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J. C. Maxwell, B. Riemann and H. Poincaré have proposed the idea that all microscopic particles
are sink flows in a fluidic aether. Following this research program, a previous theory of gravitation
based on a mechanical model of vacuum and a sink flow model of particles is generalized by methods
of special relativistic continuum mechanics. In inertial reference frames, we construct a tensorial
potential which satisfies the wave equation. Inspired by the equation of motion of a test particle,
a definition of a metric tensor of a Riemannian spacetime is introduced. Applying Fock’s theorem,
generalized Einstein’s equations in inertial systems are derived based on some assumptions. These
equations reduce to Einstein’s equations in case of weak field in harmonic reference frames. In
some special non-inertial reference frames, generalized Einstein’s equations are derived based on
some assumptions. If the field is weak and the reference frame is quasi-inertial, these generalized
Einstein’s equations reduce to Einstein’s equations. Thus, this theory may also explains all the
experiments which support the theory of general relativity. There exists some differences between
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this theory and Einstein’s theory of general relativity.
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I. INTRODUCTION

The Einstein’s equations of gravitational fields in the
theory of general relativity can be written as [1, 2]

1
Ry — zguwR = —rT}); (1)
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where g,,, is the metric tensor of a Riemannian space-
time, R,, is the Ricci tensor, R = g¢g""R,, is the s-
calar curvature, g"” is the contravariant metric tensor,
k = 8myn/ct, yn is Newton’s gravitational constant,
c is the speed of light in vacuum, 7}j} is the energy-
momentum tensor of a matter system.

The Einstein’s equations (1) is a fundamental assump-
tion in the theory of general relativity [1, 2]. It is remark-
able that Einstein’s theory of general relativity, born in
1915, has held up under every experimental test, refers
to, for instance, [3].

R. P. Feynman once said:” What I cannot create, I do
not understand.” ([4], p. xxxii). New theories which can
derive Einstein’s field equations of gravitation and thus
explain all known experiments of gravitational phenome-
na may be interesting. The reasons may be summarized
as follows.

1. Many attempts to reconcile the theory of general rel-
ativity and quantum mechanics by using the techniques
in quantum electrodynamics meet some mathematical d-
ifficulties ([5], p. 101). J. Maddox speculates that the
failure of the familiar quantization procedures to cope
with Einstein’s equations may stem from two possible
reasons. One possibility is that Einstein’s equations are
incomplete. The other possible reason may be that some
underlying assumptions in Einstein’s theory about the
character of the space or time may be not suitable ([5],
p. 101).

2. The value of the cosmological constant is a puz-
zle [6]. In 1917, A. Einstein thought that his equations

should be revised to be ([2], p. 410)

R;w - %g/wR + Ag;w = —lﬁTlrf,, (2)
where g,,, is the metric tensor of a Riemannian space-
time, R,, is the Ricci tensor, R = ¢g"”R,, is the s-
calar curvature, g"” is the contravariant metric tensor,
k = 8myn/ct, yn is Newton’s gravitational constant,
c is the speed of light in vacuum, T}j} is the energy-
momentum tensor of a matter system, A is the cosmo-
logical constant.

However, it seems that the cosmological constant A
is unnecessary when Hubble discovered the expansion of
the universe. Thus, Einstein abandoned the term Ag,,
in Eq. (2) and returned to his original equations ([2], p.
410). The value of the cosmological constant A is also
related to the energy-momentum tensor of vacuum ([2],
p. 411). Theoretical interpretation of the small value of
A is still open [6].

3. The problem of the existence of black hole is still
controversy [7]. Einstein believed that black hole can
not exist in the real world [8]. Recently, the Event
Horizon Telescope Collaboration (EHTC) reconstructed
event-horizon-scale images of the supermassive black hole
candidate in the center of the giant elliptical galaxy M87
[9]. EHTC reports that the observed image is consisten-
t with predictions for the shadow of a Kerr black hole
based on the theory of general relativity.

4. The existences and characters of dark matter and
dark energy are still controversy, refers to, for instance,
[10-14].

5. The existence and characters of gravitational aether
are still not clear. Sir I. Newton pointed out that his
inverse-square law of gravitation did not touch on the
mechanism of gravitation ([15], p. 28;[16], p. 91). New-
ton warned ([17], p. 204):” That Gravity should be innate,
inherent and essential to Matter, so that one Body may



act upon another at a Distance thro’ a Vacuum, without
the Mediation of any thing else, by and through which
their Action and Force may be conveyed from one to an-
other, is to me so great an Absurdity, that I believe no
Man who has in philosophical Matters a competent Fac-
ulty of thinking, can ever fall into it. ” He conjectured
that gravitation may be explained based on the action
of an aether pervading the space ([15], p. 28;[16], p. 92).
In the years 1905-1916, Einstein abandoned the concepts
of electromagnetic aether and gravitational aether in his
theory relativity ([18], p. 27-61). However, H. A. Lorentz
believed that general relativity could be reconciled with
the concept of an ether at rest and wrote a letter to A. E-
instein ([18], p. 65). Einstein changed his view later and
introduced his new concept of ether ([18], p. 63-113). In
1920, Einstein said ([18], p. 98):” According to the gen-
eral theory of relativity, space is endowed with physical
qualities; in this sense, therefore, there exists an ether.
According to the gemeral theory of relativity, space with-
out ether is unthinkable;”. In 1954, Einstein said ([18],
p. 149):” There is no such thing as an empty space, i.e., a
space without field. Space-time does not claim ezistence
on its own, but only as a structural quality of the field.”
Unfortunately, Einstein did not tell us how to derive his
equations theoretically based on his new concept of the
gravitational aether.

6. Whether Newton’s gravitational constant yy de-
pends on time and space is still not clear. It is known
that vy is a constant in Newton’s and Einstein’s the-
ory of gravitation. P. A. M. Dirac speculates that vy
may depend on time based on his large number hypoth-
esis [19]. R. P. Feynman thought that if vy decreases
on time, then the earth’s temperature a billion years a-
go was about 48°C higher than the present temperature
(4], p- 9). D. R. Long reports that vy depends on the
distance between matters [20].

Furthermore, there exists some other problems relat-
ed to the theories of gravity, for instance, gravitational
waves [21], the speed of light in vacuum [22-24], the def-
inition of inertial system, origin of inertial force, the ve-
locity of the propagation of gravity [25], the velocity of
individual photons [23, 24], unified field theory, etc.

There is a long history of researches of derivations or
interpretations of Einstein’s theory of general relativity.
For instance, C. Misner et al. introduce six derivations
of the Einstein’s equations (1) in their great book ([2], p.
417). S. Weinberg proposed two derivations ([1], p. 151).

However, these theories still face the aforementioned
difficulties. The gravitational interaction seems to differ
in character from other interactions. Thus, it seems that
new ideas about the gravitational phenomena are needed.
In 1949, Einstein wrote in a letter to Solovine [26]:” I am
not convinced of the certainty of a simple concept, and
I am uncertain as to whether I was even on the right
track.” Following Einstein, it may be better for us to
keep an open and critical mind to explore all possible
theories about gravity.

The purpose of this manuscript is to propose a deriva-

tion of the Einstein’s equation (1) in some special refer-
ence frames based on a mechanical model of vacuum and
a sink flow model of particles [27].

II. INTRODUCTION OF A PREVIOUS
THEORY OF GRAVITATION BASED ON A SINK
FLOW MODEL OF PARTICLES BY METHODS
OF CLASSICAL FLUID MECHANICS

The idea that all microscopic particles are sink flows in
a fluidic substratum is not new. For instance, in order to
compare fluid motions with electric fields, J. C. Maxwell
introduced an analogy between source or sink flows and
electric charges ([15], p. 243). B. Riemann speculates
that:” I make the hypothesis that space is filled with a
substance which continually flows into ponderable atom-
s, and vanishes there from the world of phenomena, the
corporeal world’ ([28], p. 507). H. Poincaré also suggests
that matters may be holes in fluidic aether ([29], p. 171).
A. Einstein and L. Infeld said ([30], p. 256-257):” Matter
is where the concentration of enerqgy is great, field where
the concentration of energy is small. --- What impress-
es our senses as matter is really a great concentration of
energy into a comparatively small space. We could regard
matter as the regions in space where the field is extremely
strong.”

Following these researchers, we suppose that all the
microscopic particles were made up of a kind of elemen-
tary sinks of a fluidic medium filling the space [27]. Thus,
Newton’s law of gravitation is derived by methods of hy-
drodynamics based on the fluid model of vacuum and the
sink flow model of particles [27].

We briefly introduce this theory of gravitation [27].
Suppose that there exists a fluidic medium filling the in-
terplanetary vacuum. For convenience, we may call this
medium as the €2(0) substratum, or gravitational aether,
or tao [27]. Suppose that the following conditions are
valid: (1) the Q(0) substratum is an ideal fluid; (2) the
ideal fluid is irrotational and barotropic; (3) the density
of the £2(0) substratum is homogeneous; (4) there are no
external body forces exerted on the fluid; (5) the fluid is
unbounded and the velocity of the fluid at the infinity is
approaching to zero.

An illustration of the velocity field of a sink flow can
be found in Figure 1.

If a point source is moving with a velocity v, then
there is a force [27]

Fg = —poQ(u—vy) (3)

is exerted on the source by the fluid, where pg is the
density of the fluid, @ is the strength of the source, u
is the velocity of the fluid at the location of the source
induced by all means other than the source itself.

We suppose that all the elementary sinks were created
simultaneously [27]. For convenience, we may call these
elementary sinks as monads. The initial masses and the
strengths of the monads are the same. Suppose that (1)



FIG. 1: an illustration of the velocity field of a sink flow.

v; € u;,1 = 1,2, where v; is the velocity of the particle
with mass m;, u; is the velocity of the Q(0) substratum
at the location of the particle with mass m; induced by
the other particle; (2) there are no other forces exerted on
the particles, then the force Fo;(t) exerted on the particle
with mass mg(t) by the velocity field of £2(0) substratum
induced by the particle with mass m4(t) is [27]

Foi(t) = _'YN(t)Mfél, (4)

where r3; denotes the unit vector directed outward along
the line from the particle with mass mq () to the particle
with mass mo(t), r is the distance between the two par-
ticles, mq(t) is the mass of monad at time ¢, —go(qo > 0)
is the strength of a monad, and

W) = 1 (5)

For continuously distributed matter, we have

0 45 (pow) = ~pup, (6)
where u is the velocity of the Q(0) substratum, V =
i0/0x 4 jO/0y + k0/Jz is the nabla operator introduced
by Hamilton, i,j,k are basis vectors, —p,(ps > 0) is the
density of continuously distributed sinks, i.e.,

. AQ
SN G g
where AQ is the source strength of the continuously dis-
tributed matter in the volume AV of the Q(0) substra-
tum.
Since the (0) substratum is homogeneous, i.e.,
Opo/Ot = Opog/0x = Opo/Oy = Ipo/Oz = 0, and irro-
tational, i.e., V x u =0, Eq. (6) can be written as [31]

VQQD = —Ps> (8)

where ¢ is a velocity potential such that u = Vi, V2 =
0?02 4 02 /0y* + 9% /022 is the Laplace operator.
We introduce the following definitions

0490 mops
_L ) m pba (9)

mo q0
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where p,, denotes the mass density of continuously dis-
tributed particles.
Using Eq. (9) and Eq. (5), Eq. (8) can be written as

V2® = 4TyN pim.- (10)

III. A MECHANICAL MODEL OF VACUUM

According to our previous paper [32] we suppose that
vacuum is filled with a kind of continuously distributed
material which may be called Q(1) substratum or elec-
tromagnetic aether. Maxwell’s equations in vacuum are
derived by methods of continuum mechanics based on
this mechanical model of vacuum and a source and sink
flow model of electric charges [32]. We speculate that the
electromagnetic aether may also generate gravity. Thus,
we introduce the following assumption.

