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Abstract: A high-level control algorithm capable of generating position and torque references from
surface electromyography signals (SEMG) has been designed. It is applied to a shape memory alloy
(SMA) actuated exoskeleton used in active rehabilitation therapies for elbow joints. The sEMG
signals are filtered and normalized according data collected online during the first seconds of therapy
sessions. The control algorithm uses the SEMG signals to promote active participation of patients
during the therapy session. In order to generate the position reference pattern with good precision,
the sEMG normalized signal is compared with a pressure sensor signal to detect the intention of each
movement. The algorithm has been tested in simulations and with healthy people for control of an
elbow exoskeleton in flexion—extension movements. The results indicate that sSEMG signals from
elbow muscles in combination with pressure sensors that measure arm—exoskeleton interaction can
be used as inputs for the control algorithm, which adapts the reference for exoskeleton movements
according a patient’s intention.

Keywords: exoskeleton; Electromyographic (EMG); control systems

1. Introduction

The development of advanced robotic assistive technologies has gained special attention in the
scientific community over the last decades. Millions of people worldwide rely on assistive devices
to improve their quality of life. For this reason, there is a need to further push the development of
assistive devices by pooling the efforts of engineers and clinicians together with the feedback and
experiences of users, to develop improved technologies.

Ageing of populations, mainly in developed countries, and the incidence of diseases such as
stroke, spinal cord injuries, and various musculoskeletal injuries have increased the need for health
resources, especially those dedicated to the rehabilitation process. Rehabilitation therapy is the process
that assists a person in recovering from serious disorders after an injury, illness, or surgery that causes
motor impairments. One of the most common rehabilitation methods consists of musculoskeletal
rehabilitation to improve motor functions and the autonomy of patients in typical daily activities. In
standard rehabilitation methods, every patient needs one or more therapists, because the therapist
must directly manipulate the affected limb. This implies a huge consumption of healthcare and
financial resources. The use of robotic devices as rehabilitation tools is proposed as a complement to
the traditional rehabilitation sessions effectuated by therapists and can reduce the need for human
resources. The main advantage offered by the use of robotic systems in rehabilitation is the capacity to
support the work of physiotherapists in simple therapies with repetitive movements, reducing the
need for the presence of the therapist. In this way, the costs associated with rehabilitation therapies
can be reduced, allowing the same therapies to be carried out for longer, if the patient requires it, and
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for a larger number of patients to be treated simultaneously. Robotic systems have proven to be as
effective as conventional therapy [1,2].

Among the most promising assistive robotic technologies is exoskeletons. An exoskeleton robot
is a wearable robot designed to assist the limb motions. The ease of use and the intuitive control
of the robotic exoskeleton are crucial aspects for acceptance by patients. A step towards a more
effective and intuitive control of upper-limb exoskeletons is the use of a myoelectric signal to detect
the user’s motion intention. Myoelectric signals (MES) contain information from which data about
user movement intention in terms of muscular contractions can be extracted. Control based on MES
provides a more natural interaction with the exoskeleton.

A wearable shape memory alloy (SMA) exoskeleton with two degrees of freedom (DOF) (for
flexion—extension and pronation-supination), actuated with SMAs was presented in [3]. In that work,
the control algorithm gave the possibility to control the exoskeleton tracking a reference for passive
rehabilitation therapy, in flexion [4], only actuating in flexion and recuperating (during the extension
movement) with the aid of gravity, and actuating with two SMA-based actuators in flexion and
extension [5]. The reference pattern in both cases represents a repetitive movement (for example a
sinusoidal trajectory) defined by the therapist, which made the rehabilitation passive. In order to
activate the exoskeleton according the user’s motion intention in a natural way, the control algorithm
proposed in this work uses input signals to the controller based on a skin surface electromyogram
(sEMG). A key aspect for the success of robotic rehabilitation therapies is to keep the patient involved
in carrying out the therapy. This is the objective pursued with the proposed control algorithm. Our
new control algorithm analyses the signal sSEMG to detect that the patient is involved in the realization
of the movement—that is, the patient intends to move their arm even if they lack sufficient muscular
strength to carry out the movement. The exoskeleton will only receive a reference in position to move
if the patient is generating an sEMG signal indicating their intention to move.

In order to generate the position reference pattern with good precision, the sSEMG normalized
signal is compared with a pressure sensor signal to detect the intention to move. The pressure sensor is
used to estimate the motion of the user through the force between the user and the robot. The proposed
approach has been tested in a single joint for the flexion—extension task.

1.1. Electromyogram Signals

The electromyography (EMG) signals of human muscles are biological signals that record the
electrical potential generated by muscle cells to contract. It can be used to detect the user’s intention to
move, since the amplitude directly correlates with the user’s muscle activity. Moreover, according to
[6], the EMG signal starts about 20-80 ms before the muscle contraction, so it allows anticipation of the
motion intention.

