
Derivation of generalized Einstein’s equations of gravitation based on a mechanical
model of vacuum and a sink flow model of particles

Xiao-Song Wang
Institute of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, Henan Province, 454000, China \\

(Dated: Augest 28, 2018)

J. C. Maxwell, B. Riemann and H. Poincaré have proposed the idea that all microscopic particles
are sink flows in a fluidic aether. Following this research program, a previous theory of gravita-
tion based on a mechanical model of vacuum and a sink flow model of particles is generalized by
methods of special relativistic continuum mechanics. In inertial coordinate systems, we construct a
tensorial potential which satisfies the wave equation. Inspired by the equation of motion of a test
particle, a definition of a metric tensor of a Riemannian spacetime is introduced. Applying Fock’s
theorem, a generalized Einstein’s equation is derived based on some assumptions. This equation
reduces to Einstein’s equation in case of weak field in harmonic coordinate systems. In some special
non-inertial coordinate systems, a second generalized Einstein’s equation is derived based on some
assumptions. If the field is weak and the coordinate system is quasi-inertial and harmonic, the sec-
ond generalized Einstein’s equation reduces to Einstein’s equation. Thus, this theory also explains
all the experiments that support the theory of general relativity. There exists some fundamental
differences between this theory and Einstein’s theory of general relativity.
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I. INTRODUCTION

The Einstein’s equation of gravitational fields in the theory of general relativity can be written as [1–4]

Rµν −
1

2
gµνR = −κTmµν , (1)

where gµν is the metric tensor of a Riemannian spacetime, Rµν is the Ricci tensor, R ≡ gµνRµν is the scalar curvature,
gµν is the contravariant metric tensor, κ = 8πγN/c

4, γN is Newton’s gravitational constant, c is the speed of light in
vacuum, Tmµν is the energy-momentum tensor of a matter system.

The Einstein’s equation (1) is a fundamental assumption in the theory of general relativity [1–4]. It is remarkable
that Einstein’s theory of general relativity, born 102 years ago, has held up under every experimental test [5–9]. R.
P. Feynman once said:”What I cannot create, I do not understand.” ([10], page xxxii). New theories which can derive
Einstein’s equation Eq.(1) and explain all known experiments of gravitational phenomena may be interesting. The
reasons may be summarized as follows.

(1). Many attempts to reconcile the theory of general relativity and quantum mechanics by using the techniques in
quantum electrodynamics meet some mathematical difficulties ([11],p101). J. Maddox speculates that the failure of the
familiar quantization procedures to cope with Einstein’ equation may stem from two possible reasons. One possibility
is that Einstein’ equation are incomplete. The other is that some underlying assumptions about the character of the
space or time may faulty ([11],p101).

(2). The value of the cosmological constant is a puzzle [12]. In 1917, Einstein thought that Eq.(1) should be revised
as ([3], p410)

Rµν −
1

2
gµνR+ Λgµν = −κTmµν , (2)

where Λ is the cosmological constant. However, it seems that the cosmological constant Λ is unnecessary when Hubble
discovered the expansion of the universe. Thus, Einstein abandoned Eq.(2) and returned to Eq.(1) ([3], p410). The
value of the cosmological constant Λ is also related to the energy-momentum tensor of vacuum ([3], p411). Theoretical
interpretation of the small value of Λ is still open [12].

(3). The problem of the existence of black hole is still controversy [13]. Einstein believed that black hole can not
exist in the real world [14].

(4). P. A. M. Dirac’s dimensionless large number ([15], p73)

e2

Gmemp
∼ 2× 1039, (3)

where e is the charge of an electron, me is the mass of an electron, mp is the mass of a proton, is still a puzzle. Dirac
speculates that this large number is related to the age of the Universe ([15], p74).

(5). The existences and characters of dark matter dark energy are still controversy, refers to, for instance, [16–20].
(6). The existence and characters of gravitational aether are still not clear. Sir I. Newton pointed out that his

inverse-square law of gravitation did not touch on the mechanism of gravitation ([21],p28;[22],p91). Newton warned
([23], p204):”That Gravity should be innate, inherent and essential to Matter, so that one Body may act upon another
at a Distance thro’ a Vacuum, without the Mediation of any thing else, by and through which their Action and Force
may be conveyed from one to another, is to me so great an Absurdity, that I believe no Man who has in philosophical
Matters a competent Faculty of thinking, can ever fall into it. ” He conjectured that gravitation may be explained
based on the action of an aether pervading the space ([21],p28;[22],p92). In the years 1905-1916, Einstein abandoned
the concepts of electromagnetic aether and gravitational aether in his theory relativity ([24], p27-61). However, H. A.
Lorentz believed that general relativity could be reconciled with the concept of an ether at rest and wrote a letter to
A. Einstein ([24], p65). Einstein changed his view later and introduced his new concept of ether ([24], p63-113). In
1920, Einstein said ([24], p98):”According to the general theory of relativity, space is endowed with physical qualities;
in this sense, therefore, there exists an ether. According to the general theory of relativity, space without ether is
unthinkable;”. In 1954, Einstein said ([24], p149):”There is no such thing as an empty space, i.e., a space without
field. Space-time does not claim existence on its own, but only as a structural quality of the field.” Unfortunately,
Einstein did not tell us how to derive his equation (1) theoretically based on his new concept of the gravitational
aether. Nor did he tell us how to detect his gravitational aether by experiments.

(7). Whether Newton’s gravitational constant γN depends on time and space is still not clear. It is known that
γN is a constant in Newton’s and Einstein’s theory of gravitation. P. A. M. Dirac speculates that γN may depend
on time based on his large number hypothesis [25]. R. P. Feynman thought that if γN decreases on time, then the
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earth’s temperature a billion years ago was about 48◦C higher than the present temperature ([10], p9). D. R. Long
reports that γN depends on the distance away from the surface of the earth [26].

(8). We are facing a puzzle that whether the speed of light in vacuum is a constant, refers to, for instance, [27–29].

Furthermore, there exists some other problems related to the theories of gravity, for instance, the definition of
inertial system, origin of inertial force, the velocity of the propagation of gravity [30], the velocity of individual
photons [28, 29], unified field theory, etc.

There is a long history of researches of derivations or interpretations of Einstein’s theory of general relativity. C.
Misner et al. introduce six derivations of the Einstein’s equation Eq.(1) in their great book ([3], p417). S. Weinberg
proposed two derivations ([2], p151).

However, these theories still face the aforementioned difficulties. Thus, it seems that new ideas about the gravita-
tional phenomena are needed. The gravitational interaction seems to differ in character from other interactions. In
1949, Einstein wrote in a letter to Solovine [31]:”I am not convinced of the certainty of a simple concept, and I am
uncertain as to whether I was even on the right track.” Thus, following Einstein, it is better for us to keep an open
and critical mind to review all possible theories about gravity.

There exists some approaches ([10], page vii;[3], p424), which regards Einstein’s general relativity as a special
relativistic field theory in an unobservable flat spacetime, to derive the Einstein’s equation (1). Now we briefly review
the history of the theories of gravitation in flat spacetime. According to J. Preskill and K. S. Thorne ([10], page viii),
the field equation for a free massless spin-2 field was proposed by Fierz and Pauli in the year 1939. Since then, the idea
of treating Einstein’s theory of gravity as a massless spin 2 field theory in flat spacetime appeared in the literature.
In 1954, S. N. Gupta finds that some features of Einstein’s theory of gravity are a necessary consequence of the fact
that Einstein’s field corresponds to particles of massless spin 2 [32]. In 1955, R. H. Kraichnan proposes a special
relativistic derivation of generally covariant gravitation theory [33]. In 1961, W. Thirring proposes an alternative
tensor field theory of gravitation in flat spacetime based on a specific Lagrangian [34]. R. P. Feynman constructs
the quadratic action of a massless spin 2 field that is linearly coupled to a conserved energy-momentum tensor ([10],
p43). Then, he derive the Einstein’s equation (1) by requiring that the field equation be compatible with the matter’s
equation of motion ([10], Chapter 6). In 1965, starting from the Lorentz invariance of the S matrix calculated by
Feynman-Dyson perturbation theory, S. Weinberg shows that Maxwell’s theory of electromagnetism and Einstein’s
theory of gravitation are essentially the unique Lorentz-invariant theories of massless particles with spin 1 and spin
2 [35]. In 1970, S. Deser [36] derives the Einstein’s equation (1) based on the self-coupling of the gravitational fields
with just one added cubic term without special gauge condition, rather than as an infinite series [32]. In 1999, S.
V. Babak and L. P. Grishchuk treat gravity as a nonlinear tensor field in flat spacetime and derive the Einstein’s
equation (1) based on a specific Lagrangian [37]. It is impossible for us to list all the works related to theories of
gravitation in flat spacetime here.