Assumption 1 The particles that constitute the (1)
substratum, or the electromagnetic aether, are sinks in
the Q(0) substratum.

Then, according to the previous theory of gravitation
[27], these §2(1) particles gravitate with each other and
also attract with matters. Thus, vacuum is composed
of at least two kinds of interacting substratums, i.e., the
gravitational aether ©(0) and the electromagnetic aether

Q(1).
From Eq. (3), we see that there exists a following u-
niversal damping force Fq = —pogomvy,/my exerted on

each particle by the ©(0) substratum [27], where v,, is the
velocity of the particle. Based on this universal damping
force F'; and some assumptions, we derive a generalized
Schrodinger equation for microscopic particles [33]. For
convenience, we may call these theories [27, 32, 33] as the
theory of vacuum mechanics.

IV. CONSTRUCTION OF A LAGRANGIAN
FOR FREE FIELDS OF THE Q(0) SUBSTRATUM
BASED ON A TENSORIAL POTENTIAL IN THE

GALILEAN COORDINATES

There exists some approaches ([4], page vii;[2], p. 424),
which regards Einstein’s general relativity as a special rel-
ativistic field theory in an unobservable flat spacetime, to
derive the Einstein’s equations (1). However, these theo-
ries can not provide a physical definition of the tensorial
potential of gravitational fields, refers to, for instance,
[2, 34, 35]. Thus, similar to the theory of general relativ-
ity, these theories may be regarded as phenomenological
theories of gravitation.

Inspired by these special relativistic field theories of
gravitation, we explore the possibility of establishing a
similar theory based on the theory of vacuum mechanics
[27, 32, 33]. Thus, first of all, we need to construct a
Lagrangian for free fields of the (0) substratum based
on a tensorial potential in the Galilean coordinates. In



this section, we will regard the (0) substratum in the
previous theory of gravitation [27] as a special relativis-
tic fluid. Then, we will study the £(0) substratum by
methods of special relativistic continuum mechanics [36].

In this article, we adopt the mathematical framework
of the theory of special relativity [1]. However, the phys-
ical interpretation of the mathematics of the theory of
special relativity may be different from Einstein’s theo-
ry. It is known that Maxwell’s equations are valid in the
frames of reference that attached to the (1) substra-
tum [32]. We introduce a Cartesian coordinate system
{0,z,y, 2z} for a three-dimensional Euclidean space that
attached to the (1) substratum. Let {0,t} be a one-
dimensional time coordinate. We denote this reference
frame as Sq(1)-

Based on the Maxwell’s equations, the law of propa-
gation of an electromagnetic wave front in this reference
frame Sq 1) can be derived and can be written as ([37],p.
13)

S5 -G -(G) - () o o

where w(t, x,y, z) is an electromagnetic wave front, c is
the velocity of light in the reference frame Sq ().

An electromagnetic wave front is a characteristics.
According to Fock’s theorem of characteristics ([37],
p. 432), we obtain the following metric tensor 7.5 =
diag[c?, —1,—1,—1] of a Minkowski spacetime for vac-
uum ([38], p. 57).

For convenience, we introduce the following Galilean
coordinate system

20 = ct, o T,

=y, P=z (12

We will use Greek indices «, g, i, v, etc., denote the
range {0,1,2,3} and use Latin indices i, j, k, etc., denote
the range {1,2,3}. We will use Einstein’s summation
convention, that is, any repeated Greek superscript or
subscript appearing in a term of an equation is to be
summed from 0 to 3. We introduce the following defini-
tion of spacetime interval

ds® = n,,datda”, (13)

where 7, is the metric tensor of the Minkowski space-
time defined by 7, = diag[1, -1, -1, —1].

Suppose that the ©(0) substratum is an incompress-
ible viscous fluid. Then, there is no elastic deformation-
s in the fluid and the internal stress states depend on
the instantaneous velocity field. Thus, we can choose
the reference frame Sgq(;) as the co-moving coordinate
system. The internal energy U is the sum of the inter-
nal elastic energy U, and the dissipative energy Uy, i.e.,
U = U, + U,. Since there is no elastic deformations in
the fluid, we have U, = 0. We introduce the following
definition of deviatoric tensor of strain rate % ([39],p.
331)

i =St — Sfst, (14)

where S’; is the tensor of strain rate, S,lj is the rate of
volume change, 5;- is the Kronecker delta.

Suppose that the rate of dissipative energy U, is the
Rayleigh type, then, we have ([39],p. 332)

Ug = poi4], (15)

where pg is the coefficient of viscosity.
Since the ©(0) substratum is incompressible, we have

SF = 0. Thus, from Egs. (15) and Egs. (14), we have
Ud = ,U()S;SZJ (16)

In the low velocity limit, i.e., u/c < 1, where u = |ul,
the Lagrangian Lqg) for free fields of the {(0) substra-
tum can be written as ([39],p. 332)

1 o
Lo = goot + [ Ou(S))ar an)
0

2
where u = |ul, to is an initial time.
Suppose that the (0) substratum is a Newtonian flu-

id and the stress tensor o; is symmetric, then we have
([40],p. 46)

ol = —pdl + 2p05}, (18)

where p is the pressure of the ©(0) substratum.
Using Egs. (18) and Egs. (16), Egs. (17) can be written
as
1, Lo Y
Loy = Fpou” + /to (0} +p5j)?dt, (19)

For a macroscopic observer, the relaxation time t. of
the ©(0) substratum is so small that the tensor of strain
rate S; may be regarded as a slow varying function of
time, i.e., 85;/815 < 1. Thus, in a small time interval
[to, t], we have S; >0, or, S]’ < 0. Then, it is possible to
choose a value &} + pd} of o + pd% in the time interval
[to, t] such that Egs. (19) can be written as

1 2 —1 Y ! Sf
to

We introduce the following definition

VAN tS'Z-j
2 dt, 21
i / = (21)

where fj is a parameter to be determined.
Using Egs. (21), Eqgs. (20) can be written as

1 o .
Loy = §p0u2 + fou] (7% + poy). (22)

Since the coefficient of viscosity po of the Q(0) sub-
stratum may be very small, we introduce the following
assumption.



Assumption 2 In the low velocity limit, i.e., u/c < 1,
where u = |ul, u is the velocity of the Q(0) substratum, we
suppose that pg ~ 0 and we have the following conditions

Vi ~ 0,

8/ﬂ;[}ij ~ 0, 8#6u¢1] ~ 07 (23)

where

0 0 0 0
Ou = (aaaxax) : (24)

According to the Stokes-Helmholtz resolution theo-
rem, refers to, for instance, [41], every sufficiently s-
mooth vector field can be decomposed into irrotational
and solenoidal parts. Thus, there exists a scalar function
o and a vector function R such that the velocity field u
of the £(0) substratum can be represented by [41]

u=Vy+VxR, (25)

where Vx =0, V-R=0.
We introduce the following definition of a vector func-
tion &

5
5~V <R (26)
Putting Eq. (26) into Eq. (25), we have
_ o€
u=Vep+ ey’ (27)

Based on Assumption 2 and using Eq. (9) and Eq. (27),
Eq. (22) can be written as

N
Ly 1 23
Lowy = 5P0U” = 5P0 <V<P+ 8(ct)>

L\ 2
1 mo (95
= - —Vo+ —| . 28
2" < Poqo 3(Ct)> 28)
We introduce the following definitions
oo = apo®,  Yoi = Yio = a0, (29)
Do = o1l + Yo2j + Yosk. (30)

where agg > 0 and ag; > 0 are 4 parameters to be deter-
mined.

Egs. (29) and Egs. (21) have defined a rank 2 symmet-
ric tensor v,,,. We require that for some special values
of agp and ap;, Eq. (28) can be written as

2
mo 1 po O(toi/aos) 4)
Low) = g — o) L2 A0 003 o
oo (QO\/2P0 a0 00 2 O(ct)
N
_ Do
where e! =i, €2 =j, 3 = k.

Comparing the left- and right-hand parts of Eq. (31),

we have
agy = mgg, agi = \/*po- (32)
2poqy 2

In order to construct the Lagrangian Lg g described in
Eq. (31) based on the tensorial potential ¢,,,,, we should
consider all the possible products of derivatives of the
tensor . If we require that the two tensor indices
of 1, are different from each other and the two tensor
indices of v, are different from the derivative index, we
have the following two possible products ([4], p. 43):

Ly = 0,9,,0°0"", Ly = 05, 0" 9", (33)

where *¥ = ntrn¥74)y, is the corresponding contravari-
ant tensor of 9.

If there are two indices of v, which are equal, or one
of the indices of 1, is the same as the derivative index,
we may have the following three possible products ([4],
p. 43):

L3 = &/wlwaa U,N L4 = a#wuuauw7 (34)
Ls = 0\0d™. (35)
where 1) is the trace of ¥, i.e., ¥ = 1/@\‘ = nagv,/)aﬁ,
0 0 0 0
h=pty = —— —— -
o =n"0, (axo’ orl’ 0z’ 81’3) - (36)

L3 may be omitted because it can be converted to Lo
by integration by parts ([4], p. 43).

Proposition 3 Suppose that we have the following con-
ditions

oo Obo;
~ S 37
d(ct) T Oxd (37)
If we set
1 3
Cc1 = 57 Co = —2, Cq = —6, C; = —5, (38)

then we have

c1Lq1 +colo + cqyly + c5L5

Q

N

9o
(woo - 8(Ct)>
1

= §p0u2. (39)

Proof of Proposition 3. Based on Egs. (23) and Egs.
(37) and noticing 10 = 19, ¥ = —1g;, we have

Ly ~ —(Vtgo)® — 2 (;{ﬁ%) ) (40)

- . 2
Ly = —2(Vho) - ;{ﬁ; - (;ﬁ%) ) (41)



Lz ~ (Vo) - 88(1(20)7 (42)

L4 ~ —(VQ/)O())Q. (43)

Using Egs. (40-43) and Eqgs. (38), we obtain Eq. (39).
(]

Inspired by W. Thirring [34] and R. P. Feynman ([4],
p. 43), we introduce the following assumption.

