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Abstract: Label-free confocal photothermal (CPT) microscopy was utilized for the first time to 

investigate malignancy in mouse skin cells. A laser diode (LD) with 405nm or 488nm was used as a 

pump and 638nm LD as a probe for the CPT microscope. The Grey Level Cooccurrence Matrix 

(GLCM) for texture analysis was applied to the CPT images. Nine parameters of GLCM were 

calculated for the intracellular super-resolved CPT images, and the parameters Entropy and 

Prominence were found to be most suited among the nine parameters to discriminate between 

healthy cells and MM cells in case pump wavelength of 488nm is used. 
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1. Introduction 

Malignant melanoma (MM) is one of the most common cancers worldwide. MM has a high 

chance of cure only if the area affected by MM is removed in the early stage. However, MM reportedly 

causes a large majority of skin cancer deaths[1]) despite the fact that it accounts for less than 2% of 

skin cancer cases. The incidence of MM has also been increasing for more than 30 years[2]). One of 

the most ominous characteristics of MM is its high capability of distant metastasis because it can 

spread throughout the body through the lymphatic and blood vessels. For this reason, early detection 

and treatment of MM are crucial life-saving measures[3]). Although dermoscopy is a powerful 

diagnostic technique[4]) and the ABCDE rule provides a guide to identification of involved areas[5]), 

pathological examination is still the gold standard for diagnosis of MM. However, diagnosis is still 

highly reliant on the skill level of the pathologist. Furthermore, interobserver reproducibility of MM 

diagnosis varies even among experts.  

One strategy with which to improve the diagnostic reliability, namely fractal analysis, has been 

developed. This method is based on calculation of the fractal dimension (FD) of the structure of MM 

cells and their distribution[6-11]). Although this is a very attractive idea, the method has the following 

three drawbacks. First, the technique is based on self-similarity; therefore, if no self-similarity is 

present in the structure, the obtained fractal dimension is difficult to be connect to the structure 

features being discussed in the paper. Second, the FD is based on calculation of the line length or area 

of the colored region, and the change in the value is then visualized by changing the domain to be 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 June 2018                   doi:10.20944/preprints201806.0303.v1

©  2018 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Bioengineering 2018, 5, 67; doi:10.3390/bioengineering5030067

http://dx.doi.org/10.20944/preprints201806.0303.v1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3390/bioengineering5030067


 2 of 20 

analyzed. This procedure limits the ratio between the minimal size of evaluation and the total size, 

resulting in limited spatial resolution and spatially dependent information. The last disadvantage is 

described as follows. As described in the previous paper[12]), marker-free phenotyping of tumor cells 

by fractal analysis of reflection interference contrast microscopy images results in a very small 

difference in the value of FD between the two different types of MM cells. The FDs of the two different 

types of MM cells were 1.353 ± 0.004 and 1.312 ± 0.005 in that report[12]).  Hence, the difference was 

only 0.041, corresponding to only 3.08% of the average value of the two groups. Even though the 

authors claimed that the standard deviations (SDs) were as small as 0.005 and 0.004, the FDs in Fig. 

4 of their paper showed nearly 80% overlap, while the RICM images showed very clear visual 

differences in the apparent structural features between the two types (Fig. 4a). This means that even 

when the image patterns are quite different between two images, similar FDs can be obtained, 

indicating the method is difficult to be applied to diagnosis. This disadvantage forms the basis of our 

discussion of the diagnostic application of this technique to skin cancer in the present paper. 

Melanin carries information about the metabolism and location of melanocytes and 

melanogenesis; therefore, the distribution of melanin could act as a marker for MM[13, 14]). Two 

dominant types of melanin (eumelanin and pheomelanin) have a large absorption cross section of 

visible light without efficient fluorescence emission[15]), resulting in difficulty of imaging of the 

distribution of MM. However, the nonfluorescent property of melanin enables even more sensitive 

imaging of MM by employing photothermal (PT) microscopy (PTM), which is the main subject of the 

present paper.  

 

PTM, which relies on detection of the probe light intensity change by thermal lensing due to 

local heating of the sample by absorption of the light from a laser, has shown potential in biological 

imaging and clinical applications. The key advantages of PTM are its high sensitivity and no 

requirement of staining[16-21]). It allows for imaging of nanometer-sized absorbers buried among 

scatterers with high resolution and a high signal-to-noise ratio in real time[19, 22, 23]). However, the 

PT signal intensity in normal PTM has two extrema in the axial direction[24]), which introduces 

distortions resulting in limited axial resolution of three-dimensional PT images. Confocal PTM 

(CPTM), which has a detection scheme similar to that of confocal microscopy, can help to remove this 

drawback and improve the axial resolution[24]). Using CPTM, the authors’ group studied super-

resolution microscopic images of neurons in mouse brain[25, 26]) and mouse skin MM[27]).  

Label-free CPTM with super-resolution was applied to mouse skin cells for the first time to 

investigate malignancy. A gray-level co-occurrence matrix (GLCM) method was used for texture 

analysis of the label-free CPTM images of MM to study the differences in intracellular super-resolved 

structural properties between single MM and nevus cells. Nine parameters of the intracellular 

moment (ASM) and inverse difference moment (IDM) were found to be the most suited to 

discriminate between nevus and MM cells. This method is expected to be powerful for diagnosis of 

MM.   