However, these theories [3, 10, 32–37] can not provide a physical definition of the tensorial potential of gravitational
fields. Thus, similar to the theory of general relativity, these theories may be regarded as phenomenological theories
of gravitation.

The purpose of this manuscript is to propose a derivation of the Einstein’s equation (1) based on a mechanical
model of vacuum and a sink flow model of particles [38].

II. INTRODUCTION OF A PREVIOUS THEORY OF GRAVITATION BASED ON A SINK FLOW
MODEL OF PARTICLES BY METHODS OF CLASSICAL FLUID MECHANICS

The idea that all microscopic particles are sink flows in a fluidic substratum is not new. For instance, in order
to compare fluid motions with electric fields, J. C. Maxwell introduced an analogy between source or sink flows and
electric charges ([21], p243). B. Riemann speculates that:”I make the hypothesis that space is filled with a substance
which continually flows into ponderable atoms, and vanishes there from the world of phenomena, the corporeal
world”([39], p507). H. Poincaré also suggests that matters may be holes in fluidic aether ([40], p171). A. Einstein and
L. Infeld said ([41], p256-257):”Matter is where the concentration of energy is great, field where the concentration of
energy is small. · · · What impresses our senses as matter is really a great concentration of energy into a comparatively
small space. We could regard matter as the regions in space where the field is extremely strong.”

Following these researchers, we suppose that all the microscopic particles were made up of a kind of elementary
sinks of Ω(0) substratum [38]. Thus, Newton’s law of gravitation is derived by methods of hydrodynamics based on
the fluid model of vacuum and the sink flow model of particles [38].

We briefly introduce this theory of gravitation [38]. Suppose that there exists a fluidic medium filling the inter-
planetary vacuum. We may call this medium as the Ω(0) substratum, or gravitational aether, or tao [38]. Suppose
that the following conditions are valid: (1) the Ω(0) substratum is an ideal fluid; (2) the ideal fluid is irrotational and
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FIG. 1. an illustration the velocity field of a sink flow.

barotropic; (3) the density of the Ω(0) substratum is homogeneous; (4) there are no external body forces exerted on
the fluid; (5) the fluid is unbounded and the velocity of the fluid at the infinity is approaching to zero.

An illustration of the velocity field of a sink flow can be found in Figure 1. If a point source is moving with a
velocity vs, then there is a force [38]

FQ = −ρ0Q(u− vs) (4)

is exerted on the source by the fluid, where ρ0 is the density of the fluid, Q is the strength of the source, u is the
velocity of the fluid at the location of the source induced by all means other than the source itself.

We suppose that all the elementary sinks were created simultaneously [38]. For convenience, we may call these
elementary sinks as monads. The initial masses and the strengths of the monads are the same. Suppose that (1)
vi � ui, i = 1, 2, where vi is the velocity of the particle with mass mi, ui is the velocity of the Ω(0) substratum
at the location of the particle with mass mi induced by the other particle; (2) there are no other forces exerted on
the particles, then the force F21(t) exerted on the particle with mass m2(t) by the velocity field of Ω(0) substratum
induced by the particle with mass m1(t) is [38]

F21(t) = −γN (t)
m1(t)m2(t)

r2
r̂21, (5)

where r̂21 denotes the unit vector directed outward along the line from the particle with mass m1(t) to the particle
with mass m2(t), r is the distance between the two particles, m0(t) is the mass of monad at time t, −q0(q0 > 0) is
the strength of a monad, and

γN (t) =
ρ0q

2
0

4πm2
0(t)

. (6)

For continuously distributed matter, we have

∂ρ0

∂t
+∇ · (ρ0u) = ρ0ρs, (7)

where u is the velocity of the Ω(0) substratum, ∇ = i∂/∂x+ j∂/∂y+ k∂/∂z is the Hamilton operator, i, j,k are basis
vectors, ρs is the density of continuously distributed sinks, i.e.,

ρs = lim
4V→0

4Q
4V

, (8)

where 4Q is the source strength of the continuously distributed matter in the volume 4V of the Ω(0) substratum.
Since the Ω(0) substratum is homogeneous, i.e., ∂ρ0/∂t = ∂ρ0/∂x = ∂ρ0/∂y = ∂ρ0/∂z = 0, and irrotational, i.e.,

∇× u = 0, Eq.(7) can be written as [42–44]

∇2ϕ = ρs, (9)

where ϕ is a velocity potential such that u = ∇ϕ, ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplace operator.
We introduce the following definitions

Φ =
ρ0q0

m0
ϕ, ρm = −m0ρs

q0
, (10)
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where ρm denotes the mass density of continuously distributed particles.
Using Eq.(10) and Eq.(6), Eq.(9) can be written as

∇2Φ = −4πγNρm. (11)

Although the new formula of gravitation Eq.(5) is similar to Newton’s inverse-square-law of gravitation, there exists
at least the following 5 differences between this theory [38] and Newton’s theory [45].

(1). The gravitational masses are constants in Newton’s law. In this theory [38], the gravitational masses are
functions of time t.

(2). The gravitational constant γN is a constant in Newton’s theory. In this theory [38], the parameter γN in Eq.(6)
depends on time t.

(3). In this theory, the gravitational γN depends on the density ρ0 of the Ω(0) substratum. If ρ0 varies from place
to place, i.e., ρ = ρ(t, x, y, z), then the space dependence of the gravitational constant γN can be seen from Eq.(6).

(4). In Newton’s theory of gravitation, the gravity is action-at-a-distance [46]. In this theory [38], the gravity is
transmitted by the Ω(0) substratum.

(5). Newton’s law of gravitation is an assumption. In this theory [38], Eq.(5) is derived by methods of classical
fluid mechanics based on some assumptions.

III. A MECHANICAL MODEL OF VACUUM

A. Einstein strongly believe that there is no empty space ([24], p149). He thought that physical space and the
aether are the same things and we could not be able to do without the aether in theoretical physics ([24], p188).

In 2008, we suppose that vacuum is filled with a kind of continuously distributed material which may be called
Ω(1) substratum or electromagnetic aether [47]. We speculate that the Ω(1) substratum might behave like a fluid
with respect to translational motion of large bodies through it, but would still posses elasticity to produce small
transverse vibrations. Thus, Maxwell’s equation in vacuum are derived by methods of continuum mechanics based on
this mechanical model of vacuum and a source and sink flow model of electric charges [47].

We speculate that the electromagnetic aether may also generate gravity. Thus, we introduce the following assump-
tion.

Assumption 1 The particles that constitute the Ω(1) substratum, or the electromagnetic aether, are sinks in the Ω(0)
substratum, or the gravitational aether.

Then, according to the previous theory of gravitation [38], these Ω(1) particles gravitate with each other and also
attract with matters. Thus, vacuum is composed of at least two kinds of interacting substratums, i.e., the gravitational
aether Ω(0) and the electromagnetic aether Ω(1).

From Eq.(4), we see that there exists a universal damping force [38]

Fd = −ρ0q0

m0
mvp, (12)

where vp is the velocity of the particle, exerted on each particle by the Ω(0) substratum.
In 2014, we suppose that there is also a stochastic force exerting on each microscopic particle by the gravitational

aether Ω(0) [48]. Then we derive a generalized Schrödinger equation for microscopic particles based on the fluidic con-
tinuum model of vacuum and the sink model of particles. Only in special cases this nonlinear generalized Schrödinger
equation reduces to the usual linear Schrödinger equation. As a byproduct, the Planck constant h is calculated
theoretically. Thus, quantum phenomena may also be interpreted based on the gravitational aether Ω(0).

For convenience, we may call these theories [38, 47, 48] as the theory of vacuum mechanics. If the Einstein’s equation
(1) of gravitational fields can be derived based on the theory of vacuum mechanics [38, 47, 48], then, electromagnetic
phenomena, gravitational phenomena and quantum phenomena may be understood in this unified theory.

IV. CONSTRUCTION OF A LAGRANGIAN FOR FREE FIELDS OF THE Ω(0) SUBSTRATUM BASED
ON A TENSORIAL POTENTIAL IN THE GALILEAN COORDINATES

Inspired by the special relativistic field theories of gravitation [3, 10, 32–37], we explore the possibility of establishing
a similar theory based on the theory of vacuum mechanics [38, 47, 48]. Thus, first of all, we need to construct a
Lagrangian for free fields of the Ω(0) substratum based on a tensorial potential in the Galilean coordinates. In this
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section, we will regard the Ω(0) substratum in the previous theory of gravitation [38] as a special relativistic fluid.
Then, we will study the Ω(0) substratum by methods of special relativistic continuum mechanics [1].

