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Abstract: Whether evaluating gridded population dataset estimates (e.g. WorldPop, LandScan) or 12 

household survey sample designs, a population census linked to residential locations are needed. 13 

Geolocated census microdata data, however, are almost never available and are thus best simulated. 14 
In this paper, we simulate a close-to-reality population of individuals nested in households 15 
geolocated to realistic building locations. Using the R simPop package and ArcGIS, multiple 16 
realizations of a geolocated synthetic population are derived from the Namibia 2011 census 20% 17 
microdata sample, Namibia census enumeration area boundaries, Namibia 2013 Demographic and 18 

Health Survey (DHS), and dozens of publicly available spatial datasets. Realistic household latitude-19 
longitude coordinates are manually generated based on public satellite imagery. Simulated 20 
households are linked to latitude-longitude coordinates by identifying distinct household types 21 
with multivariate kmeans analysis, and modelling a probability surface for each household type 22 

using Random Forest machine learning methods. We simulate five realizations of a synthetic 23 

population in Namibia's Oshikoto region, including demographic, socioeconomic and outcome 24 
characteristics at the level of household, woman, and child. Comparison of variables in the synthetic 25 
population were made with 2011 census 20% sample and 2013 DHS data by primary sampling 26 
unit/enumeration area. We found that synthetic population variable distributions matched 27 

observed observations and followed expected spatial patterns. We outline a novel process to 28 
simulate a close-to-reality microdata census geolocated to realistic building locations in a low- or 29 
middle-income country setting to support spatial demographic research and survey methodological 30 
development while avoiding disclosure risk of individuals. 31 
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1. Introduction 37 

The ideal resource to evaluate the accuracy of gridded population datasets and certain 38 
household survey methodologies would be a complete set of individual records from a population 39 
linked to location of residence, though this is generally not available. Gridded population datasets 40 
model counts of human population in small grid cells, often based on census data and spatial 41 

covariates such as land cover type [1–4]. Various gridded population datasets have evaluated 42 
accuracy of population counts at the geographic scale of input census data [3–5], and other analyses 43 
have evaluated whether cells were accurately classified as populated or not populated [6], however 44 
accuracy of population count per grid cell has not been evaluated because it requires a geo-located 45 
microdata census (thus negating the need for a population model). In the realm of household surveys, 46 

evaluation of sample variability, measurement error, and missing values due to sample design 47 
requires a close-to-reality census of microdata to perform statistical simulations of repeated samples 48 
of households [7].  49 

Although microdata are commonly made publicly available as census samples [8] or household 50 
survey samples [9], full census microdata are almost never publicly released to protect the anonymity 51 

of respondents. A more realistic option for researchers to obtain a dataset of all household 52 
observations and associated characteristics in a population, is to simulate it, and recent advances in 53 
generating synthetic populations have made this approach a viable alternative [10]. Synthetic 54 
population datasets also have the advantage over actual census data that multiple scenarios can be 55 

generated to test outcomes in potential future populations. 56 
Previous work to simulate or reconstruct synthetic human populations has explored multiple 57 

methods. Most commonly, small area estimates of populations and socio-demographic characteristics 58 
are created by expanding or reweighting observations from a survey of individuals to meet totals and 59 
marginal distributions in more aggregated areal units. Iterative proportional fitting (IFP) is often used 60 

to incrementally improve the fit of a joint probability distribution of person- or household-level 61 
attributes (e.g. from a household survey) subject to known joint probabilities of attributes (e.g. from 62 
an aggregated census) [11,12]. Combinatorial optimisation procedures such as simulated annealing 63 
(SA) [13] or quota sampling [14] can also be used to prevent sub-optimal combinations of attributes 64 
in the simulated dataset. Templ and colleagues discuss a model-based approach to simulation of 65 

individual or household attributes with regression models, which they implement in an open-source 66 
software [15]. Agent-based models (ABMs) can also produce a realistic count of individuals, or 67 
“agents”, along with key attributes and relationships [16,17]. Some ABMs have also incorporated 68 
space into agent interactions, or produce outputs allocated to semi-realistic spaces such as a city [18]. 69 

