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J. C. Maxwell, B. Riemann and H. Poincaré have proposed the idea that all microscopic particles
are sink flows in a fluidic aether. Following this research program, a previous theory of gravitation
based on a mechanical model of vacuum and a sink flow model of particles is generalized by methods
of special relativistic continuum mechanics. In inertial coordinate systems, we construct a tensorial
potential which satisfies the wave equation. Inspired by the equation of motion of a test particle,
a definition of a metric tensor of a Riemannian spacetime is introduced. Applying Fock’s theorem,
a generalized Einstein’s equation in inertial systems is derived based on some assumptions. This
equation reduces to Einstein’s equation in case of weak field in harmonic coordinate systems. In
some special non-inertial coordinate systems, a second generalized Einstein’s equation is derived
based on some assumptions. If the field is weak and the coordinate system is quasi-inertial and
harmonic, the second generalized Einstein’s equation reduces to Einstein’s equation. Thus, this
theory may also explains all the experiments which support the theory of general relativity. There
exists some fundamental differences between this theory and Einstein’s theory of general relativity.

Keywords: Einstein’s equation; gravitation; general relativity; sink; gravitational aether.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 January 2019                   

©  2019 by the author(s). Distributed under a Creative Commons CC BY license.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 January 2019                   doi:10.20944/preprints201806.0350.v3

©  2019 by the author(s). Distributed under a Creative Commons CC BY license.

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.20944/preprints201806.0350.v3
http://creativecommons.org/licenses/by/4.0/


2

I. INTRODUCTION

The Einstein’s equation of gravitational fields in the theory of general relativity can be written as [1, 2]

Rµν −
1

2
gµνR = −κTmµν , (1)

where gµν is the metric tensor of a Riemannian spacetime, Rµν is the Ricci tensor, R ≡ gµνRµν is the scalar curvature,
gµν is the contravariant metric tensor, κ = 8πγN/c

4, γN is Newton’s gravitational constant, c is the speed of light in
vacuum, Tmµν is the energy-momentum tensor of a matter system.

The Einstein’s equation (1) is a fundamental assumption in the theory of general relativity [1, 2]. It is remarkable
that Einstein’s theory of general relativity, born 102 years ago, has held up under every experimental test, refers to,
for instance, [3].

There is a long history of researches of derivations or interpretations of Einstein’s theory of general relativity. For
instance, C. Misner et al. introduce six derivations of the Einstein’s equation Eq.(1) in their great book ([2], p417).
S. Weinberg proposed two derivations ([1], p151).

However, these theories still face the following difficulties. (1) Attempts to reconcile the theory of general relativity
and quantum mechanics have met some mathematical difficulties ([4],p101); (2) The cosmological constant problem
is still a puzzle, refers to, for instance, [5]; (3) The existence of black hole is still controversy, refers to, for instance,
[6]; (4) Theoretical interpretation of P. A. M. Dirac’s dimensionless large number ([7], p73) is still open; (5) The
existences and characters of dark matter and dark energy are still controversy, refers to, for instance, [8]; (6) The
existence and characters of gravitational aether are still not clear, refers to, for instance, [9]; (7) Whether Newton’s
gravitational constant γN depends on time and space is still not clear [10]; (8) Whether the speed of light in vacuum
depends on time or space is controversy, refers to, for instance, [11].

Furthermore, there exists some other problems related to the theories of gravity, for instance, the definition of
inertial system, origin of inertial force, the velocity of the propagation of gravity [12], the velocity of individual
photons [13, 14], unified field theory, etc.

The purpose of this manuscript is to propose a derivation of the Einstein’s equation (1) in inertial coordinate
systems based on a mechanical model of vacuum and a sink flow model of particles [15].

II. INTRODUCTION OF A PREVIOUS THEORY OF GRAVITATION BASED ON A SINK FLOW
MODEL OF PARTICLES BY METHODS OF CLASSICAL FLUID MECHANICS

The idea that all microscopic particles are sink flows in a fluidic substratum is not new. For instance, in order
to compare fluid motions with electric fields, J. C. Maxwell introduced an analogy between source or sink flows and
electric charges ([16], p243). B. Riemann speculates that:”I make the hypothesis that space is filled with a substance
which continually flows into ponderable atoms, and vanishes there from the world of phenomena, the corporeal
world”([17], p507). H. Poincaré also suggests that matters may be holes in fluidic aether ([18], p171). A. Einstein and
L. Infeld said ([19], p256-257):”Matter is where the concentration of energy is great, field where the concentration of
energy is small. · · · What impresses our senses as matter is really a great concentration of energy into a comparatively
small space. We could regard matter as the regions in space where the field is extremely strong.”

Following these researchers, we suppose that all the microscopic particles were made up of a kind of elementary sinks
of a fluidic medium filling the space [15]. Thus, Newton’s law of gravitation is derived by methods of hydrodynamics
based on the fluid model of vacuum and the sink flow model of particles [15].

We briefly introduce this theory of gravitation [15]. Suppose that there exists a fluidic medium filling the inter-
planetary vacuum. For convenience, we may call this medium as the Ω(0) substratum, or gravitational aether, or tao
[15]. Suppose that the following conditions are valid: (1) the Ω(0) substratum is an ideal fluid; (2) the ideal fluid is
irrotational and barotropic; (3) the density of the Ω(0) substratum is homogeneous; (4) there are no external body
forces exerted on the fluid; (5) the fluid is unbounded and the velocity of the fluid at the infinity is approaching to
zero.

An illustration of the velocity field of a sink flow can be found in Figure 1. If a point source is moving with a
velocity vs, then there is a force [15]

FQ = −ρ0Q(u− vs) (2)

is exerted on the source by the fluid, where ρ0 is the density of the fluid, Q is the strength of the source, u is the
velocity of the fluid at the location of the source induced by all means other than the source itself.

We suppose that all the elementary sinks were created simultaneously [15]. For convenience, we may call these
elementary sinks as monads. The initial masses and the strengths of the monads are the same. Suppose that (1)
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FIG. 1. an illustration the velocity field of a sink flow.

vi � ui, i = 1, 2, where vi is the velocity of the particle with mass mi, ui is the velocity of the Ω(0) substratum
at the location of the particle with mass mi induced by the other particle; (2) there are no other forces exerted on
the particles, then the force F21(t) exerted on the particle with mass m2(t) by the velocity field of Ω(0) substratum
induced by the particle with mass m1(t) is [15]

F21(t) = −γN (t)
m1(t)m2(t)

r2
r̂21, (3)

where r̂21 denotes the unit vector directed outward along the line from the particle with mass m1(t) to the particle
with mass m2(t), r is the distance between the two particles, m0(t) is the mass of monad at time t, −q0(q0 > 0) is
the strength of a monad, and

γN (t) =
ρ0q

2
0

4πm2
0(t)

. (4)

For continuously distributed matter, we have

∂ρ0

∂t
+∇ · (ρ0u) = −ρ0ρs, (5)

where u is the velocity of the Ω(0) substratum, ∇ = i∂/∂x + j∂/∂y + k∂/∂z is the nabla operator introduced by
Hamilton, i, j,k are basis vectors, −ρs(ρs > 0) is the density of continuously distributed sinks, i.e.,

−ρs = lim
4V→0

4Q
4V

, (6)

where 4Q is the source strength of the continuously distributed matter in the volume 4V of the Ω(0) substratum.
Since the Ω(0) substratum is homogeneous, i.e., ∂ρ0/∂t = ∂ρ0/∂x = ∂ρ0/∂y = ∂ρ0/∂z = 0, and irrotational, i.e.,

∇× u = 0, Eq.(5) can be written as [20]

∇2ϕ = −ρs, (7)

where ϕ is a velocity potential such that u = ∇ϕ, ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplace operator.
We introduce the following definitions

Φ =
ρ0q0

m0
ϕ, ρm =

m0ρs
q0

, (8)

where ρm denotes the mass density of continuously distributed particles.
Using Eq.(8) and Eq.(4), Eq.(7) can be written as

∇2Φ = −4πγNρm. (9)

III. A MECHANICAL MODEL OF VACUUM

According to our previous paper [21] we suppose that vacuum is filled with a kind of continuously distributed
material which may be called Ω(1) substratum or electromagnetic aether. Maxwell’s equations in vacuum are derived
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by methods of continuum mechanics based on this mechanical model of vacuum and a source and sink flow model of
electric charges [21]. We speculate that the electromagnetic aether may also generate gravity. Thus, we introduce the
following assumption.