In this article, we adopt the mathematical framework of the theory of special relativity [1, 2, 49]. However, the
physical interpretation of the mathematics of the theory of special relativity may be different from Einstein’s theory.

We introduce the following Galilean coordinate system

x0 ≡ t, x1 ≡ x, x2 ≡ y, x3 ≡ z, (13)

where {o, x, y, z} is a Cartesian coordinate system for a three-dimensional Euclidean space that attached to the Ω(1)
substratum, {o, t} is a one-dimensional time coordinate.

According to Fock’s theorem of characteristics ([50], p432), the characteristics of the generalized wave equation, or
d’Alembert equation

1√
−γ

∂

∂xα

(√
−γγαβ ∂ψ

∂xβ

)
= 0, (14)

is

γµν
∂ω

∂xµ
∂ω

∂xν
= 0, (15)

where ψ is a field variable, γαβ is a metric tensor, γ = Det γαβ , ω(x0, x1, x2, x3) is the characteristics.
It is known that Maxwell’s equation are valid in the frame of reference that attached to the Ω(1) substratum [47]. We

denote this reference frame as SΩ(1). Based on the Maxwell’s equation, the law of propagation of an electromagnetic
wave front in this reference frame SΩ(1) can be derived and can be written as ([50],p13)

1

c2

(
∂ω

∂t

)2

−
(
∂ω

∂x

)2

−
(
∂ω

∂y

)2

−
(
∂ω

∂z

)2

= 0, (16)

where ω(x0, x1, x2, x3) is an electromagnetic wave front, c is the velocity of light in the reference frame SΩ(1).
An electromagnetic wave front is a characteristics. Comparing Eq.(16) and Eq.(15), we obtain the following metric

tensor ηαβ of a Minkowski spacetime for vacuum ([49], p57)

ηαβ = diag[c2,−1,−1,−1]. (17)

For convenience, we introduce the following Galilean coordinate system

x0 ≡ ct, x1 ≡ x, x2 ≡ y, x3 ≡ z. (18)

We will use Greek indices α, β, µ, ν, etc., denote the range {0, 1, 2, 3} and use Latin indices i, j, k, etc., denote the
range {1, 2, 3}. We introduce the following definition of spacetime interval

ds2 =

3∑
µ=0

3∑
ν=0

ηµνdx
µdxν , (19)

where ηµν is a matrix defined by

ηµν =

 1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (20)

ηµν is the metric tensor of the Minkowski spacetime. We will use Einstein’s summation convention, that is, any
repeated Greek superscript or subscript appearing in a term of an equation is to be summed from 0 to 3. Thus,
Eq.(19) can be written as

ds2 = ηµνdx
µdxν . (21)

The inverse matrix of ηµν is defined by

ηνληλµ = δνµ. (22)
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where δνµ is the Kronecker delta, µ, ν, λ = 0, 1, 2, 3.
Suppose that the Ω(0) substratum is an incompressible viscous fluid. Then, there is no elastic deformations in the

fluid and the internal stress states depend on the instantaneous velocity field. Thus, we can choose the reference
frame SΩ(1) as the co-moving coordinate system. The internal energy U is the sum of the internal elastic energy Ue
and the dissipative energy Ud, i.e., U = Ue + Ud. Since there is no elastic deformations in the fluid, we have Ue = 0.
We introduce the following definition of deviatoric tensor of strain rate γ̇ij ([51],p331)

γ̇ij = Ṡij − Ṡkkδij , (23)

where Ṡij is the tensor of strain rate, Ṡkk is the rate of volume change, δij is the Kronecker delta, i,j,k=1,2,3.

Suppose that the rate of dissipative energy U̇d is the Rayleigh type, then, we have ([51],p332)

U̇d = µ0γ̇
i
j γ̇
j
i , (24)

where µ0 is the coefficient of viscosity.
Since the Ω(0) substratum is incompressible, we have Ṡkk = 0. Thus, from Eq.(24) and Eq.(23), we have

U̇d = µ0Ṡ
i
jṠ

j
i . (25)

In the nonrelativistic limit, i.e., u/c � 1, where u = |u|, the Lagrangian L0 for free fields of the Ω(0) substratum
can be written as ([51],p332)

L0 =
1

2
ρ0u

2 +

∫ t

t0

U̇d(Ṡ
i
j)dt, (26)

where u = |u|, t0 is an initial time.
Suppose that the Ω(0) substratum is a newtonian fluid and the stress tensor σij is symmetry, then we have ([51],p333)

σij = −pδij + 2µ0Ṡ
i
j , (27)

where p is the pressure of the Ω(0) substratum, i, j, k = 1, 2, 3.
Using Eq.(27) and Eq.(25), Eq.(26) can be written as

L0 =
1

2
ρ0u

2 +

∫ t

t0

(σij + pδij)
Ṡji
2
dt, (28)

For a macroscopic observer, the relaxation time tr of the Ω(0) substratum is so small that the tensor of strain rate

Ṡij may be regarded as a slow varying function of time, i.e., |∂Ṡij/∂t| � 1. Thus, in a small time interval [t0, t], we

have Ṡij ≥ 0, or, Ṡij ≤ 0. Then, it is possible to choose a value σ̄ij + p̄δij of σij + pδij in the time interval [t0, t] such that
Eq.(28) can be written as

L0 =
1

2
ρ0u

2 + (σ̄ij + p̄δij)

∫ t

t0

Ṡji
2
dt. (29)

We introduce the following definition

ψij
def
=

∫ t

t0

Ṡij
2f0

dt, (30)

where f0 is a parameter to be determined.
Using Eq.(30), Eq.(29) can be written as

L0 =
1

2
ρ0u

2 + f0ψ
j
i (σ̄

i
j + p̄δij). (31)

Since the coefficient of viscosity µ0 of the Ω(0) substratum may be very small, we introduce the following assumption.
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Assumption 2 In the nonrelativistic limit, i.e., u/c� 1, where u = |u|, u is the velocity of the Ω(0) substratum, we
suppose that µ0 ≈ 0 and we have the following conditions

ψij ≈ 0, ∂µψij ≈ 0, ∂µ∂νψij ≈ 0, (32)

where

∂µ ≡
(

∂

∂x0
,
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
. (33)

According to the Stokes-Helmholtz resolution theorem, refers to, for instance, [52, 53], every sufficiently smooth
vector field can be decomposed into irrotational and solenoidal parts. Thus, there exists a scalar function ψ and a
vector function R such that the velocity field u of the Ω(0) substratum can be represented by [52, 53]

u = ∇ϕ+∇×R, (34)

where ∇× ϕ = 0, ∇ ·R = 0.

We introduce the following definition of a vector function ~ξ

∂~ξ

∂(ct)
= ∇×R. (35)

Putting Eq.(35) into Eq.(34), we have

u = ∇ϕ+
∂~ξ

∂(ct)
. (36)

Based on Assumption 2 and Eq.(36), Eq.(31) can be written as

L0 =
ρ0

2

(∇ϕ)2 + 2(∇ϕ) · ∂~ξ

∂(ct)
+

(
∂~ξ

∂(ct)

)2
 . (37)

Using Eq.(10), Eq.(37) can be written as

L0 =
m2

0

2ρ0q2
0

(∇Φ)2 +
m0

q0
(∇Φ) · ∂~ξ

∂(ct)
+
ρ0

2

(
∂~ξ

∂(ct)

)2

. (38)

We introduce the following definitions

ψ00 = −a00Φ, ψ0i = ψi0 = a0iξi, (39)

~ψ0 = ψ01i + ψ02j + ψ03k. (40)

where a00 > 0 and a0i > 0 are 4 parameters to be determined, i = 1, 2, 3.
Eq.(39) and Eq.(30) have defined a rank 2 symmetric tensor ψµν . We require that for some special values of a00

and a0i, Eq.(38) can be written as

L0 = (∇ψ00)2 − 2(∇ψ00) · ∂
~ψ0

∂(ct)
+

(
∂ ~ψ0

∂(ct)

)2

=

(
∇ψ00 −

∂ ~ψ0

∂(ct)

)2

. (41)

Comparing Eq.(41) and Eq.(38) and using Eqs.(39-40), we have

a00 =

√
m2

0

2ρ0q2
0

, a0i =

√
ρ0

2
. (42)

In order to construct the Lagrangian L0 described in Eq.(41) based on the tensorial potential ψµν , we should
consider all the possible products of derivatives of the tensor ψµν . If we require that the two tensor indices of ψµν
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are different from each other and the two tensor indices of ψµν are different from the derivative index, we have the
following two possible products ([10], p43):

L1 = ∂σψµν∂
σψµν , L2 = ∂σψµν∂

µψσν . (43)

If there are two indices of ψµν which are equal, or one of the indices of ψµν is the same as the derivative index, we
may have the following three possible products ([10], p43):

L3 = ∂νψµν∂σψ
σ
µ, L4 = ∂µψµν∂

νψ, (44)

L5 = ∂λψ∂
λψ. (45)

where ψ is the trace of ψµν , i.e., ψ ≡ ψλλ = ηαβψ
αβ ,

∂µ ≡ ηµν∂ν =

(
∂

∂x0
,− ∂

∂x1
,− ∂

∂x2
,− ∂

∂x3

)
. (46)

L3 may be omitted because it can be converted to L2 by integration by parts ([10], p43). Inspired by W. Thirring
[34] and R. P. Feynman ([10], p43), we introduce the following assumption.