Despite the advances in simulation methods, a lack of geographic specificity is a problem to most 70 
previous studies. The simulated populations are often only allocated to small output areas, such as 71 
census enumeration areas (EAs). While small area units are sufficient for many studies, they do not 72 
allow for local-scale analyses of health, education, and demographics. Some attempts have been 73 
made to associate simulated households to random points in space or along roads [19,20]. There is a 74 

growing demand for such spatially-disaggregated population datasets, particularly in low- and 75 
middle-income counties (LMIC) to plan projects and monitor progress toward the Sustainable 76 
Development Goals [21] which has led to novel techniques for producing gridded populations [3], 77 
[22] and other high spatial-resolution maps of sociodemographic characteristics interpolated from 78 
cluster survey locations [23–25]. However, it is difficult to assess the accuracy of these techniques in 79 

the absence of reliable population data at an equally fine spatial resolution. 80 
The aim of this paper is to simulate a close-to-reality population of individuals nested within 81 

households and then to geo-locate this synthetic population to realistic building locations in a LMIC 82 
context. Our approach uses two commonly available population datasets (a census microdataset and 83 
a household survey) as well as openly available geospatial data to enable replication in other areas. 84 

This work was motivated by a need for a population dataset that could be used to develop and 85 
evaluate household survey methodologies in general, and gridded population survey methodologies 86 
in particular (e.g. GridSample [26]), though georeferenced population datasets will be useful for 87 
many applications. The synthetic population has to be located in both a real-world context to take 88 
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advantage of the realistic spatial covariates used in gridded population modelling, and at or below 89 

the same geographic scale as the gridded population data (~100 metre by 100 metre grid cells). The 90 
use of realistic, rather than randomly generated, latitude-longitude coordinates to represent home 91 
locations, however, raises new ethical questions for population simulations. We discuss how we 92 
approached these issues while openly releasing the code and simulated datasets from our case study 93 

in Namibia. 94 

2. Methods 95 

2.1. Setting 96 

Namibia is selected for the simulation because population varies widely from low-to-high 97 
density, and the 2011 Namibia census meets the UN recommendations for high quality census data 98 

[27].  99 
We select Oshikoto, one of Namibia’s 13 regions in northern Namibia to demonstrate the 100 

simulation methods discussed here because it presents a rich microcosm of conditions and 101 
population types (Figure 1). Oshikoto covers an area of 38,653 square kilometres, and is home to 102 
roughly 182,000 people [28]. The region has an unpopulated desert in the southwest, rural settled 103 

agriculture area in the north, rural area comprised mostly of a nomadic population in the southeast, 104 
and two cities comprised of planned and unplanned neighbourhoods. Oshikoto is comprised of 10 105 
administrative sub-regions called constituencies, for which there are published census population 106 
and household totals. 107 

Figure 1. Map of Oshikoto Region, Namibia and Oshikoto’s 10 constituency boundaries 108 

 109 

2.2. Data 110 

All input data are publicly available including the 20% microdata sample from the 2011 111 

Namibia Population and Housing Census, available by request from the Namibia NSA [29]; 2011 112 
Namibia census enumeration area boundaries, provided by request from the Namibia NSA [30]; 113 
2013 Namibia Demographic and Health Survey (DHS) recode files and geo-displaced cluster 114 
coordinates, available by request from ICF International [31]; high-resolution (30cm) satellite 115 
imagery available through ESRI via ArcGIS 10.5 [32]; and multiple spatial data layers such as land 116 

cover type, nighttime lights intensity, and health facility locations all summarized in Table 1 and 117 
described elsewhere [33].  118 
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Table 1. Data sources for simulated population 119 

