

Definition 14 The Einstein tensor Gµν is defined by

Gµν
△
= Rµν − 1

2
gµνR, (109)

where gµν is a metric tensor of a Riemannian space-

time, Rµν is the Ricci tensor, R
△
= gµνRµν , g

µν is
the corresponding contravariant tensor of gµν such that
gµλg

λν = δνµ = gνµ ([44], p. 40).

According to the geometrical interpretation of some
theories of gravitation in flat spacetime [34], the phys-
ically observable metric gµν of spacetime in Eqs. (104)
can be written as

gµν = ηµν − 2f0ψ
µν +O[(f0ψ

µν)2]. (110)

Following the clue showed in Eqs. (110) and noticing
the methods of S. N. Gupta [45] and W. Thirring [34],
we introduce the following definition of a metric tensor
of a Riemannian spacetime.

Definition 15

g̃µν
△
=

√
−g0gµν

△
= ηµν − 2f0ϕ

µν , (111)

where g0 = Det gµν .

We have the following expansion of the contravariant
metric tensor gµν [45]

gµν = ηµν − 2f0ϕ
µν + f0η

µνηαβϕ
αβ

−2f20 ηαβϕ
αβϕµν + f20 η

µνηασηβλϕ
αβϕλσ

+
1

2
f20 η

µνηαβηλσϕ
αβϕλσ +O[(f0ϕ

µν)3].(112)

Definition 16 If ϕµν and their first and higher deriva-
tives satisfy the following conditions

|2f0ϕµν | ≪ 1, (113)∣∣∣∣∂n(2f0ϕµν)∂(xα)n

∣∣∣∣≪ 1, n = 1, 2, 3, · · · (114)

then we call this field ϕµν weak.

For weak fields, ψ ≈ ϕ ≈ 0. Thus, ϕµν = ψµν − 1/2 ·
ηµνψ ≈ ψµν . From Eqs. (112), we see that the definition
(111) is compatible with Eqs. (110).

Theorem 17 Suppose that Assumption 7 is valid. Then,
in an arbitrary inertial reference frame Si, we have the
following field equations

Gµν − 1

2g0

(√
−g0gαβ − ηαβ

) ∂2(√−g0gµν)
∂xα∂xβ

−
√
−g0
2g0

(∂λ∂
µgνλ + ∂λ∂

νgµλ − ηµν∂σ∂λg
σλ)

− Πµ,αβΠν
αβ +

1

2
yµyν − 1

2
gµν(L+B)

+ Bµν =
f20
g0

(Tµν − Tµν
ω ), (115)

where Tµν is the contravariant total energy-momentum
tensor of the system of the matter, the Ω(1) substratum
and the Ω(0) substratum in the inertial reference frame
Si, T

µν
ω is the contravariant energy-momentum tensor of

vacuum in the low velocity limit in Si,

Πµ,αβ △
=

1

2g0

(
g̃αλ

∂g̃µβ

∂xλ
+ g̃βλ

∂g̃µα

∂xλ
− g̃µλ

∂g̃αβ

∂xλ

)
,

(116)

Πν
αβ

△
= gαλgβσΠ

ν,λσ, (117)

Γα △
= gσλΓα

σλ, (118)

Γµν △
=

1

2

(
gµα

∂Γν

∂xα
+ gνα

∂Γµ

∂xα
− ∂gµν

∂xα
Γα

)
, (119)
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yβ
△
=
∂(lg

√
−g0)

∂xβ
, yα

△
= gαβyβ , (120)

L
△
= −1

2
Γν
αβ

∂gαβ

∂xν
− Γα ∂(lg

√
−g0)

∂xα
, (121)

Bµν △
= Γµν +

1

2
(yµΓν + yνΓµ), B

△
= gµνB

µν . (122)

Proof of Theorem 17. According to a theorem of V.
Fock ([37], p. 429), the contravariant Einstein tensor Gµν

can be written as

Gµν =
1

2g0
g̃αβ

∂2g̃µν

∂xα∂xβ
+Πµ,αβΠν

αβ − 1

2
yµyν

+
1

2
gµν(L+B)−Bµν . (123)

Applying Eqs. (111), Eqs. (123) can be written as

Gµν =
1

2g0

(√
−g0gαβ − ηαβ

) ∂2(−2f0ϕ
µν)

∂xα∂xβ

−f0
g0
ηαβ

∂2ϕµν

∂xα∂xβ
+Πµ,αβΠν

αβ

−1

2
yµyν +

1

2
gµν(L+B)−Bµν . (124)

Noticing Eqs. (111), the field equations (99) can be
written as

ηαβ
∂2ϕµν

∂xα∂xβ
= −

√
−g0
2f0

(
∂λ∂

µgνλ + ∂λ∂
νgµλ

− ηµν∂σ∂λg
σλ
)
− f0(T

µν − Tµν
ω ). (125)

Using Eqs. (111) and Eqs. (125), Eqs. (124) can be
written as

Gµν =
1

2g0

(√
−g0gαβ − ηαβ

) ∂2(√−g0gµν)
∂xα∂xβ

+

√
−g0
2g0

(∂λ∂
µgνλ + ∂λ∂

νgµλ − ηµν∂σ∂λg
σλ)

+
f20
g0

(Tµν − Tµν
ω ) + Πµ,αβΠν

αβ − 1

2
yµyν

+
1

2
gµν(L+B)−Bµν . (126)

Eqs. (126) can be written as Eqs. (115). �
Eqs. (115) have the same form in all inertial reference

frames. Eqs. (115) is one of the main results in this
manuscript. We need to further study the relationship
between Eqs. (115) and the Einstein field equations (1).

Theorem 18 If we impose the Hilbert gauge Eqs. (89)
on the fields, then in an arbitrary inertial reference frame
Si we have the following field equations

Gµν − 1

2g0

(√
−g0gαβ − ηαβ

) ∂2(√−g0gµν)
∂xα∂xβ

− Πµ,αβΠν
αβ +

1

2
yµyν − 1

2
gµν(L+B)

+ Bµν =
f20
g0

(Tµν − Tµν
ω ). (127)

Proof of Theorem 18. Using Eqs. (111) and Eqs. (98),
Eqs. (124) can be written as

Gµν =
1

2g0

(√
−g0gαβ − ηαβ

) ∂2(√−g0gµν)
∂xα∂xβ

+
f20
g0

(Tµν − Tµν
ω ) + Πµ,αβΠν

αβ − 1

2
yµyν

+
1

2
gµν(L+B)−Bµν . (128)

Eqs. (128) can be written as Eqs. (127). �

Definition 19 If each of the coordinates xα satisfies the
following generalized wave equations

1√
−g0

∂

∂xµ

(√
−g0gµν

∂xα

∂xν

)
= 0, (129)

then, we call such a coordinates system harmonic.

In a harmonic coordinates system, we have ([37], p.
254)

Γν = Γµν = Bµν = B = 0. (130)

Putting Eqs. (130) into Eqs. (127), we have the follow-
ing corollary.