Assumption 3 The Lagrangian L0 for free fields of the Ω(0) substratum can be written as

L0 = c1L1 + c2L2 + c4L4 + c5L5 + Lmore, (47)

where ci, i = 1, 2, 4, 5 are 4 parameters to be determined, Lmore denotes those terms involving more than two derivatives
of ψµν .

Proposition 4 Suppose that Assumption 2 is valid and we have the following conditions

∂ψ00

∂(ct)
≈ 0,

∂ψ0i

∂xj
≈ 0. (48)

If we set

c1 =
1

2
, c2 = −2, c4 = −6, c5 = −3

2
, (49)

then we have

c1L1 + c2L2 + c4L4 + c5L5 ≈

(
∇ψ00 −

∂ ~ψ0

∂(ct)

)2

. (50)

Proof of Proposition 4. Based on Eq.(32) and Eq.(48) and noticing ψ00 = ψ00, ψ
0i = −ψ0i, we have

L1 ≈ −(∇ψ00)2 − 2

(
∂ ~ψ0

∂(ct)

)2

. (51)

Using Eq.(32) and Eq.(48) and noticing ψ0i = −ψ0i, we have

L2 ≈ −2(∇ψ00) · ∂
~ψ0

∂(ct)
−

(
∂ ~ψ0

∂(ct)

)2

. (52)

Similarly, we have the following results

L3 ≈ (∇ψ00) · ∂
~ψ0

∂(ct)
, (53)

L4 ≈ −(∇ψ00)2. (54)

Using Eqs.(51-54), we obtain Eq.(50). Proof ends.
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V. INTERACTION TERMS OF THE LAGRANGIAN OF A SYSTEM OF THE Ω(0) SUBSTRATUM,
THE Ω(1) SUBSTRATUM AND MATTER

In order to derive the field equation, we should explore the possible interaction terms of the Lagrangian of a system
of the Ω(0) substratum, the Ω(1) substratum and matter. If we suppose that the Ω(0) substratum is an idea fluid,
then from Eq.(34) we have u = ∇ϕ. Ignoring the damping force ρ0Qvs in Eq.(4) and using u = ∇ϕ, Eq.(4) can be
written as

FQ = −ρ0Q∇ϕ. (55)

A particle is modelled as a point sink of the Ω(0) substratum [38, 47, 48]. Thus, the interaction term of the
Lagrangian of a system of the Ω(0) substratum and a particle can be written as

Lint = ρ0Qϕ. (56)

Thus, the interaction term of the Lagrangian of a system of the Ω(0) substratum and continuously distributed
particles can be written as

Lint = ρ0ρsϕ. (57)

Putting Eq.(10) into Eq.(57), we have

Lint = −ρmΦ. (58)

The 00 term of the energy-momentum tensor Tmµν of a particle is T 00
m = ρmc

2. Thus, using Eq.(39), Eq.(58) can be
written as

Lint = f0ψ00T
00
m , (59)

where

f0 =
1

a00c2
. (60)

From Eq.(60), Eq.(42) and Eq.(6), we have

f0 =

√
2ρ0q2

0

m2
0c

4
=

√
8πγN
c4

,
1

a2
00

= 8πγN . (61)

Inspired by Eq.(59) and Eq.(31), we introduce the following assumption.

Assumption 5 The interaction terms of the Lagrangian of a system of the Ω(0) substratum, the Ω(1) substratum
and matter can be written as the following form.

Lint = f0ψµνT
µν
m + f0ψµνT

µν
Ω(1) +O[(f0ψµν)2], (62)

where Tµνm and TµνΩ(1) are the contravariant energy-momentum tensor of the system of the matter and the Ω(1) sub-

stratum respectively, O[(f0ψµν)2] denotes those terms which are small quantities of the order of (f0ψµν)2.

VI. DERIVATION OF THE FIELD EQUATION

Based on Proposition 4 and Assumption 5, the total Lagrangian Ltot of a system of the Ω(0) substratum, the Ω(1)
substratum and matter can be written as

Ltot =
1

2
∂λψµν∂

λψµν − 2∂λψµν∂
µψλν − 6∂µψµν∂

νψ

−3

2
∂λψ∂

λψ + Lmore + f0ψµν(Tµνm + TµνΩ(1))

+O[(f0ψµν)2]. (63)
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Theorem 6 If we ignore those terms which are small quantities of the order of (f0ψµν)2 and those terms involv-
ing more than two derivatives of ψµν in Eq.(63), i.e., O[(f0ψµν)2] and Lmore, then the field equation for the total
Lagrangian Ltot in Eq.(63) can be written as

∂σ∂
σψαβ − 2(∂σ∂αψβσ + ∂σ∂βψασ)− 6(ηαβ∂σ∂λψ

σλ

+6∂α∂βψ)− 3ηαβ∂σ∂
σψ = f0(Tmµν + TΩ(1)

µν ). (64)

Proof of Theorem 6. Starting from the Lagrangian in Eq.(63), we have the following Euler-Lagrange equation [37]

∂Ltot
∂ψαβ

− ∂

∂xσ

(
∂Ltot

∂(∂σψαβ)

)
= 0. (65)

We can verify the following results ([10], p43; [34])

∂

∂xσ

[
∂(∂σψµν∂

σψµν)

∂(∂σψαβ)

]
= 2∂σ∂

σψαβ , (66)

∂

∂xσ

[
∂(∂σψµν∂

µψσν)

∂(∂σψαβ)

]
= ∂σ∂αψβσ + ∂σ∂βψασ, (67)

∂

∂xσ

[
∂(∂µψµν∂

νψ)

∂(∂σψαβ)

]
= ∂α∂βψ + ηαβ∂σ∂λψ

σλ, (68)

∂

∂xσ

[
∂(∂σψ∂

σψ)

∂(∂σψαβ)

]
= 2ηαβ∂σ∂

σψ, (69)

∂Ltot
∂ψαβ

= f0(Tmαβ + T
Ω(1)
αβ ). (70)

Putting Eq.(63) into Eq.(65) and using Eqs.(66-70), we obtain Eq.(64). Proof ends.
We introduce the following notation

Ψµν = ∂λ∂
λψµν − 2∂λ∂

µψνλ − 2∂λ∂
νψµλ

−6ηµν∂σ∂λψ
σλ − 6∂µ∂νψ − 3ηµν∂λ∂

λψ. (71)

Thus, Eq.(64) can be written as

Ψµν = f0(Tµνm + TµνΩ(1)). (72)

We introduce the following definition of total energy-momentum tensor of the system of the matter, the Ω(1)
substratum and the Ω(0) substratum

Tµν = Tµνm + TµνΩ(1) + TµνΩ(0), (73)

where TµνΩ(0) is the energy-momentum tensor of the Ω(0) substratum.

Adding the term f0T
µν
Ω(0) on both sides of Eq.(72) and using Eq.(73), we have

Ψµν + f0T
µν
Ω(0) = f0T

µν . (74)

For the total system of matter, the Ω(1) substratum and the Ω(0) substratum, the law of conservation of energy
and momentum is ([1], p163; [49], p155)

∂µT
µν = 0. (75)

Comparing Eq.(75) and Eq.(74), we have

∂µ(Ψµν + f0T
µν
Ω(0)) = 0. (76)

Noticing Eqs.(66-70), we introduce the following notation ([10], p43)

Hµν = f1∂λ∂
λψµν + f2(∂λ∂

µψνλ + ∂λ∂
νψµλ)

+f3(∂µ∂νψ + ηµν∂σ∂λψ
σλ) + f4η

µν∂λ∂
λψ, (77)
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where fi, i = 1, 2, 3, 4 are 4 arbitrary parameters.
If we require that

∂µH
µν = 0, (78)

then, we can verify the following relationships ([10], p44; [34])

f1 + f2 = 0, (79)

f2 + f3 = 0, (80)

f3 + f4 = 0. (81)

We choose f1 = 1, f2 = −1, f3 = 1, f4 = −1 in Eq.(77) and introduce the following notation

Θµν = ∂λ∂
λψµν − (∂λ∂

µψνλ + ∂λ∂
νψµλ)

+(∂µ∂νψ + ηµν∂σ∂λψ
σλ)− ηµν∂λ∂λψ. (82)

We can verify the following result ([10], p44; [34])

∂µΘµν = 0. (83)

From Eq.(83) and Eq.(76), we have

∂µ(Ψµν + f0T
µν
Ω(0) − b0Θµν) = 0. (84)

where b0 is an arbitrary parameter.
We introduce the following definition of a tensor ωµν

f0ω
µν = Ψµν + f0T

µν
Ω(0) − b0Θµν , (85)

where b0 is a parameter to be determined.