Short name Long name Source, original unit Output unit 

Population 

dhs_hh Individual recode file 

summarized by household 

2013 Demographic and Health 

Survey [31] 

region 

dhs_geo Geo-displaced cluster 

coordinates 

2013 Demographic and Health 

Survey [31] 

coordinate 

(cluster) 

census_housing, 

census_person 

20% census microdata sample 2011 National Statistics Agency [29] constituency 

census_report Final census report 2011 National Statistics Agency [28] constituency 

Used to generate new spatial data 

imagery High resolution satellite 

imagery 

2014-2016 DigitalGlobe Quickbird 

imagery, 50cm [32] 

Coordinate 

(household) 

census_ea 2011 Census EA boundaries 2011 Namibia Statistics Agency [30] EA 

Spatial covariates 

ccilc_dst011_2012 Distance to land-cover: 

Cultivated terrestrial lands 

2008-2012 GlobCover, 300m [34] 100m 

ccilc_dst040_2012 Distance to land-cover: Woody / 

Trees 

2008-2012 GlobCover, 300m [34] 100m 

ccilc_dst130_2012 Distance to land-cover: Shrubs 2008-2012 GlobCover, 300m [34] 100m 

ccilc_dst140_2012 Distance to land-cover: 

Herbaceous 

2008-2012 GlobCover, 300m [34] 100m 

ccilc_dst150_2012 Distance to land-cover: Other 

terrestrial vegetation 

2008-2012 GlobCover, 300m [34] 100m 

ccilc_dst190_2012 Distance to land-cover: Urban 2008-2012 GlobCover, 300m [34] 100m 

ccilc_dst200_2012 Distance to land-cover: Bare 2008-2012 GlobCover, 300m [34] 100m 

cciwat_dst Distance to water bodies 2000 OSM [35] 100m 

dmsp_2011 Nighttime lights intensity 2012 Suomi VIIRS, 500m [36] 100m 

gpw4coast_dst Distance to coastline GPWv4, 1km [37] 100m 

osmint_dst Distance to road intersections 2000 OSM [35] 100m 

osmriv_dst Distance to major water ways 2000 OSM [35] 100m 

slope Slope 2000 HydroSHEDS, 100m [38] 100m 

topo Elevation 2000 HydroSHEDS, 100m [38] 100m 

tt50k_2000 Travel time to populated places 2000 JRC-EC 100m 

urbpx_prp_1_2012 Proportion of urban pixels with 

1 cell radius 

2009 Modis [39,40] & Global Human 

Settlement City Model [41], 1km 

100m 

hfacilities_dst Distance to health centre or 

hospital 

2001 UN-OCHA [42] 100m 

schools_dst Distance to primary or 

secondary school 

2001 UN-OCHA [43] 100m 

npp_2012 Annual net primary 

productivity 

2010 MODIS, 1km [44] 100m 
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The 2011 Namibia 20% census microdata sample is comprised of 36,137 individuals in 7,536 120 

conventional households [28], and the DHS survey sample is comprised of 3,316 individuals in 705 121 
households located in 38 primary sampling units (PSUs) [31] (Table 2). In addition to the variables 122 
age, sex, relationship, and household size used to simulate household membership configurations, 123 
six covariates, common to both the DHS and census microdata, are simulated to support modelling 124 

of household type and prediction of outcome variables (Table 2). Four of these covariates are often 125 
used to operationalize the UN-Habitat definition of a “slum household”: lack of improved toilet, 126 
lack of improved water source, inadequate space defined as three or more people per sleeping 127 
room, and unimproved structure defined as having an earthen or wood floor [45]. Other 128 
characteristics include urban versus rural location, use of solid fuel for cooking, whether the head of 129 

household has no formal education, and whether there are any children under age five in the 130 
household. 131 

While the microdata provides a large, systematic sample reflecting the distribution of 132 
characteristics in the population, it is not a complete census and cannot be linked to local 133 
geographic positions (in this case, below the constituency level). The DHS survey on the other 134 

hand, provides geographic coordinates, albeit displaced, for each PSU allowing us to explore spatial 135 
variation in the population. The method developed here leverages the strengths of each dataset and 136 
takes advantage of variables common to both datasets in order to link a simulated population to 137 
geographic positions. 138 