In this study, we developed a CPTM technique for noninvasive label-free imaging of MM from 

mice for the purpose of future application to humans. RFP/RET-transgenic mice of line 304/B6 (RET-

Tg) stepwise develop benign melanocytic tumors and malignant melanomas and widely used for 

analysis of melanoma genesis[28-30]). The performance of the setup was tested with a sample of 20-

nm gold nanoparticles. Using the PT imaging data, we then analyzed the structural properties of MM 

and nevus cells to be compared using the GLCM method[31-37]). We calculated nine different 

parameters: ASM, contrast, correlation, entropy, IDM, homogeneity, prominence, shade, and 

variance. These textural parameters were calculated by analyzing relevant regions of interest on 12 

two-dimensional PT images taken at two different positions in three tissue sections containing nevus 

and MM cells. The details of analysis are described in the following Experimental section. Our 

method provides an objective evaluation which is not dependent on the experience, skill, and 

knowledge of individual medical doctors, and prognostication at each occasion of the pathology 

diagnosis. Thus GLCM calculation provides a quantitative indicator, which may become a 

“standard” in future by accumulating the clinical cases in real medical sites composed of various 
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people with variety of experiences. We defined a new index DISC for the discrimination between 

nevus and MM cells. We found that the Entropy and Homogeneity in the case of 405 nm pump, and 

Entropy and Prominence in the case of 488 nm pump were the two most suited among the nine 

parameters for discrimination between nevus and MM cells in a mouse. This research received no 

external funding 

2. Materials and Methods  

2.1. Mice 

Nevus and MM samples in transgenic mice (RET-Tg) carrying constitutively activated c-RET28-

30) were prepared, and then 16-µm-thick paraffin sections were used for analysis. The Animal Care 

and Use Committee (approval no. 270108 in Juntendo University) and the recombination DNA 

Advisory Committee (approval no. 13–7626-55 in Juntendo University approved this study.  

 

2.2. Experimental Setup and Image-Taking Procedure 

A 405-nm laser diode (LD) (NDV4316; Nichia, Tokushima, Japan) and a 488-nm LD (L488P60; 

Thorlabs, Newton, NJ, USA) were used for the pump laser. A 638-nm LD (ML520G55; Mitsubishi, 

Tokyo, Japan) was used for the probe. The pump laser was modulated at 100 kHz using signal 

generators, and the two LDs were introduced to beam collimators. After combination of the pump 

and probe beams using a dichroic mirror, the probe was split by a polarized beam splitter for balance 

detection and then directed to a galvano mirror (VM500PLUS; GSI Group, Bedford, MA, USA). A 4F 

optical system was located near the sample and objective lens (MPLFNF 40× with numerical aperture 

of 0.75; Olympus, Tokyo, Japan). Two-dimensional images of the samples were obtained by scanning 

laser beams with the galvano mirror in the X–Y plane. The irradiation powers of the pump and probe 

lasers were 300 μW (405 nm), 1.5 mW (488 nm), and 3 mW, respectively. An auto-balanced detector 

(New Focus Nirvana; Newport Inc., Irvine, CA, USA) composed of two sets of a photodiode and a 

lock-in amplifier (7270 Signal Recovery; Ametek, Berwyn, PA, USA) was used to remove the probe 

noise. The frame size of the image was 600 × 600 pixels, which corresponds to a 72- × 72-μm area. The 

lock-in amplifier sensitivity was 1 mV, and the time constant was 20 μs per point. For the GLCM 

analysis, a four-section tiled area (18 × 18 μm out of 36 × 36 μm) in the X–Y plane was imaged for each 

72 × 72 μm image. We have analyzed 48 images of 18 × 18 μm area in total for both nevus and MM 

samples.  

3. Results 

The images of cell samples of about 1 m on 1 mm-thick microscope substrate plates are shown 

in Figs. 1, 2 and 3. Fig. 1 shows a photograph of cutaneous tissues taken from mice with MM. 

Microscopic regions of 72 × 72 µm2 in the PT images were selected out of the image areas for analysis 

as shown in Figs. 2 and 3. Two bright field images in Fig. 2 are taken with CCD (DCC1645C, Thorlabs) 

for the nevus sample (top left) and the malignant melanoma (bottom left) with Obj. lens x40. The 

wavelength and power of excitation LD was 0.3 mW and 405-nm, respectively. Top and bottom right 

are the PT images with 405-nm pump (600 × 600 pixels, 120 nm / pixel) of nevus and malignant 

melanoma, respectively. Red squares in bright field images show areas of PT images in 72 × 72 μm2. 