Assumption 1 The particles that constitute the Ω(1) substratum, or the electromagnetic aether, are sinks in the Ω(0)
substratum.

Then, according to the previous theory of gravitation [15], these Ω(1) particles gravitate with each other and also
attract with matters. Thus, vacuum is composed of at least two kinds of interacting substratums, i.e., the gravitational
aether Ω(0) and the electromagnetic aether Ω(1).

From Eq.(2), we see that there exists a following universal damping force Fd = −ρ0q0mvp/m0 exerted on each
particle by the Ω(0) substratum [15], where vp is the velocity of the particle. Based on this universal damping force Fd
and some assumptions, we derive a generalized Schrödinger equation for microscopic particles [22]. For convenience,
we may call these theories [15, 21, 22] as the theory of vacuum mechanics.

IV. CONSTRUCTION OF A LAGRANGIAN FOR FREE FIELDS OF THE Ω(0) SUBSTRATUM BASED
ON A TENSORIAL POTENTIAL IN THE GALILEAN COORDINATES

There exists some approaches ([23], page vii;[2], p424), which regards Einstein’s general relativity as a special
relativistic field theory in an unobservable flat spacetime, to derive the Einstein’s equation (1). However, these
theories can not provide a physical definition of the tensorial potential of gravitational fields, refers to, for instance,
[2, 24, 25]. Thus, similar to the theory of general relativity, these theories may be regarded as phenomenological
theories of gravitation.

Inspired by these special relativistic field theories of gravitation, we explore the possibility of establishing a similar
theory based on the theory of vacuum mechanics [15, 21, 22]. Thus, first of all, we need to construct a Lagrangian
for free fields of the Ω(0) substratum based on a tensorial potential in the Galilean coordinates. In this section, we
will regard the Ω(0) substratum in the previous theory of gravitation [15] as a special relativistic fluid. Then, we will
study the Ω(0) substratum by methods of special relativistic continuum mechanics [26].

In this article, we adopt the mathematical framework of the theory of special relativity [1]. However, the physical
interpretation of the mathematics of the theory of special relativity may be different from Einstein’s theory. It is
known that Maxwell’s equations are valid in the frames of reference that attached to the Ω(1) substratum [21]. We
introduce a Cartesian coordinate system {o, x, y, z} for a three-dimensional Euclidean space that attached to the Ω(1)
substratum. Let {0, t} be a one-dimensional time coordinate. We denote this reference frame as SΩ(1).

Based on the Maxwell’s equations, the law of propagation of an electromagnetic wave front in this reference frame
SΩ(1) can be derived and can be written as ([27],p13)

1

c2

(
∂ω

∂t

)2

−
(
∂ω

∂x

)2

−
(
∂ω

∂y

)2

−
(
∂ω

∂z

)2

= 0, (10)

where ω(t, x, y, z) is an electromagnetic wave front, c is the velocity of light in the reference frame SΩ(1).
An electromagnetic wave front is a characteristics. According to Fock’s theorem of characteristics ([27], p432), we

obtain the following metric tensor ηαβ = diag[c2,−1,−1,−1] of a Minkowski spacetime for vacuum ([28], p57).
For convenience, we introduce the following Galilean coordinate system

x0 ≡ ct, x1 ≡ x, x2 ≡ y, x3 ≡ z. (11)

We will use Greek indices α, β, µ, ν, etc., denote the range {0, 1, 2, 3} and use Latin indices i, j, k, etc., denote the
range {1, 2, 3}. We will use Einstein’s summation convention, that is, any repeated Greek superscript or subscript
appearing in a term of an equation is to be summed from 0 to 3. We introduce the following definition of spacetime
interval

ds2 = ηµνdx
µdxν , (12)

where ηµν is the metric tensor of the Minkowski spacetime defined by ηµν = diag[1,−1,−1,−1].
Suppose that the Ω(0) substratum is an incompressible viscous fluid. Then, there is no elastic deformations in the

fluid and the internal stress states depend on the instantaneous velocity field. Thus, we can choose the reference
frame SΩ(1) as the co-moving coordinate system. The internal energy U is the sum of the internal elastic energy Ue
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and the dissipative energy Ud, i.e., U = Ue + Ud. Since there is no elastic deformations in the fluid, we have Ue = 0.
We introduce the following definition of deviatoric tensor of strain rate γ̇ij ([29],p331)

γ̇ij = Ṡij − Ṡkkδij , (13)

where Ṡij is the tensor of strain rate, Ṡkk is the rate of volume change, δij is the Kronecker delta.

Suppose that the rate of dissipative energy U̇d is the Rayleigh type, then, we have ([29],p332)

U̇d = µ0γ̇
i
j γ̇
j
i , (14)

where µ0 is the coefficient of viscosity.
Since the Ω(0) substratum is incompressible, we have Ṡkk = 0. Thus, from Eq.(14) and Eq.(13), we have

U̇d = µ0Ṡ
i
jṠ

j
i . (15)

In the low velocity limit, i.e., u/c � 1, where u = |u|, the Lagrangian Lw0 for free fields of the Ω(0) substratum
can be written as ([29],p332)

Lw0 =
1

2
ρ0u

2 +

∫ t

t0

U̇d(Ṡ
i
j)dt, (16)

where u = |u|, t0 is an initial time.
Suppose that the Ω(0) substratum is a Newtonian fluid and the stress tensor σij is symmetric, then we have ([30],p46)

σij = −pδij + 2µ0Ṡ
i
j , (17)

where p is the pressure of the Ω(0) substratum.
Using Eq.(17) and Eq.(15), Eq.(16) can be written as

Lw0 =
1

2
ρ0u

2 +

∫ t

t0

(σij + pδij)
Ṡji
2
dt, (18)

For a macroscopic observer, the relaxation time tε of the Ω(0) substratum is so small that the tensor of strain rate

Ṡij may be regarded as a slow varying function of time, i.e., ∂Ṡij/∂t � 1. Thus, in a small time interval [t0, t], we

have Ṡij ≥ 0, or, Ṡij ≤ 0. Then, it is possible to choose a value σ̄ij + p̄δij of σij + pδij in the time interval [t0, t] such that
Eq.(18) can be written as

Lw0 =
1

2
ρ0u

2 + (σ̄ij + p̄δij)

∫ t

t0

Ṡji
2
dt. (19)

We introduce the following definition

ψij
4
=

∫ t

t0

Ṡij
2f0

dt, (20)

where f0 is a parameter to be determined.
Using Eq.(20), Eq.(19) can be written as

Lw0 =
1

2
ρ0u

2 + f0ψ
j
i (σ̄

i
j + p̄δij). (21)

Since the coefficient of viscosity µ0 of the Ω(0) substratum may be very small, we introduce the following assumption.

Assumption 2 In the low velocity limit, i.e., u/c � 1, where u = |u|, u is the velocity of the Ω(0) substratum, we
suppose that µ0 ≈ 0 and we have the following conditions

ψij ≈ 0, ∂µψij ≈ 0, ∂µ∂νψij ≈ 0, (22)

where

∂µ ≡
(

∂

∂x0
,
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
. (23)
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According to the Stokes-Helmholtz resolution theorem, refers to, for instance, [31], every sufficiently smooth vector
field can be decomposed into irrotational and solenoidal parts. Thus, there exists a scalar function ϕ and a vector
function R such that the velocity field u of the Ω(0) substratum can be represented by [31]

u = ∇ϕ+∇×R, (24)

where ∇× ϕ = 0, ∇ ·R = 0.