 139 

 140 

Table 2. Size of Namibia 2011 20% Census Microdata Sample and 2013 DHS Sample, by sub-group 141 

Variable Name Category 20% Census 

unweighted  

n (%) 

DHS 

unweighted 

n (%) 

DHS 

weighted 

n (%) 

Households Oshikoto (N) 7,475 705 817 

urban_rural Urban 

Rural 

1,167 (15.6) 

6,308 (84.4) 

113 (16.0) 

592 (84.0) 

139 (17.1) 

678 (82.9) 

structure Durable floor 

Non-durable floor 

Missing/unknown 

2,910 (38.9) 

4,551 (60.9)  

14 (0.2) 

281 (39.8) 

422 (59.9) 

2 (0.3) 

340 (41.6) 

475 (58.1) 

2 (0.3) 

fuel Non-solid fuel 

Solid fuel 

Missing/unknown 

1,217 (16.3) 

6,253 (83.6) 

5 (0.1) 

141 (20.0) 

562 (79.7) 

2 (0.3) 

182 (22.3) 

633 (77.4) 

2 (0.3) 

water Improved water 

Unimproved water 

Missing/unknown 

5,388 (72.1) 

2,045 (27.3) 

42 (0.6) 

589 (83.6) 

72 (10.2) 

44 (6.2) 

688 (84.2) 

80 (9.8) 

49 (7.0) 

toilet Improved toilet 

Unimproved toilet 

Missing/unknown 

1,955 (26.1) 

5,491 (73.5) 

29 (0.4) 

207 (29.4) 

492 (69.8) 

6 (1.0) 

258 (31.6) 

553 (67.6) 

6 (0.8) 

space Adequate space  

Inadequate space  

Missing/unknown 

6,529 (87.3) 

946 (12.7) 

0 (0.0) 

619 (87.8) 

82 (11.6) 

4 (0.6) 

717 (87.7) 

95 (11.6) 

6 (0.7) 

noedu Head household– any education 

Head household– no education 

Missing/unknown 

5,797 (77.6) 

1,528 (20.4) 

150 (2.0) 

581 (82.4) 

111 (15.7) 

13 (1.9) 

677 (82.8) 

125 (15.3) 

15 (1.9) 
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any_u5 No child under age 5 

Any child under age 5 

4,267 (57.1) 

3,208 (42.9) 

405 (57.5) 

300 (42.5) 

478 (58.5) 

340 (41.5) 

Individuals Oshikoto (N) 36,137 3,316 3,576 

relationship Head 

Spouse 

Child 

Grandchild 

Extended 

Other 

7,475 (20.7) 

2,391 (6.6) 

10,394 (28.8) 

8,635 (23.9) 

5,519 (15.3) 

1,723 (4.8) 

705 (22.5) 

218 (7.0) 

785 (25.0) 

591 (18.9) 

622 (19.8) 

215 (6.9) 

817 (22.9) 

250 (7.0) 

888 (24.8) 

660 (18.5) 

713 (19.9) 

247 (6.9) 

sex Female 

Male 

18,814 (52.1) 

17,323 (47.9) 

1,669 (53.2) 

1,467 (46.8) 

1,899 (53.1) 

1,677 (46.9) 

age 0 

1-4 

5-9 

10-14 

15-19 

20-24 

25-29 

30-34 

35-39 

40-44 

45-49 

50-54 

55-59 

60-64 

65-74 

75+ 

1,136 (3.1) 

3,968 (11.0) 

4,514 (12.5) 

4,895 (13.6) 

4,643 (12.9) 

3,284 (9.1) 

2,391 (6.6) 

1,912 (5.3) 

1,756 (4.9) 

1,371 (3.8) 

1,341 (3.7) 

968 (2.7) 

872 (2.4) 

802 (2.2) 