Assumption 7 In the nonrelativistic limit, i.e., u/c � 1, where u = |u|, u is the velocity of the Ω(0) substratum,
the following relationship is valid

Tµν − ωµν ≈ Tµνm . (86)

Theorem 8 Suppose that Assumption 7 is valid, then, the field equation (64) can be written as

∂λ∂
λψµν − ∂λ∂µψνλ − ∂λ∂νψµλ + ∂µ∂νψ

+ηµν∂σ∂λψ
σλ − ηµν∂λ∂λψ = −f0(Tµν − ωµν). (87)

Proof of Theorem 8. From Eq.(85) and Eq.(74), we have the following field equation

Θµν =
f0

b0
(Tµν − ωµν). (88)

Now our task is to determine the parameter b0 in the field equation (88). A natural idea is that the 00 component
of the field equation (88) reduces to the field equation Eq.(11) in the nonrelativistic limit. Noticing Eq.(82), the 00
component of the field equation (88) is

∂λ∂
λψ00 − 2∂λ∂

0ψ0λ + ∂0∂0ψ

+ ∂σ∂λψ
σλ − ∂λ∂λψ =

f0

b0
(T 00 − ω00). (89)

Take the trace of the field equation Eq.(88), we have

∂σ∂λψ
σλ − ∂λ∂λψ =

f0

2b0
(T − ω), (90)

where T and ω are the traces of Tµν and ωµν respectively, i.e., T ≡ Tλλ = ηαβT
αβ , ω ≡ ωλλ = ηαβω

αβ .
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Subtracting Eq.(90) from Eq.(89), we have

∂λ∂
λψ00 − 2∂λ∂

0ψ0λ + ∂0∂0ψ

=
f0

b0

(
T 00 − T

2
− ω00 +

ω

2

)
. (91)

If the field is time-independent, then Eq.(91) reduces to

−∇2ψ00 =
f0

b0

(
T 00 − T

2
− ω00 +

ω

2

)
. (92)

According to Eq.(86), in the nonrelativistic limit, we have

T 00 − ω00 ≈ T 00
m = ρmc

2, T − ω ≈ Tm ≈ ρmc2, (93)

where Tm is the trace of Tµνm , i.e., Tm ≡ ηαβTαβm .
Using Eq.(39), Eq.(42), Eq.(61) and Eq.(93), Eq.(92) can be written as

∇2Φ =
1

b0
4πγNρm. (94)

Comparing Eq.(94) and Eq.(11), we obtain b0 = −1. Therefore, using Eq.(82) and b0 = −1, the field equation
Eq.(88) can be written as Eq.(87). Proof ends.

We can verify that the field equation Eq.(87) is invariant under the gauge transformation ([10], p45; [34])

ψµν → ψµν + ∂µΛν + ∂νΛµ, (95)

where Λµ is an arbitrary vector field.
We introduce the following definition

φµν = ψµν − 1

2
ηµνψ. (96)

Using Eq.(96), the field equation (87) can be written as

∂λ∂
λφµν − ∂λ∂µφνλ − ∂λ∂νφµλ

+ ηµν∂σ∂λφ
σλ = −f0T

µν . (97)

We introduce the following Hilbert gauge condition [34]

∂µ

(
ψµν − 1

2
ηµνψ

)
= 0. (98)

Using Eq.(96), the Hilbert gauge condition Eq.(98) simplifies to

∂µφ
µν = 0. (99)

Applying Eq.(99) in Eq.(97), we obtain the following proposition [34].

Proposition 9 If we impose the Hilbert gauge condition Eq.(98) on the fields, then, the field equation Eq.(87) sim-
plifies to

∂λ∂
λ

(
ψµν − 1

2
ηµνψ

)
= −f0(Tµν − ωµν). (100)

If the tensor potential ψµν does not satisfy the Hilbert gauge condition Eq.(98), then we can always construct a
new tensor potential ψ̄µν by the following gauge transformation [34]

ψ̄µν = ψµν + ∂µΛν + ∂νΛµ, (101)

such that the new tensor potential ψ̄µν does satisfy the Hilbert gauge condition Eq.(98).
Using Eq.(96), the field equation Eq.(100) can be written as

∂λ∂
λφµν = −f0(Tµν − ωµν). (102)

The field equation Eq.(102) can also be written as

ηαβ
∂2φµν

∂xα∂xβ
= −f0(Tµν − ωµν). (103)

We noticed that the tensorial field equation Eq.(103) is similar to the wave equation of electromagnetic fields.
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VII. CONSTRUCTION OF A TENSORIAL POTENTIAL IN INERTIAL COORDINATE SYSTEMS

The existence of the Ω(1) substratum allows us to introduce the following definition of inertia coordinates system.

Definition 10 If a coordinates system S is static or moving with a constant velocity relative to the reference frame
SΩ(1), then, we call such a coordinates system as an inertia coordinates system.

The field equation Eq.(97) and Eq.(100) are valid in the reference frame SΩ(1). We will explore the possibility of
constructing a tensorial potential in an arbitrary inertial system S′. In an inertial coordinate system S, an arbitrary
event is characterized by the four space-time coordinates (t, x, y, z). In an inertial system S′, this event is characterized
by four other coordinates (t′, x′, y′, z′). We assume that the origins of the Cartesian coordinates in the two inertial
systems S and S′ coincide at the time t = t′ = 0. Then, the connections between these space-time coordinates are
given by a homogeneous linear transformation keeping the quantity s2 = ct2 − x2 − y2 − z2 invariant, i.e., ([1], p92)

s2 = c2t2 − x2 − y2 − z2 = c2t′2 − x′2 − y′2 − z′2 = s′2, (104)

We introduce the following two coordinate systems

x0 = ct, x1 = x, x2 = y, x3 = z,

x′0 = ct′, x′1 = x′, x′2 = y′, x′3 = z′. (105)

The homogeneous linear transformation keeping the quantity s2 invariant, which is usually called the Lorentz
transformation, can be written as ([54], p57; [1], p92)

x′µ = αµνx
ν , (106)

where αµν are coefficients depend only on the angles between the spatial axes in the two inertial systems S and S′

and on the relative velocity of S and S′, µ, ν = 0, 1, 2, 3.

Proposition 11 Suppose that the field equation Eq.(102) is valid in the the reference frame SΩ(1). Then, in an
arbitrary inertial system S′, there exists a symmetric tensor φ′µν satisfies the following wave equation

∂′λ∂
′λφ′µν = f0(T ′µν − ω′µν), (107)

where T ′µν and ω′µν are corresponding tensors of Tµν and ωµν in the arbitrary inertial coordinate system S′ respec-
tively.

Proof of Proposition 11. According to the definition of a tensor of second rank in spacetime, we have ([1], p108)

φ′µν = αµσα
ν
λφ

σλ, (108)

(T ′µν − ω′µν) = αµσα
ν
λ(Tµν − ωµν). (109)

Eq.(108) and Eq.(109) can also be written as ([1], p108)

φµν = φ′σλαµσα
ν
λ, (110)

(Tµν − ωµν) = (T ′σλ − ω′σλ)αµσα
ν
λ. (111)

Putting Eq.(110) and Eq.(111) into Eq.(102), we have

∂λ∂
λ
(
φ′σλαµσα

ν
λ

)
= f0

[
(T ′σλ − ω′σλ)αµσα

ν
λ

]
. (112)

Eq.(112) can be written as [
∂λ∂

λφ′σλ − f0(T ′σλ − ω′σλ)
]
αµσα

ν
λ = 0. (113)

Since αµν are coefficients of an arbitrary Lorentz transformation, we obtain

∂λ∂
λφ′µν = f0(T ′µν − ω′µν). (114)

Eq.(114) can be written as Eq.(107). Proof ends.

