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Abstract: In this paper, we define Ulisse Dini-type helicoidal hypersurface with spacelike axis in1

Minkowski 4-space E4
1. We compute the Gaussian and the mean curvature of the hypersurface.2

Moreover, we obtain some special symmetry to the curvatures when they are flat and maximal.3
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1. Introduction5

The notion of finite type immersion of submanifolds of a Euclidean space has been used in6

classifying and characterizing well known Riemannian submanifolds [4]. Chen posed the problem of7

classifying the finite type surfaces in the 3-dimensional Euclidean space E3. An Euclidean submanifold8

is said to be of Chen finite type if its coordinate functions are a finite sum of eigenfunctions of its9

Laplacian ∆ [4]. Further, the notion of finite type can be extended to any smooth functions on a10

submanifold of a Euclidean space or a pseudo-Euclidean space. Then the theory of submanifolds of11

finite type has been studied by many geometers.12

Takahashi [28] states that minimal surfaces and spheres are the only surfaces in E3 satisfying the13

condition ∆r = λr, where r is the position vector, λ ∈ R. Ferrandez, Garay and Lucas [11] prove that14

the surfaces of E3 satisfying ∆H = AH, where H is the mean curvature and A ∈ Mat(3, 3), are either15

minimal, or an open piece of sphere or of a right circular cylinder. Choi and Kim [7] characterize the16

minimal helicoid in terms of pointwise 1-type Gauss map of the first kind.17

Dillen, Pas and Verstraelen [8] prove that the only surfaces in E3 satisfying ∆r = Ar + B, A ∈18

Mat(3, 3), B ∈ Mat(3, 1) are the minimal surfaces, the spheres and the circular cylinders. Senoussi and19

Bekkar [27] study helicoidal surfaces M2 in E3 which are of finite type in the sense of Chen with respect20

to the fundamental forms I, I I and I I I, i.e., their position vector field r(u, v) satisfies the condition21

∆Jr = Ar, J = I, I I, I I I, where A = (aij) is a constant 3× 3 matrix and ∆J denotes the Laplace operator22

with respect to the fundamental forms I, I I and I I I.23

In classical surface geometry in Euclidean space, it is well known that the right helicoid (resp.24

catenoid) is the only ruled (resp. rotational surface) which is minimal. If we focus on the ruled25

(helicoid) and rotational characters, we have Bour’s theorem in [3].26

About helicoidal surfaces in Euclidean 3-space, do Carmo and Dajczer [9] proved that, by using27

a result of Bour [3], there exists a two-parameter family of helicoidal surfaces isometric to a given28

helicoidal surface.29

Lawson [20] give the general definition of the Laplace-Beltrami operator in his lecture notes.30

Magid, Scharlach and Vrancken [22] introduce to the affine umbilical surfaces in 4-space. Vlachos31

[30] consider hypersurfaces in E4 with harmonic mean curvature vector field. Scharlach [26] study32

on affine geometry of surfaces and hypersurfaces in 4-space. Cheng and Wan [5] consider complete33

hypersurfaces of 4-space with constant mean curvature. Arslan, Deszcz and Yaprak [1] study on Weyl34

pseudosymmetric hypersurfaces.35
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Arvanitoyeorgos, Kaimakamais and Magid [2] show that if the mean curvature vector field of M3
136

satisfies the equation ∆H = αH (α a constant), then M3
1 has constant mean curvature in Minkowski37

4-space E4
1. This equation is a natural generalization of the biharmonic submanifold equation ∆H = 0.38

General rotational surfaces as a source of examples of surfaces in the four dimensional Euclidean39

space were introduced by Moore [23,24]. Ganchev and Milousheva [12] consider the analogue of these40

surfaces in the Minkowski 4-space. They classify completely the minimal general rotational surfaces41

and the general rotational surfaces consisting of parabolic points.42

Verstraelen, Valrave and Yaprak [29] study on the minimal translation surfaces in En for arbitrary43

dimension n.44

Kim and Turgay [19] study surfaces with L1-pointwise 1-type Gauss map in E4. Moruz and45