1,105 (3.1) 

1,177 (3.3) 

87 (2.8) 

364 (11.6) 

404 (12.9) 

389 (12.4) 

385 (12.3) 

280 (8.9) 

213 (6.8) 

195 (6.2) 

161 (5.1) 

106 (3.4) 

118 (3.8) 

102 (3.3) 

68 (2.2) 

71 (2.3) 

98 (3.1) 

95 (3.0) 

99 (2.8) 

414 (11.6) 

461 (12.9) 

435 (12.2) 

433 (12.1) 

323 (9.0) 

245 (6.9) 

230 (6.4) 

193 (5.4) 

120 (3.4) 

139 (3.9) 

118 (3.3) 

76 (2.1) 

79 (2.2) 

107 (3.0) 

104 (2.9) 

 142 

 143 

2.3. Simulation 144 

We generate realistic household membership with realistic household point location and 145 
demographic and social characteristics in the following three phases. In Phase A, we define 146 
household types and then predict the spatial distribution of the types in Oshikoto using DHS data, 147 

spatial covariates, and visual inspection of satellite imagery. The output is a probability surface for 148 
each household type. In phase B, we generate the synthetic population using a census microdata 149 
sample and assign the population to household point locations using the household type 150 
probability surfaces generated in phase A. Phase C involves prediction of additional population 151 
characteristics in each household. The code is written in R [46] and spatial data are generated in 152 

ArcGIS [47]. Each phase is summarized in Figure 2 and described below. Five realizations of the 153 
simulated population (Supplement 1), the code (Supplement 2), and interim output (Supplement 3) 154 
is provided. 155 

  156 
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Figure 2. Simulation workflow with steps 1 through 8 organized in three phases. Green indicates original 157 
dataset, and orange indicates derived dataset. 158 

 159 
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 160 

 161 

2.3.1. Phase A. Predict spatial distribution of household types 162 

1. Using the DHS dataset, we first define realistic and distinct types of households present in 163 
Oshikoto based on the 2013 DHS data of 705 households. We use the kmeans function in R [46] 164 

to generate a large number of clusters (k=20) from eight household demographic and social 165 
variables common to both the DHS and census microdata (urban_rural, noedu, any_u5, toilet, 166 
water, structure, space, fuel). K-means is a form of unsupervised clustering which seeks to partition 167 

observations into groups by minimising the within group sum of squares. We then utilize the 168 
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output dendrogram visualizing the hierarchically clustered k-means centroids to choose a 169 

smaller number of statistically distinct household types (long Euclidean distance between parent 170 
and child clusters in the dendrogram) that are easily interpretable. In the case of Namibia 2013 171 
DHS, 7 household types are identified. To interpret and label household types, we consider 172 
whether the household type values are above, below, or near the Oshikoto average (Table 3). We 173 

save the k-means centroids and hierarchical clustering cut-off points to classify household types 174 
in other datasets in steps 3 and 5. 175 

 176 
Table 3. Average prevalence of variables and label for each k-means household type cluster.  177 
Red indicates that the value is above the Oshikoto average (less desirable), and green indicates the value is below the Oshikoto 178 
average (desirable) 179 

Cluster u
rb

an
_ 

ru
ra

l 

n
o

ed
u

 

an
y

_u
5 

to
il

et
 

w
at

er
 

st
ru

ct
u

re
 

sp
ac

e 

fu
el

 

Household type label 

Type 1 0.00 0.00 0.04 0.06 0.00 0.00 0.00 0.00 Urban rich 

Type 2 0.00 0.19 0.07 0.85 0.06 0.47 0.32 0.80 Urban poor 

Type 3 1.00 0.05 0.12 0.55 0.00 0.00 0.04 0.10 Rural rich 

Type 4 1.00 0.12 0.06 0.46 0.07 0.39 0.09 0.79 Rural middle 

Type 5 1.00 .012 0.11 0.81 0.04 0.45 0.01 0.97 Rural middle (lack fuel) 