EMG signals can be classified into two types: intramuscular EMG signals, detected from inside of
the muscles; and, surface EMG signals (SEMG) detected from the skin surface. The intramuscular EMG
signals give better muscle activation pattern but their use requires an invasive extraction procedure.
Therefore, skin surface EMG signals are used as input for control robotic systems. Although the
extraction of SEMG signals is relatively simple, the precise estimation of the motion is difficult because
of the variability of EMG signals, which can be affected by multiple factors. EMG signals vary from one
person to another and even between two sessions with the same person making the same movement.
In addition, each joint movement involves the activation of many muscles and one muscle can be
involved in various joint movement. Factors such as the changes in limb posture affect the relationship
between the EMG signal level and motion estimation. The anatomy and physiological conditions of
the user, among them any diseases, injuries, fatigue, or pain, also modify EMG signals. Consequently,
control strategies that employ sEMG signals require adjusting the controller to the particular user and,
in many cases, calibrating the system during each session. Therefore, raw EMG signals are not suitable
as input signals to a controller. Data must be filtered and normalized using the maximum voluntary
contraction (MVC) level of the user [7].
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In the case of an elbow exoskeleton, it must taken into account that the human elbow motion
is activated by two antagonist muscles—biceps and triceps. According to [8], the biceps brachii,
brachioradialis, and brachialis muscles are involved in elbow flexion. Biceps muscles are easily
accessible from the skin surface. For this reason, the sSEMG electrode circuit used in this work was
situated over the bicep muscles, to detect the intention of movement in the elbow joint.

1.2. Related Work

Since the 1960s, sSEMG signals have been a common way of controlling prostheses [9,10].
More recently, EMG signals have been used for motion control of numerous robotic systems [11,12],
prostheses [13] and robotics exoskeletons [14]. A broad review of the related literature can be found
in [15].

Prosthesis and exoskeleton movements have frequently been controlled using EMG signals from
muscles not involved in the movement. For example, Benjuya and Kenny [14] used the EMG signals
from the wrist extensors of the forearm to open/close a pinch action. Also, in [7] the EMG signal
from the ipsilateral biceps was used to develop an extremely reliable natural reaching and pinching
algorithm. The EMG signals from residual biceps and triceps of a user with transhumeral amputation
have been proposed to control a robotic elbow in a learning from demonstration approach [16].

In the last decades, several research groups have worked on different control algorithms based
on EMG signals for use with prostheses and exoskeletons. Many of these works have focused on the
use of neural networks and fuzzy algorithms to distinguish the user’s intention for movement from
the EMG signals of various muscles. Hudgins [17] proved that artificial neural networks are practical
for controlling prostheses by classifying different movements from EMG signals. In [18], the authors
evaluate a time-delayed artificial neural network to predict shoulder and elbow motions using only
EMG signals from six shoulder and elbow muscles as inputs. Results from both able-bodied subjects
and subjects with tetraplegia indicate that the EMG signals contain a significant amount of information
about arm movement that could be exploited in advanced control systems.

In [19] a hierarchical neuro-fuzzy controller based on the EMG signals was presented for real-time
control of a shoulder and elbow motion exoskeleton. A wrist force sensor was used when the EMG
activity levels were low. In [20,21] an EMG signal-based control method for a seven degrees of
freedom (7DOF) upper-limb motion assistive exoskeleton robot (SUEFUL-7) is proposed. In their
method, an impedance controller is applied to the muscle-model-oriented control method. Impedance
parameters are adjusted in real-time as a function of the upper-limb posture and EMG activity levels.
The work presented in [22] proposes a more advanced EMG-based impedance control method for an
upper-limb exoskeleton. In that work, a neurofuzzy matrix modifier makes the controller adaptable to
all upper-limb posture of any user. The neurofuzzy modifier is a neural network with fuzzy reasoning
that is trained to adjust its output to each user before operation. The method was applied to the 7DOF
exoskeleton for upper-limb joint motions, as presented in [20]. They use sixteen channels of EMG
signals, with each electrode mainly corresponding to one muscle. Moreover, two force/torque sensors
were used to estimate the forces between robot and user. The control algorithm is able to distinguish
between different kinds of motion.

As can be seen from previously studies cited, the EMG-based fuzzy-neuro control method has
proven its effectiveness to control exoskeleton robots. However, the rules of control are complicated by
increasing the number of degrees of freedom of the exoskeleton.

The amplitude of the EMG signals reflects the muscles activity levels. Many methods have been
developed to estimate human muscular torque from EMG activity levels and use this information
to control joint torques in robots. Due to the many factors that modify the EMG signals, this type of
control requires a complex calibration processes to adapt to the variability of the signals, and depends
on the user and the session conditions. In the experimental work presented in [23], the reactions of ten
healthy subjects to the assistance provided through a proportional EMG control applied by an elbow
powered exoskeleton is studied. The system did not require calibration. Their results showed that


http://dx.doi.org/10.20944/preprints201806.0313.v1
http://dx.doi.org/10.3390/s18082522

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 June 2018 d0i:10.20944/preprints201806.0313.v1

40f17

in order to assist movement, an accurate estimate of the muscular torque may be unnecessary and a
simpler control algorithm can be more efficient.

