Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 June 2018 d0i:10.20944/preprints201806.0338.v1

Article
Helicoidal Hypersurfaces of Dini-Type with
Spacelike Axis in Minkowski 4-Space

Erhan Giiler 1*, Omer Kisi 2

1
2

Bartin University, Faculty of Sciences, Department of Mathematics, 74100 Bartin; eguler@bartin.edu.tr
Bartin University, Faculty of Sciences, Department of Mathematics, 74100 Bartin; okisi@@bartin.edu.tr
*  Correspondence: eguler@bartin.edu.tr; Tel.: +90-378-5011000-1553

1 Abstract: In this paper, we define Ulisse Dini-type helicoidal hypersurface with spacelike axis in
> Minkowski 4-space E. We compute the Gaussian and the mean curvature of the hypersurface.
s Moreover, we obtain some special symmetry to the curvatures when they are flat and maximal.
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s 1. Introduction

o The notion of finite type immersion of submanifolds of a Euclidean space has been used in
» classifying and characterizing well known Riemannian submanifolds [4]. Chen posed the problem of
s classifying the finite type surfaces in the 3-dimensional Euclidean space E3. An Euclidean submanifold
s is said to be of Chen finite type if its coordinate functions are a finite sum of eigenfunctions of its
1o Laplacian A [4]. Further, the notion of finite type can be extended to any smooth functions on a
1 submanifold of a Euclidean space or a pseudo-Euclidean space. Then the theory of submanifolds of
1= finite type has been studied by many geometers.

13 Takahashi [28] states that minimal surfaces and spheres are the only surfaces in E® satisfying the
1« condition Ar = Ar, where r is the position vector, A € R. Ferrandez, Garay and Lucas [11] prove that
s the surfaces of E3 satisfying AH = AH, where H is the mean curvature and A € Mat(3,3), are either
1 minimal, or an open piece of sphere or of a right circular cylinder. Choi and Kim [7] characterize the
1z minimal helicoid in terms of pointwise 1-type Gauss map of the first kind.

1 Dillen, Pas and Verstraelen [8] prove that the only surfaces in E? satisfying Ar = Ar + B, A €
1o Mat(3,3), B € Mat(3,1) are the minimal surfaces, the spheres and the circular cylinders. Senoussi and
20 Bekkar [27] study helicoidal surfaces M? in E3 which are of finite type in the sense of Chen with respect
a1 to the fundamental forms I, IT and II], i.e., their position vector field r(u,v) satisfies the condition
22 Nr=Ar,]=1,11,111,where A = (a;;) is a constant 3 x 3 matrix and A denotes the Laplace operator
23 with respect to the fundamental forms I, IT and I11.

24 In classical surface geometry in Euclidean space, it is well known that the right helicoid (resp.
= catenoid) is the only ruled (resp. rotational surface) which is minimal. If we focus on the ruled
26 (helicoid) and rotational characters, we have Bour’s theorem in [3].

27 About helicoidal surfaces in Euclidean 3-space, do Carmo and Dajczer [9] proved that, by using
2e  a result of Bour [3], there exists a two-parameter family of helicoidal surfaces isometric to a given
20 helicoidal surface.

30 Lawson [20] give the general definition of the Laplace-Beltrami operator in his lecture notes.
a1 Magid, Scharlach and Vrancken [22] introduce to the affine umbilical surfaces in 4-space. Vlachos
sz [30] consider hypersurfaces in E* with harmonic mean curvature vector field. Scharlach [26] study
ss  on affine geometry of surfaces and hypersurfaces in 4-space. Cheng and Wan [5] consider complete
sa  hypersurfaces of 4-space with constant mean curvature. Arslan, Deszcz and Yaprak [1] study on Weyl
s pseudosymmetric hypersurfaces.
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36 Arvanitoyeorgos, Kaimakamais and Magid [2] show that if the mean curvature vector field of M3
sz satisfies the equation AH = aH (x a constant), then M{’ has constant mean curvature in Minkowski
ss 4-space Ef. This equation is a natural generalization of the biharmonic submanifold equation AH = 0.
30 General rotational surfaces as a source of examples of surfaces in the four dimensional Euclidean
20 space were introduced by Moore [23,24]. Ganchev and Milousheva [12] consider the analogue of these
a1 surfaces in the Minkowski 4-space. They classify completely the minimal general rotational surfaces
«2 and the general rotational surfaces consisting of parabolic points.