Four equal size (18 μm × 18 μm) areas segmented from the red square (36 μm × 36 μm) area in the PT 

images are used for GLCM analysis. In Fig. 3, top left and top right are the bright field CCD images 

of nevus sample and malignant melanoma, respectively, with Obj. lens x40 for 488-nm excitation in 

the same condition as the one in Fig. 2. The top and bottom right images are the PT images with 488-

nm pump (600 × 600 pixels, 120 nm / pixel) of nevus and malignant melanoma, respectively. Red 

squares in the bright field images show areas of PT images in 72 × 72 μm2. Four equal size (18 μm × 

18 μm) areas were segmented out of the four green square areas in the PT images are used for GLCM 

analysis. The PT images were measured for 12 areas and the 48 calculation regions were selected for 

both 405- and 488-nm excitation. 
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Figure 1. (A) Photo of the prepared specimens. (B) CCD image of a nevus (Obj. lens x10). 

 
Figure 2. (A) Top left: CCD image and PT image of nevus sample (Obj. lens x40); (C): malignant 

melanoma (Obj. lens x40) with 405-nm pump. (B) and (D) right show four equal size (18 μm × 18 μm) 

areas segmented from the red square (36 μm × 36 μm) area are used for GLCM analysis. 
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Figure 3. (A): CCD image and PT image of nevus sample (Obj. lens x40); (C): malignant melanoma 

(Obj. lens x40) with 488-nm pump. (B) and (D) four equal size (18 μm × 18 μm) areas segmented from 

the four green square areas in the PT images are used for GLCM analysis. 

4. Discussion 

The textural structure of the images of the mouse skin samples containing both nevus and MM 

cells taken with the PT imaging method were analyzed by GLCM. The nine parameters were 

calculated as shown below. The areas of imaging data within the green lines in Fig. 2 at 405 nm 

excitation were analyzed by the GLCM method, and the 8-bit level gray level intensity distribution 

of the PT signal is shown in Fig. 4. 12 images of 72 × 72 um to multiple samples of excitation at 488 

nm for both nevus and MM samples were also obtained. The areas of imaging data within the green 

lines in Fig. 3 (left) at 488 nm excitation were analyzed by the method, and the 8-bit level gray level 

intensity distribution of the PT signal is shown in Fig. 5. Four sets of 18 × 18 um areas (show Figs. 2 

and 3) which show higher intensity out of 12 images were chosen and analyzed by the GLMC analysis. 

There are altogether 48 images of 18 × 18 μm area for both nevus and MM. With these enough number 

of data groups and data obtained with two pump wavelengths, our statistical reliability is further 

enhanced. As can be seen from the bright images the sample areas are selected out of various parts 

of skin. For the method to become a standard method much more samples from larger  number of 

various patients, but as discussed below we discovered two out of nine GLMC   parameters are 

clearly showing the discrimination between nevus and MM, and hopefully used as a criterion for the 

pathology diagnosis. 
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Figure 4. (A): Eight-bit gray level PT image of nevus sample (Obj. lens x40), the four images are 

corresponding to four segmented areas by the four red squares on the top of PT images in Figure 2; 

(B): malignant melanoma sample (Obj. lens x40). The four images are corresponding to segmented 

areas by the four red squares on the bottom of PT images in Figure 2. 

 
Figure 5. (A): Eight-bit gray level PT image of nevus sample (Obj. lens x40), the four images are 

corresponding to four segmented areas by the four red squares on the top of PT images in Figure 3; 

(B): malignant melanoma sample (Obj. lens x40). The four images are corresponding to segmented 

areas by the four red squares on the bottom of PT images in Figure. 3. 

 

Hereafter the formalism of GLCM is described[38, 39] by showing nine parameters out of most 

frequently used indexes. 

In all of the following formulas, P(i;j) stands for the (i;j)th entry or value in a normalized GLCM. 
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 for a symmetric matrix.  

Tables I-IV show the nine parameters calculated from distance parameters d=1-10 (equivalent to 

240-2400 nm, respectively) for nevus and malignant melanoma samples, respectively. 

Figs. 6 and 7 depict the bar chart of the nine calculated parameters being averaged for distance 

parameters d=1-10 and their standard deviations (SDs). In the Tables and the graph, the bar and value 

after +- are the dispersion of corresponding parameter values for the four sets of the image data 

shown in Figs. 4 and 5. 

Table I. Calculated GLMC parameters and their standard deviations (SDs) for nevus cells PT image with 

405-nm pump. 

d   
ASM  

(×10-4) 
Contrast  

Correlatio

n (×10-4) 
Entropy  

Homogeneit

y(×10-1) 

IDM 

(×10-1) 

Prominence 

(×108) 

Shade  

(×105) 
Variance  

1 6.83±1.42 140±40 12.7±4.7 7.74±0.23 2.03±0.14 1.18±0.12 1.23±0.50 4.44±1.56 778±224 

2 5.37±1.18 370±110 10.6±3.8 7.98±0.24 1.55±0.12 0.82±0.08 1.07±0.45 4.01±1.42 779±224 

3 5.05±1.17 560±180 9.0±3.6 8.05±0.26 1.44±0.12 0.74±0.08 0.90±0.40 3.52±1.28 779±225 

4 4.89±1.18 710±250 7.8±3.5 8.09±0.26 1.39±0.13 0.70±0.09 0.76±0.37 3.10±1.18 780±230 

5 4.76±1.21 830±300 6.8±3.4 8.12±0.27 1.36±0.14 0.69±0.09 0.66±0.35 2.78±1.12 779±237 