Type 6 1.00 .012 0.16 0.92 0.49 0.83 0.06 0.96 Rural poor (lack water) 

Type 7 1.00 0.22 0.13 0.91 0.09 0.83 0.04 0.98 Rural poor (lack education) 

Oshikoto 0.84 .016 0.12 0.77 0.11 0.60 0.07 0.79  

 180 

2. Second, we process 19 spatial covariates from free, public data sources including land cover 181 
types, night time light intensity, and health facility locations (see Table 1). These datasets are 182 
available for the whole region, enabling predictive mapping, and are shown to be related to 183 
population density [3], [48]. We convert each covariate into a 100 meter by 100 meter raster, and 184 
then for each cell, calculate the minimum, maximum, and average values within a five kilometre 185 

buffer using WGS84 geographic projection. This five kilometre moving window is used because 186 
the DHS data used to fit models in the next step are randomly geo-displaced up to five 187 
kilometres in rural areas. Further, the average covariate value within a five kilometre buffer of a 188 
displaced DHS PSU location is closer to the real, non-displaced, unpublished covariate value 189 

than the published, displaced covariate value [49,50]. Although DHS PSU coordinates are only 190 
displaced up to two kilometres in urban areas, a five kilometre buffer is used for all PSUs, and 191 
urban probability surfaces are improved manually in step 4. 192 

3. Third, using the 2013 DHS data for all of Namibia (N=550 clusters) and household types created 193 
in step 1, we calculate the most common household type for each PSU using the k-means 194 

centroids and cut-off points. Next, we extract the five kilometre averaged spatial covariates 195 
created in step 2 to each DHS PSU location, resulting in 550 observations of household type 196 
linked to (19 X 3) 57 spatial covariates. In this step 3 we find a relationship between household 197 
type and spatial covariates in order to predict household types over the whole region. To do this, 198 
we use a Random Forest model – a non-parametric ensemble machine-learning algorithm that 199 

grows a “forest” of decision trees during the modelling process [3] – to model this relationship 200 
and predict a 100 meter by 100 meter probability surface for each household type across 201 
Namibia. 202 

4. Fourth, we manually create household type probabilities for urban EAs. This step is necessary 203 

because initial tests found that the household type probability model generated in step 3 could 204 
not adequately distinguish household types within urban areas. This was expected given the 205 
displacement of the DHS PSU locations and the summary of geospatial covariate data which are 206 
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essentially identical across urban household types. Without step 4, simulated households of 207 

different socioeconomic types would be evenly spatially integrated in urban areas, which is 208 
unrealistic. Poor and rich households are often segregated in urban areas worldwide [51], and 209 
visual inspection of satellite imagery indicates that socioeconomic segregation is present in 210 
Oshikoto’s urban areas as well. From Step 1, we label the two urban household types as poor 211 

and rich, then manually assign proportion of households that we judge to be rich versus poor 212 
within each EA based on satellite imagery, such that the probabilities sum to 1. These manually 213 
created EA-level urban household type probabilities are multiplied by the predicted household 214 
type probability surfaces created in step 3 to create the final 100 meter by 100 meter household 215 
type probability surfaces. 216 

2.3.2. Phase B. Generate synthetic population, assign household locations 217 

5. Fifth, we simulate a population of realistic households in Oshikoto using the 20% census 218 
microdata sample and multinomial logistic regression techniques proposed by Alfons and 219 
colleagues (2011) and operationalized by Templ and colleagues (2017) in the R simPop package 220 
[7,15]. In this approach, we first calculate the proportion of households to simulate per 221 

household-size, per stratum (defined by constituency and urban/rural boundary). Second, we 222 
select random resamples from the microdata until the number of target households are reached 223 
in each household size and strata. Third, demographic characteristics of the household members 224 
(age, sex, relationship) are replicated from the microdata. Fourth, we add household 225 

socioeconomic characteristics to the simulated dataset (education, toilet, water, structure, space, 226 
fuel) using multinomial regression. This allows for simulation of combinations of demographic 227 

characteristics that exist in the population but are not present in the census microdata. For each 228 
simulated household, we assign the household type by selecting the class from step 1 with the 229 
smallest distance (i.e. most similar) between each household record and the k-means centroids. 230 