a3 Verstraelen, Valrave and Yaprak [29] study on the minimal translation surfaces in E" for arbitrary
4 dimension 7.
45 Kim and Turgay [19] study surfaces with Li-pointwise 1-type Gauss map in E*. Moruz and

s Munteanu [25] consider hypersurfaces in the Euclidean space E* defined as the sum of a curve and a
7 surface whose mean curvature vanishes. They call them minimal translation hypersurfaces in E* and
s give a classification of these hypersurfaces. Kim-et al [18] focus on Cheng-Yau operator and Gauss
+ map of surfaces of revolution.

50 Giiler Magid and Yayl [15] study Laplace Beltrami operator of a helicoidal hypersurface in
s [E* Giiler, Hacisalihoglu and Kim [13] work on the Gauss map and the third Laplace-Beltrami
s2 operator of rotational hypersurface in E. Giiler, Kaimakamis and Magid [14] introduce the helicoidal
ss  hypersurfaces in Minkowski 4-space Ef. Giiler and Turgay [16] study Cheng-Yau operator and Gauss
ss map of rotational hypersurfaces in E*. Moreover, Giiler, Turgay and Kim [17] consider L, operator and
s Gauss map of rotational hypersurfaces in E°.

56 In this paper, we study the Ulisse Dini-type helicoidal hypersurface with spacelike axis in
s» Minkowski 4-space Ef. We give some basic notions of four dimensional Minkowskian geometry,
ss and define helicoidal hypersurface in section 2. Moreover, we obtain Ulisse Dini-type helicoidal
so hypersurface, and calculate its curvatures in the last section.

eo 2. Preliminaries

61 In this section we would like to describe the notaion that we will use in the paper after we give
ez some of basic facts and basic definitions.
Let E™ denote the Minkowskian m-space with the canonical Euclidean metric tensor given by

es where (x1,x,...,Xy) is a coordinate system in ET.

64 Consider an n-dimensional Riemannian submanifold of the space E™. We denote Levi-Civita
es connections of Ef" and M by V and V, respectively. We shall use letters X, Y, Z, W (resp., ¢, 1) to
s denote vectors fields tangent (resp., normal) to M. The Gauss and Weingarten formulas are given,
ez respectively, by

VxY = VxY+h(X,Y), 1)

Vxé = —Ag(X)+Dxé, )
es  Where /i, D and A are the second fundamental form, the normal connection and the shape operator of
e M, respectively.

For each ¢ € Tﬁ- M, the shape operator A¢ is a symmetric endomorphism of the tangent space
TyM at p € M. The shape operator and the second fundamental form are related by

(h(X,Y),&) = (A:X,Y).
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70 The Gauss and Codazzi equations are given, respectively, by
(RIX,Y,)Z,W) = (h(Y,Z),h(X,W)) —(h(X,Z),h(Y,W)), (©)]

where R, RP are the curvature tensors associated with connections V and D, respectively, and V# is
defined by
(Vxh)(Y,Z) = Dxh(Y,Z) —h(VxY,Z) —h(Y,VxZ).