Proposition 12 Suppose that the field equation Eq.(97) is valid in the the reference frame SΩ(1). Then, in an arbitrary
inertial system S′, there exists a symmetric tensor φ′µν satisfies the following field equation

∂′λ∂
′λφ′µν − ∂′λ∂′µφ′νλ − ∂′λ∂′νφ′µλ

+ ηµν∂′σ∂
′
λφ
′σλ = −f0(T ′µν − ω′µν). (115)

The Proof of Proposition 12 is similar to the Proof of Proposition 11.
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VIII. THE EQUATION OF MOTION OF A POINT PARTICLE IN A GRAVITATIONAL FIELD AND
INTRODUCTION OF AN EFFECTIVE RIEMANNIAN SPACETIME

In this section, we study the equation of motion of a free point particle in a gravitational field. The Lagrangian of
a free point particle can be written as ([10], p57;[34])

L0 =
1

2
m
dxµ

dτ

dxν

dτ
=

1

2
muµuµ =

1

2
mηµνu

µuν , (116)

where m is the rest mass of the point particle, τ ≡
√
dxµdxµ is the proper time interval, uµ ≡ dxµ/dτ .

Suppose that TµνΩ(1) ≈ 0. Ignoring those higher terms O[(f0ψµν)2] in Eq.(62), the interaction term of the Lagrangian

of a system of the Ω(0) substratum, the Ω(1) substratum and the point particle can be written as the following form
([10], p57;[34])

Lint = f0ψµνmu
µuν . (117)

Using Eq.(117) and Eq.(116), the total Lagrangian Ltot of a system of the Ω(0) substratum, the Ω(1) substratum
and the point particle can be written as ([10], p57)

Ltot = L0 + Lint =
1

2
muµuµ + f0ψµνmu

µuν . (118)

The Euler-Lagrange equation for the the total Lagrangian Ltot can be written as ([54],p111)

d

dτ

[
(ηµν + 2f0ψµν)

dxν

dτ

]
− f0

∂ψαβ
∂xµ

dxα

dτ

dxβ

dτ
= 0. (119)

We notice that the equation of motion (119) of a point particle in gravitational field is similar to the equation of
a geodesic line (121) in a Riemannian spacetime. Thus, it is natural for us to introduce the following definition of a
metric tensor gµν of a Riemannian spacetime ([10], p57)

gµν = ηµν + 2f0ψµν . (120)

Then, the equation of motion Eq.(119) can be approximately written as ([10], p58)

d

dτg

(
gµν

dxν

dτg

)
=

1

2

∂gαβ
∂xµ

dxα

dτg

dxβ

dτg
, (121)

where τg is the proper time interval in the Riemannian spacetime with a metric tensor gµν .
Eq.(121) is a geodesic line in a Riemannian spacetime with a metric tensor gµν , which can also be written as ([55],

p51)

d2xµ

dτ2
g

+ Γµνσ
dxν

dτg

dxσ

dτg
= 0, (122)

where Γµνσ is the Christoffel symbol.
Thus, we find that the equation of motion (119) of a point particle in gravitational field is approximately a geodesic

line described in Eq.(122) in a Riemannian spacetime with a metric tensor gµν .
According to Assumption 1, the particles that constitute the Ω(1) substratum are sinks in the Ω(0) substratum.

Thus, the movements of the Ω(1) substratum in gravitational field will be different from the Maxwell’s equation. We
notice that the equation (121) of motion of a point particle in gravitational field is a generalization of the equation
of motion of a point particle in vacuum free of gravitational field. The law of propagation of an electromagnetic
wave front in vacuum free of gravitational field is Eq.(16). Therefore, it is natural for us to speculate that the law of
propagation of an electromagnetic wave front in gravitational field is a generalization of Eq.(16). Thus, we introduce
the following assumption.

Assumption 13 To first order of f0, the law of propagation of an electromagnetic wave front ω(x0, x1, x2, x3) in
gravitational field is

gµν
∂ω

∂xµ
∂ω

∂xν
= 0, (123)

where ω(x0, x1, x2, x3) is the electromagnetic wave front, gαβ is the metric tensor defined in Eq.(120).
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The measurements of spacetime intervals are carried out using light rays and point particles, which are only subject
to inertial force and gravitation. Thus, according to Eq.(121) and Eq.(123), the physically observable metric of
spacetime, to first order of f0, is gµν . Thus, the initial flat background spacetime with metric ηµν is no longer
physically observable [34, 36, 56].

If we can further derive the Einstein’s equation (1) using the definition (120) of a metric tensor gµν of a Riemannian
spacetime, then, we will provide a geometrical interpretation of Einstein’s theory of gravitation in flat spacetime. This
is the task of the next section.

IX. DERIVATION OF A GENERALIZED EINSTEIN EQUATION IN INERTIAL COORDINATE
SYSTEMS

Definition 14 The Einstein tensor Gµν is defined by

Gµν
def
= Rµν −

1

2
gµνR, (124)

where gµν is a metric tensor of a Riemannian spacetime, Rµν is the Ricci tensor, R
def
= gµνRµν .

According to the geometrical interpretation of some theories of gravitation in flat spacetime [34], the physically
observable metric gµν of spacetime in Eq.(120) can be written as

gµν = ηµν − 2f0ψ
µν +O(f0). (125)

Following the clue showed in Eq.(125) and noticing the methods of S. N. Gupta [57] and W. Thirring [34], we
introduce the following definition of a metric tensor of a Riemannian spacetime.

Definition 15

g̃µν
def
=
√
−g0g

µν def= ηµν − 2f0φ
µν , (126)

where g0 = Det gµν .

We have the following expansion of the metric tensor gµν [57]

gµν = ηµν − 2f0φ
µν + f0η

µνηαβφ
αβ

− 2f2
0 ηαβφ

αβφµν + f2
0 η

µνηασηβλφ
αβφλσ

+
1

2
f2

0 η
µνηαβηλσφ

αβφλσ +O(f3
0 ). (127)

Definition 16 If φµν and their first and higher derivatives satisfy the following conditions

|2f0φ
µν | � 1, (128)∣∣∣∣∂n(2f0φ

µν)

∂(xα)n

∣∣∣∣� 1, n = 1, 2, 3, · · · (129)

then we call this filed φµν weak.

For weak field, ψ ≈ φ ≈ 0. Thus, φµν = ψµν − 1
2η
µνψ ≈ ψµν . From Eq.(127), we see that the definition (126) is

compatible with Eq.(125).

Theorem 17 Suppose that the conditions in Theorem 8 are valid, then in an arbitrary inertial coordinate system Si
we have the following field equation

Gµν − 1

2g0

(√
−g0g

αβ − ηαβ
) ∂2(

√
−g0g

µν)

∂xα∂xβ

−
√
−g0

2g0
(∂λ∂

µgνλ + ∂λ∂
νgµλ − ηµν∂σ∂λgσλ)

−Πµ,αβΠν
αβ +

1

2
yµyν − 1

2
gµν(L+B)

+Bµν =
f2

0

g0
(Tµν − ωµν), (130)
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where Tµν is the total energy-momentum tensor of the system of the matter, the Ω(1) substratum and the Ω(0)
substratum in the inertial coordinate system Si,

Γναβ
def
=

1

2
gµν

(
∂gµα

∂xβ
+
∂gµβ

∂xα
− ∂gαβ

∂xµ

)
, (131)

g̃µν
def
=
√
−g0g

µν , (132)

Πµ,αβ def
= − 1

2g0

(
g̃αλ

∂g̃µβ

∂xλ
+ g̃βλ

∂g̃µα

∂xλ
− g̃µλ ∂g̃

αβ

∂xλ

)
, (133)

Πν
αβ

def
= gαλgβσΠν,λσ, (134)

Γα
def
= gσλΓασλ, (135)

Γµν
def
=

1

2

(
gµα

∂Γν

∂xα
+ gνα

∂Γµ

∂xα
− ∂gµν

∂xα
Γα
)
, (136)

yβ
def
=

∂(lg
√
−g0)

∂xβ
, yα

def
= gαβyβ , (137)

L
def
= −1

2
Γναβ

∂gαβ

∂xν
− Γα

∂(lg
√
−g0)

∂xα
, (138)

Bµν
def
= Γµν +

1

2
(yµΓν + yνΓµ), B

def
= gµνB

µν . (139)

Proof of Theorem 17. According to a theorem of V. Fock ([50], p429), the Einstein tensor Gµν can be written as

Gµν =
1

2g0
g̃αβ

∂2g̃µν

∂xα∂xβ
+ Πµ,αβΠν

αβ −
1

2
yµyν

+
1

2
gµν(L+B)−Bµν . (140)

Applying Eq.(126), Eq.(140) can be written as

Gµν =
1

2g0

√
−g0g

αβ ∂
2(ηµν − 2f0φ

µν)

∂xα∂xβ
+ Πµ,αβΠν

αβ

−1

2
yµyν +

1

2
gµν(L+B)−Bµν

=
1

2g0

(√
−g0g

αβ − ηαβ + ηαβ
) ∂2(−2f0φ

µν)