Corollary 20 If we apply the Hilbert gauge Eqs. (89)
and the coordinates system is harmonic, then the field
equations (127) can be written as

Gµν − 1

2g0

(√
−g0gαβ − ηαβ

) ∂2(√−g0gµν)
∂xα∂xβ

− Πµ,αβΠν
αβ +

1

2
yµyν − 1

2
gµνL

=
f20
g0

(Tµν − Tµν
ω ). (131)

We can verify that each of the Galilean coordinates
is harmonic. Any constant and any linear function of
harmonic coordinates satisfy Eqs. (129). Thus, from Eqs.
(97) we see that an inertial reference frame is harmonic
and Eqs. (131) are valid for every inertial system. In
order to study the case of weak fields in inertial systems,
we introduce the following assumption.

Assumption 21 Suppose that the dimensionless param-
eter ϖ = m0c/2ρ0q0 satisfies the following condition

ϖ =
m0c

2ρ0q0
≤ 1. (132)

Using the 00 component of Eqs. (114) for the case n =
1 and noticing Eqs. (87), Eqs. (29), Eqs. (51) and Eqs.
(9), we have∣∣∣∣∂(2f0ϕ00)∂(xα)

∣∣∣∣ = ∣∣∣∣2ρ0q0m0c2
∂φ

∂xα

∣∣∣∣≪ 1. (133)

Noticing Eq. (27) and using Eq. (133) and Eq. (132),
we have |u| ≈ |∇φ| ≪ m0c

2/(2ρ0q0) ≤ c. Therefore,
according to Assumption 7, Eqs. (75) and Eqs. (76) are
valid for weak fields.
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Corollary 22 Suppose that (1) the Hilbert gauge Eqs.
(89) is applied on the fields; (2) the filed is weak; (3)
Assumption 7 is valid. Then in an arbitrary inertial ref-
erence frame the field equations (131) reduce to

Rµν − 1

2
gµνR =

f20
g0

(
Tm
µν + TΩ(1)

µν

)
. (134)

Proof of Corollary 22. According to Definition 16,
f0ϕ

µν and their first and higher derivatives are small
quantities of order ε, where |ε| ≪ 1 is a small quanti-
ty. Thus, using Eqs. (111) and Eqs. (112), we have the
following estimation of the order of magnitude of the fol-
lowing quantities

√
−g0gµν − ηµν ∼ ε,

∂gµν
∂xα

∼ ∂gµν

∂xα
∼ ε. (135)

From Eqs. (111), we have the following estimation of
the order of magnitude of the quantity

∂2(
√
−g0gαβ)

∂xα∂xβ
=
∂2(−2f0ϕ

µν)

∂xα∂xβ
∼ ε. (136)

Thus, using Eqs. (135) and Eqs. (136), we have the fol-
lowing estimation of the order of magnitude of the quan-
tity

(√
−g0gαβ − ηαβ

) ∂2(√−g0gαβ)
∂xα∂xβ

∼ ε2. (137)

From Eqs. (116) and Eqs. (117), we have the follow-
ing estimation of the order of magnitude of the following
quantities

Πµ,αβ ∼ Πν
αβ ∼ ε. (138)

Using Eqs. (120), we have the following relationship
([37], p. 143)

yβ = Γν
βν . (139)

We also have ([37], p. 143)

Γν
βν =

1

2
gµν

∂gµν
∂xβ

. (140)

From Eqs. (139), Eqs. (140) and Eqs. (135), we have
the following estimation of the order of magnitude

yβ ∼ ε. (141)

Using Eqs. (120) and Eqs. (141), we have the following
estimation of the order of magnitude

yα ∼ ε. (142)

From Eq. (121) and Eqs. (130), we have

L = −1

2
Γν
αβ

∂gαβ

∂xν
. (143)

Using Eq. (143), Eqs. (107) and Eqs. (135), we have
the following estimation of the order of magnitude

L ∼ ε2. (144)

From Eqs. (137), Eqs. (138), Eqs. (142) and Eq. (144),
we see that the second to the fifth term on the right side
of Eqs. (131) are all small quantities of order ε2. Ignoring
all these small quantities of order ε2 in Eqs. (131) and
using Eqs. (76), we obtain

Gµν ≈ f20
g0

(
Tµν
m + Tµν

Ω(1)

)
. (145)

Applying the rules of lowering or raising the indexes
of tensors, i.e., Gµν = gµσgνλGσλ, T

µν
m = gµσgνλTm

σλ,

Tµν
Ω(1) = gµσgνλT

Ω(1)
σλ , Eqs. (145) can be written as

Gλσ ≈ f20
g0

(
Tm
σλ + T

Ω(1)
σλ

)
. (146)

Putting Eqs. (109) into Eqs. (146), we obtain Eqs.
(134). �

Corollary 23 Suppose that the following conditions are
valid: (1) the Hilbert gauge Eqs. (89) is applied on the
fields; (2) the filed is weak; (3) g0 ≈ −1; (4) Assumption

7 is valid; (5) T
Ω(1)
µν ≈ 0. Then in an arbitrary inertial

reference frame the field equation Eqs. (134) reduce to

Rµν − 1

2
gµνR = −f20Tm

µν . (147)

If we introduce the following notation

κ = f20 =
8πγN
c4

, (148)

then, Eqs. (147) coincide with Einstein’s equations (1).
Thus, we see that the field equations (115) are generaliza-
tions of the Einstein’s equations (1) in inertial reference
frames.

X. EQUIVALENCE BETWEEN THE INERTIAL
MASS AND THE GRAVITATIONAL MASS

Proposition 24 The inertial mass of a microscope par-
ticle equals it’s gravitational mass.

Proof of Proposition 24. Newton’s law of gravitation
can be written as ([43], p. 2)

F21 = −GN
mg1mg2

r2
r̂21, (149)

where mg1 and mg2 are the gravitational masses of t-
wo particles, GN is Newton’s gravitational constant, ˆr21
denotes the unit vector directed outward along the line
from the particle with massmg1 to the particle with mass
mg2, r is the distance between the two particles,.
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In 2008, we show that the force F21(t) exerted on the
particle with inertial mass mi2(t) by the velocity field of
the Ω(0) substratum induced by the particle with inertial
mass mi1(t) is [27]

F21(t) = −γN (t)
mi1(t)mi2(t)

r2
r̂21, (150)

where

γN (t) =
ρ0q

2
0

4πm2
0(t)

, (151)

ρ0 is the density of the Ω(0) substratum or we say the
gravitational aether, m0(t) is the inertial mass of monad
at time t, −q0(q0 > 0) is the strength of a monad.
Suppose that GN = γN (t). Comparing Eq. (149) and

Eq. (150), we have

mi1mi2 = mg1mg2. (152)

Now we study a gravitational system of two protons.
According to Eq. (152), we have

m2
ip = m2

gp, (153)

wheremip andmgp are the inertial mass and gravitation-
al mass of a proton respectively.
Noticing mip > 0 and mgp > 0, Eq. (153) can be writ-

ten as

mip = mgp. (154)

Eq. (154) shows the inertial mass mip of a proton
equals it’s gravitational mass mgp. Similarly, we can
demonstrate that the inertial mass of another type of
microscope particle equals it’s gravitational mass. �
This result is called the principle of equivalence in the

theory of general relativity [1, 2, 36].