= 2.1. Hypersurfaces of Euclidean space

Now, let M be an oriented hypersurface in the Euclidean space E"*1, S its shape operator and x its
position vector. We consider a local orthonormal frame field {ey, ey, ..., e, } of consisting of principal
direction of M corresponding from the principal curvature k; for i = 1,2,...n. Let the dual basis of
this frame field be {61, 6,, ...,6}. Then the first structural equation of Cartan is

n
dGIZZQJ/\a)Z], 121,2,,11 (5)
i=1

1

72 where w;; denotes the connection forms corresponding to the chosen frame field. We denote the
7 Levi-Civita connection of M and E"*! by V and V, respectively. Then, from the Codazzi equation (3)
72 we have

ei(kj) = wijlej)(ki —kj), (6)
wii(e)) (ki —kj) = wiej) (ki — ki) 7)

»s for distincti,j,l =1,2,...,n,.
We puts; = (T]'(kl, ko, ..., ky), where ojis the j-th elementary symmetric function given by

Uj(allaZI“'lan> = Z aj, aj, . . . ;..

]
1§i1 <Z‘2<...,ij§1’l

We also use the following notation

7’? = o-j(kll kZ/ e rki—lrki+1rki+2/ ceey kn)

76 By the definition, we have r? =lands,41 =sp42=---=0.

77 On the other hand, we will call the function s; as the k-th mean curvature of M. We would like to
zs note that functions H = %sl and K = s, are called the mean curvature and Gauss-Kronecker curvature
7o of M, respectively. In particular, M is said to be j-minimal if s; = 0 on M.

so 2.2. Helicoidal hypersurfaces with spacelike axis in Minkowskian spaces

o1 In this section, we will obtain the helicoidal hypersurfaces in Minkowski 4-space. Before we
e2 proceed, we would like to note that the definition of rotational hypersurfaces in Riemannian space
=z forms were defined in [10]. A rotational hypersurface M C E[ generated by a curve C around an axis
sa 1 that does not meet C is obtained by taking the orbit of C under those orthogonal transformations of
es [} that leaves r pointwise fixed (See [10, Remark 2.3]).

86 Suppose that when a curve C rotates around the axis r, it simultaneously displaces parallel lines
ez orthogonal to the axis r, so that the speed of displacement is proportional to the speed of rotation.
ss Then the resulting hypersurface is called the helicoidal hypersurface with axis r and pitches a,b € R\ {0}.
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Consider the particular case n = 4 and let C be the curve parametrized by

r(u) = (¢(u), f (1),0,0,). ®)

If r is the spacelike x-axis, then an orthogonal transformations of E} that leaves r pointwise fixed has
the form Z(v, w) as follows:

1 0 0 0

0 cosh w 0 sinh w

0 sinhovsinhw coshv coshwsinhov
0 coshvsinhw sinhv coshvcoshw

Z(vr w) = ’ (9)

where v, w € R. Therefore, the parametrization of the rotational hypersurface generated by a curve C
around an axis r is
H(u,v,w) = Z(v,w)y(u)" + (av + bw) (1,0,0,0)", (10)

so whereu € I,v,w € [0,27],4,b € R\{0}.
Clearly, we write helicoidal hypersurface with spacelike axis as follows:

¢(u) +av+ bw
usinhw

u sinh v cosh w

u cosh v cosh w

H(u,v,w) = (11)

%o When w = 0, we have helicoidal surface with spacelike axis in Ef.
01 In the rest of this paper, we shall identify a vector (a,b,c,d) with its transpose (ab,c,d)T. Now we
o2 give some basic elements of the Minkowski 4-space E{.
Let M = M(u, v, w) be an isometric immersion of a hypersurface M in E‘ll. The inner product of
7 = (xl, X2,X3, X4), 7 = (yl,yz, yg,y4) is defined as follows:

3
- 7 = 2 XiYi — X4Y4,
i=1

and the vector product of T x 7 X 7 is defined as follows:

€1 €2 €3 —€4
X1 X2 X3 X4
Vi Y2 Ys Y4

21 Z2 Z3  Z4

det

For a hypersurface M in Ef, the first fundamental form matrix is as follows:

I= ( gij )3><3’

and

detl = det( Sij ),

and then, the second fundamental form matrix is as follows:

= ( hij )3><3,

and
det Tl = det (I ),
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where1 <i,j <5,