The control algorithm presented in this work is similar to the binary control algorithm used
in [7,24]. In [7], DiCicco tested binary “on—off” control, variable, and natural control algorithms based
on EMG signal. They validated that the EMG signal from the ipsilateral biceps could be used to
develop an extremely reliable natural reaching and pinching algorithm. A specific EMG threshold
value serves to determinate the output binary value: “on” if the EMG signal from the biceps muscle is
above to the threshold and “off” when it is below.

In our case, the rehabilitation exoskeleton has been designed with the objective of assisting in
therapies consisting of performing repetitive movements. This type of therapies are typical of the first
phases of rehabilitation, where the patient must repeat define movements of a certain joint in order to
recover muscular strength and increase the range of motion lost. In this context, it is not necessary to
discriminate the type of movement that the patient wants to make. The proposed algorithm tries to
determine the intention of the patient to initiate a certain movement and its ability to maintain it, even
if they lack sufficient muscular strength to carry it out. Consequently, the sSEMG signals are detected
and analyzed only from muscles directly related to the movement being assisted. In this case, the
biceps muscles were targeted, to detect voluntary flexion of the elbow joint.

Our proposed approach fuses sensors data with EMG signals. Force sensors were used to check
the interaction between the exoskeleton and the user. In this way, only when the patient actively tries
to execute the movement does the control algorithm initiate the movement of the exoskeleton. A
similar approach was implemented in [20]. This approach reduces errors caused by low EMG levels or
external unexpected forces affecting to the patient’s arm.

This paper presents an algorithm capable of generating the reference pattern in position and
torque based on surface electromyography (sSEMG) signals and pressures sensors for high-level control
of the SMA exoskeleton. The first part of the paper presents an introduction to the problem. In
the second section, materials and methods are explained, including the a description of the elbow
exoskeleton, the firstly assembly of SMA-based actuators is presented, and the elbow exoskeleton
design is shown. The electronic hardware is also presented in the second section. The final part of the
second section is devoted to explaining the high-level control algorithm in detail. In third section, the
results are presented, first of all the high-level control algorithm is tested in simulation; and finally, in
order to evaluate the performance of the proposed control method, some experiments with healthy
subjects were carried out with the SMA elbow exoskeleton. The final part presents brief conclusions of
the paper.

2. Materials and Methods

This section presents a brief description of the hardware architecture on which the tests will
be run: the structure of the exoskeleton, the actuators, and the sensors which are involved in the
algorithm, as well as the high-level control algorithm capable of generating the reference patterns
for position and torque that provide high-level control and are based on sEMG signals and pressures
sensors.

2.1. Elbow SMA Exoskeleton

In previous publications, a wearable SMA exoskeleton was presented with two DOEF, which
permits mobilization of the elbow joint in flexion—extension and pronation-supination movements
[3,5]. This device used an SMA actuator for the actuation system and was the first elbow joint
rehabilitation device powered by this technology. It has the possibility to be a light device, with a
weight less than 1 kg (structure, actuators and electronics), noiseless operation, and low-cost fabrication.
The actuator structure is described in Section 2.1.1.
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2.1.1. Actuator Design

The simple SMA-based actuator (with only one SMA wire) used in this work, was presented
in [25]. The SMA wire is made of a metallic alloy—the most common between Nickel and Titanium,
and called Nitinol [26]. It has the property of recovering its original shape (memorized shape) between
two thermic transformation phases: the martensite phase (at low temperature) and an austenite
phase (at high temperature). The principle on which it works is based on the heating effect (Joule
effect), where electrical energy is transformed into thermal energy and after that the thermal energy is
transformed into mechanical energy. During this transformation, the SMA wire undergoes a variation
of total length between 3% and 5%. As a function of the diameter and alloy type, the actuator can exert
different forces. A 0.51 mm diameter wire of Flexinol® [26] can exert a force of about 35.6 N (with a
lifetime of tens of millions of cycles under this force conditions). The SmartFlex® [27] wire with the
same diameter can exert a maximum force of 118 N (with a lifetime of hundreds or a few thousand
cycles). The activation temperature of the SMA wire depends on the alloy and in this case it is 90 °C. In
this work, the actuator was composed of multiple SMA wires, a Polytetrafluoroethylene (PTFE) tube, a
Bowden tube and the terminal parts (Figure 1).

Bowden cable

AN

7

S

Terminal unit

/

PTFE Tube Shape Memory Alloy

Figure 1. Actuator design. Flexible shape memory alloy (SMA) based actuator.

e  The Bowden cable is a mechanical flexible cable which consists of a flexible inner cable that forms
a metal spiral and a flexible outer nylon sheath. This type of wire can guide the SMA actuators
and transmit the force. In addition, the metal has the property of dissipating the heat, which is an
advantage during the recuperation of the initial position phase.

e  The PTFE tube can support high temperatures, more than 250 °C; it is an electrical insulator and
does not cause friction.

o  The terminal units are used at one end to connect the actuator to the actuated system and at
the other to fix the SMA wires to the Bowden cable. They also serve as connectors for the power
supply (using the control signal). These units are formed of two pieces that can be screwed to
each other to set the tension of the SMA wires. The total SMA wire tension range adjustment is
0.01 m.