XI. THE DYNAMICAL GRAVITATIONAL
POTENTIALS IN INERTIAL REFERENCE

FRAMES

The purpose of this section is to review the mathe-
matical forms of the dynamical gravitational potentials
in inertial reference frames. These results may provide
us some clues to explore possible mathematical model-
s of inertial potential and inertial force Lagrangian in
non-inertial reference frames, which are introduced in the
next section.
The definition of the strength g of a gravitational field

is ([44], p. 24)

g =
Fg

mtest
, (155)

where mtest is the mass of a test point particle, Fg is the
gravitational force exerted on the test point particle by
a gravitational field.

According to Newton’s second law, we have

Fg = mtesta, (156)

where a is the acceleration of the test point particle.
Comparing Eq. (156) and Eq. (155), we have

g = a. (157)

The definition of the acceleration a is ([44], p. 24)

ai = γik
d2xk

dt2
, (158)

where

γik = −gik +
g0ig0k
g00

. (159)

Based on the time tracks of free particles described
by geodesic curves in Minkowski spacetime, we have the
following results ([36], p. 279;[44], p. 26)

ai = − ∂Π

∂xi
− c

√
1 +

2Π

c2
∂γi
∂t

, (160)

where

Π = −1− g00
2

c2, γi = − gi0√
g00

. (161)

Eqs. (160) can also be written as

ai = −c2 ∂

∂xi

(
−1− g00

2

)
− c2

∂(−gi0)
∂(ct)

. (162)

XII. INERTIAL POTENTIAL AND INERTIAL
FORCE LAGRANGIAN IN NON-INERTIAL

REFERENCE FRAMES

According to the theory of general relativity [1, 2], the
Einstein’s equations are valid not only in inertial refer-
ence frames and but also in non-inertial reference frames.
Thus, it is needed to explore the possibility to derive the
Einstein’s equations in non-inertial reference frames.

When solving the Einstein’s equations for an isolated
system of masses, V. Fock introduces harmonic reference
frame and obtains an unambiguous solution ([37], p. 369).
Furthermore, in the case of an isolated system of mass-
es, he concludes that there exists a harmonic reference
frame which is determined uniquely apart from a Lorentz
transformation if suitable supplementary conditions are
imposed ([37], p. 373). It is known that wave equations
keep the same form under Lorentz transformations [36].
Thus, we speculate that Fock’s special harmonic refer-
ence frames may have provided us a clue to derive the
Einstein’s equations in some special class of non-inertial
reference frames.

We introduce an arbitrary coordinate system
(x′0, x′1, x′2, x′3) and denote it as Sn. It is known

13



that a particle in a non-inertial reference frame will
experiences an inertial force. Unfortunately, we have no
knowledge about the origin of inertial forces.
The equivalence between inertial mass and gravitation-

al mass implies that to some degree gravitational forces
behave in the same way as inertial forces that result from
non-inertial reference frames ([43], p. 17). Thus, we spec-
ulate that inertial forces may originate from the interac-
tions between matter systems and vacuum. Therefore,
we introduce the following assumption.

Assumption 25 The inertial force exerted on a matter
system in a non-inertial reference frame stems from the
interactions between the matter system and vacuum.

Based on Assumption 25, we introduce the following
concepts for inertial forces, which are similar to those
concepts for gravitational interactions.

Definition 26 Inertial potential ψiner
µν is an interaction

potential between a matter system and vacuum resulting
from the inertial force Finer exerted on the matter system
by vacuum in a non-inertial reference frame Sn.

Definition 27 Inertial force Lagrangian Liner is an in-
teraction Lagrangian between a matter system and vac-
uum resulting from the inertial force Finer exerted on
the matter system by vacuum in a non-inertial reference
frame Sn.

Now our task is to explore possible expressions of in-
ertial potential ψiner

µν and inertial force Lagrangian Liner.
Similar to Eqs. (162), the inertial acceleration a of a test
point particle in the non-inertial reference frame Sn can
be written as

ai = −c2 ∂

∂x′i

(
−1− η′00

2

)
− c2

∂(−η′i0)
∂(x′0)

, (163)

where η′µν is the corresponding metric tensor of the non-
inertial reference frame Sn.
If η′i0 are time-independent, the inertial acceleration a

of the test point particle in Eqs. (163) simplifies to ([36],
p. 280)

ai = −c2 ∂

∂x′i

(
−1− η′00

2

)
. (164)

Using Eqs. (164), the inertial force Finer exerted on
the test point particle can be written as

Finer = ma = −mc2∇′
(
−1− η′00

2

)
, (165)

where m is the mass of the test point particle, ∇′ =
i′∂/∂x

′1 + j′∂/∂x
′2 + k′∂/∂x

′3 is the corresponding
Hamilton operator in the non-inertial reference frame
(x′0, x′1, x′2, x′3).
From Eq. (165), the inertial force Lagrangian of a sys-

tem of vacuum and the test point particle can be written
as

Liner1 = mc2
(
−1− η′00

2

)
. (166)

Therefore, the inertial force Lagrangian of a system
of vacuum and continuously distributed particles can be
written as

Liner = ρmc
2

(
−1− η′00

2

)
. (167)

Noticing T 00
m = ρmc

2 and η00 = 1, the inertial force
Lagrangian Liner in Eq. (167) can be written as

Liner = f0ψ
iner
00 T 00

m , (168)

where

ψiner
00 = − 1

2f0
(η00 − η′00). (169)

Following Ref. [46], the parameter f0 is

f0 =

√
2ρ0q20
m2

0c
4
=

√
8πγN
c4

. (170)

Inspired by Eqs. (168) and Eq. (169), we introduce the
following assumption.

Assumption 28 Suppose that the inertial force La-
grangian Liner of a system of a free point particle and
vacuum in the non-inertial reference frame Sn can be
written as

Liner = f0ψ
iner
µν mu′µu′ν , (171)

where m is the rest mass of the point particle, u′µ ≡
dx

′µ/dτη′ , τη′ is the proper time,

ψiner
µν = − 1

2f0
(ηµν − η′µν). (172)

Following similar methods in [46], we obtain the fol-
lowing result.

Proposition 29 Suppose that Assumption 28 is valid.
Then, the equations of motion of a free point particle can
be written as

d2x
′µ

dτ2η′
+ C

′µ
νσ

dx
′ν

dτη′

dx
′σ

dτη′
= 0, (173)

where

C
′ν
αβ

△
=

1

2
η

′µν

(
∂η′µα
∂x′β

+
∂η′µβ
∂x′α

−
∂η′αβ
∂x′µ

)
(174)

are the corresponding Christoffel symbols in the non-
inertial reference frame Sn.

Proof of Proposition 29. The Lagrangian of a free
point particle in Sn can be written as ([4], p. 57;[34])

L′
0 =

1

2
m
dx

′µ

dτη′

dx′µ
dτη′

=
1

2
mu

′µu′µ =
1

2
mη′µνu

′µu
′ν , (175)
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where m is the rest mass of the point particle, dτ ≡
1
c

√
dx′µdx′µ is the infinitesimal proper time interval,

u
′µ ≡ dx

′µ/dτη′ .

Suppose that T
′µν
Ω(1) ≈ 0. Using Eq. (175) and Eq.