We introduce the following definition of a vector function ~ξ

∂~ξ

∂(ct)
= ∇×R. (25)

Putting Eq.(25) into Eq.(24), we have

u = ∇ϕ+
∂~ξ

∂(ct)
. (26)

Based on Assumption 2 and using Eq.(8) and Eq.(26), Eq.(21) can be written as

Lw0 =
m2

0

2ρ0q2
0

(∇Φ)2 +
m0

q0
∇Φ · ∂~ξ

∂(ct)
+
ρ0

2

(
∂~ξ

∂(ct)

)2

. (27)

We introduce the following definitions

ψ00 = −a00Φ, ψ0i = ψi0 = a0iξi, (28)

~ψ0 = ψ01i + ψ02j + ψ03k. (29)

where a00 > 0 and a0i > 0 are 4 parameters to be determined, i = 1, 2, 3.
Eq.(28) and Eq.(20) have defined a rank 2 symmetric tensor ψµν . We require that for some special values of a00

and a0i, Eq.(27) can be written as

Lw0 =

(
∇ψ00 −

∂ ~ψ0

∂(ct)

)2

. (30)

Comparing Eq.(30) and Eq.(27) and using Eqs.(28-29), we have

a00 =

√
m2

0

2ρ0q2
0

, a0i =

√
ρ0

2
. (31)

In order to construct the Lagrangian L0 described in Eq.(30) based on the tensorial potential ψµν , we should
consider all the possible products of derivatives of the tensor ψµν . If we require that the two tensor indices of ψµν
are different from each other and the two tensor indices of ψµν are different from the derivative index, we have the
following two possible products ([23], p43):

L1 = ∂σψµν∂
σψµν , L2 = ∂σψµν∂

µψσν , (32)

where ψµν = ηµληνσψλσ is the corresponding contravariant tensor of ψµν .
If there are two indices of ψµν which are equal, or one of the indices of ψµν is the same as the derivative index, we

may have the following three possible products ([23], p43):

L3 = ∂νψµν∂σψ
σ
µ, L4 = ∂µψµν∂

νψ, (33)

L5 = ∂λψ∂
λψ. (34)

where ψ is the trace of ψµν , i.e., ψ ≡ ψλλ = ηαβψ
αβ ,

∂µ ≡ ηµν∂ν =

(
∂

∂x0
,− ∂

∂x1
,− ∂

∂x2
,− ∂

∂x3

)
. (35)

L3 may be omitted because it can be converted to L2 by integration by parts ([23], p43).
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Proposition 3 Suppose that we have the following conditions

∂ψ00

∂(ct)
≈ 0,

∂ψ0i

∂xj
≈ 0. (36)

If we set

c1 =
1

2
, c2 = −2, c4 = −6, c5 = −3

2
, (37)

then we have

c1L1 + c2L2 + c4L4 + c5L5 ≈

(
∇ψ00 −

∂ ~ψ0

∂(ct)

)2

=
1

2
ρ0u

2. (38)

Proof of Proposition 3. Based on Eq.(22) and Eq.(36) and noticing ψ00 = ψ00, ψ
0i = −ψ0i, we have

L1 ≈ −(∇ψ00)2 − 2

(
∂ ~ψ0

∂(ct)

)2

, (39)

L2 ≈ −2(∇ψ00) · ∂
~ψ0

∂(ct)
−

(
∂ ~ψ0

∂(ct)

)2

, (40)

L3 ≈ (∇ψ00) · ∂
~ψ0

∂(ct)
, (41)

L4 ≈ −(∇ψ00)2. (42)

Using Eqs.(39-42) and Eq.(37), we obtain Eq.(38). Proof ends. �
Inspired by W. Thirring [24] and R. P. Feynman ([23], p43), we introduce the following assumption.

Assumption 4 The Lagrangian L0 for free fields of the Ω(0) substratum can be written as

L0 = c1L1 + c2L2 + c4L4 + c5L5 + Lmore, (43)

where c1 = 1/2, c2 = −2, c4 = −6, c5 = −3/2, Lmore denotes those terms involving more than two derivatives
of ψµν .

V. INTERACTION TERMS OF THE LAGRANGIAN OF A SYSTEM OF THE Ω(0) SUBSTRATUM,
THE Ω(1) SUBSTRATUM AND MATTER

In order to derive the field equation, we should explore the possible interaction terms of the Lagrangian of a system
of the Ω(0) substratum, the Ω(1) substratum and matter. According to Assumption 2, the coefficient of viscosity µ0

of the Ω(0) substratum may be very small. Thus, we may regard the Ω(0) substratum as an ideal fluid approximately.
Then from Eq.(24) we have u = ∇ϕ. Ignoring the damping force ρ0Qvs in Eq.(2) and using u = ∇ϕ, Eq.(2) can be
written as

FQ = −ρ0Q∇ϕ. (44)

A particle is modelled as a point sink of the Ω(0) substratum [15, 21, 22]. Thus, the interaction term of the
Lagrangian of a system of the Ω(0) substratum and a particle can be written as

Lint = ρ0Qϕ. (45)

Thus, the interaction term of the Lagrangian of a system of the Ω(0) substratum and continuously distributed
particles can be written as

Lint = −ρ0ρsϕ. (46)
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Putting Eq.(8) into Eq.(46), we have

Lint = −ρmΦ. (47)

The 00 term of the energy-momentum tensor Tmµν of a particle is T 00
m = ρmc

2. Thus, using Eq.(28), Eq.(47) can be
written as

Lint = f0ψ00T
00
m , (48)

where

f0 =
1

a00c2
. (49)

From Eq.(49), Eq.(31) and Eq.(4), we have

f0 =

√
2ρ0q2

0

m2
0c

4
=

√
8πγN
c4

,
1

a2
00

= 8πγN . (50)

Inspired by Eq.(48) and Eq.(21), we introduce the following assumption.

Assumption 5 The interaction terms of the Lagrangian of a system of the Ω(0) substratum, the Ω(1) substratum
and matter can be written in the following form.

Lint = f0ψµνT
µν
m + f0ψµνT

µν
Ω(1) +O[(f0ψµν)2], (51)

where Tµνm and TµνΩ(1) are the contravariant energy-momentum tensors of the system of the matter and the Ω(1)

substratum respectively, O[(f0ψµν)2] denotes those terms which are small quantities of the order of (f0ψµν)2.

VI. DERIVATION OF THE FIELD EQUATION

Based on Assumption 4 and 5, the total Lagrangian Ltot of a system of the Ω(0) substratum, the Ω(1) substratum
and matter can be written as

Ltot =
1

2
∂λψµν∂

λψµν − 2∂λψµν∂
µψλν − 6∂µψµν∂

νψ

−3

2
∂λψ∂

λψ + Lmore + f0ψµν(Tµνm + TµνΩ(1))

+O[(f0ψµν)2]. (52)

Theorem 6 If we ignore those terms which are small quantities of the order of (f0ψµν)2 and those terms involv-
ing more than two derivatives of ψµν in Eq.(52), i.e., O[(f0ψµν)2] and Lmore, then the field equation for the total
Lagrangian Ltot in Eq.(52) can be written as

∂σ∂
σψαβ − 2(∂σ∂αψβσ + ∂σ∂βψασ)− 6(ηαβ∂σ∂λψ

σλ

+ 6∂α∂βψ)− 3ηαβ∂σ∂
σψ = f0(Tmµν + TΩ(1)

µν ). (53)

Proof of Theorem 6. Starting from the Lagrangian in Eq.(52), we have the following Euler-Lagrange equation [32]