6. The census microdata sample is provided with a weight equal to five for nearly all conventional 231 
households. We recalibrate these weights to the total number of households per constituency in 232 
the 2011 census [28]. However this process can lead to too few observations in some 233 
constituency-urban/rural strata, and too many observations in other strata. Therefore, we 234 
increase the weights to simulate an extra 5% of households from which a random selection of 235 

households is assigned to latitude-longitude coordinates in step 7. 236 
7. Seventh, we join reweighted household type probabilities (100 metre X 100 metre grid) created 237 

in step 4 to the household latitude-longitude coordinates created in step 6. Finally, for each 238 
household simulated in step 5, we randomly sample one latitude-longitude coordinate within 239 

the constituency-urban/rural strata based on the probability of household type. We repeat the 240 
assignments until all coordinates are assigned a simulated household, and then discard the extra 241 
5% unassigned simulated households. 242 

2.3.2. Phase C. Predict additional population characteristics, generalize locations 243 

8. In step 8, we use the 2013 DHS records in Oshikoto (N=705 households) to develop multinomial 244 

models of socioeconomic and health outcome variables. We store the coefficients of each model 245 
and apply them to our simulated dataset to predict outcomes in each simulated household. The 246 
three simulated outcome variables represent different prevalence levels and patterns of 247 
dispersion in the population. These outcome variables represent children under age five, women 248 
of reproductive age, and households in order to support within household clustering analyses. 249 

The outcome variables are: household wealth (expressed in quintiles), women’s use of modern 250 
contraception (approximately 50% in Namibia and Oshikoto), and child’s receipt of 3rd DPT 251 
vaccination (approximately 90% in Namibia and Oshikoto) [52]. Multinomial models are used 252 
for both multi-category and binary outcomes 253 

Pr(𝑌𝑖 = 𝐾 − 1) =
𝑒𝛽𝐾−1⋅𝑿𝑖

1 + ∑ 𝑒𝛽𝐾−1⋅𝑿𝑖𝐾−1
𝑘=1

 

 

(1) 
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where 𝐾 is the number of categories in the outcome variable,  𝑌𝑖  is the outcome value for 254 

individual 𝑖, and 𝑿𝑖 is a matrix of covariate values belonging to individual 𝑖. Model coefficients 255 
are applied to covariates of the 37,298 households in the simulated dataset to predict outcome 256 
values. 257 

2.4. Assessment 258 

We conduct global assessments to evaluate whether each of the five realizations of the simulated 259 
population are realistic overall, and local assessment to evaluate whether the realizations are realistic 260 
at an EA-level. In the global assessment, we aggregate the DHS records to PSU and the simulated 261 
census records to EA, and graphically compare the distributions of simulated covariates and 262 
outcomes. We also map simulated census records by EA to visually inspect the spatial distributions 263 

across Oshikoto. In the local assessment, DHS data are averaged by PSU and compared to the 264 
distribution from repeated samples simulating a set of survey respondents. For each of 10,000 265 
simulations, a random EA is selected within 5km of each DHS PSU coordinate, then the same number 266 
of households as the observed DHS cluster are drawn from the simulated population. The 267 
characteristics are averaged from the sampled EAs and compared to the observed DHS data. 268 

2.5. Ethics 269 

Before releasing our simulated data, we closely reviewed papers about privacy of synthetic 270 
population data including a paper by Alfons and Templ (2010) who calculated disclosure risk of 271 
close-to-reality synthetic data generated with the simPop [R package] algorithm used in this analysis 272 