(171), the total Lagrangian Lp of a system of the Ω(0)
substratum, the Ω(1) substratum and the point particle
can be written as

Lp = L′
0 + Liner =

1

2
mu′µu′µ + f0ψ

iner
µν mu′µu′ν . (176)

The Euler-Lagrange equations for the total Lagrangian
Lp can be written as ([43], p. 111)

∂Lp

∂x′µ
− d

dτη′

∂Lp

∂u′µ
= 0. (177)

Putting Eq. (176) into Eqs. (177), we have

d

dτη′

[(
ηµν + 2f0ψ

iner
µν

) dx′ν

dτη′

]
− f0

∂ψiner
αβ

∂x′µ

dx
′α

dτη′

dx
′β

dτη′
= 0.

(178)
Using Eq. (172), Eqs. (178) can be written as

d

dτη′

(
η′µν

dx
′ν

dτη′

)
− 1

2

∂η′αβ
∂x′µ

dx
′α

dτη′

dx
′β

dτη′
= 0. (179)

Eqs. (179) represent a geodesic line in a Riemannian
spacetime with a metric tensor η′µν , which can also be
written as Eqs. (173) ([44], p. 50). �
Eqs. (173) is a geodesic curve in a Minkowski space-

time. It is known that a geodesic curve is a straight line
in a Minkowski spacetime ([47], p. 235). For instance, ac-
cording to Newton’s first law, a free particle moves along
a straight line in the Galilean coordinates. Therefore,
Assumption 28 may be supports by some experiments.
Thus, inspired by the inertial force Lagrangian for a free
point particle in Eq. (171), we introduce the following
assumption for a matter system.

Assumption 30 The inertial force Lagrangian Liner of
a matter system and vacuum in the non-inertial reference
frame Sn can be written as

Liner = f0ψ
iner
µν (T

′µν
m + T

′µν
Ω(1)) +O[(f0ψ

iner
µν )2], (180)

where T
′µν
m and T

′µν
Ω(1) are the contravariant energy-

momentum tensors of the system of the matter and
the Ω(1) substratum respectively, O[(f0ψ

iner
µν )2] denotes

those terms which are small quantities of the order of
(f0ψ

iner
µν )2.

XIII. FIELD EQUATIONS IN A SPECIAL
CLASS OF NON-INERTIAL REFERENCE

FRAMES

Suppose that the transformation equations between a
non-inertial coordinate system (x′0, x′1, x′2, x′3) and

the Galilean coordinates (ct, x, y, z) are

x′α = fα(x0, x1, x2, x3). (181)

Following V. Fock ([37], p. 370-373), we introduce the
following definition of a special class of reference frames.

Definition 31 Suppose that a coordinate system
(x′0, x′1, x′2, x′3) satisfies the following conditions: (1)
every coordinates x′α satisfies the d’Alembert’s equation
([37], p. 369), i.e.,

�η′x′α , 1√
−η′0

∂

∂x′µ

(√
−η′0η′µν

∂x′α

∂x′ν

)
= 0, (182)

where η′µν is the metric of the reference frame Sn, η
′
0 =

Det η′µν ; (2) every coordinates x′α converges to the
Galilean coordinates (ct, x, y, z) at large enough distance,
i.e.,

lim
r→∞

x′α = xα, (183)

where r =
√
x2 + y2 + z2; (3) η′µν−(η′µν)∞ are outgoing

waves, i.e., η′µν − (η′µν)∞ satisfy the following condition
of outward radiation: for r → ∞, and all values of t′0 =
t+r/c in an arbitrary fixed interval the following limiting
conditions are satisfied ([37], p. 365)

lim
r→∞

[
∂[r(η′µν − (η′µν)∞)]

∂r
+

1

c

∂[r(η′µν − (η′µν)∞)]

∂t

]
= 0,

(184)
where (η′µν)∞ denotes the value of η′µν at infinity. Then,
we call this coordinate system (x′0, x′1, x′2, x′3) as a
Fock coordinate system.

We use SF to denote a Fock coordinate system. The
Galilean coordinate system (ct, x, y, z) is a Fock coordi-
nate system. V. Fock points out an advantage of Fock co-
ordinate system:”When solving Einstein’s equations for
an isolated system of masses we used harmonic coordi-
nates and in this way obtained a perfectly unambiguous
solution.” ([37], p. 369) Here the harmonic coordinates
called by V. Fock are Fock coordinate systems.

According to a theorem of Fock about Fock coordinate
systems ([37], p. 369-373), the transformation equations
(181) from one Fock coordinate system to another can be
written as a Lorentz transformation, i.e.,

x′µ = aµνx
ν , (185)

where aµν are coefficients of a Lorentz transformation.
For convenience, we introduce the following noatons

∂′µ ≡
(

∂

∂x′0
,
∂

∂x′1
,
∂

∂x′2
,
∂

∂x′3

)
, ∂

′µ ≡ η
′µν∂′ν . (186)

Proposition 32 Suppose that the reference frame SF is
a Fock coordinate system and Assumptions 30 is valid,
then the total Lagrangian L′

tot of a system of the Ω(0)
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substratum, the Ω(1) substratum, vacuum and matter in
SF can be written as

L′
tot =

1

2
∂′λψ

′
µν∂

′λψ
′µν − 2∂′λψ

′
µν∂

′µψ
′λν − 6∂

′µψ′
µν∂

′νψ′

−3

2
∂′λψ

′∂
′λψ′ + L′

more + f0ψ
′
µν(T

′µν
m + T

′µν
Ω(1))

+f0ψ
iner
µν (T

′µν
m + T

′µν
Ω(1)) +O[(f0ψ

iner
µν )2]

+O[(f0ψ
′
µν)

2], (187)

where L′
more denotes those terms involving more than t-

wo derivatives of ψ′
µν , O[(f0ψ

′
µν)

2] denotes those terms

which are small quantities of the order of (f0ψ
′
µν)

2.

Proof of Proposition 32. Based on some assumptions,
the total Lagrangian Ltot of a system of the Ω(0) substra-
tum, the Ω(1) substratum and matter can be written as
[46]

Ltot =
1

2
∂λψµν∂

λψµν − 2∂λψµν∂
µψλν − 6∂µψµν∂

νψ

−3

2
∂λψ∂

λψ + Lmore + f0ψµν(T
µν
m + Tµν

Ω(1))

+O[(f0ψµν)
2]. (188)

The total Lagrangian L′
tot can be written as

L′
tot = Ltot + Liner. (189)

Similar to the case of inertial reference frames ([43], p.
59-60, 63), we also have the following results in the Fock
coordinate system SF

∂′λ = a σ
λ ∂σ, ∂

′λ = aλσ∂
σ, (190)

ψ
′µν = aµαa

ν
βψ

αβ , (191)

ψ′
µν = a α

µ a β
ν ψαβ . (192)

The first term on the right hand side of Eqs. (187) can
be written as

1

2
∂′λψ

′
µν∂

′λψ
′µν =

1

2
(a σ

λ ∂σ)(a
α
µ a β

ν ψαβ)

·(aλσ∂σ)(aµαaνβψαβ). (193)

We have the following result ([43], p. 60)

a µ
β a

β
ν = δµν , (194)

where δµν is the Kronecker delta.
Using Eq. (194), Eqs. (193) can be written as

1

2
∂′λψ

′
µν∂

′λψ
′µν =

1

2
∂σψαβ∂

σψαβ . (195)

Similarly, we can verify the following results

−2∂′λψ
′
µν∂

′µψ
′λν = −2∂σψαβ∂

αψσβ , (196)

−6∂
′µψ′

µν∂
′νψ′ = −6∂αψαβ∂

βψ, (197)

−3

2
∂′λψ

′∂
′λψ′ = −3

2
∂σψ∂

σψ, (198)

f0ψ
′
µνT

′µν
m = f0ψαβT

αβ
m , (199)

L′
more = Lmore, (200)

O[(f0ψ
′
µν)

2] = O[(f0ψµν)
2]. (201)

Putting Eq. (188) and Eq. (180) into Eq. (189) and
using Eqs. (195-201), we obtain Eq. (187). �

Applying similar methods in Ref. [46], we have the
following result.