Munteanu [25] consider hypersurfaces in the Euclidean space E4 defined as the sum of a curve and a46

surface whose mean curvature vanishes. They call them minimal translation hypersurfaces in E4 and47

give a classification of these hypersurfaces. Kim·et al [18] focus on Cheng-Yau operator and Gauss48

map of surfaces of revolution.49

Güler Magid and Yaylı [15] study Laplace Beltrami operator of a helicoidal hypersurface in50

E4. Güler, Hacisalihoglu and Kim [13] work on the Gauss map and the third Laplace-Beltrami51

operator of rotational hypersurface in E4. Güler, Kaimakamis and Magid [14] introduce the helicoidal52

hypersurfaces in Minkowski 4-space E4
1. Güler and Turgay [16] study Cheng-Yau operator and Gauss53

map of rotational hypersurfaces in E4. Moreover, Güler, Turgay and Kim [17] consider L2 operator and54

Gauss map of rotational hypersurfaces in E5.55

In this paper, we study the Ulisse Dini-type helicoidal hypersurface with spacelike axis in56

Minkowski 4-space E4
1. We give some basic notions of four dimensional Minkowskian geometry,57

and define helicoidal hypersurface in section 2. Moreover, we obtain Ulisse Dini-type helicoidal58

hypersurface, and calculate its curvatures in the last section.59

2. Preliminaries60

In this section we would like to describe the notaion that we will use in the paper after we give61

some of basic facts and basic definitions.62

Let Em denote the Minkowskian m-space with the canonical Euclidean metric tensor given by

g̃ = 〈 , 〉 =
m−1

∑
i=1

dx2
i − dx2

m,

where (x1, x2, . . . , xm) is a coordinate system in Em
1 .63

Consider an n-dimensional Riemannian submanifold of the space Em. We denote Levi-Civita64

connections of Em
1 and M by ∇̃ and ∇, respectively. We shall use letters X, Y, Z, W (resp., ξ, η) to65

denote vectors fields tangent (resp., normal) to M. The Gauss and Weingarten formulas are given,66

respectively, by67

∇̃XY = ∇XY + h(X, Y), (1)

∇̃Xξ = −Aξ(X) + DXξ, (2)

where h, D and A are the second fundamental form, the normal connection and the shape operator of68

M, respectively.69

For each ξ ∈ T⊥p M, the shape operator Aξ is a symmetric endomorphism of the tangent space
Tp M at p ∈ M. The shape operator and the second fundamental form are related by

〈h(X, Y), ξ〉 =
〈

Aξ X, Y
〉

.
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The Gauss and Codazzi equations are given, respectively, by70

〈R(X, Y, )Z, W〉 = 〈h(Y, Z), h(X, W)〉 − 〈h(X, Z), h(Y, W)〉, (3)

(∇̄Xh)(Y, Z) = (∇̄Yh)(X, Z), (4)

where R, RD are the curvature tensors associated with connections ∇ and D, respectively, and ∇̄h is
defined by

(∇̄Xh)(Y, Z) = DXh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ).

2.1. Hypersurfaces of Euclidean space71

Now, let M be an oriented hypersurface in the Euclidean space En+1, S its shape operator and x its
position vector. We consider a local orthonormal frame field {e1, e2, . . . , en} of consisting of principal
direction of M corresponding from the principal curvature ki for i = 1, 2, . . . n. Let the dual basis of
this frame field be {θ1, θ2, . . . , θ}. Then the first structural equation of Cartan is

dθi =
n

∑
i=1

θj ∧ωij, i = 1, 2, . . . , n (5)

where ωij denotes the connection forms corresponding to the chosen frame field. We denote the72

Levi-Civita connection of M and En+1 by ∇ and ∇̃, respectively. Then, from the Codazzi equation (3)73

we have74

ei(k j) = ωij(ej)(ki − k j), (6)

ωij(el)(ki − k j) = ωil(ej)(ki − kl) (7)

for distinct i, j, l = 1, 2, . . . , n,.75

We put sj = σj(k1, k2, . . . , kn), where σj is the j-th elementary symmetric function given by

σj(a1, a2, . . . , an) = ∑
1≤i1<i2<...,ij≤n

ai1 ai2 . . . aij .

We also use the following notation

rj
i = σj(k1, k2, . . . , ki−1, ki+1, ki+2, . . . , kn).