6 4.65±1.22 930±340 6.0±3.2 8.14±0.28 1.33±0.14 0.67±0.09 0.59±0.33 2.53±1.08 780±243 

7 4.57±1.21 1010±380 5.3±3.1 8.15±0.28 1.31±0.14 0.66±0.09 0.53±0.30 2.35±1.04 781±249 

8 4.53±1.24 1070±400 4.8±3.0 8.16±0.28 1.29±0.12 0.65±0.07 0.48±0.28 2.19±1.00 781±254 

9 4.45±1.24 1130±430 4.4±2.9 8.16±0.28 1.28±0.13 0.64±0.08 0.44±0.26 2.05±0.96 781±257 

10 4.42±1.25 1170±440 4.0±2.8 8.17±0.28 1.27±0.14 0.63±0.09 0.40±0.24 1.92±0.90 779±258 

 

Table II. Calculated GLMC parameters and their standard deviations (SDs) for nevus cells PT image with 

488-nm pump. 
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d   ASM  

(×10-4) 
Contrast  

Correlatio

n (×10-3) 
Entropy  Homogeneity 

(×10-1) 

IDM 

(×10-2) 

Prominen

ce (×107) 

Shade  

(×105) 
Variance  

1 5.72±4.23 547±595 1.44±1.15 8.09±0.68 1.49±0.52 7.81±3.63 2.66±2.07 1.05±1.04 515±238 

2 5.66±4.17 538±501 1.39±1.03 8.10±0.67 1.48±0.48 7.81±3.42 2.34±1.77 0.94±0.95 516±239 

3 5.41±3.94 616±495 1.16±0.87 8.14±0.65 1.39±0.42 7.09±2.93 1.93±1.47 0.81±0.84 516±239 

4 5.42±3.94 605±420 1.12±0.74 8.14±0.64 1.42±0.41 7.31±2.90 1.67±1.22 0.70±0.74 516±240 

5 5.26±3.85 729±480 0.84±0.66 8.18±0.63 1.33±0.40 6.74±2.74 1.37±1.07 0.61±0.66 516±241 

6 5.23±3.84 758±480 0.76±0.61 8.18±0.63 1.34±0.40 6.79±2.78 1.23±0.95 0.55±0.60 517±242 

7 5.12±3.74 806±501 0.64±0.51 8.20±0.62 1.29±0.38 6.45±2.55 1.11±0.86 0.50±0.56 517±243 

8 5.15±3.79 770±419 0.67±0.50 8.19±0.62 1.33±0.39 6.71±2.72 1.10±0.81 0.47±0.52 517±243 

9 5.06±3.70 865±514 0.51±0.53 8.20±0.61 1.29±0.39 6.45±2.70 0.98±0.76 0.44±0.49 517±244 

10 5.04±3.70 856±469 0.49±0.47 8.21±0.61 1.28±0.38 6.41±2.58 0.96±0.71 0.42±0.47 516±246 

Table III. Calculated GLCM parameters and their standard deviations (SDs) for malignant melanoma cells 

PT image with 405-nm pump. 

d   
ASM  

(×10-4) 
Contrast  

Correlatio

n (×10-4)  
Entropy  

Homogeneit

y (×10-1) 

IDM  

(×10-1) 

Prominen

ce (×108) 

Shade 

(×105) 
Variance  

1 4.88±1.64 160±30 8.29±1.45  8.09±0.25 1.93±0.15 1.10±0.12 1.31±0.17 5.17±0.65 1150±180 

2 3.60±1.14 510±70 6.79±0.71 8.40±0.22 1.41±0.09 0.72±0.07 1.08±0.22 4.52±0.80 1150±170 

3 3.38±1.26 750±170 6.01±1.19 8.48±0.26 1.30±0.15 0.65±0.10 0.92±0.14 4.01±0.58 1150±180 

4 3.18±1.22 1000±230 5.03±1.11 8.54±0.27 1.22±0.16 0.60±0.11 0.74±0.14 3.42±0.57 1150±180 

5 3.03±1.18 1240±290 4.15±1.06 8.58±0.27 1.16±0.16 0.56±0.11 0.61±0.14 2.92±0.58 1150±170 

6 2.91±1.16 1430±330 3.42±0.99 8.61±0.27 1.13±0.16 0.54±0.11 0.52±0.14 2.54±0.59 1160±170 

7 2.82±1.13 1590±350 2.82±0.92 8.63±0.27 1.10±0.16 0.53±0.11 0.45±0.14 2.25±0.58 1160±170 

8 2.74±1.11 1730±370 2.32±0.84 8.65±0.26 1.06±0.16 0.50±0.10 0.40±0.13 2.03±0.56 1160±170 

9 2.66±1.09 1850±380 1.89±0.77 8.67±0.26 1.03±0.15 0.47±0.10 0.36±0.12 1.85±0.53 1170±170 

10 2.60±1.09 1950±400 1.55±0.74 8.68±0.26 1.03±0.18 0.49±0.12 0.33±0.11 1.72±0.49 1170±170 

Table IV. Calculated GLCM parameters and their standard deviations (SDs) for malignant melanoma cells 

PT image with 488-nm pump. 
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d   ASM  