Assumption 4 The Lagrangian Lg) for free fields of
the Q(0) substratum can be written as

Loy = c1l1 + calip +cqly + csLs + Linore,  (44)

where ¢y = 1/2, ¢y = =2, ¢4 = —6, c5 = —3/2,
Liore denotes those terms involving more than two
derivatives of Y ..

V. INTERACTION TERMS OF THE
LAGRANGIAN OF A SYSTEM OF THE Q(0)
SUBSTRATUM, THE Q(1) SUBSTRATUM AND
MATTER

In order to derive the field equations, we should ex-
plore the possible interaction terms of the Lagrangian of
a system of the Q(0) substratum, the (1) substratum
and matter. According to Assumption 2, the coefficient
of viscosity pg of the ©(0) substratum may be very s-
mall. Thus, we may regard the (0) substratum as an
ideal fluid approximately. Then from Eq. (25) we have
u = V. Ignoring the damping force poQvs in Eq. (3)
and using u = Vi, Eq. (3) can be written as

Fo = —nQVe. (45)

A particle is modelled as a point sink of the £(0) sub-
stratum [27, 32, 33]. Thus, the interaction term of the
Lagrangian of a system of the Q(0) substratum and a
particle can be written as

Ling1 = poQp. (46)

Therefore, the interaction term of the Lagrangian of
a system of the Q(0) substratum and continuously dis-
tributed particles can be written as

Lint = —pops- (47)
Putting Eq. (9) into Eq. (47), we have
Lint - p'm(D (48)

The 00 term of the energy-momentum tensor 7)), of a
matter system is T°0 = p,,,c?. Thus, using Egs. (29), Eq.
(48) can be written as

Lint = fovoo T, (49)

where

fO = CLOOCQ. (50)

From Eq. (50), Eq. (32) and Eq. (5), we have

2,00(18 8mTYN 1
= 1/ =4/ — = 8mYN- 51
fo m3ct A7 odd, N (51)

Inspired by Eq. (49) and Eq. (22), we introduce the
following assumption.

Assumption 5 The interaction terms of the Lagrangian
of a system of the Q(0) substratum, the Q(1) substratum
and matter can be written in the following form:

Line = fotbu T + fotbw Tty + Ol(fotow )], (52)

where TH and Tgé’l) are the contravariant energy-

momentum tensors of the system of the matter and the
Q(1) substratum respectively, O[(forbu)?] denotes those
terms which are small quantities of the order of (fotbuw)?.

VI. FIELD EQUATIONS IN INERTIAL
REFERENCE FRAMES

Based on Assumptions 4 and 5, the total Lagrangian
Lot of a system of the Q(0) substratum, the (1) sub-
stratum and matter can be written as

1
Lioy = 58/\1/}HV8>\¢MV - 23,\1%1/5“1/)M - 68“"/’#118%1/}

‘gawaw + Limore + fotu (Th +Thiy)
+O[(f0wm/)2]' (53)

Theorem 6 If we ignore those terms which are small
quantities of the order of (fotu)? and those terms in-
volving more than two derivatives of v, in Eq. (53),
i.e., Ol(fotu)?] and Liore, then the field equations for
the total Lagrangian Lioy in Eq. (58) can be written as

60601/)015 - 2(aaaawﬁa + aoaﬁqpaa) - 6(7704860a)\’(/}gA
+0a05%) — 31a50s 0% = fo(TT + Tos"). (54)

Proof of Theorem 6. We have the following Euler-
Lagrange equations [42]

6Ltot 0 aLtot _
97 Ba (awgw)) =0 (55)

We can verify the following results ([4], p. 43; [34])

% {W = 20,0%agp, (56)
a%, {W— = 070atpo + 0 0pta0,(57)
a% [W = 0a0pY + Napds 027 N58)
S = R+ T ()



Putting Eq. (53) into Egs. (55) and using Egs. (56-60),
we obtain Egs. (54). O
For convenience, we introduce the following notation

= 0\ — 20,0M"N — 20,97 pHN
—67" By IN)T — 601D — 3y 95D (61)

Thus, the field equations (54) can be written as
P fo(TI T ). (62)

We introduce the following definition of the total
energy-momentum tensor T#” of the system of the mat-
ter, the (1) substratum and the Q(0) substratum

TH = TH + T“(l) + nglo) (63)

where Th, 0(0) is the energy-momentum tensor of the Q(0)

substratum.

Adding the term fOTS‘;Z’O on both sides of Egs. (62) and
using Eqs. (63), the field equations (62) can be written
as

TH 4 fOTSEIO) = foTH. (64)

For the total system of matter, the (1) substratum
and the ©(0) substratum, the law of conservation of en-
ergy and momentum is ([36], p. 169; [38], p. 155)

0, T" = 0. (65)
Comparing Egs. (65) and Eqgs. (64), we have
0 (T +foT52’O )=0. (66)

Noticing Egs. (56-60), we introduce the following no-
tation ([4], p. 43)

HM = [LONOMM + fo(Dr0" " + 9\ M)
+f3(01 0 + 0" 0, 0\p7N) + fant 030, (67)

where f;,i = 1,2,3,4 are 4 arbitrary parameters.
If we require that

8, H" =0, (68)

then, we can verify the following relationships ([4], p. 44;
[34])

fi+tfo=0, fot+fz3=0, fa+fs=0. (69)

We choose f1 =1, fo = -1, fs =1, f4 = —1 in Eqgs.
(67) and introduce the following notation

OM = D\ P — (30" + D30 V)
+(O 0 + M D ONYT) — T INOMp. (70)

We can verify the following result ([4], p. 44; [34])

9,0M = 0. (71)

From Egs. (71) and Egs. (66), we have
1 ., bo . v
d, (J%\Iw e +T5(O)> ~0. (72)

where by is an arbitrary parameter.
Noticing Egs. (72), it is convenient for us to introduce
the following definition of a tensor T+

1 bo
ny 2 Qv ny
TH = o L % oM + TQ(O), (73)

where by is a parameter to be determined.

From Egs. (72), we have 9,T# = 0. In the present
stage, we have no idea about the physical meaning of the
tensor TH¥. Later, once we have determined the value of
the parameter by, we may explore the meaning of T/".
Using Egs. (73), the field equations (64) can be written
as

Jo

0

O = —(TH* —Th"). (74)

Now our task is to determine the parameter by in the
field equations (74). A natural idea is that the 00 com-
ponent of Eqgs. (74) reduces to the field equations (10)
in the case that the velocity of the (0) substratum is
much smaller than ¢, i.e., in the low velocity limit. Thus,
it is necessary for us to introduce an estimation of the
value of TH” — TH on the right hand side of Eqgs. (74)
in the low velocity limit. To this end, we introduce the
following speculation about the interaction between the
(0) substratum and the (1) substratum.

Assumption 7 In the low velocity limit, i.e., u/c < 1,
where u = |u|, u is the velocity of the Q(0) substratum,
the following relationship is valid

P — hOH = 0, (75)
where by is a parameter to be determined.

Using Egs. (64), Egs. (73) and Egs. (75), we have the
following estimation of T#¥ —TH#" in the low velocity limit

TR T N TR TR (76)

Theorem 8 Suppose that (1) Assumption 7 is valid; (2)
Tgéll) ~ 0. Then, by = —1 and the field equations (54)
can be written as

a)\a)\wuu o a)\au,wu)\ o
+7];LV80_8A¢0')\ o

NP + 9H "
NN = —fo(T™ — TL¥)(T7)

Proof of Theorem 8. Noticing Egs. (70), the 00 com-
ponent of the field equations (74) is

0r0Mp" — 20,0°9" + 0°0°y
T 0,05 — 03N = 10 (TOO T2°)(78)



Take the trace of the field equations (74), we have

DAY — 030N = ﬁ(T ~-T.), (79)
2bg
where T and T,, are the traces of T#¥ and T*" respec-
tively, i.e., T =T} = 1agT?, T, = T.) = nasT".
Subtracting Eq. (79) from Eq. (78), we have

NP — 2000°9" + 900y
T

_fO 00 00 , Lw
—bOT 2Tw+2.(80)

If the field is time-independent, then Eq. (80) reduces
to

_v2w00 — @ <T00 _ z _

T,
b 5 £°+>. (81)

2

According to Egs. (76), we have the following estima-
tions in the low velocity limit

T — T = Ty) + T3 = pmc, (82)
T —T, =~ Ty + Ton) & pmc’, (83)

where T}, is the trace of T, i.e., Ty, = 1asT2?, To)
is the trace of T;{E’l),.

Noticing 9% = 19 and using Egs. (29), Eq. (32), Eq.
(51) Egs. (82) and Egs. (83), Eq. (81) can be written as

~V%P = i4mjvpm. (84)
bo
Comparing Eq. (84) and Eq. (10), we obtain by = —1.
Therefore, using Egs. (70) and by = —1, the field equa-
tions (74) can be written as Eqgs. (77). O
Now we discuss the physical meaning of T}*. Noticing
Egs. (75) and Egs. (73), we have the following estimation
in the low velocity limit
T =~ Tglzlélo)' (85)
From Egs. (85), we see that the tensor T/" is an esti-
mation of T{;EJO) when the velocity u of the (0) substra-
tum is small comparing to c.
We can verify that the field equations (77) are invariant
under the following gauge transformation ([4], p. 45; [34])

PHY — P 4 OFAY + OV AH, (86)
where A is an arbitrary vector field.

We introduce the following definition

1 LV
- 577‘ . (87)

Using Eqgs. (87), the field equations (77) can be written
as

(b;w _ wuu

8}\8A¢pu _ 8}\6/L¢l}>\ _ a}\ay(bu)\
+ N 0y00d7N = — fo(TH — TH). (88)

We introduce the following Hilbert gauge condition [34]
1
Oy (W‘” - 277“%) =0. (89)

Using Eqgs. (87), the Hilbert gauge condition Egs. (89)
simplifies to

B = 0. (90)

Applying Egs. (90) in Egs. (88), we obtain the follow-
ing proposition [34].

Proposition 9 If we impose the Hilbert gauge condition
Eqgs. (89) on the fields, then, the field equations (77)
simplifies to

I (W“ — ;n“w) = —fo(TH —TH). (91)

If the tensorial potential ¢*” does not satisfy the
Hilbert gauge condition Egs. (89), then we can always
construct a new tensorial potential 9)** by the following
gauge transformation [34]

PRV = P 4 QRN+ 9V AR, (92)

such that the new tensorial potential ¥ does satisfy the
Hilbert gauge condition Egs. (89).