There is a relation between the SMA wire diameter, the force, and the cooling time (Table 1).
In Table 1, the first column represents the diameter of the wire, the second column is the actuation
force which guarantees a lifetime of tens millions of cycles, and the last two columns represent the
cooling time for the two types of wires, with activation at 70 °C and 90 °C, respectively. According to
the data shown in the table and the objectives of the exoskeleton, it was decided to work with 0.51 mm
wires activated at 90 °C because the maximum force was obtained with this diameter and the cooling
time is lower than when the wire activated at 70 °C.

If the SMA actuator is designed to operate with the configuration parameters shown in Table 1,
the actuator lifetime can be tens of millions of cycles. If the actuator operates with higher forces than
those specified, the lifetime drops to only a few thousand cycles.
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Table 1. SMA wires characteristics [26].

Diameter Size [mm] Force [N] Cooling Time 70 °C [s] Cooling Time 90 °C [s]

0.025 0.0089 0.18 0.15
0.038 0.02 0.24 0.2
0.050 0.36 0.4 0.3
0.076 0.80 0.8 0.7
0.100 1.43 1.1 0.9
0.130 2.23 1.6 1.4
0.150 3.21 2.0 1.7
0.200 5.70 3.2 2.7
0.250 8.91 5.4 45
0.310 12.80 8.1 6.8
0.380 22.50 10.5 8.8
0.510 35.60 16.8 14.0

Regarding applying the necessary torque to execute defined movements (the necessary torque
of each movement was found from a biomechanical simulation [3]), a summary of the system
configuration of the actuators can be seen in the Table 2.

Table 2. Exoskeleton actuators.

Movement SMA Wires Maximum Actuator Force [N] Length [m] Weight [kg]

Flexion 3 354 15 0.16
Extension 2 236 15 0.15
Pronation 1 118 2 0.1

Supination 1 118 2 0.1

2.1.2. Exoskeleton Design

The exoskeleton was designed according to elbow biomechanics. A biomechanical simulation
was performed with the objective of finding the necessary force for various frequencies of movement
[3] using the actuator structure presented in Section 2.1.1. The structure of the exoskeleton is displayed
in the Figure 2. It was made using simple parts that can be assembled easily and it permit matching
the dimension of the exoskeleton to the user (length of the arm and the forearm), such that the axis of
the elbow joint remains aligned with the axis of the exoskeleton. The components of the exoskeleton
were a combination of aluminium pieces (such as the Bowden terminals and axis) and others made
by 3D printer in aluminium with polyamide. The exoskeleton has four points of attachment to the
human body, connecting with the arm (two attachments), the forearm, and the hand (Figure 2a). In the
hand piece, three force sensing force-sensing resistors (FSRs) were placed. These can measure a force
between 0.1 and 10 kg. For the safety of the patient, the exoskeleton movement is mechanically limited
between 0 and 150 degrees in the elbow flexion—extension direction and between 70 and —70 degrees
in the supination—pronation direction. In order to increase comfort, all internal parts in contact with the
patient were covered with a soft hypoallergenic material. Compared with the current solutions, due
to the lack of gears and motors in the mechanism, the proposed rehabilitation device is light-weight.
The whole structure with the actuators weighed less than 1 kg. A 960 W DIN rail power supply
(24 Vdc/40 A) was used to provide the necessary energy to the actuators. The weight of the power
supply unit was 1.9 kg. In addition, it provides noiseless operation, which increases the comfort of the
patient during the rehabilitation process. The final version of the exoskeleton installed on the human
body can be seen in Figure 2b.
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(a) (b)

Figure 2. SMA exoskeleton design. (a) CAD structure: 1—attachment points with the hand and
FSR sensors, 2—fixed structure for supination-pronation, 3—actuator termination for Bowden tube,
4—pulley for linear to rotational transformation. 5—temperature sensors 6—supination—pronation
actuators 7—flexion—extension actuators 8—absolute encoder 9—SMA wires. (b) SMA elbow joint
exoskeleton on a human body.

2.1.3. Electronic Hardware

The electronic hardware is composed of power electronics, a controller, and sensors placed in
the device. The power electronics are capable of supplying the necessary power for four distinct
actuators: flexion, extension, supination and pronation. The system is based on a MOSFET transistor
(STMIicroelectronics STP310N10F7, STMicroelectronics group, China), which works as a switch circuit
and amplifies the control signal (PWM) generated by the controller. The device was connected to the
terminal units of the SMA-based actuator.

The controller is a 32 bits microcontroller STM32F4 from STMicroelectronics ®, China, which
can be fully programmed with Matlab /Simulink® [28]. It was programmed with four different PWM
output ports, which generate the necessary duty cycle for managing the four actuators (each one with
one or more SMA wires).