(×10-4) 
Contrast  

Correlatio

n (×10-3)  
Entropy  

Homogeneity 

(×10-1) 

IDM  

(×10-2) 

Prominen

ce (×107) 

Shade 

(×105) 
Variance  

1 4.43±3.54 310±191 1.09±0.52 8.32±0.57 1.56±0.37 8.22±2.70 6.61±3.68 2.44±1.60 931±418 

2 4.27±3.45 378±176 1.01±0.45 8.36±0.55 1.50±0.33 7.83±2.41 6.06±3.49 2.25±1.52 932±417 

3 4.04±3.31 493±179 0.90±0.36 8.42±0.54 1.40±0.30 7.13±2.17 5.38±3.28 2.03±1.43 932±417 

4 3.95±3.28 583±189 0.80±0.28 8.45±0.54 1.38±0.30 7.00±2.23 4.85±3.17 1.83±1.36 933±416 

5 3.78±3.16 691±208 0.71±0.23 8.50±0.54 1.31±0.28 6.51±2.07 4.39±3.02 1.67±1.29 934±416 

6 3.68±3.08 780±238 0.63±0.19 8.52±0.53 1.27±0.27 6.25±1.96 4.07±2.94 1.55±1.24 935±415 

7 3.58±3.03 885±274 0.54±0.17 8.54±0.53 1.20±0.26 5.82±1.83 3.78±2.81 1.46±1.20 936±415 

8 3.58±3.02 884±275 0.54±0.18 8.54±0.53 1.24±0.28 6.12±2.06 3.73±2.79 1.40±1.16 936±415 

9 3.49±2.96 966±303 0.48±0.17 8.56±0.53 1.18±0.26 5.71±1.84 3.52±2.67 1.34±1.13 936±415 

10 3.47±2.93 1000±320 0.45±0.18 8.56±0.52 1.18±0.27 5.70±1.92 3.42±2.63 1.29±1.09 936±415 

 
Figure 6. Histograms of nine calculated GLMC parameters (ASM, Contrast, Correlation, Entropy, 

Homogeneity, IDM, Prominence, hade, Variance) nevus (green), and malignant melanoma (MM) 

sample (red). 
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Figure 7. (B) Histograms of nine calculated GLMC parameters (ASM, Contrast, Correlation, Entropy, 

Homogeneity, IDM, Prominence, hade, Variance) nevus (red), and malignant melanoma (MM) 

sample (green). 

 

The features shown in Figs. 6 and 7 and Tables I-IV are summarized as follows. 

The GLCM analysis of the PT images with 405-nm excitation showed that among the nine 

parameters, the ASM, entropy, homogeneity, and IDM had well separated values between the nevus 

and MM cells beyond the sum of the corresponding SD of the two cell species for all values of distance 

parameter d. The difference in contrast and variance between the two cell types (MM and nevus) was 

smaller than the sum of the SD values but larger than the larger SD for all values of distance 

parameter d. The difference in correlation and prominence between the two cell types (MM and 

nevus) was smaller than the larger SD for all values of distance parameter d. The difference in shade 

for short distances (d < 4) between the two cell types (MM and nevus) was smaller than the SD. 

GLCM analysis of the PT images obtained by 488-nm excitation was also performed. Among the 

nine parameters, entropy, prominence, shade, and variance were well separated between the nevus 

and MM cells compared with the other parameters. In these cases, the difference between the two cell 

types (MM and nevus) was smaller than the sum of the SD values but larger than the larger SD for 

all values of distance parameter d. The difference in the other parameters between the two cell types 

(MM and nevus) was smaller than the larger SD for all values of distance parameter d. To obtain 

suitable parameters for the identification of MM, we analyzed the data with a commonly used 

diagnostic method including the parameters sensitivity, specificity, positive predictive value, and 

negative predictive value. For the diagnosis, we obtained the fitted Gaussian curves corresponding 

to the data for d = 10 in Tables I-IV for each GLMC parameter; these data are shown in Figs. 8 and 9. 

We call this the GLMC-DIAG method. The results are listed in Tables V and VI using the data shown 

in Figs. 8 and 9. 
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Figurer 8. Gaussian distribution of the parameters fitted to the observed values of the parameters in 

405-nm excitation. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 June 2018                   doi:10.20944/preprints201806.0303.v1

Peer-reviewed version available at Bioengineering 2018, 5, 67; doi:10.3390/bioengineering5030067

http://dx.doi.org/10.20944/preprints201806.0303.v1
http://dx.doi.org/10.3390/bioengineering5030067


 12 of 20 

 
Figure 9. Gaussian distribution of the parameters fitted to the observed values of the parameters in 

488-nm excitation. 

Table V. Results of calculated GLMC diagnosis method (405-nm excitation). 

Parameter SN SP AC LR+ LR- PPV NPV 

ASM 0.8017 0.7630 0.7823 3.382 0.2600 0.7717 0.7938 

IDM 0.6972 0.8224 0.7599 3.927 0.3681 0.7970 0.7310 

Contrast 0.8350 0.8100 0.8225 4.394 0.2038 0.8146 Accuracy 

Table VI. Results of calculated GLMC diagnosis method (488-nm excitation). 