By the definition, we have r0
i = 1 and sn+1 = sn+2 = · · · = 0.76

On the other hand, we will call the function sk as the k-th mean curvature of M. We would like to77

note that functions H = 1
n s1 and K = sn are called the mean curvature and Gauss-Kronecker curvature78

of M, respectively. In particular, M is said to be j-minimal if sj ≡ 0 on M.79

2.2. Helicoidal hypersurfaces with spacelike axis in Minkowskian spaces80

In this section, we will obtain the helicoidal hypersurfaces in Minkowski 4-space. Before we81

proceed, we would like to note that the definition of rotational hypersurfaces in Riemannian space82

forms were defined in [10]. A rotational hypersurface M ⊂ En
1 generated by a curve C around an axis83

r that does not meet C is obtained by taking the orbit of C under those orthogonal transformations of84

En
1 that leaves r pointwise fixed (See [10, Remark 2.3]).85

Suppose that when a curve C rotates around the axis r, it simultaneously displaces parallel lines86

orthogonal to the axis r, so that the speed of displacement is proportional to the speed of rotation.87

Then the resulting hypersurface is called the helicoidal hypersurface with axis r and pitches a, b ∈ R\{0}.88

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 June 2018                   doi:10.20944/preprints201806.0338.v1

http://dx.doi.org/10.20944/preprints201806.0338.v1


4 of 9

Consider the particular case n = 4 and let C be the curve parametrized by

γ(u) = (ϕ(u), f (u) , 0, 0, ) . (8)

If r is the spacelike x1-axis, then an orthogonal transformations of En
1 that leaves r pointwise fixed has

the form Z(v, w) as follows:

Z(v, w) =


1 0 0 0
0 cosh w 0 sinh w
0 sinh v sinh w cosh v cosh w sinh v
0 cosh v sinh w sinh v cosh v cosh w

 , (9)

where v, w ∈ R. Therefore, the parametrization of the rotational hypersurface generated by a curve C
around an axis r is

H(u, v, w) = Z(v, w)γ(u)t + (av + bw) (1, 0, 0, 0)t, (10)

where u ∈ I, v, w ∈ [0, 2π] , a, b ∈ R\{0}.89

Clearly, we write helicoidal hypersurface with spacelike axis as follows:

H(u, v, w) =


ϕ(u) + av + bw

u sinh w
u sinh v cosh w
u cosh v cosh w

 . (11)

When w = 0, we have helicoidal surface with spacelike axis in E4
1.90

In the rest of this paper, we shall identify a vector (a,b,c,d) with its transpose (a,b,c,d)T . Now we91

give some basic elements of the Minkowski 4-space E4
1.92

Let M = M(u, v, w) be an isometric immersion of a hypersurface M3 in E4
1. The inner product of

−→x = (x1, x2, x3, x4),
−→y = (y1, y2, y3, y4) is defined as follows:

−→x · −→y =
3

∑
i=1

xiyi − x4y4,

and the vector product of −→x ×−→y ×−→z is defined as follows:

det


e1 e2 e3 −e4

x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

 .

For a hypersurface M in E4
1, the first fundamental form matrix is as follows:

I =
(

gij

)
3×3

,

and
det I = det

(
gij

)
,

and then, the second fundamental form matrix is as follows:

II =
(

hij

)
3×3

,

and
det II = det

(
hij

)
,
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where 1 ≤ i, j ≤ 5,
g11 = Mu ·Mu, g12 = Mu ·Mv, ..., g55 = Mw ·Mw,

and
h11 = Muu ·G, h12 = Muv ·G, ..., h55 = Mww ·G,

” · ” means dot product, and some partial differentials that we represent are Mu = ∂M
∂u , Muw = ∂2M

∂u∂w ,

G =
Mu ×Mv ×Mw

‖Mu ×Mv ×Mw‖

is the Gauss map (i.e. the unit normal vector). The product matrices(
gij

)−1
.
(

hij

)
,

gives the matrix of the shape operator (i.e. Weingarten map) S as follows:

S =
1

det I

(
sij

)
3×3

, (12)

So, we get the formulas of the Gaussian curvature and the mean curvature, respectively, as follow:

K = det(S) =
det II
det I

, (13)

and
H =

1
5

tr (S) . (14)