The structure of the rehabilitation device includes sensors for position, temperature, force, and
sEMG. An absolute angle position sensor with Hall effect (AS5045 made by AMS (Austrian Micro
Systems), Premstaetten, Austria) is placed in the shaft of the exoskeleton (pulley for flexion—-extension).
This sensor has a resolution of 0.0879 degrees and measures the flexion—extension movement. The
second position sensor, a membrane potentiometer made by Spectrasymbol with has a length of 0.1 m
and is placed on the supination—pronation piece (on the outside) to measure the absolute displacement
of this movement. In the same piece, in the inside part which makes the connection between the
human forearm and hand, and the exoskeleton, three FSR force sensors were placed with 60 degrees
angular distance bewteen each other. These sensors measured the force variation of the elbow during
flexion—-extension movements—forces that are involved in the high-level control algorithm. Another
main sensor involved in this algorithm is the SEMG sensor. The circuit used three disposable disc
electrodes, F-TC1 made by SKINTACT—a low-cost, multi-purpose ECG. It consists of Ag/AgCl
electrodes, a conductive gel (Aqua-Tac), an adhesive area with a dimension of 35 x 41 mm and a snap
connection. The gel permits a better connection between the skin and the electrode. This electrode is in
the category of non-invasive and wet electrodes.

The sEMG circuit (Figure 3) was made in Carlos III University of Madrid (UC3M), and presents
two channels that are connected by two electrodes, which are situated at a distance from 0.03 m each
other over the belly biceps muscle; and another channel used as a reference, which is connected to
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the last electrode positioned over the shoulder-blade. The EMG circuit is composed of various stages,
including connectors. There is the differential active feedback stage, the digital stage (where the signal
is amplified and filtered), and the stage for the power supply and communication connectors. The
communication between the EMG and the microcontroller used a Serial Peripheral Interface (SPI) bus.
For the signal-processing module, we used the same microcontroller STM32F4.

A
/\/ "’ ‘. ’,‘ 4 //
\ b \ / ‘
N .. SN

~

3

Figure 3. Surface electromyography (SEMG) circuit with two channels and the electrodes: 1—electrodes,
2—electrode connector, 3—connectors for power supply (5 V and GND ), 4—connector for Serial
Peripheral Interface (SPI) communication.

The temperature sensors are placed in the terminal of the actuator to measure the temperature of
the SMA wires, parameter that is required in the control loop. All the electronicS used in this project
were based on low-cost components.

2.2. The High-Level Control Algorithm

Previous publications [3,5] presented a low-level control algorithm based on a BPID (Bilinear
Proportional Integral Derivative) controller, which governs the SMA-based exoskeleton in position.
Their algorithm, involving the position and temperature sensors, is capable to do data acquisition from
the sensors or control the exoskeleton in flexion, extension, or in flexion—extension using an antagonistic
controller (two BPID controllers in a parallel configuration [5]). With the data acquisition configuration,
the SMA-based exoskeleton only offers the possibility to diagnostic and evaluate the patient. In the
passive mode, the actuators offer all the necessary force to reach and follow the reference position
without taking into account the patient force. Through the introduction of sensors for pressure/force
and sEMG, the SMA-based exoskeleton offers the possibility of rehabilitation therapies in active mode,
where the reference position is generated by the patient’s movement intention. In this way, passive
position reference (habitually sinusoidal movements) is changed to active reference in the case where
the patients present activity in the motor function (the motor function has been partially affected).
Active reference involves the patient undergoing rehabilitation therapy, leading to a faster recovery.
The high-level control algorithm, that generates the active rehabilitation therapy (active reference
position), uses the sSEMG sensors and force sensing resistor (FSR) sensors, together with position
sensors. This is currently available (due to the SMA-based exoskeleton configuration—in fact, the
sensors) only for the elbow flexion movement.

The sEMG signals were captured at a sampling frequency of 1 kHz using the circuit presented
in Section 2.1.3. The signals were preprocessed: firstly the raw sEMG was filtered with a band-pass
Butterworth filter, order 8 with the cut-off frequency at 6 dB point below the band-pass value of 20
Hz and the second cut-off frequency with a value of 480 Hz. This filter was proposed in order to
remove the movement artifact [29]. After that, the absolute value of the response of the filter was
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calculated, and this value was provided to second filter. This was a low-pass Butterworth filter, order
10, with a cut-off frequency of 20 Hz. The both filters were configured at a frequency of 1 kHz. After
the filtering process, the EMG signal proceeds to the normalization stage. This consists of an online
calibration where the first two seconds were ignored (in this first two seconds the circuit experiences
some perturbation) and the next 18 s used to detect the maximum and minimum signals for the
normalization process. In this time, the patient is required to flex the forearm as much as possible
at least once, followed by an extension movement to return to the original position. During these 18
s, maximum and minimum values were stored to be used in the normalization process, where the
normalized signal, E;;or, was calculated by the Equation (1):
Eact — Emin

Enorm - Emux _ Eminl (1)
where E,; is the actual EMG signal, and E,;;;, and E;;4x are the minimum and maximum value of the
EMG signal during the 18 s used for normalization.