Theorem 33 If we ignore those terms which are small
quantities of the order of (f0ψ

′
µν)

2 and (f0ψ
iner
µν )2 and

those terms involving more than two derivatives of ψ′
µν

in Eq. (187), i.e., O[(f0ψ
′
µν)

2], O[(f0ψ
iner
µν )2] and L′

more,
then the field equations for the total Lagrangian L′

tot in
Eq. (187) can be written as

∂′σ∂
′σψ′

αβ − 2(∂
′σ∂′αψ

′
βσ + ∂

′σ∂′βψ
′
ασ)

−6(η′αβ∂
′
σ∂

′
λψ

′σλ + ∂′α∂
′
βψ

′)− 3η′αβ∂
′
σ∂

′σψ′

= f0

(
T

′m
αβ + T

′Ω(1)
αβ

)
. (202)

Proof of Theorem 33. We have the following Euler-
Lagrange equations [42]

∂L′
tot

∂ψ′αβ
− ∂

∂x′σ

(
∂L′

tot

∂(∂′σψ
′αβ)

)
= 0. (203)

We have the following results

∂(∂′λψ
′
µν∂

′λψ
′µν)

∂(∂′σψ
′αβ)

=
∂(∂′λψ

′
µν)

∂(∂′σψ
′αβ)

∂
′λψ

′µν

+ ∂′λψ
′
µν

∂(∂
′λψ

′µν)

∂(∂′σψ
′αβ)

, (204)

ψ′
µν = η′µρη

′
ντψ

′ρτ . (205)

Using Eqs. (205), we have

∂(∂′λψ
′
µν)

∂(∂′σψ
′αβ)

=
∂

∂(∂′σψ
′αβ)

(
η′µρη

′
ντ∂

′
λψ

′ρτ
)

= η′µρη
′
ντ

∂(∂′λψ
′ρτ )

∂(∂′σψ
′αβ)

= η′µρη
′
ντδ

λ
σδ

ρ
αδ

τ
β

= η′µαη
′
νβδ

λ
σ . (206)

Using Eqs. (206), the first term on the right hand side
of Eqs. (204) can be written as

∂(∂′λψ
′
µν)

∂(∂′σψ
′αβ)

∂
′λψ

′µν = ∂
′σψ′

αβ . (207)

Similarly, the second term on the right hand side of
Eqs. (204) can be written as

∂′λψ
′
µν

∂(∂
′λψ

′µν)

∂(∂′σψ
′αβ)

= ∂
′σψ′

αβ . (208)

Using Eqs. (207) and Eqs. (208), we have

∂

∂x′σ

[
∂(∂′λψ

′
µν∂

′λψ
′µν)

∂(∂′σψ
′αβ)

]
= 2∂′σ∂

′σψ′
αβ . (209)
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Similarly, we can verify the following results

∂

∂x′σ

[
∂(∂′λψ

′
µν∂

′µψ
′λν)

∂(∂′σψ
′αβ)

]
= ∂

′σ∂′αψ
′
βσ

+∂
′σ∂′βψ

′
ασ, (210)

∂

∂x′σ

[
∂(∂

′µψ′
µν∂

′νψ)

∂(∂′σψ
′αβ)

]
= ∂′α∂

′
βψ

′

+η′αβ∂
′
σ∂

′
λψ

′σλ, (211)

∂

∂x′σ

[
∂(∂′λψ

′∂
′λψ′)

∂(∂′σψ
′αβ)

]
= 2η′αβ∂

′
σ∂

′σψ′, (212)

∂L′
tot

∂ψ′αβ
= f0(T

′m
αβ + T

′Ω(1)
αβ ).(213)

Putting Eq. (187) into Eqs. (203) and using Eqs. (209-
213), we obtain Eqs. (202). �
Following Ref. [34], we introduce the following nota-

tion in the Fock coordinate system SF .

Ψ
′µν = ∂′λ∂

′λψ
′µν − 2∂′λ∂

′µψ
′νλ − 2∂′λ∂

′νψ
′µλ

−6η
′µν∂′σ∂

′
λψ

′σλ − 6∂
′µ∂

′νψ′ − 3η
′µν∂′λ∂

′λψ′.(214)

Thus, the field equations (202) can be written as

Ψ
′µν = f0(T

′µν
m + T

′µν
Ω(1)). (215)

For convenience, we introduce the following definition
of the total energy-momentum tensor T

′µν of the sys-
tem of the matter, the Ω(1) substratum and the Ω(0)
substratum in a Fock coordinate system SF

T
′µν = T

′µν
m + T

′µν
Ω(1) + T

′µν
Ω(0), (216)

where T
′µν
Ω(0) is the energy-momentum tensor of the Ω(0)

substratum in the Fock coordinate system SF .

Adding the term f0T
′µν
Ω(0) on both sides of Eqs. (215)

and using Eqs. (216), the field equations (215) can be
written as

Ψ
′µν + f0T

′µν
Ω(0) = f0T

′µν . (217)

For the total system of matter, the Ω(1) substratum
and the Ω(0) substratum, the law of conservation of en-
ergy and momentum is ([36], p. 169; [38], p. 155)

∂′µT
′µν = 0. (218)

Comparing Eqs. (218) and Eqs. (217), we have

∂′µ(Ψ
′µν + f0T

′µν
Ω(0)) = 0. (219)

We introduce the following notation in SF

Θ
′µν = ∂′λ∂

′λψ
′µν − (∂′λ∂

′µψ
′νλ + ∂′λ∂

′νψ
′µλ)

+(∂
′µ∂

′νψ′ + η
′µν∂′σ∂

′
λψ

′σλ)− η
′µν∂′λ∂

′λψ′. (220)

We can verify the following result ([4], p. 44; [34])

∂′µΘ
′µν = 0. (221)

From Eqs. (221) and Eqs. (219), we have

∂′µ

(
1

f0
Ψ

′µν − b0
f0

Θ
′µν + T

′µν
Ω(0)

)
= 0. (222)

where b0 is an arbitrary parameter.
Following Ref. [34], we introduce the following defini-

tion of the contravariant energy-momentum tensor T
′µν
Ω

of vacuum in SF

T
′µν
ω =

1

f0
Ψ

′µν +
1

f0
Θ

′µν + T
′µν
Ω(0). (223)

Proposition 34 In the low velocity limit, i.e., u/c≪ 1,
where u = |u|, u is the velocity of the Ω(0) substratum,
the following relationships are valid

Ψ
′µν +Θ

′µν ≈ 0, (224)

where b0 is a parameter to be determined.