Parameter SN SP AC LR+ LR- PPV NPV 

ASM 0.722 0.461 0.592 1.34 0.603 0.573 0.624 

Contrast 0.826 0.370 0.598 1.31 0.471 0.567 0.680 

Correlation -- -- -- -- -- -- -- 

Entropy 0.706 0.547 0.627 1.56 0.537 0.609 0.651 

Homogeneity 0.813 0.356 0.585 1.26 0.526 0.558 0.656 
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IDM 0.811 0.350 0.580 1.25 0.540 0.555 0.649 

Prominence 0.683 0.954 0.819 14.8 0.332 0.937 0.751 

Shade 0.592 0.908 0.750 6.42 0.450 0.865 0.690 

Variance 0.647 0.858 0.753 4.57 0.411 0.820 0.709 

As shown in Table V, variance, entropy, and contrast had large accuracy (AC) and positive 

likelihood (LR+) values and a small negative likelihood (LR-) value, indicating that these three GLMC 

parameters are more reliable than the other GLMC parameters.  

As shown in Table VI, prominence, shade, and variance had large AC and LR+ values and a 

small LR- value, indicating that these three GLMC parameters are more reliable than the other GLMC 

parameters.  

Next, we developed an even simpler analysis than the GLMC-DISC method. 

The values calculated for the nine GLCM parameters are listed in Tables I-IV. 

To obtain suitable parameters for the identification of MM, we defined the difference criterion 

(DIF) as follows: 

| ( ) | /[(DM DB) / 2]DIF PM PB= − +    (12) 

Here, PM and PB are the parameter values of the MM and nevus cells, respectively, and DM and 

DB are the SDs of PM and PB for the four sets of imaging data. The orders of the sizes and values of 

the DIF for the nine parameters are shown in Tables VII-X, respectively. Entropy and variance were 

still ranked in the top 1 and 2 positions, respectively, with the exception of only one case of d = 10 for 

variance in the 10 different d-value sets. Therefore, these two parameters (entropy and variance) are 

suited for discrimination between nevus and MM cells.  

From the above orders of the DIF values in Tables VII and IX, it can be concluded that entropy, 

contrast, and variance are most suited for discrimination between MM and nevus cells in 405-nm 

excitation. For entropy and contrast, the distance parameter d = 10 gives the highest DIF of 1.879 and 

1.847, respectively, and for variance, d = 2 is the best but the difference in DIF is very small. The 

probabilities of correct identification of nevus cells are 39.49%, 39.21%, and 39.49% for entropy (d = 

10), contrast (d = 10), and variance (d = 10), respectively. The probabilities of correct identification of 

MM cells are 39.49%, 39.21%, and 39.49% for entropy (d = 10), contrast (d = 10), and variance (d = 10), 

respectively. These values are much better than those obtained by fractal analysis[6-11]. 

From the above orders of the DIF values in Tables VIII and X, it can be concluded that 

prominence, variance, and shade are most suited for discrimination between MM and nevus cells in 

488-nm excitation. For shade and variance, the distance parameter d = 10 gives the highest DIF of 

1.121 and 1.273, respectively, and for prominence, d = 9 is the best but the difference in DIF is very 

small. The probabilities of correct identification of nevus cells are 38.9%, 33.3%, and 33.6% for 

prominence (d = 10), shade (d = 10), and variance (d = 10), respectively. The probabilities of correct 

identification of MM cells are 38.9%, 33.3%, and 33.6% for prominence (d = 10), shade (d = 10), and 

variance (d = 10), respectively. These values are much better than those obtained by fractal analysis[6-

11]. 

These findings indicate that the GLCM parameter method, especially GLCM-DIF analysis, is a 

simple and useful method for identification of suitable parameters for differentiation between 

different stages of cancers and various types of disease that destroy cell structures. 

Table VII. Orders of the DIF values among the nine parameters (405-nm excitation). 

d ASM Contrast Correlation Entropy Homogeneity IDM Prominence Shade Variance 

1 4 8 3 2 6 7 9 5 1 
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2 5 4 3 2 6 7 9 8 1 

3 3 6 4 2 5 7 9 8 1 

4 3 4 5 2 6 7 9 8 1 

5 3 4 7 2 5 6 8 9 1 

6 4 3 7 2 5 6 8 9 1 

7 4 3 7 2 5 6 8 9 1 

8 6 3 7 1 5 4 8 9 2 

9 6 3 7 1 5 4 8 9 2 

10 4 2 7 1 5 6 8 9 3 

Table VIII. Orders of the DIF values among the nine parameters (488-nm excitation). 

d ASM Contrast Correlation Entropy Homogeneity IDM Prominence Shade Variance 

1 7 4 5 6 8 9 1 3 2 

2 7 5 4 6 8 9 1 3 2 

3 6 7 5 4 8 9 1 3 2 

4 6 9 4 5 8 7 1 3 2 

5 5 7 6 4 9 8 1 3 2 

6 5 9 6 4 8 7 1 3 2 

7 5 9 8 4 7 6 1 3 2 

8 5 7 6 4 8 9 1 3 2 

9 5 8 9 4 7 6 1 3 2 

10 5 6 9 4 7 8 1 3 2 

Table IX. Calculated values of DIF for the nine GLCM parameters (average of 4 data). 