Using Eqgs. (87), the field equations (91) can be written
as

ONONPHY = — fo(TH — TH). (93)

The field equations (93) can also be written as

(e 82¢NV v v
=T T, (9)

We noticed that the tensorial field equations (94) are
similar to the wave equations of electromagnetic fields.

VII. CONSTRUCTION OF A TENSORIAL
POTENTIAL IN INERTIAL REFERENCE
FRAMES

The existence of the (1) substratum allows us to
introduce the following definition of inertial reference
frames.

Definition 10 If a coordinates system S is static or
moving with a constant velocity relative to the reference
frame Sq(1y, then, we call such a coordinates system as
an inertial reference frame.

The field equations (88) and Egs. (91) are valid in
the reference frame Sq(1). We will explore the possi-
bility of constructing a tensorial potential in an arbi-
trary inertial system S’. In an inertial reference frame



S, an arbitrary event is characterized by the four s-
pacetime coordinates (t,z,y,z). In an inertial system
S’, this event is characterized by four other coordinates
(t',2',y',2"). We assume that the origins of the Carte-
sian coordinates in the two inertial systems S and S’
coincide at the time ¢ = ¢ = 0. Then, the connec-
tions between these spacetime coordinates are given by a
homogeneous linear transformation keeping the quantity
52 = 2?2 — 2% — y? — 2% invariant, i.e., ([36], p. 90)

2= M2 g? g2 2= Mg y? % = 2. (95)

We introduce the following two coordinate systems

xO:ct, xlzx, x2:y, xS:z,

I,O — Ct/, x/l _ I/, I/2 _ y/7 m/& — Z/. (96)

The homogeneous linear transformation keeping the
quantity s? invariant, which is usually called the Lorentz
transformation, can be written as ([43], p. 57; [36], p. 90)

't = at z¥, (97)
where a*, are coefficients depend only on the angles be-
tween the spatial axes in the two inertial systems S and
S’ and on the relative velocity of S and S’.

Applying the standard methods in theory of special
relativity [36], we have the following results.

Proposition 11 Suppose that the field equations (93) is
valid in the the reference frame Sqy. Then, in an arbi-
trary inertial system S’, there exists a symmetric tensor

;“, satisfies the following wave equation

838/A¢/”y _ _fO(T/;w _ Tﬁw)v (98)

where T'"™ and T!' are corresponding tensors of THY
and TH" in the arbitrary inertial reference frame S’ re-
spectively.

Proposition 12 Suppose that the field equations (88) is
valid in the reference frame Sq1y. Then, in an arbitrary
inertial system S’, there exists a symmetric tensor ng’W
satisfies the following field equation

ai\a/)\(b/;ul _ 83\8/M¢/V)\ _ ai\a/y(b/u)\
- LB = — oI — T1).(99)

VIII. THE EQUATIONS OF MOTION OF A
POINT PARTICLE IN A GRAVITATIONAL
FIELD AND INTRODUCTION OF AN
EFFECTIVE RIEMANNIAN SPACETIME

In this section, we study the equations of motion of
a free point particle in a gravitational field. The La-
grangian of a free point particle can be written as ([4], p.
57;[34])
1 datdx, 1

1
Ly = = -mut'u, = cmnutu’,

=" a2 5 (100)

where m is the rest mass of the point particle, dr
%\ /dx#dz,, is the infinitesimal proper time interval, u*
dx*/dr.

Suppose that Tgé’l) ~ 0. Ignoring those higher terms
O[(fovuv)?] in Eq. (52), the interaction term of the La-
grangian of a system of the (0) substratum, the Q(1)
substratum and the point particle can be written in the
following form ([4], p. 57;[34])

Ling = fotumutu”.

Using Eq. (101) and Eq. (100), the total Lagrangian L,
of a system of the (0) substratum, the (1) substratum
and the point particle can be written as ([4], p. 57)

(101)

1
L, = Lo+ Liny = imu“uu + fomuru”. (102)

The Euler-Lagrange equations for the total Lagrangian
L, can be written as ([43],p. 111)

dx¥ Mpop dx® dzP
T - f T
-

i (nuu + 2f0¢;w) =0. (103)

dr oz dr dr

We notice that the equations of motion (103) of a point
particle in gravitational field are similar to the equations
of a geodesic line (105) in a Riemannian spacetime. Thus,
it is natural for us to introduce the following definition
of a metric tensor g, of a Riemannian spacetime ([4], p.
57)

Guv = Nuv + 2f0'(/)uu~ (104)

Then, the equations of motion (103) can be written
as ([4], p. 58)

d ( dm”) 1 0gap dz® dz”
v = e

diTLq diTg T2 Oz dry dTg’

(105)

where d7, is the infinitesimal proper time interval in the
Riemannian spacetime with a metric tensor g, .

Egs. (105) represent a geodesic line in a Riemannian
spacetime with a metric tensor g,,, which can also be
written as ([44], p. 51)

2z dz¥ dxz°
Ho— =0, 106
d7'92 Y7 dry dry (106)

where

aguﬁ _ 69a/3> (107)

1 14 aglw‘
af = 59 ozh Ozxe Ok
are the Christoffel symbols.

Thus, we find that the equations of motion (103) of a
point particle in gravitational field represent a geodesic
line described in Egs. (106) in a Riemannian spacetime
with a metric tensor g, .

According to Assumption 1, the particles that consti-
tute the (1) substratum are sinks in the 2(0) substra-
tum. Thus, the movements of the (1) substratum in



gravitational field will be different from the Maxwell’s e-
quations. We notice that the equations of motion of a
point particle in gravitational field (105) are generaliza-
tions of the equations of motion of a point particle in
vacuum free of gravitational field. The law of propaga-
tion of an electromagnetic wave front in vacuum free of
gravitational field is Egs. (11). Thus, the law of propa-
gation of an electromagnetic wave front in gravitational
field may be a kind of generalization of Eq. (11). There-
fore, we introduce the following assumption.

Assumption 13 To first order of fotu,, the law
of propagation of an electromagnetic wave fron-
t w(x®, xt, 2% 23 in gravitational field is
ow Ow
v=——— =0, 108
gM ax# axu ( )
where w(z¥, 21, 2%, 23) is the electromagnetic wave front,

gap is the metric tensor defined in Eqs. (104).

The measurements of spacetime intervals are carried
out using light rays and point particles, which are only
subject to inertial force and gravitation. Thus, according
to Egs. (105) and Eq. (108), the physically observable
metric of spacetime, to first order of fo1,,, is g,. Thus,
the initial flat background spacetime with metric 7, is
no longer physically observable [34].

If we can further derive the Einstein’s equations (1)
using the definition (104) of a metric tensor g, of a Rie-
mannian spacetime, then, we may provide a geometrical
interpretation of Einstein’s theory of gravitation based
on the theory of vacuum mechanics [27, 32, 33]. This is
the task of the next section.

IX. GENERALIZED EINSTEIN EQUATIONS IN
INERTIAL REFERENCE FRAMES

Definition 14 The Einstein tensor G, is defined by

1

7g;wR7

A
G = R — 5

(109)

where g, s a metric tensor of a Riemannian space-

. . .. A .
time, R,, is the Ricci tensor, R = g R,,, g"¥ is
the corresponding contravariant tensor of g,., such that

gung™ =04 =g ([44], p- 40).

According to the geometrical interpretation of some
theories of gravitation in flat spacetime [34], the phys-
ically observable metric g, of spacetime in Eqgs. (104)
can be written as

g" =" — 2fop" + O[(forr™™)?].

Following the clue showed in Eqs. (110) and noticing
the methods of S. N. Gupta [45] and W. Thirring [34],
we introduce the following definition of a metric tensor
of a Riemannian spacetime.

(110)
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Definition 15

~ A A
§" =V=gog"" =" = 2fod"",

where go = Det g,,,.

(111)

We have the following expansion of the contravariant
metric tensor g"” [45)

gW — nlw _ 2f0¢w + foﬁwﬁaﬁéf?aﬂ
=2f51apd™ P S + [N Naonprd™P o™

1
+5 I8 Mg mae 07762 + Ol(fod)?] (112)

Definition 16 If ¢*¥ and their first and higher deriva-
tives satisfy the following conditions

[2fod""| < 1, (113)
" (2fod™) _
‘a(za)n <1l,n=123, (114)

then we call this field oM weak.

For weak fields, ¥ = ¢ ~ 0. Thus, ¢*” = p** —1/2.
n*e) = Y. From Egs. (112), we see that the definition
(111) is compatible with Eqgs. (110).

Theorem 17 Suppose that Assumption 7 is valid. Then,
in an arbitrary inertial reference frame S;, we have the
following field equations

1

240
—90
2

1 1
0 R ) Zytyt — Zg*M (L + B
ap T 5Y"y" = 59" (L + B)

O*(y=g0g"")

0x*0zh

G (V=g09°" —n*?)

(a)\augu)\ + a)\al/glu\ o nul/ao_a)\ga)\)

o

2
+ o= L0 i gy,

" (115)

where TH is the contravariant total energy-momentum
tensor of the system of the matter, the Q(1) substratum
and the Q(0) substratum in the inertial reference frame
Si, THY is the contravariant energy-momentum tensor of
vacuum in the low velocity limit in S;,

as 2 L S gt 55 g o g>s
240 oz oz oz )’
(116)
v A v (o
Haﬁ = gaAgBUH A 5 (117)
e £ g7rs,, (118)
Al orv or+ gt

F/,LV = _ yiie% vo _ 1"0& , 119
2 (g Ox® tg Oz« Oz© ) (119)



A 0(gvV=90) oD ap
Ys 5er 0 Y =9 ys, (120)
A 1, 0g°F d(1g v/—=g0)
L2 T B 121
2" B gy ozxe ’ (121)

1
B AT 4 ST +yT"), B = guB™. (122)

Proof of Theorem 17. According to a theorem of V.
Fock ([37], p. 429), the contravariant Einstein tensor G*”
can be written as

1 s P
2907 Ox*0xP

1
+59" (L +B) — B

1
Zyt
ny

v

GH =

BT
+ IO —

(123)
Applying Egs. (111), Egs. (123) can be written as
g 9 (20p5)
_ — 0B _ paf) L \T2J0Y )
290 (V=509 ) Ox*0xP
_fo_ap 070"
go ' Ox*0xP

1 1
sy + 59””@ + B) — B".

+ TIPTIY

5 (124)

Noticing Eqgs. (111), the field equations (99) can be
written as

ap 0P _ V=%
T 9radaP 2fo
— " 0,009°") — fo(TH — THY). (125)

Using Eqs. (111) and Egs. (125), Egs. (124) can be
written as

(000" 9" + 020" g

?(V=g0g"")

ny o _
G 0x*0zh

1
5 (V=909"" — )
9o

V=90

+
290

(060" " + N0 " — 1 D, 0097

f2 v v e} v 1 v
+9%(T“ = TY) + 1PI = yy

+%g"”(L +B) — B™. (126)
Egs. (126) can be written as Egs. (115). O
Egs. (115) have the same form in all inertial reference
frames. Egs. (115) is one of the main results in this
manuscript. We need to further study the relationship
between Egs. (115) and the Einstein field equations (1).