811 =My - My, g120 = My - My, ..., g55 = My, - My,
and

hll =My -G, h12 =My -G, .., h55 = Myw - G,
”.” means dot product, and some partial differentials that we represent are M, = %’I, M, = gi—gfu,

G- M, x M, x My,
[IMy x My, x My||

is the Gauss map (i.e. the unit normal vector). The product matrices

(&) ()

gives the matrix of the shape operator (i.e. Weingarten map) S as follows:

= i (51 )a.o 12

So, we get the formulas of the Gaussian curvature and the mean curvature, respectively, as follow:

detII
K =det(S) = — 13
et(S) detI’ (13

and 1

H= gtr (S). (14)

o3 3. Dini-Type Helicoidal Hypersurface with Spacelike Axis

Now, we consider Dini-type helicoidal hypersurface with spacelike axis in E#, as follows:
¢(u) + av + bw
sinh u sinh w
7 4 - . . 15

D (u,v,w) sinh u sinh v cosh w (15)

sinh u cosh v cosh w

oa whereu € R\{0}and 0 < v, w < 271.
Using the first differentials of (15) with respect to u, v, w, we get the first quantities as follow:

@2 — cosh? u ag’ by’
1= ag' sinh? u cosh? w + a2 ab ,
be' ab sinh? i + b2

and have

det] = {(p’z sinh? u cosh? w — {az + (bz + sinh? u) cosh? w} cosh? u} sinh? u,

&‘Q.
:_‘S

s where ¢ = ¢(u), ¢’ =
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96 Using the second differentials with respect to u, v, w, we have the second quantities as follow:
[ — sinh? u coshw (—¢" coshu + ¢’ sinh 1)
||det I]| ’
M o~ sinh u cosh® u cosh w
||det I|| ’
N — sinh? u cosh? w (¢’ sinh 1 coshw — b cosh u sinh w)
||det I|| ’
P — bsinh u cosh? u cosh w
||det I||
T _ sinh? 1 cosh u sinh w
||det I|| ’
vV = ¢’ sinh® u cosh w
V|| det I||
and we get
—¢"?¢" sinh® 1 cosh u cosh® w + bg' ¢ sinh” u cosh? u sinh w cosh* w
+a2¢" sinh® u cosh® u sinh? w cosh w + ¢’ cosh® w sinh” u
—bg'? sinh® u cosh u cosh* w sinh w
- [az sinh? u sinh? w + (a2 + b% cosh? w ) cosh? u cosh? w| ¢’ sinh® 1 cosh? u cosh w
detI1 +b (2a2 + b2 cosh? w) sinh* u cosh® u sinh w cosh? w
etll =

(det1)3/2

The Gauss map of the helicoidal hypersurface with spacelike axis is

€1
o= | 2|, (16)
Vdetl | €3
€4
oz Where
o8 e; = — sinh? u cosh 1 cosh w,
9 eo = (—¢' sinhusinhw — b cosh u cosh w) sinh u cosh w,
100 e3 = (—¢' sinh u sinh v cosh? w + a cosh u cosh v + b cosh u sinh v sinh w cosh w) sinh 1,
101 eq = (—¢' sinh u cosh v cosh? w + a cosh u sinh v + b cosh 1 cosh v sinh w cosh w) sinh u.
Finally, we calculate the Gaussian curvature of the helicoidal hypersurface with spacelike axis as
follows:
K lX]gD/ZQDN +062§0,(PH —|—(X3(p” +“4(P/3 + “5(P,2 + (X“D/ +ay
(detI)5/2 ’
102 Where
103 n = — sinh® u cosh u cosh® w,
104 ap = bsinh” u cosh? u sinh w cosh* w,
108 a3 = a2 sinh® u cosh® u sinh? w cosh w,
106 g = sinh® 1 cosh® w,
107 a5 = —b sinh® u cosh u cosh* w sinh w,
108 ng = — [az sinh” u sinh? w + (a2 + b2 cosh? w) sinh® u cosh? u cosh? w | cosh? u cosh w,