∂Ltot

∂ψαβ
− ∂

∂xσ

(
∂Ltot

∂(∂σψαβ)

)
= 0. (54)

We can verify the following results ([23], p43; [24])

∂

∂xσ

[
∂(∂λψµν∂

λψµν)

∂(∂σψαβ)

]
= 2∂σ∂

σψαβ , (55)

∂

∂xσ

[
∂(∂λψµν∂

µψλν)

∂(∂σψαβ)

]
= ∂σ∂αψβσ + ∂σ∂βψασ, (56)

∂

∂xσ

[
∂(∂µψµν∂

νψ)

∂(∂σψαβ)

]
= ∂α∂βψ + ηαβ∂σ∂λψ

σλ, (57)

∂

∂xσ

[
∂(∂λψ∂

λψ)

∂(∂σψαβ)

]
= 2ηαβ∂σ∂

σψ, (58)

∂Ltot

∂ψαβ
= f0(Tmαβ + T

Ω(1)
αβ ). (59)
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Putting Eq.(52) into Eq.(54) and using Eqs.(55-59), we obtain Eq.(53). Proof ends. �
For convenience, we introduce the following notation

Ψµν = ∂λ∂
λψµν − 2∂λ∂

µψνλ − 2∂λ∂
νψµλ

−6ηµν∂σ∂λψ
σλ − 6∂µ∂νψ − 3ηµν∂λ∂

λψ. (60)

Thus, the field equation Eq.(53) can be written as

Ψµν = f0(Tµνm + TµνΩ(1)). (61)

We introduce the following definition of the total energy-momentum tensor Tµν of the system of the matter, the
Ω(1) substratum and the Ω(0) substratum

Tµν = Tµνm + TµνΩ(1) + TµνΩ(0), (62)

where TµνΩ(0) is the energy-momentum tensor of the Ω(0) substratum.

Adding the term f0T
µν
Ω(0) on both sides of Eq.(61) and using Eq.(62), the field equation Eq.(61) can be written as

Ψµν + f0T
µν
Ω(0) = f0T

µν . (63)

For the total system of matter, the Ω(1) substratum and the Ω(0) substratum, the law of conservation of energy
and momentum is ([26], p163; [28], p155)

∂µT
µν = 0. (64)

Comparing Eq.(64) and Eq.(63), we have

∂µ(Ψµν + f0T
µν
Ω(0)) = 0. (65)

Noticing Eqs.(55-59), we introduce the following notation ([23], p43)

Hµν = f1∂λ∂
λψµν + f2(∂λ∂

µψνλ + ∂λ∂
νψµλ)

+f3(∂µ∂νψ + ηµν∂σ∂λψ
σλ) + f4η

µν∂λ∂
λψ, (66)

where fi, i = 1, 2, 3, 4 are 4 arbitrary parameters.
If we require that

∂µH
µν = 0, (67)

then, we can verify the following relationships ([23], p44; [24])

f1 + f2 = 0, f2 + f3 = 0, f3 + f4 = 0. (68)

We choose f1 = 1, f2 = −1, f3 = 1, f4 = −1 in Eq.(66) and introduce the following notation

Θµν = ∂λ∂
λψµν − (∂λ∂

µψνλ + ∂λ∂
νψµλ)

+(∂µ∂νψ + ηµν∂σ∂λψ
σλ)− ηµν∂λ∂λψ. (69)

We can verify the following result ([23], p44; [24])

∂µΘµν = 0. (70)

From Eq.(70) and Eq.(65), we have

∂µ

(
1

f0
Ψµν − b0

f0
Θµν + TµνΩ(0)

)
= 0. (71)

where b0 is an arbitrary parameter.
Noticing Eq.(71), it is convenient for us to introduce the following definition of a tensor Tµνω

Tµνω =
1

f0
Ψµν − b0

f0
Θµν + TµνΩ(0), (72)
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where b0 is a parameter to be determined.
From Eq.(71), we have ∂µT

µν
ω = 0. In the present stage, we have no idea about the physical meaning of the tensor

Tµνω . Later, once we have determined the value of the parameter b0, we may explore the meaning of Tµνω . Using
Eq.(72), the field equation Eq.(63) can be written as

Θµν =
f0

b0
(Tµν − Tµνω ). (73)

Now our task is to determine the parameter b0 in the field equation (73). A natural idea is that the 00 component
of Eq.(73) reduces to the field equation Eq.(9) in the case that the velocity of the Ω(0) substratum is much smaller
than c, i.e., in the low velocity limit. Thus, it is necessary for us to introduce an estimation of the value of Tµν −Tµνω
on the right hand side of Eq.(73) in the low velocity limit. To this end, we introduce the following speculation about
the interaction between the Ω(0) substratum and the Ω(1) substratum.

Assumption 7 In the low velocity limit, i.e., u/c � 1, where u = |u|, u is the velocity of the Ω(0) substratum, the
following relationship is valid

TµνΩ(1) ≈
1

f0
Ψµν − b0

f0
Θµν , (74)

where b0 is a parameter to be determined.

Therefore, using Eq.(61) and Eq.(74), we have the following estimation of Tµνm in the low velocity limit

Tµνm ≈ b0
f0

Θµν . (75)

Using Eq.(63), Eq.(72) and Eq.(75), we have the following estimation of Tµν − Tµνω in the low velocity limit

Tµν − Tµνω =
b0
f0

Θµν ≈ Tµνm . (76)

Theorem 8 Suppose that Assumption 7 is valid. Then, b0 = −1 and the field equation (53) can be written as

∂λ∂
λψµν − ∂λ∂µψνλ − ∂λ∂νψµλ + ∂µ∂νψ

+ ηµν∂σ∂λψ
σλ − ηµν∂λ∂λψ = −f0(Tµν − Tµνω ). (77)

Proof of Theorem 8. Noticing Eq.(69), the 00 component of the field equation (73) is

∂λ∂
λψ00 − 2∂λ∂

0ψ0λ + ∂0∂0ψ

+ ∂σ∂λψ
σλ − ∂λ∂λψ =

f0

b0
(T 00 − T 00

ω ). (78)

Take the trace of the field equation Eq.(73), we have

∂σ∂λψ
σλ − ∂λ∂λψ =

f0

2b0
(T − Tω), (79)

where T and Tω are the traces of Tµν and Tµνω respectively, i.e., T ≡ Tλλ = ηαβT
αβ , Tω ≡= ηαβT

αβ
ω .

Subtracting Eq.(79) from Eq.(78), we have

∂λ∂
λψ00 − 2∂λ∂

0ψ0λ + ∂0∂0ψ

=
f0

b0

(
T 00 − T

2
− T 00

ω +
Tω
2

)
. (80)

If the field is time-independent, then Eq.(80) reduces to

−∇2ψ00 =
f0

b0

(
T 00 − T

2
− T 00

ω +
Tω
2

)
. (81)

According to Eq.(76), we have the following estimations in the low velocity limit

T 00 − T 00
ω ≈ T 00

m = ρmc
2, T − Tω ≈ Tm ≈ ρmc2, (82)
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where Tm is the trace of Tµνm , i.e., Tm ≡ ηαβTαβm .
Using Eq.(28), Eq.(31), Eq.(50) and Eq.(82), Eq.(81) can be written as

∇2Φ =
1

b0
4πγNρm. (83)

Comparing Eq.(83) and Eq.(9), we obtain b0 = −1. Therefore, using Eq.(69) and b0 = −1, the field equation
Eq.(73) can be written as Eq.(77). Proof ends. �

Now we discuss the physical meaning of Tµνω . Noticing Eq.(74) and Eq.(72), we have the following estimation in
the low velocity limit

Tµνω ≈ TµνΩ(1) + TµνΩ(0). (84)