Theorem 18 If we impose the Hilbert gauge Eqgs. (89)
on the fields, then in an arbitrary inertial reference frame
S; we have the following field equations

1 *(V=g09"")
G _ (=B — poB
290( 909 ") Ox*dxh
« v ]' 17 ]' v
— TPy, + iy“y - 59” (L+ B)
f2
+ Br =20 (Tr T, (127)
g0

11

Proof of Theorem 18. Using Eqgs. (111) and Egs. (98),
Egs. (124) can be written as

1 9*(v/=g0g"")
pyo T /_ af _ aB =7
¢ 290 (V=909 ") dr*dxs

f2 v v 4, X, v 1 v
g (T = T + TP TI s — syy

1
+59" (L +B) — B". (128)
Egs. (128) can be written as Egs. (127). O

Definition 19 If each of the coordinates x® satisfies the
following generalized wave equations
)-o

1 0 Ox“
= Y| SZana
v—go Ox# ( 90T G

then, we call such a coordinates system harmonic.

(129)

In a harmonic coordinates system, we have ([37], p.
254)

[V =T" = B = B = 0. (130)

Putting Egs. (130) into Egs. (127), we have the follow-
ing corollary.

Corollary 20 If we apply the Hilbert gauge Eqs. (89)
and the coordinates system is harmonic, then the field
equations (127) can be written as

1 9*(v/=909"")
Guu o — 06,8_ ap
2g0 (V09" ) s
1 1

_ H“’QBHZﬁ + iyuyv _ 5gWL

— f(? 124 pv

= = (TH —Th"). (131)
9o

We can verify that each of the Galilean coordinates

is harmonic. Any constant and any linear function of
harmonic coordinates satisfy Egs. (129). Thus, from Eqgs.
(97) we see that an inertial reference frame is harmonic
and Eqgs. (131) are valid for every inertial system. In
order to study the case of weak fields in inertial systems,
we introduce the following assumption.

Assumption 21 Suppose that the dimensionless param-
eter w = moc/2poqo satisfies the following condition

mocC
0% <.

w =
2poq0 —
Using the 00 component of Eqgs. (114) for the case n =
1 and noticing Egs. (87), Egs. (29), Egs. (51) and Egs.
(9), we have

’a(2f0¢00)
O(z%)

Noticing Eq. (27) and using Eq. (133) and Eq. (132),
we have |u| ~ |Vo| < moc?/(2poq0) < c. Therefore,
according to Assumption 7, Egs. (75) and Eqgs. (76) are
valid for weak fields.

(132)

_ [2p090 9¢

moc? 0a° < 1.

(133)




Corollary 22 Suppose that (1) the Hilbert gauge Egs.
(89) is applied on the fields; (2) the filed is weak; (3)
Assumption 7 is valid. Then in an arbitrary inertial ref-
erence frame the field equations (131) reduce to

1 2
Ry — =guwR = ;% (T[J; + Tgym) , (134)

2
Proof of Corollary 22. According to Definition 16,
foo*” and their first and higher derivatives are small
quantities of order e, where |¢] < 1 is a small quanti-
ty. Thus, using Egs. (111) and Egs. (112), we have the
following estimation of the order of magnitude of the fol-
lowing quantities

ogh”

agl“/ ~ ~
ox®

ozx®

vV=gog"’ — """ ~ ¢, €. (135)

From Egs. (111), we have the following estimation of
the order of magnitude of the quantity

(vV=909"") _ 9*(=2fo9")
dxedxP Ox*dxP

~

(136)

Thus, using Egs. (135) and Egs. (136), we have the fol-
lowing estimation of the order of magnitude of the quan-
tity

9*(v/=g09°") 2

~

0x*0xP

From Egs. (116) and Egs. (117), we have the follow-
ing estimation of the order of magnitude of the following
quantities

(V=g09*% =) (137)

P ~ Y, ~ e, 138
af

Using Egs. (120), we have the following relationship
([37], p. 143)

ys = u- (139)
We also have ([37], p. 143)
1 dg
Y 2% uv

From Egs. (139), Eqgs. (140) and Egs. (135), we have
the following estimation of the order of magnitude

Yyg ~ €. (141)

Using Egs. (120) and Eqs. (141), we have the following
estimation of the order of magnitude

Y& ~e. (142)
From Eq. (121) and Egs. (130), we have
1 dg™s
L=—-T",22 . 14
2" B Pav (143)
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Using Eq. (143), Egs. (107) and Egs. (135), we have
the following estimation of the order of magnitude

Lr~e (144)

From Egs. (137), Eqgs. (138), Egs. (142) and Eq. (144),
we see that the second to the fifth term on the right side
of Egs. (131) are all small quantities of order £2. Ignoring
all these small quantities of order £ in Egs. (131) and
using Egs. (76), we obtain

G 12
9o

(1o +180,)).- (145)
Applying the rules of lowering or raising the indexes
of tensors, i.e., GV = ghog" \G,, T = glog" ™,

Tgéjl) = g“"g”’\TC%fl), Egs. (145) can be written as
£ (m o)
Gro 20 (7o + TV (146)

Putting Eqgs. (109) into Egs. (146), we obtain Egs.
(134). O

Corollary 23 Suppose that the following conditions are
valid: (1) the Hilbert gauge Eqs. (89) is applied on the
fields; (2) the filed is weak; (3) go = —1; (4) Assumption
7 is valid; (5) T,?V(l) ~ 0. Then in an arbitrary inertial
reference frame the field equation Eqs. (134) reduce to

1
Ry — 5g,wR =— 3T, (147)
If we introduce the following notation
81N
K 0 P ’ ( )

then, Eqgs. (147) coincide with Einstein’s equations (1).
Thus, we see that the field equations (115) are generaliza-
tions of the Einstein’s equations (1) in inertial reference
frames.

X. EQUIVALENCE BETWEEN THE INERTIAL
MASS AND THE GRAVITATIONAL MASS

Proposition 24 The inertial mass of a microscope par-
ticle equals it’s gravitational mass.

Proof of Proposition 24. Newton’s law of gravitation
can be written as ([43], p. 2)

) roy, (149)
where my; and mgy are the gravitational masses of t-
wo particles, G is Newton’s gravitational constant, ra;
denotes the unit vector directed outward along the line
from the particle with mass mg; to the particle with mass
mgo, 1 is the distance between the two particles,.



In 2008, we show that the force Fa;(t) exerted on the
particle with inertial mass m;2(t) by the velocity field of
the ©(0) substratum induced by the particle with inertial
mass my (t) is [27]

Foi(t) = *’YN(t)Mf‘zh (150)
where
_ podd

po is the density of the ©(0) substratum or we say the
gravitational aether, mg(t) is the inertial mass of monad
at time ¢, —go(go > 0) is the strength of a monad.
Suppose that Gy = vn(t). Comparing Eq. (149) and
Eq. (150), we have
TMi1Mmi2 = Mg1Mg2. (152)
Now we study a gravitational system of two protons.
According to Eq. (152), we have

2 _ 2
ip — Mgp>

m (153)

where m;;, and myg, are the inertial mass and gravitation-
al mass of a proton respectively.

Noticing m;, > 0 and mg, > 0, Eq. (153) can be writ-
ten as

Mip = Mgp. (154)

Eq. (154) shows the inertial mass m;, of a proton
equals it’s gravitational mass mg,. Similarly, we can
demonstrate that the inertial mass of another type of
microscope particle equals it’s gravitational mass. [J

This result is called the principle of equivalence in the
theory of general relativity [1, 2, 36].

XI. THE DYNAMICAL GRAVITATIONAL
POTENTIALS IN INERTIAL REFERENCE
FRAMES

The purpose of this section is to review the mathe-
matical forms of the dynamical gravitational potentials
in inertial reference frames. These results may provide
us some clues to explore possible mathematical model-
s of inertial potential and inertial force Lagrangian in
non-inertial reference frames, which are introduced in the
next section.

The definition of the strength g of a gravitational field
is ([44], p. 24)

Fy

)
Mtest

(155)

where M4 is the mass of a test point particle, F, is the
gravitational force exerted on the test point particle by
a gravitational field.
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According to Newton’s second law, we have
(156)

Fg = Mtesta,

where a is the acceleration of the test point particle.
Comparing Eq. (156) and Eq. (155), we have
g=a. (157)

The definition of the acceleration a is ([44], p. 24)

d2zk
;= Vik—— 158
% = Yok~ (158)
where
Yik = —Gik + Joigok. (159)
goo

Based on the time tracks of free particles described
by geodesic curves in Minkowski spacetime, we have the
following results ([36], p. 279;[44], p. 26)

i= 55— /lt =55 1
a i VT =g (160)
where
L —goo o gio
M=_-—_9%2 . _ 90 161
5 g o (161)
Egs. (160) can also be written as
9 1 — goo 9(—gio)
2 2
=L (- - . 162
“ © O ( 2 ¢ O(ct) (162)

XII. INERTIAL POTENTIAL AND INERTIAL
FORCE LAGRANGIAN IN NON-INERTIAL
REFERENCE FRAMES

According to the theory of general relativity [1, 2], the
Einstein’s equations are valid not only in inertial refer-
ence frames and but also in non-inertial reference frames.
Thus, it is needed to explore the possibility to derive the
Einstein’s equations in non-inertial reference frames.

When solving the Einstein’s equations for an isolated
system of masses, V. Fock introduces harmonic reference
frame and obtains an unambiguous solution ([37], p. 369).
Furthermore, in the case of an isolated system of mass-
es, he concludes that there exists a harmonic reference
frame which is determined uniquely apart from a Lorentz
transformation if suitable supplementary conditions are
imposed ([37], p. 373). It is known that wave equations
keep the same form under Lorentz transformations [36].
Thus, we speculate that Fock’s special harmonic refer-
ence frames may have provided us a clue to derive the
Einstein’s equations in some special class of non-inertial
reference frames.

We introduce an arbitrary coordinate system
(20, 2t 22, 2'3) and denote it as S,. It is known



that a particle in a non-inertial reference frame will
experiences an inertial force. Unfortunately, we have no
knowledge about the origin of inertial forces.

The equivalence between inertial mass and gravitation-
al mass implies that to some degree gravitational forces
behave in the same way as inertial forces that result from
non-inertial reference frames ([43], p. 17). Thus, we spec-
ulate that inertial forces may originate from the interac-
tions between matter systems and vacuum. Therefore,
we introduce the following assumption.

Assumption 25 The inertial force exerted on a matter
system in a non-inertial reference frame stems from the
interactions between the matter system and vacuum.