∂xα∂xβ

+Πµ,αβΠν
αβ −

1

2
yµyν +

1

2
gµν(L+B)−Bµν

=
1

2g0

(√
−g0g

αβ − ηαβ
) ∂2(−2f0φ

µν)

∂xα∂xβ

−f0

g0
ηαβ

∂2φµν

∂xα∂xβ
+ Πµ,αβΠν

αβ

−1

2
yµyν +

1

2
gµν(L+B)−Bµν . (141)
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Noticing Eq.(126), the field equation Eq.(115) can be written as

ηαβ
∂2φµν

∂xα∂xβ
= −
√
−g0

2f0

(
∂λ∂

µgνλ + ∂λ∂
νgµλ

− ηµν∂σ∂λg
σλ
)
− f0(Tµν − ωµν). (142)

Using Eq.(126) and Eq.(142), Eq.(141) can be written as

Gµν =
1

2g0

(√
−g0g

αβ − ηαβ
) ∂2(

√
−g0g

µν)

∂xα∂xβ

+

√
−g0

2g0
(∂λ∂

µgνλ + ∂λ∂
νgµλ − ηµν∂σ∂λgσλ)

+
f2

0

g0
(Tµν − ωµν) + Πµ,αβΠν

αβ −
1

2
yµyν

+
1

2
gµν(L+B)−Bµν . (143)

Eq.(143) can be written as Eq.(130). Proof ends.
Eq.(130) has the same form in all inertial coordinate systems. Eq.(130) is one of the main results in this manuscript.

We need to further study the relationship between Eq.(130) and the Einstein field equation Eq.(1).
If we impose the Hilbert gauge condition Eq.(98) on the fields, then we have the following result.

Theorem 18 Suppose that the conditions in Proposition 9 are valid, then in an arbitrary inertial coordinate system
Si we have the following field equation

Gµν − 1

2g0

(√
−g0g

αβ − ηαβ
) ∂2(

√
−g0g

µν)

∂xα∂xβ

−Πµ,αβΠν
αβ +

1

2
yµyν − 1

2
gµν(L+B)

+Bµν =
f2

0

g0
(Tµν − ωµν). (144)

Proof of Theorem 18. Using Eq.(126) and Eq.(107), Eq.(141) can be written as

Gµν =
1

2g0

(√
−g0g

αβ − ηαβ
) ∂2(

√
−g0g

µν)

∂xα∂xβ

−f
2
0

g0
Tµν + Πµ,αβΠν

αβ −
1

2
yµyν

+
1

2
gµν(L+B)−Bµν . (145)

Eq.(145) can be written as Eq.(144). Proof ends.

Definition 19 If each of the coordinates xα satisfies the following generalized wave equation

1√
−g0

∂

∂xµ

(√
−g0g

µν ∂x
α

∂xν

)
= 0, (146)

then, we call such a coordinates system harmonic.

In a harmonic coordinates system, we have ([50], p254)

Γν = Γµν = Bµν = B = 0. (147)

Putting Eq.(147) into Eq.(144), we have the following corollary.

Corollary 20 Suppose that the conditions in Proposition 9 are valid and the coordinates system is harmonic, then
the field equation Eq.(144) can be written as

Gµν − 1

2g0

(√
−g0g

αβ − ηαβ
) ∂2(

√
−g0g

µν)

∂xα∂xβ

−Πµ,αβΠν
αβ +

1

2
yµyν − 1

2
gµνL

=
f2

0

g0
(Tµν − ωµν). (148)
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We can verify that each of the Galilean coordinates is harmonic. Any constant and any linear function of harmonic
coordinates satisfy Eq.(146). Thus, from Eq.(106), an inertial coordinate system is harmonic and Eq.(148) is valid.

Assumption 21 For the weak fields, the following relationship is valid

Tµν − ωµν ≈ Tµνm . (149)

Corollary 22 Suppose that (1) the conditions in Proposition 9 are valid; (2) the filed is weak; (3) Assumption 21 is
valid. Then in an arbitrary inertial coordinate system the field equation Eq.(148) reduces to

Rµν −
1

2
gµνR =

f2
0

g0
Tmµν . (150)

Proof of Corollary 22. According to Definition 16, f0φ
µν and their first and higher derivatives are small quantities

of order ε, where |ε| � 1 is a small quantity. Thus, from Eq.(127), we have the following estimation of the order of
magnitude of the following quantities

√
−g0g

µν − ηµν ∼ ε, ∂gµν
∂xα

∼ ∂gµν

∂xα
∼ ε. (151)

Using Eq.(126), we have the following estimation of the order of magnitude of the quantity

∂2(
√
−g0g

αβ)

∂xα∂xβ
=
∂2(−2f0φ

µν)

∂xα∂xβ
∼ ε. (152)

Thus, from Eq.(151) and Eq.(152), we have the following estimation of the order of magnitude of the quantity

(√
−g0g

αβ − ηαβ
) ∂2(

√
−g0g

αβ)

∂xα∂xβ
∼ ε2. (153)

Using Eq.(133) and Eq.(134), we have the following estimation of the order of magnitude of the quantity

Πµ,αβ ∼ Πν
αβ ∼ ε. (154)

From Eq.(137), we have the following relationship ([50], p143)

yβ = Γνβν . (155)

We also have ([50], p143)

Γνβν =
1

2
gµν

∂gµν
∂xβ

. (156)

From Eq.(155), Eq.(156) and Eq.(151), we have the following estimation of the order of magnitude

yβ ∼ ε. (157)

Using Eq.(137) and Eq.(157), we have the following estimation of the order of magnitude

yα ∼ ε. (158)

From Eq.(138) and Eq.(147), we have

L = −1

2
Γναβ

∂gαβ

∂xα
. (159)

Using Eq.(159), Eq.(156) and Eq.(151), we have the following estimation of the order of magnitude

L ∼ ε2. (160)

From Eq.(153), Eq.(154), Eq.(158) and Eq.(160), we see that the second to the fifth term on the right side of
Eq.(148) are all small quantities of order ε2. Ignoring all these small quantities of order ε2 in Eq.(148) and using
Eq.(149), we obtain

Gµν ≈ f2
0

g0
Tµνm . (161)
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Applying the rules of lowering or raising the indexes of tensors, i.e., Gµν = gµλgνσGλσ, Tµνm = gµλgνσTmλσ, Eq.(161)
can be written as

Gλσ ≈
f2

0

g0
Tmλσ. (162)

Putting Eq.(124) into Eq.(162), we obtain Eq.(150). Proof ends.

Corollary 23 Suppose that the following conditions are valid: (1) the conditions of Proposition 9 are valid; (2) the
filed is weak; (3) gµν ≈ ηµν ; (4) Assumption 21 is valid. Then in an arbitrary inertial coordinate system the field
equation Eq.(150) reduces to

Rµν −
1

2
gµνR = −f2

0T
m
µν . (163)

Proof of Corollary 23. Since gµν ≈ ηµν , gµν ≈ ηµν , we have g0 = det gµν ≈ det ηµν = −1. Thus, Eq.(150) can be
written as Eq.(163). Proof ends.

If we introduce the following notation

κ = f2
0 =

8πγN
c4

, (164)

then, Eq.(163) coincides with Einstein’s equation Eq.(1). Thus, we see that the field equation Eq.(130) is a general-
ization of the Einstein’s equation Eq.(1) in inertial coordinate systems.

X. DERIVATION OF A GENERALIZED EINSTEIN EQUATION IN SOME NON-INERTIAL
COORDINATE SYSTEMS

Now we consider an arbitrary non-inertial coordinate system Sn. We introduce an arbitrary curvilinear coordinates
(z0, z1, z2, z3) in the non-inertial coordinate system Sn. We do not know whether Theorem 18 is valid or not in the
non-inertial coordinate system Sn.

Assumption 24 Suppose that in a non-inertial coordinate system Sn there exists a symmetric tensor φµν which
satisfies the following wave equation

γαβ
∂2φµν

∂zα∂zβ
= −f0(Tµν − ωµν), (165)

where γµν is the metric tensor of the non-inertial coordinate system Sn.

We introduce the following definition of a metric tensor of a Riemannian spacetime.

Definition 25

g̃µν
def
=
√
−g0g

µν def= γµν − 2f0φ
µν , (166)

where g0 = Det gµν , f0 is a parameter to be determined.