The entire process of filtering and normalizing of the sSEMG signals can be seen in Figure 4.

Band-pass | . . Low-pass .
H Raw sEMG Butterworth | Rectified Butterworth Normalized
' J signal filtered signal “ “ signal | filtered signal EMG signal
4
10
5K T T T Raw sEMG signal
O G A O e
R I i i
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x 10" [
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OWMWWHH‘”‘ ‘
. i i J
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2 . ................................. ................................................................................. e —
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O AL M M i AL e
2l i i 1
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Time (s)

Figure 4. sEMG signals after each processed step.

The normalized signal is compared with a threshold value between 0 and 1. This threshold
value is fixed experimentally according to the patient and the desired sensitivity of the algorithm.
Lower threshold values imply that the algorithm will be more sensitive to the EMG signal and detect
motion intention with less signal intensity, but may be more affected by unexpected external forces.
The effect of the threshold, using the same sEMG signals with different thresholds, can be seen in
Figure 5. The result of this comparison represents the intention of movement detected by the sSEMG
signal from the biceps muscle—more precisely, the elbow flexion.
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Figure 5. Left: the orange line shows data using a 0.05 threshold. Right: the black line shows data
using a 0.15 threshold.

The proposed control algorithm generates the position reference as an increment of the current
joint angle. That is, if movement intention is detected in the sSEMG signal, the control algorithm
provides a reference to increase the elbow angle of flexion. If no movement intention is detected, the
position reference will be null and the actuator is disabled.

According to the actual elbow position and the final movement intention, the system works
between two types of increments: one for fast position reference generation and another used to
generate a slow position reference. The first increment is used when the actual position of the elbow
joint is different to the position of the actuator reference. This case occurs when motion intention is
detected, that is, the signal sEMG exceeds the established threshold after a period of deactivation of
the actuators caused by the non-detection of intention to move. The exoskeleton used in the flexion
movement leaves the joint free to move, as long as the actuator is not activated because of the loss of
patient motivation and engagement that results in loss of the EMG signal. At that moment, the position
reference is zero but the actual joint position is not null. This situation is shown in the descending part
of the sawtooth-shaped graph in Figure 5. The loss of intention of movement produces a null reference
that causes deactivation of the actuator and the recovery of the intention causes a rapid increase of
the position reference. If the algorithm is activated and detects an intention to move, the generated
reference uses a fast increment until it reaches the elbow position, after that it uses a slow increment to
generate the reference that will be followed by the exoskeleton, as long as there exists an intention of
movement. When no more intention of movement is detected, the high increment is used to decrease
the position reference; the actuators are no longer activated and the extension movement is carried out
by actuator recuperation (dissipation of the heat).

In order to face the situation caused by small EMG levels and generate the position reference
pattern with better precision, the high-level control algorithm uses the sSEMG normalized signal
together with the FSR sensors signal. Similar to the EMG signals, the signal from the FSR sensors is
filtered and normalized. The filter for this signal is a low-pass filter at a frequency of 100 Hz. Filtered
signals were normalized, in the same was as the sEMG signal, using an equation analogous to (1).
After that, it is compared with the threshold defined to detect the intention to move through the force
interaction between the patient and exoskeleton. For the flexion movement detection, only the signal
provided by the FSR sensor placed over the radius bone is taken into account. The patient movement
intention causes the forearm to exert pressure over the rigid part of the exoskeleton, which can be
detected with this sensor. The two signals, from sEMG and FSR, were logically compared in order to
detect the final intention to move, a binary result that is used later. The logical comparison consists of
an AND function, to ensure a higher accuracy of the algorithm, having as a minimum the two active
signals (above the threshold), or with an OR condition in the case that the reference is generated and at
least one of the signals is above the threshold.
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The scheme of high-level control algorithm that is capable of generating the position reference
pattern can be seen in Figure 6, where E,(x) and P, are the actual EMG and pressure or force
signals in the discrete domain, E;jy(x) and Pyyj(x) are filtered EMG and pressure or force signals,
Eyorm(x) and Pgp., (k) are normalized EMG and pressure or force signals, 6y, is the generated angle
reference, V) is the control signal and Y(y is the angular position of the SMA-based exoskeleton.

Eact(k) EMG signal Efilt(k) EMG signal Enorm(k)
processing normalization
Threshold | 2°r | Reference e“",‘ | B8P ﬁfl eonsI:eoI:’ton
AND generation controller olant
Pact(k) PT?SSUFG Pfi[t(k) Pre'ssure
signal signal
processing normalization| Pnorm(k)

Figure 6. High-level control algorithm based on EMG and pressure signals for position reference generation.

In parallel to the algorithm that generates the position reference, the normalized EMG signal is
used to generate a torque assistive reference for rehabilitation therapy. According to the total height
and weight of the patient, the weight of the forearm and hand was approximately calculated as well as
the length from the joints to the centre of gravity of each one. As a function of these parameters and
the actual angle, torque on the elbow joint has been estimated. Using this torque and the sEMG signal,
a percentage of assistance in torque reference can be generated. This percentage can be set by the user.
Torque assistive reference is directly proportional to the sEMG signal. A similar idea is presented
in [30] but there, they do not take the biomechanical structure of the human body into account.