Proof of Proposition 34. In the low velocity limit,
i.e., u/c ≪ 1, where u = |u|, u is the velocity of the
Ω(0) substratum, the following relationships are valid in
an inertial reference frame Siner [46]

Ψαβ +Θαβ ≈ 0. (225)

Similar to the case of inertial reference frames ([43],
p. 59-60), we also have the following results in the Fock
coordinate system SF

Ψαβ = b µ
α b

ν
β Ψ

′µν , (226)

Θαβ = b µ
α b

ν
β Θ

′µν , (227)

where bµν are coefficients of the Lorentz transformation
between the inertial reference frame Siner and the Fock
coordinate system SF .

Putting Eqs. (226) and (227) into Eqs. (225), we have
Eqs. (224). �

Using Eqs. (216), Eqs. (223) and Eqs. (224), we have

the following estimations of T
′µν −T ′µν

ω in the low veloc-
ity limit

T
′µν − T

′µν
ω ≈ T

′µν
m + T

′µν
Ω(1). (228)

Corollary 35 The field equations (202) can be written
as

∂′λ∂
′λψ

′µν − ∂′λ∂
′µψ

′νλ − ∂′λ∂
′νψ

′µλ

+∂
′µ∂

′νψ′ + η
′µν∂′σ∂

′
λψ

′σλ

−η
′µν∂′λ∂

′λψ′ = −f0(T
′µν − T

′µν
ω ). (229)
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Proof of Corollary 35. Using Eqs. (223), the field
equations (217) can be written as

Θ
′µν = −f0(T

′µν − T
′µν
ω ). (230)

Putting Eqs. (220) into Eqs. (230), we obtain Eqs.
(229). �
We can verify that the field equations (229) are invari-

ant under the following gauge transformation

ψ
′µν → ψ

′µν + ∂
′µΛν + ∂

′νΛµ, (231)

where Λµ is an arbitrary vector field.
We introduce the following definition

ϕ
′µν = ψ

′µν − 1

2
η

′µνψ′. (232)

Using Eqs. (232), the field equations (229) can be writ-
ten as

∂′λ∂
′λϕ

′µν − ∂′λ∂
′µϕ

′νλ − ∂′λ∂
′νϕµλ

+η
′µν∂′σ∂

′
λϕ

′σλ = −f0(T
′µν − T

′µν
ω ). (233)

We introduce the following Hilbert gauge condition [34]

∂′µ

(
ψ

′µν − 1

2
η

′µνψ′
)

= 0. (234)

Using Eqs. (232), the Hilbert gauge condition Eqs.
(234) simplifies to

∂′µϕ
′µν = 0. (235)

If we impose the Hilbert gauge condition Eqs. (235) on
the fields, then the field equations Eqs. (233) simplify to

∂′λ∂
′λϕ

′µν = −f0(T
′µν − T

′µν
ω ). (236)

The field equation (236) can also be written as

η
′αβ ∂2ϕ

′µν

∂x′α∂x′β
= −f0(T

′µν − T
′µν
ω ). (237)

XIV. GENERALIZED EINSTEIN EQUATION IN
A SPECIAL CLASS OF NON-INERTIAL

REFERENCE FRAMES

Definition 36 The Einstein tensor Gµν is defined by

Gµν
△
= Rµν − 1

2
gµνR, (238)

where gµν is a metric tensor of a Riemannian space-

time, Rµν is the Ricci tensor, R
△
= gµνRµν , g

µν is
the corresponding contravariant tensor of gµν such that
gµλg

λν = δνµ = gνµ ([44], p. 40).

Similar to Ref. [46], we introduce the following defini-
tion of a metric tensor gµν of a Riemannian spacetime.

Definition 37

g̃µν ,
√
−g0gµν , η

′µν − 2f0ϕ
′µν , (239)

where g0 = Det gµν .

Applying similar methods of V. Fock ([37], p. 422-
430), Fock’s theorem of the Einstein tensor Gµν in the
Galilean coordinates ([37], p. 429) can be generalized to
non-inertial coordinate systems (x′0, x′1, x′2, x′3).

Proposition 38 The contravariant Einstein tensor Gµν

in the non-inertial coordinate systems (x′0, x′1, x′2, x′3)
can be written as

Gµν =
1

2g0
g̃αβ

∂2g̃µν

∂x′α∂x′β
+Π

′µ,αβΠ
′ν
αβ − 1

2
y

′µy
′ν

+
1

2
gµν(L′ +B′)−B

′µν , (240)

where

Π
′µ,αβ △

=
1

2g0

(
g̃αλ

∂g̃µβ

∂x′λ
+ g̃βλ

∂g̃µα

∂x′λ
− g̃µλ

∂g̃αβ

∂x′λ

)
,

(241)

Π
′ν
αβ

△
= gαλgβσΠ

′ν,λσ, (242)

Γ
′α △

= gσλΓ
′α
σλ, (243)

Γ
′ν
αβ

△
=

1

2
gµν

(
∂gµα
∂x′β

+
∂gµβ
∂x′α

− ∂gαβ
∂x′µ

)
(244)

Γ
′µν △

=
1

2

(
gµα

∂Γ
′ν

∂x′α
+ gνα

∂Γ
′µ

∂x′α
− ∂gµν

∂x′α
Γ

′α

)
, (245)

y′β
△
=
∂(lg

√
−g0)

∂x′β
, y

′α △
= gαβy′β , (246)

L′ △
= − 1

2
√
−g0

Γ
′ν
αβ

∂g̃αβ

∂x′ν
+

1

2
y′νy

′ν , (247)

B
′µν △

= Γ
′µν +

1

2
(y

′µΓ
′ν +y

′νΓ
′µ), B′ △

= gµνB
′µν . (248)

A proof of Proposition 38 can be found in the Ap-
pendix.

Theorem 39 In the Fock coordinate system SF , we have
the following field equations

Gµν − 1

2g0

(√
−g0gαβ − η

′αβ
) ∂2(√−g0gµν)

∂x′α∂x′β

− 1

2g0
η

′αβ ∂2η
′µν

∂x′α∂x′β
−Π

′µ,αβΠ
′ν
αβ +

1

2
y

′µy
′ν

−1

2
gµν(L′ +B′) +B

′µν =
f20
g0

(T
′µν − T

′µν
ω ).(249)
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Proof of Theorem 39. Using Eq.(239), Eq.(240) can
be written as

Gµν =
1

2g0

(√
−g0gαβ − η

′αβ + η
′αβ
) ∂2(η′µν − 2f0ϕ

′µν)

∂x′α∂x′β

+Π
′µ,αβΠ

′ν
αβ − 1

2
y

′µy
′ν +

1

2
gµν(L′ +B′)−B

′µν

=
1

2g0

(√
−g0gαβ − η

′αβ
) ∂2(η′µν − 2f0ϕ

′µν)

∂x′α∂x′β

+
1

2g0
η

′αβ ∂2η
′µν

∂x′α∂x′β
− f0
g0
η

′αβ ∂2ϕ
′µν

∂x′α∂x′β

+Π
′µ,αβΠ

′ν
αβ − 1

2
y

′µy
′ν

+
1

2
gµν(L′ +B′)−B

′µν . (250)

Using Eq.(239) and Eq.(237), Eq.(250) can be written
as Eq.(249). �
We need to study the relationships between Eqs.(249)

and the Einstein field equations. In a harmonic coordi-
nates system, we have ([37], p. 254)

Γ
′ν = Γ

′µν = B
′µν = B′ = 0. (251)

Using Eqs.(251) and Eqs.(249), we have the following
result.