Theorem 26 Suppose that Assumption 24 is valid. Then, in the non-inertial coordinate system Sn, we have the
following field equation

Gµν − 1

2g0

(√
−g0g

αβ − γαβ
) ∂2(

√
−g0g

µν)

∂zα∂zβ

+
1

2g0
γαβ

∂2γµν

∂zα∂zβ
−Πµ,αβΠν

αβ +
1

2
yµyν

−1

2
gµν(L+B) +Bµν =

f2
0

g0
(Tµν − ωµν), (167)

where Tµν = Tmµν + T
Ω(1)
µν + T

Ω(0)
µν is total energy-momentum tensor of the matter, the Ω(1) substratum and the Ω(0)

substratum in the non-inertial coordinate system Sn.
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Proof of Theorem 26. Using Eq.(166), Eq.(140) can be written as

Gµν =
1

2g0

√
−g0g

αβ ∂
2(γµν − 2f0φ

µν)

∂zα∂zβ
+ Πµ,αβΠν

αβ

−1

2
yµyν +

1

2
gµν(L+B)−Bµν

=
1

2g0

(√
−g0g

αβ − γαβ + γαβ
) ∂2(−2f0φ

µν)

∂zα∂zβ

+Πµ,αβΠν
αβ −

1

2
yµyν +

1

2
gµν(L+B)−Bµν

=
1

2g0

(√
−g0g

αβ − γαβ
) ∂2(−2f0φ

µν)

∂zα∂zβ

−f0

g0
γαβ

∂2φµν

∂zα∂zβ
+ Πµ,αβΠν

αβ

−1

2
yµyν +

1

2
gµν(L+B)−Bµν . (168)

Using Eq.(166) and Eq.(165), Eq.(168) can be written as Eq.(167). Proof ends.
We need to study the relationship between Eq.(167) and the Einstein field equation (1). Using Eq.(147) and

Eq.(167), we have the following corollary.

Corollary 27 Suppose that the conditions in Theorem 26 are valid and the coordinate system is harmonic, then in
the non-inertial coordinate system Sn the field equation Eq.(167) can be written as

Gµν − 1

2g0

(√
−g0g

αβ − γαβ
) ∂2(

√
−g0g

µν)

∂zα∂zβ

+
1

2g0
γαβ

∂2γµν

∂zα∂zβ
−Πµ,αβΠν

αβ

+
1

2
yµyν − 1

2
gµνL =

f2
0

g0
(Tµν − ωµν), (169)

Definition 28 If we have the following conditions

|γµν − ηµν | � 1, (170)∣∣∣∣12γαβ ∂2γµν

∂zα∂zβ

∣∣∣∣� ∣∣f2
0 (Tµν − ωµν)

∣∣ , (171)

then we call this non-inertial coordinate system Sn quasi-inertial.

Assumption 29 For weak fields in the non-inertial coordinate system Sn, the following relationship is valid

Tµν − ωµν ≈ Tµνm . (172)

Using Eq.(172), Eqs.(170-171) and Eq.(169), we have the following corollary.

Corollary 30 Suppose that (1) the conditions in Theorem 26 are valid; (2) the coordinate system is harmonic; (3)
the non-inertial coordinate system Sn is quasi-inertial, then the field equation Eq.(169) can be written as

Gµν − 1

2g0

(√
−g0g

αβ − ηαβ
) ∂2(

√
−g0g

αβ)

∂zα∂zβ

−Πµ,αβΠν
αβ +

1

2
yµyν − 1

2
gµνL =

f2
0

g0
Tµν . (173)

Eq.(173) is only valid approximately in a quasi-inertial and harmonic coordinate system Sn. Similar to Corollary
22, we have the following corollary.

Corollary 31 Suppose that (1) the conditions in Theorem 26 are valid; (2) the coordinate system is harmonic; (3)
the non-inertial coordinate system Sn is quasi-inertial; (4) the filed is weak. Then, the field equation Eq.(173) reduces
to

Rµν −
1

2
gµνR =

f2
0

g0
Tµν . (174)
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Similar to Corollary 23, we have the following corollary.

Corollary 32 Suppose that (1) the conditions in Theorem 26 are valid; (2) the coordinate system is harmonic; (3)

the non-inertial coordinate system Sn is weak; (4) the filed is weak; (5) gµν ≈ ηµν ; (6) T
Ω(1)
µν � Tmµν ; (7) T

Ω(0)
µν � Tmµν .

Then, in this weak non-inertial coordinate system Sn the field equation Eq.(174) reduces to

Rµν −
1

2
gµνR = −f2

0T
m
µν . (175)

Comparing Eq.(175) and Eq.(1), we see that the field equation Eq.(167) is a generalization of the Einstein’s equation
Eq.(1) in some special non-inertial coordinate systems.

XI. DISCUSSION

Although the field equation Eq.(130) and Eq.(167) are generalizations of the Einstein’s equation (1), there exists
at least the following 8 differences between this theory and Einstein’s theory of general relativity.

(1). In Einstein’s theory, Einstein’s equation (1) is an assumption [1–3]. Although Einstein introduced his new
concept of gravitational aether ([24], p63-113), Einstein did not derive his equation (1) theoretically based on his new
concept of the gravitational aether. In our theory, the two generalized Einstein’s equation Eq.(130) and Eq.(167) are
derived by methods of special relativistic continuum mechanics based on some assumptions.

(2). Although the theory of general relativity is a field theory of gravity, the definitions of gravitational fields are not
based on continuum mechanics [1–3, 58–61]. Because of the absence of a continuum, the theory of general relativity
may be regarded as a phenomenological theory of gravity [1–3]. In our theory, gravity is transmitted by the Ω(0)
substratum. The tensorial potential ψµν of gravitational fields are defined based on special relativistic continuum
mechanics.

(3). In Einstein’s theory, the concept of Riemannian spacetime is introduced together with the field equation (1)
[1–3]. The theory of general relativity can not provide a physical definition of the metric tensor of the Riemannian
spacetime. In our theory, the background spacetime is the Minkowshi spacetime. However, the initial flat background
spacetime with metric ηµν is no longer physically observable. According to the equation of motion (121) of a point
particle in gravitational field, to first order of f0, the physically observable spacetime is a Riemannian spacetime with
the metric tensor gµν . The metric tensor gµν is defined based on the tensorial potential ψµν of gravitational fields.

(4). The masses of particles are constants in Einstein’s theory of general relativity [1–3]. In our theory, the masses
of particles are functions of time t [38].

(5). The gravitational constant γN is a constant in Einstein’s theory of general relativity [1–3]. The theory of
general relativity can not provide a derivation of γN . In our theory, the parameter γN is derived theoretically. From
Eq.(6), we see that γN depends on time t.

(6). In our theory, parameter γN in Eq.(11) depends on the density ρ0 of the Ω(0) substratum. If ρ0 varies from
place to place, i.e., ρ = ρ(r), then the space dependence of the gravitational constant γN can be seen from Eq.(6).

(7). In Einstein’s theory, equation (1) is supposed to be valid in all coordinate systems [1–3]. In our theory, the
generalized Einstein’s equation Eq.(130) is valid only in inertial coordinate systems. The second generalized Einstein’s
equation Eq.(167) is valid only in some special non-inertial coordinate systems.

(8). In Einstein’s theory, equation (1) is rigorous [1–3]. However, in our theory, Eq.(175) is valid approximately
under some assumptions.

XII. CONCLUSION

Einstein’s field equation is a fundamental assumption in general relativity. The theory of general relativity is
facing some puzzles and difficulties. We extend our previous theory of gravitation to the case of special relativistic
fluid mechanics. In inertial coordinate systems, we construct a tensorial potential which satisfies the wave equation.
Inspired by the equation of motion of a test particle, a definition of a metric tensor of a Riemannian spacetime is
introduced. A generalized Einstein’s equation is derived in inertial coordinate systems based on some assumptions.
This equation reduces to Einstein’s equation in case of weak field in harmonic coordinate systems. In some special
non-inertial coordinate systems, a second generalized Einstein’s equation is derived based on some assumptions. If
the field is weak and the coordinate system is quasi-inertial and harmonic, the second generalized Einstein’s equation
reduces to Einstein’s equation. Thus, this theory also explains all the experiments that support the theory of general
relativity. However, because of the absence of a continuum, the theory of general relativity may be regarded as a
phenomenological theory of gravity. Such kinds of phenomenological theories can not provide a physical definition
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of the tensorial potential of gravitational fields. In our theory, gravity is transmitted by the Ω(0) substratum. The
tensorial potential of gravitational fields are defined based on special relativistic continuum mechanics. In Einstein’s
theory, the concept of Riemannian spacetime is introduced together with the field equation. In our theory, the
background spacetime is the Minkowshi spacetime. However, the initial flat background spacetime is no longer
physically observable. According to the equation of motion of a point particle in gravitational field, to first order,
the physically observable spacetime is a Riemannian spacetime. The metric tensor of this Riemannian spacetime is
defined based on the tensorial potential of gravitational fields.
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