3. Dini-Type Helicoidal Hypersurface with Spacelike Axis93

Now, we consider Dini-type helicoidal hypersurface with spacelike axis in E4
1, as follows:

D(u, v, w) =


ϕ(u) + av + bw

sinh u sinh w
sinh u sinh v cosh w
sinh u cosh v cosh w

 . (15)

where u ∈ R\{0} and 0 ≤ v, w ≤ 2π.94

Using the first differentials of (15) with respect to u, v, w, we get the first quantities as follow:

I =

 ϕ′2 − cosh2 u aϕ′ bϕ′

aϕ′ sinh2 u cosh2 w + a2 ab
bϕ′ ab sinh2 u + b2

 ,

and have

det I =
{

ϕ′2 sinh2 u cosh2 w−
[

a2 +
(

b2 + sinh2 u
)

cosh2 w
]

cosh2 u
}

sinh2 u,

where ϕ = ϕ(u), ϕ′ = dϕ
du .95
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Using the second differentials with respect to u, v, w, we have the second quantities as follow:96

L =
sinh2 u cosh w (−ϕ′′ cosh u + ϕ′ sinh u)√

‖det I‖
,

M =
a sinh u cosh2 u cosh w√

‖det I‖
,

N =
sinh2 u cosh2 w (ϕ′ sinh u cosh w− b cosh u sinh w)√

‖det I‖
,

P =
b sinh u cosh2 u cosh w√

‖det I‖
,

T =
a sinh2 u cosh u sinh w√

‖det I‖
,

V =
ϕ′ sinh3 u cosh w√

‖det I‖
,

and we get

det I I =



−ϕ′2 ϕ′′ sinh8 u cosh u cosh5 w + bϕ′ϕ′′ sinh7 u cosh2 u sinh w cosh4 w
+a2 ϕ′′ sinh6 u cosh3 u sinh2 w cosh w + ϕ′3 cosh5 w sinh9 u

−bϕ′2 sinh8 u cosh u cosh4 w sinh w
−
[

a2 sinh2 u sinh2 w +
(

a2 + b2 cosh2 w
)

cosh2 u cosh2 w
]

ϕ′ sinh5 u cosh2 u cosh w

+b
(

2a2 + b2 cosh2 w
)

sinh4 u cosh5 u sinh w cosh2 w


(det I)3/2 .

The Gauss map of the helicoidal hypersurface with spacelike axis is

eD =
1√

det I


e1

e2

e3

e4

 , (16)

where97

e1 = − sinh2 u cosh u cosh w,98

e2 = (−ϕ′ sinh u sinh w− b cosh u cosh w) sinh u cosh w,99

e3 = (−ϕ′ sinh u sinh v cosh2 w + a cosh u cosh v + b cosh u sinh v sinh w cosh w) sinh u,100

e4 = (−ϕ′ sinh u cosh v cosh2 w + a cosh u sinh v + b cosh u cosh v sinh w cosh w) sinh u.101

Finally, we calculate the Gaussian curvature of the helicoidal hypersurface with spacelike axis as
follows:

K =
α1 ϕ′2 ϕ′′ + α2 ϕ′ϕ′′ + α3 ϕ′′ + α4 ϕ′3 + α5 ϕ′2 + α6 ϕ′ + α7

(det I)5/2 ,

where102

α1 = − sinh8 u cosh u cosh5 w,103

α2 = b sinh7 u cosh2 u sinh w cosh4 w,104

α3 = a2 sinh6 u cosh3 u sinh2 w cosh w,105

α4 = sinh9 u cosh5 w,106

α5 = −b sinh8 u cosh u cosh4 w sinh w,107

α6 = −
[

a2 sinh7 u sinh2 w +
(

a2 + b2 cosh2 w
)

sinh5 u cosh2 u cosh2 w
]

cosh2 u cosh w,108

α7 = b
(

2a2 + b2 cosh2 w
)

sinh4 u cosh5 u sinh w cosh2 w.109
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Then we calculate the mean curvature of the helicoidal hypersurface with spacelike axis as follows:

H =
β1 ϕ′′ + β2 ϕ′3 + β3 ϕ′2 + β4 ϕ′ + β5

3(det I)3/2 ,

where110

β1 = −
[
sinh6 u cosh3 w +

(
a2 + b2 cosh2 w

)
sinh4 u cosh w

]
ϕ′′ cosh u111

β2 = +2ϕ′3 sinh5 u cosh3 w,112

β3 = −bϕ′2 sinh4 u cosh u sinh w cosh2 w,113

β4 = sinh7 u cosh3 w +
(

a2 + b2 cosh2 w
)

sinh5 u cosh w− 2 sinh5 u cosh2 u cosh3 w114

−3
(

a2 + b2 cosh2 w
)

sinh3 u cosh2 u cosh w,115

β5 = +b sinh4 u cosh3 u cosh2 w sinh w + b
(

2a2 + b2 cosh2 w
)

sinh2 u cosh3 u sinh w.116

Theorem 1. Let D : M3 −→ E4 be an isometric immersion given by (15). Then M3 is flat if and only if

α1 ϕ′2 ϕ′′ + α2 ϕ′ϕ′′ + α3 ϕ′′ + α4 ϕ′3 + α5 ϕ′2 + α6 ϕ′ + α7 = 0.

117

Theorem 2. Let D : M3 −→ E4 be an isometric immersion given by (15). Then M3 is maximal if and
only if

β1 ϕ′′ + β2 ϕ′3 + β3 ϕ′2 + β4 ϕ′ + β5 = 0.

Solutions of these two eqs. are attracted problem for us.118

Proposition 1. If D is Dini-type maximal helicoidal hypersurface with spacelike axis (i.e. H = 0) in
Minkowski 4-space, taking (as in Dini helicoidal surface in Euclidean 3-space)

ϕ(u) = cosh u + log
(

tanh
u
2

)
,

then we get
6

∑
i=0

Ai tanhi
(u

2

)
= 0,

119

where
A6 = −β2,
A5 = 2β1 + 6β2 sinh u + 2β3,

A4 =
(

3− 12 sinh2 u
)

β2 − 8β3 sinh u− 4β4,

A3 = 8β1 cosh u +
(

8 sinh3 u− 12 sinh u
)

β2

+
(

8 sinh2 u− 4
)

β3 + 8β4 sinh u + 8β5,

A2 =
(
−3 + 12 sinh2 u

)
β2 + 8β3 sinh u + 4β4,

A1 = −2β1 + 6β2 sinh u + 2β3,
A0 = β2.

(17)

120

Proposition 2. If D is Dini-type flat hypersurface with spacelike axis (i.e. K = 0) in Minkowski 4-space,
taking (as in Dini helicoidal surface in Euclidean 3-space)

ϕ(u) = cosh u + log
(

tanh
u
2

)
,
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then we get
8

∑
i=0

Bi tanhi
(u

2

)
= 0,

where

B8 = α1,
B7 = −4α1 sinh u− 2α2 − 2α4,

B6 =
(
−2 + 4 sinh2 u + 4 cosh u

)
α1 + 4α2 sinh u + 4α3 + 12α4 sinh u + 4α5,

B5 = (4 sinh u− 16 cosh u sinh u) α1 + (2− 8 cosh u) α2 +
(

6− 24 sinh2 u
)

α4

− 16α5 sinh u− 8α6,

B4 =
(
−8 cosh u + 16 cosh u sinh2 u

)
α1 + 16α2 cosh u sinh u + 16α3 cosh u

+
(

16 sinh3 u− 24 sinh u
)

α4 +
(

16 sinh2 u− 8
)

α5 + 16α6 sinh u + 16α7,

B3 = (4 sinh u + 16 cosh u sinh u) α1 + 2α2 + 8α2 cosh u +
(
−6 + 24 sinh2 u

)
α4

+ 16α5 sinh u + 8α6,

B2 =
(

2− 4 sinh2 u + 4 cosh u
)

α1 − 4α2 sinh u− 4α3 + 12α4 sinh u + 4α5,

B1 = −4α1 sinh u− 2α2 + 2α4,
B0 = −α1.

121

Corollary 1. In Proposition 1, and Proposition 2, we see following special symmetries, respectively:

A6 = −A0, A5 ∼ A1, A4 = −A2,

and
B8 = −B0, B7 ∼ B1, B6 ∼ B2, B5 ∼ B3,

where ” ∼ ” means similar ignored sign (or equal without sign of coefficient).122
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