Corollary 40 In the Fock coordinate system SF the field
equations (249) can be written as

Gµν − 1

2g0

(√
−g0gαβ − η

′αβ
) ∂2(√−g0gµν)

∂x′α∂x′β

− 1

2g0
η

′αβ ∂2η
′µν

∂x′α∂x′β
−Π

′µ,αβΠ
′ν
αβ

+
1

2
y

′µy
′ν − 1

2
gµνL′ =

f20
g0

(T
′µν − T

′µν
ω ).(252)

Definition 41 If the following conditions are valid

η
′µν ≈ ηµν , (253)∣∣∣∣∣12η′αβ ∂2η

′µν

∂x′α∂x′β

∣∣∣∣∣≪ ∣∣∣f20 (T ′µν − T
′µν
ω )

∣∣∣ , (254)

then we call this reference frame quasi-inertial.

Using Eqs.(254) and Eq.(252), we have the following
result.

Corollary 42 If the reference frame SF is quasi-inertial,
then, the field equations (252) can be written as

Gµν − 1

2g0

(√
−g0gαβ − η

′αβ
) ∂2(√−g0gαβ)

∂x′α∂x′β

−Π
′µ,αβΠ

′ν
αβ +

1

2
y

′µy
′ν − 1

2
gµνL′

≈ f20
g0

(T
′µν − T

′µν
ω ). (255)

Eqs.(255) are only valid approximately in a quasi-
inertial Fock coordinate system SF . Now we consider
weak fields.

Definition 43 If ϕ
′µν and their first and higher deriva-

tives satisfy the following conditions∣∣∣2f0ϕ′µν
∣∣∣≪ 1, (256)∣∣∣∣∣ ∂j+k(2f0ϕ

′µν)

∂(x′α)j∂(x′β)k

∣∣∣∣∣≪ 1, j + k = 1, 2, 3, · · · (257)

then we call this filed ϕ
′µν weak.

Similar to Ref. [46], we have the following result.

Corollary 44 Suppose that (1) the Fock coordinate sys-
tem SF is quasi-inertial; (2) the filed is weak. Then, the
field equations (255) reduce to

Rµν − 1

2
gµνR ≈ f20

g0

(
T

′m
µν + T

′Ω(1)
µν

)
. (258)

Proof of Corollary 44. According to Definition 43,
f0ϕ

′µν and their first and higher derivatives are small
quantities of order ε, where |ε| ≪ 1 is a small quantity.
Since the reference frame is quasi-inertial, Eqs. (253) are
valid. Using Eqs. (253), Eqs. (239) can be written as

g̃µν ,
√
−g0gµν , ηµν − 2f0ϕ

′µν . (259)

Since the filed is weak, Eqs. (256) and Eqs. (257) are
valid. Thus, using Eqs. (256) and Eqs. (259), we have
the following estimations of the order of magnitude of
the following quantities

√
−g0gµν − η

′µν ∼ ε. (260)

Using Eqs. (257), we have the following estimations

∂gµν
∂x′α

∼ ∂gµν

∂x′α
∼ ε. (261)

Applying Eqs. (259) and Eqs. (257), we have the fol-
lowing estimations

∂2(
√
−g0gαβ)

∂x′α∂x′β
=
∂2(−2f0ϕ

′µν)

∂x′α∂x′β
∼ ε. (262)

Thus, using Eqs. (260) and Eqs. (262), we have the
following estimations(√

−g0gαβ − η
′αβ
) ∂2(√−g0gαβ)

∂x′α∂x′β
∼ ε2. (263)

Applying Eqs. (241), Eqs. (242) and Eqs. (261), we
have the following estimations

Π
′µ,αβ ∼ Π

′ν
αβ ∼ ε. (264)
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Using Eqs. (246), we have the following relationship
([37], p. 143)

y′β = Γ
′ν
βν . (265)

We also have ([37], p. 143)

Γ
′ν
βν =

1

2
gµν

∂gµν
∂x′β

. (266)

Applying Eqs. (265), Eqs. (266) and Eqs. (261), we
have the following estimations

y′β ∼ ε. (267)

Using Eqs. (246) and Eqs. (267), we have the following
estimations

y
′α ∼ ε. (268)

Similar to the case of the Galilean coordinates, we have
([37], p. 430)

L′ = −1

2
Γ

′ν
αβ

∂gαβ

∂x′ν
− Γ

′αy′α. (269)

Applying Eqs. (251), Eq. (269) can be written as

L′ = −1

2
Γ

′ν
αβ

∂gαβ

∂x′ν
. (270)

Using Eq. (270), Eqs. (244) and Eqs. (261), we have
the following estimation

L′ ∼ ε2. (271)

Applying Eqs. (263), Eqs. (264), Eqs. (268) and Eq.
(271), we see that the second to the fifth term on the
right side of Eqs. (255) are all small quantities of order
ε2. Ignoring all these small quantities of order ε2 in Eqs.
(255) and using Eqs. (228), we obtain

Gµν ≈ f20
g0

(
T

′m
µν + T

′Ω(1)
µν

)
. (272)

Applying the rules of lowering or raising the indexes
of tensors, i.e., Gµν = gµσgνλGσλ, T

′µν
m = gµσgνλT

′m
σλ ,

T
′µν
Ω(1) = gµσgνλT

′Ω(1)
σλ , Eqs. (272) can be written as

Gλσ ≈ f20
g0

(
T

′m
σλ + T

′Ω(1)
σλ

)
. (273)

Putting Eqs. (238) into Eqs. (273), we obtain Eqs.
(258). �
Using Eq. (170), the field equations (258) can be writ-

ten as

Rµν − 1

2
gµνR ≈ 1

g0

8πγN
c4

(
T

′m
µν + T

′Ω(1)
µν

)
. (274)

Similar to Ref. [46], we have the following result.

Corollary 45 Suppose that (1) the Fock coordinate sys-
tem SF is quasi-inertial; (2) the filed is weak; (3) g0 ≈
−1; ; (4) T

′Ω(1)
µν ≈ 0. Then, the field equations (258)

reduce to

Rµν − 1

2
gµνR ≈ −f20T

′m
µν . (275)

We introduce the following notation

κ = f20 =
8πγN
c4

. (276)

Using Eq. (276), the field equations (258) can be writ-
ten as

Rµν − 1

2
gµνR ≈ κ

g0

(
T

′m
µν + T

′Ω(1)
µν

)
. (277)

Using Eq. (276), the field equations (275) can be writ-
ten as

Rµν − 1

2
gµνR ≈ −κT

′m
µν . (278)

We notice that the field equations (278) are the E-
instein’s equations [1, 2, 36]. Therefore, the field equa-
tions (249) are generalizations of the Einstein’s equations
in some special non-inertial reference frames. Thus, al-
l known experiments of gravitational phenomena which
support the theory of general relativity may also be ex-
plained by this theory of gravity based on the theory of
vacuum mechanics [27, 32, 33, 46].

XV. DISCUSSION

Although the field equations (249) are generalization-
s of the Einstein’s equations, there exists at least the
following differences between this theory and Einstein’s
theory of general relativity.

(1)We prove that the inertial mass of a microscope
particle equals it’s gravitational mass. This result is an
assumption in Einstein’s theory of general relativity and
is called the principle of equivalence [1, 2, 36].