For convenience, we may call TµνΩ

4
= TµνΩ(1) + TµνΩ(0) the contravariant energy-momentum tensor of vacuum. From

Eq.(84), we see that the tensor Tµνω is an estimation of TµνΩ when the velocity u of the Ω(0) substratum is small
comparing to c. Thus, we may call Tµνω the contravariant energy-momentum tensor of vacuum in the low velocity
limit. We can verify that the field equation Eq.(77) is invariant under the following gauge transformation ([23], p45;
[24])

ψµν → ψµν + ∂µΛν + ∂νΛµ, (85)

where Λµ is an arbitrary vector field.
We introduce the following definition

φµν = ψµν − 1

2
ηµνψ. (86)

Using Eq.(86), the field equation (77) can be written as

∂λ∂
λφµν − ∂λ∂µφνλ − ∂λ∂νφµλ

+ ηµν∂σ∂λφ
σλ = −f0(Tµν − Tµνω ). (87)

We introduce the following Hilbert gauge condition [24]

∂µ

(
ψµν − 1

2
ηµνψ

)
= 0. (88)

Using Eq.(86), the Hilbert gauge condition Eq.(88) simplifies to

∂µφ
µν = 0. (89)

Applying Eq.(89) in Eq.(87), we obtain the following proposition [24].

Proposition 9 If we impose the Hilbert gauge condition Eq.(88) on the fields, then, the field equation Eq.(77) sim-
plifies to

∂λ∂
λ

(
ψµν − 1

2
ηµνψ

)
= −f0(Tµν − Tµνω ). (90)

If the tensorial potential ψµν does not satisfy the Hilbert gauge condition Eq.(88), then we can always construct a
new tensorial potential ψ̄µν by the following gauge transformation [24]

ψ̄µν = ψµν + ∂µΛν + ∂νΛµ, (91)

such that the new tensorial potential ψ̄µν does satisfy the Hilbert gauge condition Eq.(88).
Using Eq.(86), the field equation Eq.(90) can be written as

∂λ∂
λφµν = −f0(Tµν − Tµνω ). (92)

The field equation Eq.(92) can also be written as

ηαβ
∂2φµν

∂xα∂xβ
= −f0(Tµν − Tµνω ). (93)

We noticed that the tensorial field equation Eq.(93) is similar to the wave equation of electromagnetic fields.
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VII. CONSTRUCTION OF A TENSORIAL POTENTIAL IN INERTIAL COORDINATE SYSTEMS

The existence of the Ω(1) substratum allows us to introduce the following definition of inertial coordinate systems.

Definition 10 If a coordinates system S is static or moving with a constant velocity relative to the reference frame
SΩ(1), then, we call such a coordinates system as an inertial coordinate system.

The field equations Eq.(87) and Eq.(90) are valid in the reference frame SΩ(1). We will explore the possibility of
constructing a tensorial potential in an arbitrary inertial system S′. In an inertial coordinate system S, an arbitrary
event is characterized by the four space-time coordinates (t, x, y, z). In an inertial system S′, this event is characterized
by four other coordinates (t′, x′, y′, z′). We assume that the origins of the Cartesian coordinates in the two inertial
systems S and S′ coincide at the time t = t′ = 0. Then, the connections between these space-time coordinates are
given by a homogeneous linear transformation keeping the quantity s2 = c2t2−x2− y2− z2 invariant, i.e., ([26], p92)

s2 = c2t2 − x2 − y2 − z2 = c2t′2 − x′2 − y′2 − z′2 = s′2. (94)

We introduce the following two coordinate systems

x0 = ct, x1 = x, x2 = y, x3 = z,

x′0 = ct′, x′1 = x′, x′2 = y′, x′3 = z′. (95)

The homogeneous linear transformation keeping the quantity s2 invariant, which is usually called the Lorentz
transformation, can be written as ([33], p57; [26], p92)

x′µ = αµνx
ν , (96)

where αµν are coefficients depend only on the angles between the spatial axes in the two inertial systems S and S′

and on the relative velocity of S and S′.
Applying the standard methods in theory of special relativity [26], we have the following results.

Proposition 11 Suppose that the field equation Eq.(92) is valid in the the reference frame SΩ(1). Then, in an arbitrary
inertial system S′, there exists a symmetric tensor φ′µν satisfies the following wave equation

∂′λ∂
′λφ′µν = −f0(T ′µν − T ′µν

ω ), (97)

where T ′µν and T ′µν
ω are corresponding tensors of Tµν and Tµνω in the arbitrary inertial coordinate system S′ respec-

tively.

Proposition 12 Suppose that the field equation Eq.(87) is valid in the reference frame SΩ(1). Then, in an arbitrary
inertial system S′, there exists a symmetric tensor φ′µν satisfies the following field equation

∂′λ∂
′λφ′µν − ∂′λ∂′µφ′νλ − ∂′λ∂′νφ′µλ

+ ηµν∂′σ∂
′
λφ

′σλ = −f0(T ′µν − T ′µν
ω ). (98)

VIII. THE EQUATION OF MOTION OF A POINT PARTICLE IN A GRAVITATIONAL FIELD AND
INTRODUCTION OF AN EFFECTIVE RIEMANNIAN SPACETIME

In this section, we study the equation of motion of a free point particle in a gravitational field. The Lagrangian of
a free point particle can be written as ([23], p57;[24])

L0 =
1

2
m
dxµ

dτ

dxµ
dτ

=
1

2
muµuµ =

1

2
mηµνu

µuν , (99)

where m is the rest mass of the point particle, τ ≡
√
dxµdxµ is the proper time interval, uµ ≡ dxµ/dτ .

Suppose that TµνΩ(1) ≈ 0. Ignoring those higher terms O[(f0ψµν)2] in Eq.(51), the interaction term of the Lagrangian

of a system of the Ω(0) substratum, the Ω(1) substratum and the point particle can be written in the following form
([23], p57;[24])

Lint = f0ψµνmu
µuν . (100)
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Using Eq.(100) and Eq.(99), the total Lagrangian Ltot of a system of the Ω(0) substratum, the Ω(1) substratum
and the point particle can be written as ([23], p57)

Lt = L0 + Lint =
1

2
muµuµ + f0ψµνmu

µuν . (101)

The Euler-Lagrange equation for the total Lagrangian Lt can be written as ([33],p111)

d

dτ

[
(ηµν + 2f0ψµν)

dxν

dτ

]
− f0

∂ψαβ
∂xµ

dxα

dτ

dxβ

dτ
= 0. (102)

We notice that the equation of motion (102) of a point particle in gravitational field is similar to the equation of
a geodesic line (104) in a Riemannian spacetime. Thus, it is natural for us to introduce the following definition of a
metric tensor gµν of a Riemannian spacetime ([23], p57)

gµν = ηµν + 2f0ψµν . (103)

Then, the equation of motion Eq.(102) can be approximately written as ([23], p58)

d

dτg

(
gµν

dxν

dτg

)
=

1

2

∂gαβ
∂xµ

dxα

dτg

dxβ

dτg
, (104)

where τg is the proper time interval in the Riemannian spacetime with a metric tensor gµν .
Eq.(104) is a geodesic line in a Riemannian spacetime with a metric tensor gµν , which can also be written as ([34],

p51)

d2xµ

dτ2
g

+ Γµνσ
dxν

dτg

dxσ

dτg
= 0, (105)

where

Γναβ
4
=

1

2
gµν

(
∂gµα

∂xβ
+
∂gµβ

∂xα
− ∂gαβ

∂xµ

)
(106)

are the Christoffel symbols.
Thus, we find that the equation of motion (102) of a point particle in gravitational field is approximately a geodesic

line described in Eq.(105) in a Riemannian spacetime with a metric tensor gµν .
According to Assumption 1, the particles that constitute the Ω(1) substratum are sinks in the Ω(0) substratum.