d ASM Contrast Correlation Entropy Homogeneity IDM Prominence Shade Variance 

1 1.274 0.589 1.423 1.504 0.623 0.602 0.2413 0.6622 1.832 

2 1.525 1.581 1.659 1.799 1.408 1.369 0.0372 0.4588 1.860 

3 1.376 1.059 1.256 1.641 1.065 1.000 0.0783 0.5325 1.844 
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4 1.419 1.225 1.205 1.685 1.169 1.066 0.0692 0.3591 1.835 

5 1.452 1.365 1.195 1.708 1.291 1.206 0.1987 0.1744 1.827 

6 1.465 1.486 1.212 1.734 1.332 1.240 0.2988 0.0120 1.814 

7 1.498 1.604 1.256 1.797 1.430 1.329 0.3670 0.1179 1.802 

8 1.524 1.710 1.308 1.820 1.658 1.665 0.4063 0.2081 1.802 

9 1.543 1.792 1.347 1.854 1.750 1.789 0.4205 0.2625 1.816 

10 1.555 1.847 1.350 1.879 1.512 1.386 0.4054 0.2837 1.836 

Table X. Calculated values of DIF for the nine GLCM parameters (average of 48 data). 

d ASM Contrast Correlation Entropy Homogeneity IDM Prominence Shade Variance 

1 0.334 0.603 0.415 0.372 0.175 0.127 1.374 1.052 1.268 

2 0.365 0.474 0.507 0.429 0.049 0.005 1.412 1.063 1.268 

3 0.376 0.367 0.428 0.473 0.042 0.015 1.451 1.074 1.269 

4 0.407 0.074 0.614 0.528 0.112 0.123 1.452 1.08 1.27 

5 0.421 0.11 0.291 0.549 0.082 0.094 1.477 1.084 1.271 

6 0.449 0.061 0.336 0.582 0.217 0.228 1.465 1.088 1.272 

7 0.456 0.206 0.279 0.606 0.282 0.285 1.453 1.094 1.273 

8 0.462 0.327 0.399 0.61 0.26 0.248 1.459 1.102 1.273 

9 0.472 0.248 0.084 0.627 0.317 0.325 1.479 1.108 1.273 

10 0.473 0.367 0.137 0.628 0.315 0.312 1.472 1.121 1.273 

In the above analysis, DIF was calculated using the average of the parameters taken from the 

four images. To further utilize the parameters obtained by the GLCM analysis, we assessed them by 

taking the dispersion of the distribution of the parameters into account. The mean and distribution 

(= dispersion) were fitted with a Gaussian distribution as shown in Figs. 8 and 9 for all nine 

parameters. The Figures show that the values of the parameters are well distributed and that the 

values corresponding to the nevus and MM cells are overlapping each other. Using the distribution 

function, DIF was then calculated and plotted against the parameter values for the distance d = 10. 

The results are shown in Figs. 10 and 11.  
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Figure 10. DIF plotted against the parameter values for the distance d = 10 in 405-nm excitation. 
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Figure 11. DIF plotted against the parameter values for the distance d = 10 in 488-nm excitation. 

 

We evaluated the appropriateness of assigning either nevus or MM using the discrimination 

level of the two. For this, we used a “clearness discrimination parameter” (DISC value), which is 

given by the following equation for each parameter: 

 

DISC = {(65% of DIF value) − (35% of DIF value)} / {(parameter at 65% of DIF value) / 2 + 

(parameter at 35% of DIF value) / 2} (13) 

 

Here, 35% of the DIF value means that the value of the corresponding parameter has 35% of the 

maximum intensity for the corresponding parameter. Usually, 90% and 10% are used for the level of 

discrimination or for steepness evaluation; for some of the parameters, however, the DIF value did 

not reach 10% for any parameter in the present analysis. The DISC value is used as a criterion of the 

discrimination between nevus and MM cells. The smaller the DISC value the better discrimination 

can be performed. For the most effective application of GLMC analysis, we introduced discrimination 

parameter DISC in the GLCM calculation result on the PT image. In the 405 nm excitation image, 

DISCs for nevus and MM, Entropy and Homogeneity are small, which is effective for that 

discrimination. Also, in the GLCM calculation result on the 488 nm excitation image, DISCs for nevus 

and MM, Entropy and Prominence are small. Thus there are differences in effective parameters due 

to differences in excitation wavelength. This can be well explained in terms of the sensitivity of the 

signal intensity to the components in the cells namely melanoma and porphyrin due to the difference 

in the absorption crossection between them. 

Table XI. Value of DISC for the nine GLCM parameters (405-nm excitation). 

Parameter 65% 35% DISC 

Entropy 8.34 8.52 0.021 

Homogeneity 0.121 0.108 0.112 

Variance 913 1040 0.13 

IDM 0.0598 0.0508 0.162 

Contrast 142 1700 0.182 

Correlation 3.04 2.52 0.188 

ASM 3.98 3.06 0.264 

Prominence 5.25×108 3.86×108 0.306 

Shade 256900 173000 0.39 

 

Table XII. Value of DISC for the nine GLCM parameters (488-nm excitation). 