3. Results

In order to highlight the algorithm performance, feasibility and adaptability to various hardware
configurations, a series of tests have been done. Firstly, simulation with EMG signals from different
circuits together with an actuator model to simulate the behaviour of the actuator in the exoskeleton,
and secondly with the real hardware over the exoskeleton with healthy subjects.

3.1. Results of Simulation

In [31], the model of the SMA-based actuator with a variable charge was presented. This permits
the simulation of the actuator with different SMA diameters (0.51 mm and 0.1 mm), in this case the 0.51
mm diameter was used. According to the simulation results presented in [31], which were compared
with the real behaviour of a SMA actuator, it can be concluded that the behaviour of the model has
a good similarity with a real actuator. To use this model in the simulation with a high-level control
algorithm based on sEMG, a number of settings of the SMA-based actuator were used. Firstly, the
charge of the actuator was set according to the forearm and hand weight, and the linear position was
converted to an angular position as a function of the exoskeleton characteristics, such as the pulley
radius. It is worth noting that the SMA-based actuator model include the same low-level control
algorithm ([3,5]) as well as the exoskeleton.

For the sEMG data acquisition, the electrodes were placed along the biceps muscle fibers and
on the mid-line of the belly of the muscle, taking into consideration that this is where the sSEMG
signals have the greatest amplitude. The subject was asked to perform some elbow extension-flexion
movements and data was saved to be used in offline simulation. This process was accomplished with
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two types of sSEMG circuits, firstly with the circuit realized in UC3M presented in Section 2.1.3 and
secondly with a commercial circuit at a sampling frequency of 1 kHz.

In Figure 7 it can be seen the normalized sEMG signal acquired from the UC3M circuit, the
generated reference in function of this and the angular position of the exoskeleton. This first test was
realized offline in simulation, setting the signal of FSR sensor to 1 (this means that the signal of the FSR
sensor is ignored) and the increment was set empirically to 0.1 for fast increment and 0.01 for slowly

increment.
E:Z—-| Position referen‘c.ej | AN in N,
D ol mrosteleonpostion__| A WAV AVAAVAW Y
20 BT W WLVAVIR AR IR SRARA
%0 AN INLY LY
£ AR T
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: “‘ﬁf i TN
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Figure 7. The generated angular position reference from the sEMG signal with the UC3M circuit, first
subject (male, 24 years old, 1.73 m height and 70kg weight).

As can be seen, at t = 20 s the position reference is 0 degrees, since this signal from the sSEMG
was used for calibration, whereas the first 2 s were ignored for perturbation and next ¢t = 18 s were
used to detect the maximum and minimum sEMG signal. After this process of calibration, starting at
t = 20 s once muscle activity has been detected in the biceps muscle, the algorithm starts to generate
the reference.

We take as example the sSEMG signal at t = 29 s (Figure 8). From this moment, the normalized
sEMG signal changes the amplitude, which means that the circuit detects muscular activity in the
bicep muscles, and the algorithm begins to increment the position reference. Because the actual
angular position of the exoskeleton is different to the actual reference, by approximately 30 degrees, the
algorithm increases the angular position reference with a high increment. Once the angular position
reference coincides with the exoskeleton position, the algorithm increases the angular position reference
with a slow increment and the exoskeleton begins to follow the voluntary movement intention. In
t = 32.5 s, the amplitude of the normalized sEMG signal decreases, the high-level control algorithm
interprets that there is no intention to move by the user and, therefore, the algorithm decreases the
angular position reference. In this case, though the reference decreases very fast, the angular position
of the actuator is limited by the actuator behaviour (shows a slow recovery due to heat accumulation).
The sEMG threshold can easily be set from the user interface and in this case was set to 0.05.

The second test was performed with a different sSEMG circuit and a different person. Similar
to the first case, the person was asked to execute some repetitions of flexion—extension of the elbow
and the sEMG signal was recorded. The signal can be seen in Figure 9, from which can be observed
a higher frequency of movement of the elbow joint. Between t = 40 s and t = 45 s, we can see a muscle
relaxation; the amplitude of the sEMG signal decreases, and in this case the angular position reference
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going to 0 degrees. The exoskeleton behaviour can be seen when the extension actuator is not active:
it represents a slow extension movement.
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Figure 8. The angular position reference generated by the sEMG signal, first subject (enlarged area).
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Figure 9. The generated angular position reference by the sEMG signal, second subject.

In parallel, the algorithm offers the possibility to generate the torque reference to assist the
movement. This reference is generated according to the biomechanical model of the human body,
taking into account that rehabilitation is executed standing or sitting, and that the sEMG signal is
detected over the bicep muscles. In Figure 10 the pattern reference in torque assistance is presented for
one patient with weight 70 kg and 1.73 m in height for two cases: the exoskeleton assists the patient
with the total torque, 100% (blue signal) and the exoskeleton assists with 50% of total torque (red
signal). The sSEMG signal used to generate this reference in torque assistance, is the same as the SEMG
signal presented in Figure 7.
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Figure 10. The generated torque reference from the sEmg signal.