Thus, the movements of the Ω(1) substratum in gravitational field will be different from the Maxwell’s equations. We
notice that the equation of motion of a point particle in gravitational field (104) is a generalization of the equation of
motion of a point particle in vacuum free of gravitational field. The law of propagation of an electromagnetic wave
front in vacuum free of gravitational field is Eq.(10). Thus, the law of propagation of an electromagnetic wave front
in gravitational field may be a kind of generalization of Eq.(10). Therefore, we introduce the following assumption.

Assumption 13 To the first order of f0ψµν , the law of propagation of an electromagnetic wave front ω(x0, x1, x2, x3)
in gravitational field is

gµν
∂ω

∂xµ
∂ω

∂xν
= 0, (107)

where ω(x0, x1, x2, x3) is the electromagnetic wave front, gαβ is the metric tensor defined in Eq.(103).

The measurements of spacetime intervals are carried out using light rays and point particles, which are only subject
to inertial force and gravitation. Thus, according to Eq.(104) and Eq.(107), the physically observable metric of
spacetime, to the first order of f0ψµν , is gµν . Thus, the initial flat background spacetime with metric ηµν is no longer
physically observable [24].

If we can further derive the Einstein’s equation (1) using the definition (103) of a metric tensor gµν of a Riemannian
spacetime, then, we may provide a geometrical interpretation of Einstein’s theory of gravitation based on the theory
of vacuum mechanics [15, 21, 22]. This is the task of the next section.
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IX. DERIVATION OF A GENERALIZED EINSTEIN EQUATION IN INERTIAL COORDINATE
SYSTEMS

Definition 14 The Einstein tensor Gµν is defined by

Gµν
4
= Rµν −

1

2
gµνR, (108)

where gµν is a metric tensor of a Riemannian spacetime, Rµν is the Ricci tensor, R
4
= gµνRµν , gµν is the corresponding

contravariant tensor of gµν such that gµλg
λν = δνµ = gνµ ([34], p40).

According to the geometrical interpretation of some theories of gravitation in flat spacetime [24], the physically
observable metric gµν of spacetime in Eq.(103) can be written as

gµν = ηµν − 2f0ψ
µν +O[(f0ψ

µν)2]. (109)

Following the clue showed in Eq.(109) and noticing the methods of S. N. Gupta [35] and W. Thirring [24], we
introduce the following definition of a metric tensor of a Riemannian spacetime.

Definition 15

g̃µν
4
=
√
−g0g

µν 4
= ηµν − 2f0φ

µν , (110)

where g0 = Det gµν .

We have the following expansion of the contravariant metric tensor gµν [35]

gµν = ηµν − 2f0φ
µν + f0η

µνηαβφ
αβ

−2f2
0 ηαβφ

αβφµν + f2
0 η

µνηασηβλφ
αβφλσ

+
1

2
f2

0 η
µνηαβηλσφ

αβφλσ +O[(f0φαβ)3]. (111)

Definition 16 If φµν and their first and higher derivatives satisfy the following conditions

|2f0φ
µν | � 1, (112)∣∣∣∣∂n(2f0φ

µν)

∂(xα)n

∣∣∣∣� 1, n = 1, 2, 3, · · · (113)

then we call this filed φµν weak.

For weak fields, ψ ≈ φ ≈ 0. Thus, φµν = ψµν − 1
2η
µνψ ≈ ψµν . From Eq.(111), we see that the definition (110) is

compatible with Eq.(109).

Theorem 17 Suppose that Assumption 7 is valid. Then, in an arbitrary inertial coordinate system Si, we have the
following field equation

Gµν − 1

2g0

(√
−g0g

αβ − ηαβ
) ∂2(

√
−g0g

µν)

∂xα∂xβ

−
√
−g0

2g0
(∂λ∂

µgνλ + ∂λ∂
νgµλ − ηµν∂σ∂λgσλ)

−Πµ,αβΠν
αβ +

1

2
yµyν − 1

2
gµν(L+B)

+Bµν =
f2

0

g0
(Tµν − Tµνω ), (114)

where Tµν is the contravariant total energy-momentum tensor of the system of the matter, the Ω(1) substratum and
the Ω(0) substratum in the inertial coordinate system Si, T

µν
ω is the contravariant energy-momentum tensor of vacuum

in the low velocity limit in Si,

Πµ,αβ 4
= − 1

2g0

(
g̃αλ

∂g̃µβ

∂xλ
+ g̃βλ

∂g̃µα

∂xλ
− g̃µλ ∂g̃

αβ

∂xλ

)
, (115)
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Πν
αβ

4
= gαλgβσΠν,λσ, (116)

Γα
4
= gσλΓασλ, (117)

Γµν
4
=

1

2

(
gµα

∂Γν

∂xα
+ gνα

∂Γµ

∂xα
− ∂gµν

∂xα
Γα
)
, (118)

yβ
4
=
∂(lg
√
−g0)

∂xβ
, yα

4
= gαβyβ , (119)

L
4
= −1

2
Γναβ

∂gαβ

∂xν
− Γα

∂(lg
√
−g0)

∂xα
, (120)

Bµν
4
= Γµν +

1

2
(yµΓν + yνΓµ), B

4
= gµνB

µν . (121)

Proof of Theorem 17. According to a theorem of V. Fock ([27], p429), the contravariant Einstein tensor Gµν can
be written as

Gµν =
1

2g0
g̃αβ

∂2g̃µν

∂xα∂xβ
+ Πµ,αβΠν

αβ −
1

2
yµyν

+
1

2
gµν(L+B)−Bµν . (122)

Applying Eq.(110), Eq.(122) can be written as

Gµν =
1

2g0

(√
−g0g

αβ − ηαβ
) ∂2(−2f0φ

µν)

∂xα∂xβ

−f0

g0
ηαβ

∂2φµν

∂xα∂xβ
+ Πµ,αβΠν

αβ

−1

2
yµyν +

1

2
gµν(L+B)−Bµν . (123)

Noticing Eq.(110), the field equation Eq.(98) can be written as

ηαβ
∂2φµν

∂xα∂xβ
=−

√
−g0

2f0

(
∂λ∂

µgνλ + ∂λ∂
νgµλ

− ηµν∂σ∂λg
σλ
)
− f0(Tµν − Tµνω ). (124)

Using Eq.(110) and Eq.(124), Eq.(123) can be written as

Gµν =
1

2g0

(√
−g0g

αβ − ηαβ
) ∂2(

√
−g0g

µν)

∂xα∂xβ

+

√
−g0

2g0
(∂λ∂

µgνλ + ∂λ∂
νgµλ − ηµν∂σ∂λgσλ)

+
f2

0

g0
(Tµν − Tµνω ) + Πµ,αβΠν

αβ −
1

2
yµyν

+
1

2
gµν(L+B)−Bµν . (125)

Eq.(125) can be written as Eq.(114). Proof ends. �
Eq.(114) has the same form in all inertial coordinate systems. Eq.(114) is one of the main results in this manuscript.

We need to further study the relationship between Eq.(114) and the Einstein field equation Eq.(1).
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Theorem 18 If we impose the Hilbert gauge Eq.(88) on the fields, then in an arbitrary inertial coordinate system Si
we have the following field equation

Gµν − 1

2g0

(√
−g0g

αβ − ηαβ
) ∂2(

√
−g0g

µν)

∂xα∂xβ

−Πµ,αβΠν
αβ +

1

2
yµyν − 1

2
gµν(L+B)

+Bµν =
f2

0

g0
(Tµν − Tµνω ). (126)

Proof of Theorem 18. Using Eq.(110) and Eq.(97), Eq.(123) can be written as

Gµν =
1

2g0

(√
−g0g

αβ − ηαβ
) ∂2(

√
−g0g

µν)

∂xα∂xβ

−f
2
0

g0
(Tµν − Tµνω ) + Πµ,αβΠν

αβ −
1

2
yµyν

+
1

2
gµν(L+B)−Bµν . (127)

Eq.(127) can be written as Eq.(126). Proof ends. �

Definition 19 If each of the coordinates xα satisfies the following generalized wave equation

1√
−g0

∂

∂xµ

(√
−g0g

µν ∂x
α

∂xν

)
= 0, (128)

then, we call such a coordinates system harmonic.