Based on Assumption 25, we introduce the following
concepts for inertial forces, which are similar to those
concepts for gravitational interactions.

Definition 26 Inertial potential wiﬁfr is an interaction
potential between a matter system and vacuum resulting
from the inertial force ¥y, exerted on the matter system

by vacuum in a non-inertial reference frame S, .

Definition 27 Inertial force Lagrangian Liney is an in-
teraction Lagrangian between a matter system and vac-
uum resulting from the inertial force Fine, exerted on
the matter system by vacuum in a non-inertial reference
frame S, .

Now our task is to explore possible expressions of in-
ertial potential ;" and inertial force Lagrangian Lipe,.
Similar to Eqgs. (162), the inertial acceleration a of a test
point particle in the non-inertial reference frame S, can

_ 20)

be written as
. 1 — 1o
2 a(x'0) ’

—c? 8,,
ox'
where 77;” is the corresponding metric tensor of the non-
inertial reference frame S,,.
If n}, are time-independent, the inertial acceleration a
of the test point particle in Eqgs. (163) simplifies to ([36],

p. 280)
~1—mpy
— )

Using Egs. (164), the inertial force Fj,., exerted on
the test point particle can be written as

Fiper = ma = —mc’V’ (—1_77/00>
mer — - 2 )

(163)

a; =

5 0
oz’

a; = —C

(164)

(165)

where m is the mass of the test point particle, V' =
i0/0z'" + j0/8z' + K'9/0x is the corresponding
Hamilton operator in the non-inertial reference frame
(.’[7/0, $/17 $/27 .7;‘/3).

From Eq. (165), the inertial force Lagrangian of a sys-
tem of vacuum and the test point particle can be written

as
1 _
Linerl = mc2 (_ 7700) . (166)

2
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Therefore, the inertial force Lagrangian of a system
of vacuum and continuously distributed particles can be

written as
1 _
Lincr = anC2 (7700> .

5 (167)

Noticing 79 = p,,c? and 1oy = 1, the inertial force
Lagrangian Liner in Eq. (167) can be written as

Liner = fotoy™ T » (168)
where

iner 1 ’

00 = _%(WOO — 7oo)- (169)
Following Ref. [46], the parameter fy is
[2p0g5  [8myN

f— = . 170
fO m%c‘* c ( )

Inspired by Eqs. (168) and Eq. (169), we introduce the
following assumption.

Assumption 28 Suppose that the inertial force La-
grangian Liner of a system of a free point particle and
vacuum in the non-inertial reference frame S, can be
written as

_ iner / v
Liner - fo%w mu'u )

(171)

wh/ere m is the rest mass of the point particle, u'*
dx */dr,y, T, is the proper time,

iner __

1
7772 7%(”#” - 77;IL1/)- (172)
Following similar methods in [46], we obtain the fol-
lowing result.

Proposition 29 Suppose that Assumption 28 is valid.
Then, the equations of motion of a free point particle can
be written as

R dx'v da’o
—_— H =0 173
dTg, Y dry dry ’ (173)
where
, 1. 0 on' on'
cly, & Ly (Sl Tps Dlas (174)
2 o0x'f Oz’ Ozx'm

are the corresponding Christoffel symbols in the non-
inertial reference frame S, .

Proof of Proposition 29. The Lagrangian of a free
point particle in S,, can be written as ([4], p. 57;[34])

1 dardzl, 1
Ly=sm - E = —muhu, =
2 2 H

]_ ’ /H ’
- Y. (175
dry dry 2 Mt =0 (175)



where m is the rest mass of the point particle, dr

%,/ dw'”dw’u is the infinitesimal proper time interval,
u't = da'tdr,.

Suppose that Tﬂlg) ~ 0. Using Eq. (175) and Eq.
(171), the total Lagrangian L, of a system of the ©(0)

substratum, the 2(1) substratum and the point particle
can be written as

1 .
L, =Ly+ Liper = imu'“u; + fotsTmutu . (176)

The Euler-Lagrange equations for the total Lagrangian
L, can be written as ([43], p. 111)

0L, d 0L,
- =0 177
ox'v  dry Qu'r (177)
Putting Eq. (176) into Eqgs. (177), we have
. dz'” 0 ;nﬁr dz'® dx'P
_ » 2 lnyer _ : —_
dr, (v + 2fo7) dTn/] fo o' dry dry
(178)
Using Eq. (172), Egs. (178) can be written as
'y 1 8 ’ "o /5
d n:wda: 1 7]?5 dzx “ dx _o. (179)
dryy dry 2 0x'# dryy dry

Egs. (179) represent a geodesic line in a Riemannian
spacetime with a metric tensor n:“,, which can also be
written as Eqs. (173) ([44], p. 50). O

Egs. (173) is a geodesic curve in a Minkowski space-
time. It is known that a geodesic curve is a straight line
in a Minkowski spacetime ([47], p. 235). For instance, ac-
cording to Newton’s first law, a free particle moves along
a straight line in the Galilean coordinates. Therefore,
Assumption 28 may be supports by some experiments.
Thus, inspired by the inertial force Lagrangian for a free
point particle in Eq. (171), we introduce the following
assumption for a matter system.

Assumption 30 The inertial force Lagrangian Line, of
a matter system and vacuum in the non-inertial reference
frame S, can be written as

Liner = fovu (T4 + Tg(y)) + Ol(fovi)?],

ny

(180)

where T"  and Ts/{(“f)

momentum tensors of the system of the malter and
the Q(1) substratum respectively, O[(forb'")?] denotes

J13%
those terms which are small quantities of the order of

(fO iner>2 .

[N

are the contravariant energy-

XIII. FIELD EQUATIONS IN A SPECIAL
CLASS OF NON-INERTIAL REFERENCE
FRAMES

Suppose that the transformation equations between a
non-inertial coordinate system (20, /!, 22, 2'3) and
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the Galilean coordinates (ct, z,y, z) are

o' = fo(20, 2t 22, 23). (181)
Following V. Fock ([37], p. 370-373), we introduce the
following definition of a special class of reference frames.

Definition 31 Suppose that a coordinate system
(20, 2’ 2%, 2'3) satisfies the following conditions: (1)
every coordinates x'® satisfies the d’Alembert’s equation
([37], p. 369), i.c.,

ox'™

oo A
Dn/'r - o'V

L9
V= 92

where 77;“, is the metric of the reference frame S, nj =
Det m,,; (2) every coordinates x'® converges to the
Galilean coordinates (ct,xz,y, z) at large enough distance,
i.e.,

(J—Tan"” )zo, (182)

. /
lim z'¢ = z®
rT—>00

where r = \/x% + Y% + 22; (3) " —(n'"") oo are outgoing
waves, i.e., NH — (M) satisfy the following condition
of outward radiation: for r — oo, and all values of t), =
t+r/cin an arbitrary fized interval the following limiting
conditions are satisfied ([37], p. 365)

Ar(n™ — (™))
or +

; (183)

1O[r(m™ = (n"")oo)]
ot

lim =
T— 00

0,

(184)
where (") o denotes the value of n'*" at infinity. Then,
we call this coordinate system (x'°, a't, 2%, 2'3) as a
Fock coordinate system.

C

We use Sr to denote a Fock coordinate system. The
Galilean coordinate system (ct,x,y, z) is a Fock coordi-
nate system. V. Fock points out an advantage of Fock co-
ordinate system:”When solving Einstein’s equations for
an isolated system of masses we used harmonic coordi-
nates and in this way obtained a perfectly unambiguous
solution.” ([37], p. 369) Here the harmonic coordinates
called by V. Fock are Fock coordinate systems.

According to a theorem of Fock about Fock coordinate
systems ([37], p. 369-373), the transformation equations
(181) from one Fock coordinate system to another can be
written as a Lorentz transformation, i.e.,

!
't =at, x¥,

(185)

where a*, are coeflicients of a Lorentz transformation.
For convenience, we introduce the following noatons

(

Proposition 32 Suppose that the reference frame Sg is
a Fock coordinate system and Assumptions 30 is wvalid,
then the total Lagrangian L, of a system of the Q(0)

0 0 0 0
0’0’ 'Y’ 9’2’ Ox'3

9, =

>, ot =nro.. (186)



substratum, the Q(1) substratum, vacuum and matter in
SEr can be written as

1 ’ ’ ’ ’ ’
L;ot _ 781\1&;“/8/)\1# 2 283\’(/);“,(9 ,U.,(/} Av 60 /Lw:“/a Vw/
_78)\'(/)/8 ¢ + Lmore + fOT/);W(T;#V + TQTT))
IR (T + Th) + Ol fou s
+O[(fory)’], (187)
where L, .. denotes those terms involving more than t-

wo derivatives of ¥, O[(fo),,)?] denotes those terms
which are small quantities of the order of (foi%,,)Q-

Proof of Proposition 32. Based on some assumptions,
the total Lagrangian Ly of a system of the £2(0) substra-

tum, the Q(1) substratum and matter can be written as
[46]
1
Loy = 55,\1%1/3)‘1&“” - 28)\¢uuauw)\u - 65“1/}Hu3”¢

3 v
—58)\’(/}8)\1/1 + Lyore + foiﬁw(T#f + Tg(l))

Ol(forbuw)?]. (188)
The total Lagrangian L; , can be written as
Léot = Ltot + Liner- (189)

Similar to the case of inertial reference frames ([43], p
59-60, 63), we also have the following results in the Fock
coordinate system Sg

O =ayd,, 0=ad°,
¢/#V = aﬂaa‘yﬁwaﬁa
@[;;V = af‘afd)ag.

The first term on the right hand side of Egs. (187
be written as

—_ ~ —~
—
Nej
\S)

1 ! v 1 o [e3
581\1&;},1/80\1# = 5(0,}\ 60')(0’;1, aVBwaﬁ)
(a%,07)(a’a"sy°7). (193)
We have the following result ([43], p. 60)
af'a®, =8, (194)
where 6% is the Kronecker delta.
Using Eq. (194), Egs. (193) can be written as
1 / 1
SOV O = 06 tbapd . (195)
Similarly, we can verify the following results
—2041,, 01N = —20,1650°Y7%,  (196)
—6014!,, 0V = —60Papd’ip, (197)
SO = —Soudre,  (199)
Joty T = fovasTr’, (199)
L;nore = Lmore; (200)
Ol(foty)?] = Ol(fotbyur)?]- (201)
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Putting Eq. (188) and Eq. (180) into Eq. (189) and
using Egs. (195-201), we obtain Eq. (187). O

Applying similar methods in Ref. [46], we have the
following result.