(2) In the theory of general relativity, the Einstein’s e-
quations are assumptions [1, 2, 36]. Although A. Einstein
introduced his new concept of gravitational aether ([18],
p. 63-113), he did not derive his equations theoretical-
ly based on his new concept of the gravitational aether.
In our theory, the generalized Einstein’s equations (249)
are derived by methods of special relativistic continuum
mechanics based on some assumptions.

(3) Although the theory of general relativity is a field
theory of gravity, the definitions of gravitational fields are
not based on continuum mechanics [1, 2, 36, 48–51]. Be-
cause of the absence of a continuum, the theory of general
relativity may be regarded as a phenomenological theory
of gravity. In our theory, gravity is transmitted by the
Ω(0) substratum. The tensorial potential ψµν of grav-
itational fields are defined based on special relativistic
continuum mechanics.
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(4) In Einstein’s theory, the concept of Riemannian s-
pacetime is introduced together with the field equations
[1, 2, 36]. The theory of general relativity can not provide
a physical definition of the metric tensor of the Riemanni-
an spacetime. In our theory, the background spacetime
is the Minkowshi spacetime. However, the initial flat
background spacetime is no longer physically observable.
According to the equation of motion of a point particle in
gravitational field in inertial reference frames [46], to the
first order of f0ψµν , the physically observable spacetime
is a Riemannian spacetime with the metric tensor gµν .
The metric tensor gµν is defined based on the tensorial
potential ψµν of gravitational fields.
(5) The masses of particles are constants in Einstein’s

theory of general relativity [1, 2, 36]. In our theory, the
masses of particles are functions of time t [27].
(6) The gravitational constant γN is a constant in Ein-

stein’s theory of general relativity [1, 2, 36]. The theory
of general relativity can not provide a derivation of γN .
In our theory, the parameter γN is derived theoretically.
From Eq. (151), we see that γN depends on time t.
(7) In our theory, the parameter γN in Eq. (151) de-

pends on the density ρ0 of the Ω(0) substratum. If ρ0
varies from place to place, i.e., ρ0 = ρ0(t, x, y, z), then
the space dependence of the gravitational constant γN
can be seen from Eq. (151).
(8) The Einstein’s equations are supposed to be valid

in all reference frames [1, 2, 36]. However, in our theory
the generalized Einstein’s equations (249) are valid only
in some special non-inertial reference frames.
(9) The Einstein’s equations are rigorous [1, 2, 36].

However, in our theory, Eqs.(278) are valid approximate-
ly under some assumptions.
I am curious whether it is possible for us to detect some

of these differences by experiments.

XVI. CONCLUSION

We extend our previous theory of gravitation based on
a sink flow model of particles by methods of special rel-
ativistic fluid mechanics. In inertial reference frames, we
construct a tensorial potential of the Ω(0) substratum.
Based on some assumptions, we show that this tensori-
al potential satisfies the wave equation. Inspired by the
equation of motion of a test particle, a definition of a met-
ric tensor of a Riemannian spacetime is introduced. Gen-
eralized Einstein’s equations in inertial reference frames
are derived based on some assumptions. These equation-
s reduce to Einstein’s equations in case of weak field in
harmonic reference frames. In some special non-inertial
reference frames, generalized Einstein’s equations are de-
rived based on some assumptions. If the field is weak and
the reference frame is quasi-inertial, these generalized E-
instein’s equations reduce to Einstein’s equations. Thus,
all known experiments of gravitational phenomena which
support the theory of general relativity may also be ex-
plained by this theory of gravity. In our theory, gravity

is transmitted by the Ω(0) substratum. The theory of
general relativity can not provide a physical definition
of the metric tensor of the Riemannian spacetime. In
our theory, the background spacetime is the Minkowshi
spacetime. However, the flat background spacetime is no
longer physically observable. According to the equation
of motion of a point particle in gravitational field, to the
first order, the physically observable spacetime is a Rie-
mannian spacetime. The metric tensor of this Riemanni-
an spacetime is defined based on the tensorial potential
of gravitational fields.
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XVII. APPENDIX

Proof of Proposition 38. The definition of the co-
variant second rank curvature tensor Rµν is ([37], p. 422)

Rµν
△
= gαβRµα,βν , (279)

where

Rµα,βν
△
=

1

2

(
∂2gµν

∂x′α∂x′β
+

∂2gαβ
∂x′µ∂x′ν

− ∂2gνα
∂x′µ∂x′β

− ∂2gµβ
∂x′ν∂x′α

)
− gρσΓ

′ρ
µβΓ

′σ
να

+gρσΓ
′ρ
µνΓ

′σ
αβ , (280)

is the fourth rank curvature tensor.
The contravariant curvature tensor Rµν can be ob-

tained by raising the indices ([37], p. 156)

Rµν = gµρgνσRρσ. (281)

Following similar methods of V. Fock ([37], p. 425), we
have

Rµν =
1

2
gαβ

∂2gµν

∂x′α∂x′β
− Γ

′µν + Γ
′µ,αβΓ

′ν
αβ . (282)

The definition of the invariant of the curvature tensor
is ([37], p. 425)

R
△
= gµνR

µν . (283)

Following similar methods of V. Fock ([37], p. 428), we
have

R = gαβyαβ − Γ
′αyα − Γ′ − L′, (284)

21



where

y′αβ
△
=
∂2 lg

√
−g0

∂x′α∂x′β
, (285)

Γ′ △
= gµνΓ

′µν , (286)

L′ △
= −1

2
Γ

′ν
αβ

∂gαβ

∂x′ν
− Γ

′α ∂(lg
√
−g0)

∂x′α
, (287)

The second derivative of g̃µν is ([37], p. 428)

∂2g̃µν

∂x′α∂x′β
=

√
−g0

(
∂2gµν

∂x′α∂x′β
+ y′β

∂gµν
∂x′α

+ y′α
∂gµν
∂x′β

+y′αβg
µν + y′αy

′
βg

µν
)
. (288)

Multiplying gαβ , Eqs. (288) can be written as ([37], p.
428)

gαβ
∂2g̃µν

∂x′α∂x′β
=

√
−g0

(
∂2gµν

∂x′α∂x′β
+ 2y′α

∂gµν

∂x′α

+gµνgαβy′αβ + gµνy′αy
′α) . (289)

Using Eqs. (282) and Eqs. (284), we have ([37], p. 428)

Rµν − 1

2
gµνR =

1

2

(
gαβ

∂2gµν
∂x′α∂x′β

+ gµνgαβy′αβ

)
+
1

2
gµν(Γ

′αy′α + Γ′ + L′)

−Γ
′µν + Γ

′µ,αβΓ
′ν
αβ (290)

Comparing Eqs. (290) and Eqs. (289), we have ([37],
p. 429)

Rµν − 1

2
gµνR =

1

2
√
−g0

gαβ
∂2g̃µν

∂x′α∂x′β

+
1

2
gµν(y′αy

′α + Γ
′αy′α + Γ′ + L′)

−Γ
′µν + y′α

∂gµν

∂x′α
+ Γ

′µ,αβΓ
′ν
αβ .(291)

Using the notations defined in Eqs. (238), Eqs. (241),
Eqs. (242) and Eqs. (248), Eqs. (291) can also be written
as Eqs. (240) ([37], p. 429-430). �
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