In a harmonic coordinates system, we have ([27], p254)

Γν = Γµν = Bµν = B = 0. (129)

Putting Eq.(129) into Eq.(126), we have the following corollary.

Corollary 20 If we apply the Hilbert gauge Eq.(88) and the coordinates system is harmonic, then the field equation
Eq.(126) can be written as

Gµν − 1

2g0

(√
−g0g

αβ − ηαβ
) ∂2(

√
−g0g

µν)

∂xα∂xβ

− Πµ,αβΠν
αβ +

1

2
yµyν − 1

2
gµνL

=
f2

0

g0
(Tµν − Tµνω ). (130)

We can verify that each of the Galilean coordinates is harmonic. Any constant and any linear function of harmonic
coordinates satisfy Eq.(128). Thus, from Eq.(96) we see that an inertial coordinate system is harmonic and Eq.(130) is
valid for every inertial system. In order to study the case of weak fields in inertial systems, we introduce the following
assumption.

Assumption 21 Suppose that the dimensionless parameter $ = m0c/2ρ0q0 satisfies the following condition

$ =
m0c

2ρ0q0
≤ 1. (131)

Using the 00 component of Eq.(113) for the case n = 1 and noticing Eq.(86), Eq.(28), Eq.(50) and Eq.(8), we have∣∣∣∣∂(2f0φ
00)

∂(xα)

∣∣∣∣ =

∣∣∣∣2ρ0q0

m0c2
∂ϕ

∂xα

∣∣∣∣� 1. (132)

Noticing Eq.(26) and using Eq.(132) and Eq.(131), we have |u| ≈ |∇ϕ| � m0c
2/(2ρ0q0) ≤ c. Therefore, according

to Assumption 7, Eq.(74) and Eq.(76) are valid for weak fields.
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Corollary 22 Suppose that (1) the Hilbert gauge Eq.(88) is applied on the fields; (2) the filed is weak; (3) Assumption
7 is valid. Then in an arbitrary inertial coordinate system the field equation Eq.(130) reduces to

Rµν −
1

2
gµνR =

f2
0

g0
Tmµν . (133)

Proof of Corollary 22. According to Definition 16, f0φ
µν and their first and higher derivatives are small quantities

of order ε, where |ε| � 1 is a small quantity. Thus, using Eq.(110) and Eq.(111), we have the following estimation of
the order of magnitude of the following quantities

√
−g0g

µν − ηµν ∼ ε, ∂gµν
∂xα

∼ ∂gµν

∂xα
∼ ε. (134)

From Eq.(110), we have the following estimation of the order of magnitude of the quantity

∂2(
√
−g0g

αβ)

∂xα∂xβ
=
∂2(−2f0φ

µν)

∂xα∂xβ
∼ ε. (135)

Thus, using Eq.(134) and Eq.(135), we have the following estimation of the order of magnitude of the quantity(√
−g0g

αβ − ηαβ
) ∂2(

√
−g0g

αβ)

∂xα∂xβ
∼ ε2. (136)

From Eq.(115) and Eq.(116), we have the following estimation of the order of magnitude of the following quantities

Πµ,αβ ∼ Πν
αβ ∼ ε. (137)

Using Eq.(119), we have the following relationship ([27], p143)

yβ = Γνβν . (138)

We also have ([27], p143)

Γνβν =
1

2
gµν

∂gµν
∂xβ

. (139)

From Eq.(138), Eq.(139) and Eq.(134), we have the following estimation of the order of magnitude

yβ ∼ ε. (140)

Using Eq.(119) and Eq.(140), we have the following estimation of the order of magnitude

yα ∼ ε. (141)

From Eq.(120) and Eq.(129), we have

L = −1

2
Γναβ

∂gαβ

∂xν
. (142)

Using Eq.(142), Eq.(106) and Eq.(134), we have the following estimation of the order of magnitude

L ∼ ε2. (143)

From Eq.(136), Eq.(137), Eq.(141) and Eq.(143), we see that the second to the fifth term on the right side of
Eq.(130) are all small quantities of order ε2. Ignoring all these small quantities of order ε2 in Eq.(130) and using
Eq.(74), we obtain

Gµν ≈ f2
0

g0
Tµνm . (144)

Applying the rules of lowering or raising the indexes of tensors, i.e., Gµν = gµλgνσGλσ, Tµνm = gµλgνσTmλσ, Eq.(144)
can be written as

Gλσ ≈
f2

0

g0
Tmλσ. (145)

Putting Eq.(108) into Eq.(145), we obtain Eq.(133). Proof ends. �
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Corollary 23 Suppose that the following conditions are valid: (1) the Hilbert gauge Eq.(88) is applied on the fields;
(2) the filed is weak; (3) gµν ≈ ηµν ; (4) Assumption 7 is valid. Then in an arbitrary inertial coordinate system the
field equation Eq.(133) reduces to

Rµν −
1

2
gµνR = −f2

0T
m
µν . (146)

Proof of Corollary 23. Since gµν ≈ ηµν , gµν ≈ ηµν , we have g0 = Det gµν ≈ Det ηµν = −1. Thus, Eq.(133) can be
written as Eq.(146). Proof ends. �

If we introduce the following notation

κ = f2
0 =

8πγN
c4

, (147)

then, Eq.(146) coincides with Einstein’s equation Eq.(1). Thus, we see that the field equation Eq.(114) is a general-
ization of the Einstein’s equation Eq.(1) in inertial coordinate systems.

X. DERIVATION OF A GENERALIZED EINSTEIN EQUATION IN SOME NON-INERTIAL
COORDINATE SYSTEMS

Now we consider an arbitrary non-inertial coordinate system Sn. We introduce an arbitrary curvilinear coordinates
(z0, z1, z2, z3) in the non-inertial coordinate system Sn. We do not know whether Theorem 18 is valid or not in the
non-inertial coordinate system Sn.

Assumption 24 Suppose that in a non-inertial coordinate system Sn there exists a symmetric tensor φµν which
satisfies the following wave equation

γαβ
∂2φµν

∂zα∂zβ
= −f0(Tµν − Tµνω ), (148)

where γµν is the metric tensor of the non-inertial coordinate system Sn.

We introduce the following definition of a metric tensor of a Riemannian spacetime.

Definition 25

g̃µν
def
=
√
−g0g

µν def= γµν − 2f0φ
µν , (149)

where g0 = Det gµν .

Theorem 26 Suppose that Assumption 24 is valid. Then, in the non-inertial coordinate system Sn, we have the
following field equation

Gµν − 1

2g0

(√
−g0g

αβ − γαβ
) ∂2(

√
−g0g

µν)

∂zα∂zβ

− 1

2g0
γαβ

∂2γµν

∂zα∂zβ
−Πµ,αβΠν

αβ +
1

2
yµyν

− 1

2
gµν(L+B) +Bµν =

f2
0

g0
(Tµν − Tµνω ), (150)

where Tµν = Tmµν + T
Ω(1)
µν + T

Ω(0)
µν is total energy-momentum tensor of the matter, the Ω(1) substratum and the Ω(0)

substratum in the non-inertial coordinate system Sn.
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Proof of Theorem 26. Using Eq.(149), Eq.(122) can be written as

Gµν =
1

2g0

√
−g0g

αβ ∂
2(γµν − 2f0φ

µν)

∂zα∂zβ
+ Πµ,αβΠν

αβ

−1

2
yµyν +

1

2
gµν(L+B)−Bµν

=
1

2g0

(√
−g0g

αβ − γαβ + γαβ
) ∂2(−2f0φ

µν)

∂zα∂zβ

+Πµ,αβΠν
αβ −

1

2
yµyν +

1

2
gµν(L+B)−Bµν

=
1

2g0

(√
−g0g

αβ − γαβ
) ∂2(γµν − 2f0φ

µν)

∂zα∂zβ

+
1

2g0
γαβ

∂2γµν

∂zα∂zβ
− f0

g0
γαβ

∂2φµν

∂zα∂zβ

+Πµ,αβΠν
αβ −

1

2
yµyν +

1

2
gµν(L+B)−Bµν . (151)

Using Eq.(149) and Eq.(148), Eq.(151) can be written as Eq.(150). Proof ends.
We need to study the relationship between Eq.(150) and the Einstein field equation (1). Using Eq.(129) and

Eq.(150), we have the following corollary.