Theorem 33 If we ignore those terms which are small

quantities of the order of (fou],)? and (fov*)* and

those terms involving more than two derivatives of w’ y

in Bq. (187), i.e., O(fov},)%], Ol(fov")?] and L’more,
then the field equations for the total Lagrangian L., in
Eq. (187) can be written as

Ly~ 20 + 070
_6(/’7;[38/ a;\wlak + o' alé,l/}/) o 377(;ga;8/0¢/
7f0( i +TQ(1)>.

Proof of Theorem 33. We have the following Euler-
Lagrange equations [42]

(202)

aLéot a aLéot _
el Cr) RUSCD
We have the following results
OOy, 0 0) O(03e) ey
(0 P) 9(95)"P)
00 ')
+ 04 v B B 204
)\wy, ( w ) ( )
Vs = Myl *7 (205)
Using Egs. (205), we have
6(83\ I/JV) 0 ro /o pT
anres) = o) (a0 )
_ o AT
- nﬂpnwa(a/ w/aﬁ)
= 77;“3771/75)\5’)55

Using Egs. (206), the first term on the right hand side
of Egs. (204) can be written as

(‘%ﬂ/’,w)

50, /29)

Similarly, the second term on the right hand side of
Egs. (204) can be written as

O MY = TP (207)

(a )\w MV) ‘ol
aﬂ/f”yﬁ =0 T1hagp- (208)
Using Egs. (207) and Egs. (208), we have
a 0@, 0,
e l 8(8{,@/} 5 ] — 20,075 (209)



Similarly, we can verify the following results

0 6(83\ ;lwaluwl/\y)_ ‘ool 0
O’ [ 0(0L'P) = 07025,
+O Ty, (210)
o [o@ry,, 0] o
&’E'”l spuen) |~ PO

+l 0,000 %, (211)

0 8(6&¢/6IAw/)_ _ ’ 1 oot
ax/o. [ 8(8(/T¢1a6) - 277(1[360'8 w7 (212)
L., L
Mfag = fO(Taﬂ+Ta§ﬁ2(1))(213)

Putting Eq. (187) into Egs. (203) and using Eqgs. (209-
213), we obtain Egs. (202). O

Following Ref. [34], we introduce the following nota-
tion in the Fock coordinate system Sp.

T = 940 ' — 2040 "N — 2040
—6n M OLORY TN — 6010y — 3y M 030 M (214)
Thus, the field equations (202) can be written as

Togy)-

T = fo(TH + (215)

For convenience, we introduce the folloyving definition
of the total energy-momentum tensor T #” of the sys-
tem of the matter, the Q(1) substratum and the £(0)
substratum in a Fock coordinate system S

T'uu

it (216)

T =T +Tdd) +
where T;{Eg) is the energy-momentum tensor of the ©(0)
substratum in the Fock coordinate system Sp.

Adding the term foTﬂ%) on both sides of Egs. (215)
and using Egs. (216), the field equations (215) can be
written as

U foTQ’ES) = foT M. (217)
For the total system of matter, the Q(1) substratum

and the (0) substratum, the law of conservation of en-
ergy and momentum is ([36], p. 169; [38], p. 155)

LT’ = 0. (218)
Comparing Egs. (218) and Eqgs. (217), we have
0, (U + foTq ) = 0. (219)

We introduce the following notation in Sg
@’;w _ a;\a'kw’;w . (8;\8/“¢/W\ + a&a/uw’u)\)
OO o P OLON ) — o B0 (220)
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We can verify the following result ([4], p. 44; [34])

9,0 = 0. (221)

From Egs. (221) and Egs. (219), we have
o (Lamw _bogum pw) g (222)

"\ fo Jo o)

where by is an arbitrary parameter.
Following Ref. [34], we introduce the following defini-

’
tion of the contravariant energy-momentum tensor 7"
of vacuum in Sg

P

/l,]/ 1 IJJ/
T =5 v 2(0)

= (22

1
7@ y24 +
fo
Proposition 34 In the low velocity limit, i.e., u/c < 1,
where u = |u|, u is the velocity of the Q(0) substratum,
the following relationships are valid

U4~ ), (224)

where by is a parameter to be determined.

Proof of Proposition 34. In the low velocity limit,
ie., u/c < 1, where v = |ul, u is the velocity of the
Q(0) substratum, the following relationships are valid in
an inertial reference frame S, [46]

T8 4 0% ~ 0. (225)
Similar to the case of inertial reference frames ([43],

p. 59-60), we also have the following results in the Fock
coordinate system Sg

TP = b bW
@a,@ _ baubﬁy(—)/uy7

(226)
(227)

where b, are coefficients of the Lorentz transformation
between the inertial reference frame S;,. and the Fock
coordinate system Sp.

Putting Eqs. (226) and (227) into Egs. (225), we have
Egs. (224). O

Using Eqgs. (216), Egs. (223) and Egs. (224), we have
the following estimations of 7"#* — T in the low veloc-
ity limit

T

T,“V _ TL:)HD ~ T;ril,l/ + Q(l)

(228)

Corollary 35 The field equations (202) can be written
as
83\81)\,1/}/}“/ _ 8&8//—"/1/}IVA _ 83\6’Vw/l‘)‘
+010 Y 4,0 T

—p OO = —fo(T'™ —T.™).  (229)



Proof of Corollary 35. Using Egs. (223), the field
equations (217) can be written as

QM = —fo(T'm —Tm). (230)

Putting Egs. (220) into Egs. (230), we obtain Egs.
(229). O

We can verify that the field equations (229) are invari-
ant under the following gauge transformation

Y s L QAT 4 9V A, (231)
where A* is an arbitrary vector field.
We introduce the following definition
’ ’ 1 ’
B = . (232)

Using Eqs. (232), the field equations (229) can be writ-
ten as
RO — 04019 — 90" ¢
0 LG TN = — fo(T'™ —T™).  (233)

We introduce the following Hilbert gauge condition [34]

alljl (w/ﬂy _ ;’)’IIHV'(/}/) — O (234)

Using Egs. (232), the Hilbert gauge condition Egs.
(234) simplifies to
9,01 =0. (235)

If we impose the Hilbert gauge condition Egs. (235) on
the fields, then the field equations Eqs. (233) simplify to

RO = — fo(T™ — T ). (236)

The field equation (236) can also be written as
rap 020" T — T 237
0B —fol( —T"). (237)

XIV. GENERALIZED EINSTEIN EQUATION IN
A SPECIAL CLASS OF NON-INERTIAL
REFERENCE FRAMES

Definition 36 The Einstein tensor G, is defined by

A 1
= Ruu - 79;L1/R7

G 5

(238)

where g,, is a metric tensor of a Riemannian space-

. . . A .
time, R,, is the Ricci tensor, R = g'R,,, g is
the corresponding contravariant tensor of g.. such that
9ung™ =64 =gt ([44], p- 40).

Similar to Ref. [46], we introduce the following defini-
tion of a metric tensor g,, of a Riemannian spacetime.
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Definition 37
Ny S e Y ¥
where go = Det g,

Applying similar methods of V. Fock ([37], p. 422-
430), Fock’s theorem of the Einstein tensor G, in the
Galilean coordinates ([37], p. 429) can be generalized to
non-inertial coordinate systems (20, 2’1, 22, 2'3).

(239)

Proposition 38 The contravariant Finstein tensor G*
in the non-inertial coordinate systems (2'°, x't, 22, 2'3)
can be written as

]. 82§MU ’ ’ ]_ ! 7
G = — g L LI HOBII Y, — gy
2gog Ox'*dx'P + ap — ¥ Y
1 /
+§g’“’(L' + B') - B", (240)
where
/ A1 (oMt . 0gt | 0g*P
I w2~ ga)\ g/)\ + BA g//\ _ g/J.>\ g/)\ ,
290 ox ox Oz
(241)
/l/ A /l/ g
Y5 = gargpell V2, (242)
r'e 2 gopla (243)
a1 OGua . Ogus  0Gap
T v 2~ ouv M up 244
o8 = 39 ((936/5 T ore T (244)
N or'v or'e g
' =_|g"*— ve—— — =T “], (245
2(9 6m“+g oxr'® Oz’ ) (245)
;0 0gv=90) o g,
Yo = —gg8 ¥ =9 (246)
/ A 1 /1/ agaB 1 !, v
=——— -+ = , 247
2\/_790 af ox'V + 2yuy ( )

, , 1 ’ ’ ’ ’ 4
BWéF"’”ri(y“F”er”T“), B'éngW' (248)

A proof of Proposition 38 can be found in the Ap-
pendix.

Theorem 39 In the Fock coordinate system S, we have
the following field equations

1 r0g) % (V=909"")
pwv - — aB _ S apB )
. ( Jog = ) 02’0z’ P

1 "af 8277,“”

200 0x'*0z'B

/ ’ ]_ ’ /
290 — TP 4 Sy My

1 v ! v / v ! 17
——g" (L' + B') 4+ B'™ = 20(T'm _ ') (249)

1
2 9o



Proof of Theorem 39. Using Eq.(239), Eq.(240) can
be written as

O — 20o0'™)

1 2 !
G = Tg()<v—gogaﬁ—77a5+na’8)

Ox'*0x'P
T ORI, — %y”y + %g“”(L’ +B') - B™
) P
, 2 v , 2 1/ uv
o g~ W s
TP LY, — %y'“y,”
—|—%g”"(L’ +B)— B, (250)

Using Eq.(239) and Eq.(237), Eq.(250) can be written
as Eq.(249). O

We need to study the relationships between Eqgs.(249)
and the Einstein field equations. In a harmonic coordi-
nates system, we have ([37], p. 254)

I'V=T'" =B" =B =0. (251)

Using Eqs.(251) and Eqgs.(249), we have the following

result.

Corollary 40 In the Fock coordinate system S the field
equations (249) can be written as

1 o\ 0°(vV=909"")
GHY — 7( /o a8 aﬂ) ; /
2g, \V 09T 0’0z’ P
1 12 827'/'“'” ’ 2
_ —pap 1 qImaBrY
240 1 o edL P b
1/ 1 2, ,
+ —y Hy v *Q#VL/ — f—O(T v Twpy)(252)
2 2 90

Definition 41 If the following conditions are valid

’

n =g, (253)
1. 8277/HV ) 'y
57 QBW < )fg(T =T )|, (254)

then we call this reference frame quasi-inertial.

Using Eqgs.(254) and Eq.(252), we have the following
result.

Corollary 42 If the reference frame Sy is quasi-inertial,
then, the field equations (252) can be written as

1 rop 92(v/ 909"
ells (\/TQOQQB - aﬁ) ( gog )

240 Ox'@dx'P
TN "v 1. ‘v 1 v
—1I M, BHGB + iy P«y _ 59# L/
~ fg v '
~=(TH =T/ (255)

g0

Eqgs.(255) are only valid approximately in a quasi-
inertial Fock coordinate system Sp. Now we consider
weak fields.

Definition 43 If " and their first and higher deriva-
tives satisfy the following conditions

‘2 fod | <1, (256)
OE(2fop ) :
’WW <1l,j+k=1,23,--- (257)

then we call this filed ¢ ™ weak.