100 ay =b (Zaz + b2 cosh? w) sinh* 1 cosh® u sinh w cosh? w.
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Then we calculate the mean curvature of the helicoidal hypersurface with spacelike axis as follows:

b P10+ B29” + B3¢ + Bag’ + Bs

3(det1)3/2 ’
where
B1=-— {sinh6 ucosh® w + (a2 + b? cosh? w) sinh* 1 cosh w} @' coshu
Ba = +2¢" sinh® u cosh® w,
B3 = —b@"? sinh* u cosh u sinh w cosh? w,

B4 = sinh” u cosh® w + (a2 + b2 cosh? w) sinh® 1 cosh w — 2 sinh® u cosh? u cosh® w
-3 (a2 + b2 cosh? w) sinh® 1 cosh? u cosh w,

Bs = +bsinh* u cosh® u cosh? wsinh w + b (2112 + b? cosh? w) sinh? 1 cosh® u sinh w.

Theorem 1. Let ® : M3 — E* be an isometric immersion given by (15). Then M3 is flat if and only if

2 1 ! 1"

099" +a29'¢" + 039" + ag9” + a5 + ag¢’ +ay = 0.

Theorem 2. Let ® : M® — E* be an isometric immersion given by (15). Then M? is maximal if and
only if
Br9" + P29 + B3¢ + Pag’ + ps = 0.

Solutions of these two eqs. are attracted problem for us.

Proposition 1. If © is Dini-type maximal helicoidal hypersurface with spacelike axis (ie. H = 0) in
Minkowski 4-space, taking (as in Dini helicoidal surface in Euclidean 3-space)

¢(u) = coshu + log (tanh g) ,

then we get

gAi tanh’ (%) =0,

where

A6 = _,BZI

As =281+ 68> sinh u + 23,

Ag = (3 — 12sinh? u) By — 8Bssinhu — 4P,

Az = 8B1 coshu + (8 sinh® u — 12 sinh u) B2
+ (8sinh?u —4) B3 + 84 sinhu + 86s,

Ay = (—3 +12sinh? u) B + 8Bs sinhu + 484,

Ap = —2B1+6B2 sinh u + 283,

Ao = Bo.

(17)

Proposition 2. If © is Dini-type flat hypersurface with spacelike axis (i.e. K = 0) in Minkowski 4-space,
taking (as in Dini helicoidal surface in Euclidean 3-space)

¢(u) = coshu +log (tanh g) ,
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then we get
8 U
B; tanh’ (—) =0,
~ 2
i=0
where
Bg = a,
By = —4aq sinhu — 20y — 20y,
Bg = (—2 + 4sinh? u + 4 cosh u) a1 + 4ap sinh u + 4az + 1204 sinh u + 4as,
Bs = (4sinhu — 16 coshusinhu) oy + (2 — 8 coshu) ap + (6 — 24 sinh? u) oy
— 16a5 sinh u — 8,
By = (—8 cosh u + 16 cosh u sinh? u) a1 + 16wy cosh u sinh u + 1603 cosh u
+ (16sinh®u — 24sinhu) s+ (16sinh> u — 8) as + 16w sinh u + 1647,
B3 = (4sinhu + 16 cosh u sinh 1) a1 + 2a5 + 8ap coshu + (—6 + 24 sinh? u) ny
+ 16a5 sinh u + 8ag,
B, = (2 — 4sinh®u + 4 cosh u) &y — 4y sinh u — 4az + 120y sinh 1 + 4as,
B1 = —4aqsinhu — 205 + 20y,
BO = —K1.
121
Corollary 1. In Proposition 1, and Proposition 2, we see following special symmetries, respectively:
Ag = —Apy, As ~ Ay, Ay = —Ay,
and
BS = _BO/ B7 ~ Bl/ B6 ~ BZ/ B5 ~ B3/
122 where ” ~ ” means similar ignored sign (or equal without sign of coefficient).
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