3.2. Results with the Real SMA Exoskeleton

The sEMG based control algorithm was tested in the real exoskeleton presented in Section 2.
This was tested with healthy people from RoboticsLab laboratory, Carlos III University of Madrid.
The characteristics of the subject were: male, 1.73 m height and 70 kg weight. Firstly, sSEMG electrodes
were fixed over the biceps (over the belly of the biceps, a good positioning is essential) and the
shoulder (reference electrode), and then the exoskeleton was fitted over the body. The exoskeleton
was configured on the subject’s body so that the elbow axis was aligned with the exoskeleton rotation
axis and the FSR sensors were in contact with the hand and forearm. The results of this test can be
seen in Figure 11, showing the reference position signal (the blue signal) generated by the sSEMG signal
(purple) and the FSR signal (green), and the real position exoskeleton (red).

According to the high-level control algorithm, in the first 20 s, the exoskeleton user calibrates the
algorithm through movements of flexion—extension of the elbow joint. In Figure 11, two movements
of flexion—extension can be observed during the first 20 s. In these first seconds the output reference is 0
degrees. In the second graphic, the sEMG signals can be seen, where the amplitude is changing during
the flexion—extension movement. In the third graphic is the FSR sensor signal variation corresponding
to the flexion—extension movement. After the process of calibration, when the algorithm detects the
movement intention (from the sEMG signal and FSR sensor), it starts to generate the reference position
and the exoskeleton begins to move following the reference. We take as a reference example the
interval t = 23 to 40 s. Att = 23 s, the FSR sensor presents a signal with a high amplitude which
exceeds the value of the threshold, and the sEMG signal also begins to increase in amplitude. Starting
from this point, the algorithm begins to generate the angular reference incrementing slowly, as the
angular reference is near to the exoskeleton elbow position. Until f = 30 s, the amplitude of the sSEMG
signal remains high, with the angular reference reaching the maximum 120 degrees. Due to the elbow
movement, the FSR sensor signal amplitude may have reduced and for this reason the weight of this
signal (during this period) on the algorithm is lower. After time t = 30 to t = 40 s, the SEMG signal has
decreased its amplitude and the algorithm starts to decrease the angular reference, finally to 0 degrees.

To successfully use the exoskeleton in this mode of rehabilitation therapy (active mode) the patient
need to present a minimum of activity in the motor function, otherwise the algorithm is not capable
of detecting the movement intention based on the sEMG and force/pressure signals. If this mode of
therapy cannot be used by the patient, passive mode rehabilitation therapy can be used, where the
exoskeleton follows a passive reference (habitually a sinusoidal reference).
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Figure 11. Position reference and response generated by the SEMG signal.

4. Conclusions

In this work a new high-level control algorithm based on sEMG signals and pressure/force
signals capable of generating the angular and torque reference for an active rehabilitation was
presented. An algorithm capable of generating the angular and torque reference was successfully
tested in simulations (with the EMG signals provided by the circuit made by the research group and a
commercial circuit) and in real applications over the SMA elbow exoskeleton with healthy people. In
the later case, in a real device, the sSEMG signal was used together with the force/pressure signals for a
FSR sensor.

The SMA-based exoskeleton for an elbow joint presented in this work, together with the low and
high-level control algorithm and sensors, is based on low-cost components and offers three modes
of operation:

o Data acquisition mode: to evaluate and diagnose the patient. Also, in this mode of operation
the angular limits of elbow movement are saved to set the angular reference limits for the
control algorithm.

° Passive rehabilitation mode: The exoskeleton follows a defined angular reference, the most
common being a sinusoidal type. In this case, the patient executes repetitive movements, not
taking into account the movement intention of the patient. The exoskeleton can support all the
movement in flexion, extension or flexion—-extension.

e  Active rehabilitation mode: The angular reference for the elbow exoskeleton is generated as a
function of the patient’s intention for movement, detected by the sSEMG signals and force/pressure
signals. In this case, the patient is actively involved in the rehabilitation therapy and if movement
intention is not detected the angular reference go to 0 degrees. This type of rehabilitation can
only be used with patients who present a minimum activity in their motor function, otherwise
a passive rehabilitation can be used.
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The main advantage provided by the proposed high-level controller is that it forces the patient to
be involved in the therapy task on a constant basis. If the patient loses attention, the exoskeleton is
deactivated. In this way, the controller promotes the active rehabilitation.
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Abbreviations

The following abbreviations are used in this manuscript:

SMA Shape Memory Alloy

UC3M  Carlos III University of Madrid
FSR Force Sensing Resistor

PWM  Pulse-Width Modulation)
sEMG  Surface electromyography
PTFE  Polytetrafluoroethylene

DOF Degrees of freedom

SPI Serial Peripheral Interface
MES Myoelectric signals
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