Similar to Ref. [46], we have the following result.

Corollary 44 Suppose that (1) the Fock coordinate sys-
tem S is quasi-inertial; (2) the filed is weak. Then, the
field equations (255) reduce to

1 IS (i | 00
R/LV - §g/u/R ~ <T + THV ) . (258)

gO nv
Prqof of Corollary 44. According to Definition 43,
foop *¥ and their first and higher derivatives are small
quantities of order e, where |e] < 1 is a small quantity.

Since the reference frame is quasi-inertial, Egs. (253) are
valid. Using Egs. (253), Egs. (239) can be written as

N Y S Y (e

Since the filed is weak, Egs. (256) and Eqgs. (257) are
valid. Thus, using Eqgs. (256) and Egs. (259), we have
the following estimations of the order of magnitude of
the following quantities

V=g0g" =" ~e.

Using Eqgs. (257), we have the following estimations

(259)

(260)

Oguv 09"
oz’ Ox'«

Applying Egs. (259) and Egs. (257), we have the fol-
lowing estimations

(261)

0x'*0z'B ox'*pz’'B

Thus, using Eqgs. (260) and Eqgs. (262), we have the
following estimations

rag) 2(V=909"7)
— o Jap Y \V IO ) 2
(\/ 909*" —n ) S e 5P £,

Applying Egs. (241), Egs. (242) and Egs. (261), we
have the following estimations

(263)

e LTIV, ~ e, 264
af



Using Egs. (246), we have the following relationship
(137], p. 143)

L=T%, (265)

We also have ([37], p. 143)

’ 1 89
Y = Zgt MV.
by = 99 B

Applying Egs. (265), Egs. (266) and Egs. (261), we
have the following estimations

(266)

ys ~ €. (267)

Using Eqs. (246) and Eqs. (267), we have the following

estimations

’

Yo ~e. (268)

Similar to the case of the Galilean coordinates, we have
([37], p. 430)

(269)

Applying Egs. (251), Eq. (269) can be written as
'y agaﬂ
2 By

Using Eq. (270), Egs. (244) and Eqs. (261), we have
the following estimation

L'=- (270)

L'~ &% (271)

Applying Eqgs. (263), Egs. (264), Egs. (268) and Eq.
(271), we see that the second to the fifth term on the
right side of Eqgs. (255) are all small quantities of order
2. Ignoring all these small quantities of order 2 in Egs.
(255) and using Egs. (228), we obtain

o 1o (T m 7 9“)) (272)

LV
90 !

Applying the rules of lowering or r;‘iising the inde;ces
of tensors, i.e., G = gh?g" G, T = g“"g”)‘TJKL,

T;;Z;) =ghog VAT Q( ) , Egs. (272) can be written as

G ~ ‘5—0 (5 + 750, (273)

Putting Egs. (238) into Eqs. (273), we obtain Egs.
(258). O

Using Eq. (170), the field equations (258) can be writ-
ten as
1 1 87r7N

—Zg, R~ —
mnz 2.9#1/ %

R (T m4T Q“)) (274)

Similar to Ref. [46], we have the following result.
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Corollary 45 Suppose that (1) the Fock coordinate sys-
tem S is quasi-inertial; (2) the filed is weak; (3) go

~
~

-1; ; (4) TQ(1 ~ 0. Then, the field equations (258)
reduce to
1
R, — igwR ~ fo ‘m (275)
We introduce the following notation
81N
g2
R=fo=—3 (276)

Using Eq. (276), the field equations (258) can be writ-
ten as
(1)) .

Using Eq. (276), the field equations (275) can be writ-
ten as

1
Ruw = 50~ (T,w + T (277)

1 -

R, — gguuR ~ —KkT,) (278)

We notice that the field equations (278) are the E-
instein’s equations [1, 2, 36]. Therefore, the field equa-
tions (249) are generalizations of the Einstein’s equations
in some special non-inertial reference frames. Thus, al-
1 known experiments of gravitational phenomena which
support the theory of general relativity may also be ex-
plained by this theory of gravity based on the theory of
vacuum mechanics [27, 32, 33, 46].

XV. DISCUSSION

Although the field equations (249) are generalization-
s of the Einstein’s equations, there exists at least the
following differences between this theory and Einstein’s
theory of general relativity.

(1)We prove that the inertial mass of a microscope
particle equals it’s gravitational mass. This result is an
assumption in Einstein’s theory of general relativity and
is called the principle of equivalence [1, 2, 36].

(2) In the theory of general relativity, the Einstein’s e-
quations are assumptions [1, 2, 36]. Although A. Einstein
introduced his new concept of gravitational aether ([18],
p. 63-113), he did not derive his equations theoretical-
ly based on his new concept of the gravitational aether.
In our theory, the generalized Einstein’s equations (249)
are derived by methods of special relativistic continuum
mechanics based on some assumptions.

(3) Although the theory of general relativity is a field
theory of gravity, the definitions of gravitational fields are
not based on continuum mechanics [1, 2, 36, 48-51]. Be-
cause of the absence of a continuum, the theory of general
relativity may be regarded as a phenomenological theory
of gravity. In our theory, gravity is transmitted by the
(0) substratum. The tensorial potential 1, of grav-
itational fields are defined based on special relativistic
continuum mechanics.



(4) In Einstein’s theory, the concept of Riemannian s-
pacetime is introduced together with the field equations
[1, 2, 36]. The theory of general relativity can not provide
a physical definition of the metric tensor of the Riemanni-
an spacetime. In our theory, the background spacetime
is the Minkowshi spacetime. However, the initial flat
background spacetime is no longer physically observable.
According to the equation of motion of a point particle in
gravitational field in inertial reference frames [46], to the
first order of fo1,.,, the physically observable spacetime
is a Riemannian spacetime with the metric tensor g, .
The metric tensor g, is defined based on the tensorial
potential 1, of gravitational fields.

(5) The masses of particles are constants in Einstein’s
theory of general relativity [1, 2, 36]. In our theory, the
masses of particles are functions of time ¢ [27].

(6) The gravitational constant vy is a constant in Ein-
stein’s theory of general relativity [1, 2, 36]. The theory
of general relativity can not provide a derivation of yy.
In our theory, the parameter yy is derived theoretically.
From Eq. (151), we see that vy depends on time .

(7) In our theory, the parameter vy in Eq. (151) de-
pends on the density po of the ©(0) substratum. If pg
varies from place to place, i.e., po = po(t,z,y, 2), then
the space dependence of the gravitational constant vy
can be seen from Eq. (151).

(8) The Einstein’s equations are supposed to be valid
in all reference frames [1, 2, 36]. However, in our theory
the generalized Einstein’s equations (249) are valid only
in some special non-inertial reference frames.

(9) The Einstein’s equations are rigorous [1, 2, 36].
However, in our theory, Eqs.(278) are valid approximate-
ly under some assumptions.

I am curious whether it is possible for us to detect some
of these differences by experiments.

XVI. CONCLUSION

We extend our previous theory of gravitation based on
a sink flow model of particles by methods of special rel-
ativistic fluid mechanics. In inertial reference frames, we
construct a tensorial potential of the ©(0) substratum.
Based on some assumptions, we show that this tensori-
al potential satisfies the wave equation. Inspired by the
equation of motion of a test particle, a definition of a met-
ric tensor of a Riemannian spacetime is introduced. Gen-
eralized Einstein’s equations in inertial reference frames
are derived based on some assumptions. These equation-
s reduce to Einstein’s equations in case of weak field in
harmonic reference frames. In some special non-inertial
reference frames, generalized Einstein’s equations are de-
rived based on some assumptions. If the field is weak and
the reference frame is quasi-inertial, these generalized E-
instein’s equations reduce to Einstein’s equations. Thus,
all known experiments of gravitational phenomena which
support the theory of general relativity may also be ex-
plained by this theory of gravity. In our theory, gravity
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is transmitted by the (0) substratum. The theory of
general relativity can not provide a physical definition
of the metric tensor of the Riemannian spacetime. In
our theory, the background spacetime is the Minkowshi
spacetime. However, the flat background spacetime is no
longer physically observable. According to the equation
of motion of a point particle in gravitational field, to the
first order, the physically observable spacetime is a Rie-
mannian spacetime. The metric tensor of this Riemanni-
an spacetime is defined based on the tensorial potential
of gravitational fields.
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XVII. APPENDIX

Proof of Proposition 38. The definition of the co-
variant second rank curvature tensor Ry, is ([37], p. 422)

A «
R = ¢°P R su, (279)
where
R é 1 azg;w 82904(3 N 8291/04
pew, By 2\ 0z'@9x'P = Ox'mOx'v  Ox'nOx'P
329#6

89:893) ~ 9po sl

+ngF/fl/ agﬂv (280)

is the fourth rank curvature tensor.
The contravariant curvature tensor RMY can be ob-
tained by raising the indices ([37], p. 156)
R"Y = g"Pg" R, (281)
Following similar methods of V. Fock ([37], p. 425), we
have

1 0%ghv

R — —
297 '@ 9P

— D' plmefry, (282)

The definition of the invariant of the curvature tensor
is ([37], p. 425)

RZ g, R™. (283)

Following similar methods of V. Fock ([37], p. 428), we
have

R=g"yas —T %o —T' - L, (284)



where
A 9*1g /=90
Vas = Grragws (285)
&g, I (286)
1, 99°F ., 0(1gv/=g0)
L/é—f Vo—— — ¢ —2 "2 287
2 P P’V or'e (287)
The second derivative of g'¥ is ([37], p. 428)
82§yu 82g/_w , 39W , 8guu
ox'9x'P o <8:c’°‘(“)x'f@ T Uspya T Ve,
i + Unysg") - (288)

Multiplying ¢®?, Egs. (288) can be written as ([37], p.
498)
as P9
Ox'«dx'P

829/1,11

vV —90 (am/aax/ﬁ

+9" 9" yls + 9" YLy ) -

oght”
oz'a
(289)

/o

+ 2y

Using Egs. (282) and Eqs. (284), we have ([37], p. 428)

g

Ry = 0x'*0z'B

1 1
- — Z [ o8
29,LLVR 9 <g

+ g g™? y;;;)
1 vira, ! ' ’
+§g“ (F Yo + I -+ L )

—'w  pmefr (290)

Comparing Egs. (290) and Egs. (289), we have ([37],
p. 429)

1 1
gl =

gaﬁ 82guu
2v/—go~ 0Ox'*dx'P
]. !
+-0" Yoy’ + T yp + 1"+ L)

2
! v aag/“’ ! (o3 /V
—T sy AT Prus(291)

R/“/ -

Using the notations defined in Egs. (238), Egs. (241),
Egs. (242) and Egs. (248), Egs. (291) can also be written
as Egs. (240) ([37], p. 429-430). O
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