Corollary 27 Suppose that (1) Assumption 24 is valid; (2) the coordinate system is harmonic. Then, in the non-
inertial coordinate system Sn the field equation Eq.(150) can be written as

Gµν − 1

2g0

(√
−g0g

αβ − γαβ
) ∂2(

√
−g0g

µν)

∂zα∂zβ

− 1

2g0
γαβ

∂2γµν

∂zα∂zβ
−Πµ,αβΠν

αβ

+
1

2
yµyν − 1

2
gµνL =

f2
0

g0
(Tµν − Tµνω ), (152)

Definition 28 If we have the following conditions

|γµν − ηµν | � 1, (153)∣∣∣∣12γαβ ∂2γµν

∂zα∂zβ

∣∣∣∣� ∣∣f2
0 (Tµν − Tµνω )

∣∣ , (154)

then we call this non-inertial coordinate system Sn quasi-inertial.

Using Eq.(156), Eqs.(153-154) and Eq.(152), we have the following corollary.

Corollary 29 Suppose that (1) Assumption 24 is valid; (2) the coordinate system is harmonic; (3) the non-inertial
coordinate system Sn is quasi-inertial. Then, the field equation Eq.(152) can be written as

Gµν − 1

2g0

(√
−g0g

αβ − ηαβ
) ∂2(

√
−g0g

αβ)

∂zα∂zβ

−Πµ,αβΠν
αβ +

1

2
yµyν − 1

2
gµνL =

f2
0

g0
(Tµν − Tµνω ). (155)

Eq.(155) is only valid approximately in a quasi-inertial and harmonic coordinate system Sn. Now we consider weak
fields.

Assumption 30 For weak fields in the non-inertial coordinate system Sn, the following relationship is valid

Tµν − Tµνω ≈ Tµνm . (156)

Similar to Corollary 22, we have the following result.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 January 2019                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 January 2019                   doi:10.20944/preprints201806.0350.v3

http://dx.doi.org/10.20944/preprints201806.0350.v3


20

Corollary 31 Suppose that (1) the conditions in Theorem 26 are valid; (2) the coordinate system is harmonic; (3)
the non-inertial coordinate system Sn is quasi-inertial; (4) the filed is weak. Then, the field equation Eq.(155) reduces
to

Rµν −
1

2
gµνR =

f2
0

g0
Tmµν . (157)

Similar to Corollary 23, we have the following result.

Corollary 32 Suppose that (1) Assumption 24 is valid; (2) the coordinate system is harmonic; (3) the non-inertial
coordinate system Sn is quasi-inertial; (4) the filed is weak; (5) gµν ≈ ηµν . Then, the field equation Eq.(157) reduces
to

Rµν −
1

2
gµνR = −f2

0T
m
µν . (158)

Comparing Eq.(158) and Eq.(1), we see that the field equation Eq.(150) is a generalization of the Einstein’s equation
Eq.(1) in some special non-inertial coordinate systems.

XI. DISCUSSION

Although the field equation Eq.(114) and Eq.(150) are generalizations of the Einstein’s equation (1), there exists
at least the following 8 differences between this theory and Einstein’s theory of general relativity.

(1). In Einstein’s theory, Einstein’s equation (1) is an assumption [1, 2, 26]. Although Einstein introduced his new
concept of gravitational aether ([36], p63-113), Einstein did not derive his equation (1) theoretically based on his new
concept of the gravitational aether. In our theory, the two generalized Einstein’s equation Eq.(114) and Eq.(150) are
derived by methods of special relativistic continuum mechanics based on some assumptions.

(2). Although the theory of general relativity is a field theory of gravity, the definitions of gravitational fields are
not based on continuum mechanics [1, 2, 26, 37–40]. Because of the absence of a continuum, the theory of general
relativity may be regarded as a phenomenological theory of gravity [1, 2, 26]. In our theory, gravity is transmitted
by the Ω(0) substratum. The tensorial potential ψµν of gravitational fields are defined based on special relativistic
continuum mechanics.

(3). In Einstein’s theory, the concept of Riemannian spacetime is introduced together with the field equation (1)
[1, 2, 26]. The theory of general relativity can not provide a physical definition of the metric tensor of the Riemannian
spacetime. In our theory, the background spacetime is the Minkowshi spacetime. However, the initial flat background
spacetime is no longer physically observable. According to the equation of motion of a point particle in gravitational
field (104), to the first order of f0ψµν , the physically observable spacetime is a Riemannian spacetime with the metric
tensor gµν . The metric tensor gµν is defined based on the tensorial potential ψµν of gravitational fields.

(4). The masses of particles are constants in Einstein’s theory of general relativity [1, 2, 26]. In our theory, the
masses of particles are functions of time t [15].

(5). The gravitational constant γN is a constant in Einstein’s theory of general relativity [1, 2, 26]. The theory of
general relativity can not provide a derivation of γN . In our theory, the parameter γN is derived theoretically. From
Eq.(4), we see that γN depends on time t.

(6). In our theory, the parameter γN in Eq.(9) depends on the density ρ0 of the Ω(0) substratum. If ρ0 varies from
place to place, i.e., ρ0 = ρ0(t, x, y, z), then the space dependence of the gravitational constant γN can be seen from
Eq.(4).

(7). In Einstein’s theory, equation (1) is supposed to be valid in all coordinate systems [1, 2, 26]. In our theory, the
generalized Einstein’s equation Eq.(114) is valid only in inertial coordinate systems. The second generalized Einstein’s
equation Eq.(150) is valid only in some special non-inertial coordinate systems.

(8). In Einstein’s theory, equation (1) is rigorous [1, 2, 26]. However, in our theory, Eq.(158) is valid approximately
under some assumptions.

XII. CONCLUSION

We extend our previous theory of gravitation based on a sink flow model of particles by methods of special relativistic
fluid mechanics. In inertial coordinate systems, we construct a tensorial potential of the Ω(0) substratum. Based
on some assumptions, we show that this tensorial potential satisfies the wave equation. Inspired by the equation
of motion of a test particle, a definition of a metric tensor of a Riemannian spacetime is introduced. A generalized
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Einstein’s equation in inertial coordinate systems is derived based on some assumptions. This equation reduces to
Einstein’s equation in case of weak field in harmonic coordinate systems. In some special non-inertial coordinate
systems, a second generalized Einstein’s equation is derived based on some assumptions. If the field is weak and
the coordinate system is quasi-inertial and harmonic, the second generalized Einstein’s equation reduces to Einstein’s
equation. Thus, this theory may also explains all the experiments which support the theory of general relativity.
In our theory, gravity is transmitted by the Ω(0) substratum. The theory of general relativity can not provide a
physical definition of the metric tensor of the Riemannian spacetime. In our theory, the background spacetime is the
Minkowshi spacetime. However, the flat background spacetime is no longer physically observable. According to the
equation of motion of a point particle in gravitational field, to the first order, the physically observable spacetime is
a Riemannian spacetime. The metric tensor of this Riemannian spacetime is defined based on the tensorial potential
of gravitational fields.
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