Parameter 40% 60% DISC 

Entropy 8.64 7.97 0.080 
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Prominence 2.34×107 1.99×107 0.159 

Correlation 6.47 7.65 0.166 

Variance 856 700 0.200 

Shade 117000 888 0.274 

Homogeneity 0.107 0.157 0.378 

IDM 0.0480 0.0842 0.547 

Contrast 968 544 0.560 

ASM 2.60×10-4 7.20×10-4 0.939 

 

 

The calculated results are shown in Table XI in ascending order of the DISC value. From this 

table, it can be concluded that entropy is most useful for discrimination between nevus and MM cells. 

Homogeneity is also well suited for identification of MM cells in the case of 405 nm pump. This is 

considered to be due to the change in the density distribution of hemoglobin introduced by the 

canceration process. 

The calculated results are shown in Table XII in ascending order of the DISC value. From this 

table, it can be concluded that entropy is most useful for discrimination between nevus and MM cells. 

Prominence is also well suited for identification of MM cells in the case of 488nm pump. This may be 

induced by the change in the density distribution of melanin introduced by the canceration process. 

The difference between the calculation results for experiments performed with excitation at 405 and 

488 nm can be explained in more detail as follows.  

According to the molar extinction coefficients at 405 and 488 nm of melanin in literature 

http://omlc.ogi.edu/news/jan98/skinoptics.html, they are approximately 2,500 and 1,500 (/mol/cm), 

respectively. On the other hand, the molar extinction coefficients of hemoglobin at 405 and 488 nm, 

which is thought to increase uniformly by cellular cancelation, is about 275,000 and 16,000 (/mol/cm), 

respectively. In both cases, the molar extinction coefficient of hemoglobin is high, but the absolute 

values are quite different. The extinction coefficient at 488 nm of hemoglobin is 10 times larger than 

that of melanin, while the coefficient of hemoglobin at 405 nm is 100 times larger than that of melanin. 

The amount of melanin contained in the cell slice is more than the amount of hemoglobin by much 

more than 10 times in the sample. Hence, it is considered that the state or degree of canceration of the 

skin-cell tissue can be monitored with GLCM analysis of 488 nm-pump images.  

This can also be inferred from the calculation result. In 488 nm excitation, Prominence and 

Entropy can be used for benign-malignancy determination, which indicates that morphological 

change induced by the canceration of cells is captured by the distribution of melanin. 

On the other hand, at 405 nm excitation, Homogeneity and Entropy can be used for benign-

malignancy discrimination, this may correspond to the morphological change in hemoglobin 

distribution induced by cellular canceration. This is an indirect method for the discrimination of 

canceration not using MM. However, it may open a way to utilize a multicolor characterization of 

component distribution induced by some pathological change in an ensemble of cells. 

Furthermore it is of interest find out that in the case of 488nm pump the Prominence increase 

from nevus cell to malignant, while it is reversed for Homogeneity in 405nm pump condition. This 

may indicate that canceration induces some kind of chaotic behavior to destroy homogeneity 

resulting in a “Prominent” characteristic morphological structure.   

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 June 2018                   doi:10.20944/preprints201806.0303.v1

Peer-reviewed version available at Bioengineering 2018, 5, 67; doi:10.3390/bioengineering5030067

http://dx.doi.org/10.20944/preprints201806.0303.v1
http://dx.doi.org/10.3390/bioengineering5030067


 19 of 20 

In view of the purpose of this study, it can be concluded that melanin observation by 488 nm 

excitation is more suitable for determination of canceration, so the conclusion is that Entropy and 

Prominence at 488 excitation are suitable for benign-malignancy determination. By utilizing 405 nm 

excitation, we may be able to study the effect of canceration on the hemoglobin-containing tissues 

such as muscle attached to the sample slices. In this case, Homogeneity and Entropy can be used for 

benign-malignancy determination, this may correspond to the morphological change in hemoglobin 

distribution induced by cellular canceration. This means that the spatial distribution of canceration 

can be investigated through hemoglobin. 

5. Conclusions 

Label-free confocal photothermal (CPT) microscopy combined with a texture analysis method was 

utilized for the first time to investigate benign-malignancy determination in mouse skin cells. A 

Grey Level Cooccurrence Matrix (GLCM) method for texture analysis was applied to the CPT 

images of malignant melanoma (MM) to study differences in intracellular super-resolved structural 

properties between MMs and nevus cell. We introduced discrimination parameter DISC in the 

GLCM calculation result on the PT image. Prominence and Entropy can be used for benign-

malignancy determination at 488 nm excitation, which indicates that morphological change induced 

by the canceration of cells is captured by the distribution of melanin.  On the other hand, at 405 nm 

excitation, Homogeneity and Entropy can be used for benign-malignancy discrimination, this may 

correspond to the morphological change in hemoglobin distribution induced by cellular 

canceration. The differences in effective parameters due to differences in excitation wavelength can 

be well explained in terms of the sensitivity of the signal intensity to the components in the cells 

namely melanoma and porphyrin (hemoglobin) due to the difference in the absorption crossection 

between them. 
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