[53]. The authors found extremely low risk of disclosure for five worst case scenarios and concluded 273 
that simulations “implemented in simPop are confidential and can be distributed to the public” [53]. 274 
Any additional risk in our study due to linking simulated records to realistic building locations is 275 
negligible due to random spatial components in the analysis, and as a result of beginning with a 276 
random sample of the original census microdata in Phase B. Any match between characteristics in a 277 

simulation realization of a household at a given building location and a real-world household at that 278 
same location is purely by chance.  279 

The main risk in this analysis is misinterpretation and/or misuse of the synthetic population data 280 
by users (e.g. believing that the simulated data are from actual households and treating real-world 281 
household members, or their communities, with stigma). To minimize misinterpretation, we release 282 

five realizations of the synthetic population and label each dataset as “synthetic”. To further minimize 283 
the risk of maltreatment of real-world people in the case that these data are misinterpreted, we only 284 
simulated commonly mapped variables which have been interpolated with real-world survey data 285 
to 1 km2 grid square by the MeasureDHS project [54]. 286 

This analysis and public release of simulated data was reviewed by the University of 287 
Southampton Ethics Review Committee (#41006). 288 

3. Results 289 

Demographic and socioeconomic characteristics of the five simulated populations in Oshikoto (Table 290 
4) were consistent with the 2013 DHS and 20% census distributions presented in Table 2. 291 

  292 
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Table 4. Demographic and socioeconomic characteristics of five realizations of the synthetic population 293 

Variable Category pop_1  

(%) 

pop_2  

(%) 

pop_3  

(%) 

pop_4  

(%) 

pop_5  

(%) 

Households Oshikoto (N) 37,298 37,298 37,298 37,298 37,298 

urban_rural Urban 

Rural 

84.3 

15.7 

84.3 

15.7 

84.3 

15.7 

84.3 

15.7 

84.3 

15.7 

structure Durable floor 

Non-durable floor 

38.6 

61.4 

38.7 

61.3 

38.6 

61.4 

38.5 

61.5 

37.9 

62.1 

fuel Non-solid fuel 

Solid fuel 

16.2 

83.8 

16.4 

83.6 

16.0 

84.0 

16.0 

84.0 

15.9 

84.1 

water Improved water 

Unimproved water 

73.2 

26.8 

73.2 

26.8 

72.9 

27.1 

73.1 

26.9 

72.7 

27.3 

toilet Improved toilet 

Unimproved toilet 

20.1 

79.9 

20.1 

79.9 

19.9 

80.1 

19.7 

80.3 

19.5 

80.5 

space Adequate space  

Inadequate space  

92.5 

7.5 

92.2 

7.8 

92.3 

8.7 

92.5 

7.5 

92.3 

7.7 

noedu Head household - any education 

Head household - no education 

70.8 

29.2 

70.5 

29.5 

70.5 

29.5 

70.8 

29.2 

70.9 

29.1 

any_u5 No child under age 5 

Any child under age 5 

57.4 

42.6 

57.0 

43.0 

56.8 

43.2 

57.1 

42.9 

57.0 

43.0 

Individuals Oshikoto (N) 179,931 179,854 180,233 180,164 180,111 

relationship Head 

Spouse 

Child 

Grandchild 

Extended 

Other 

20.7 

6.6 

28.8 

23.8 

15.1 

4.9 

20.7 

6.6 

28.8 

24.0 

15.1 

4.8 

20.7 

6.5 

28.7 

23.9 

15.2 

5.0 

20.7 

6.6 

28.9 

23.8 

15.0 

4.9 

20.7 

6.6 

28.8 

23.8 

15.3 

4.8 

sex Female 

Male 

52.2 

47.8 

52.0 

48.0 

51.9 

48.1 

51.8 

48.2 

52.0 

48.0 

age 0 

1-4 

5-9 

10-14 

15-19 

20-24 

25-29 

30-34 

35-39 

40-44 

45-49 

50-54 

55-59 

60-64 

3.1 

10.9 

12.7 

13.6 

12.9 

9.0 

6.7 

5.2 

4.9 

3.8 

3.7 

2.7 

2.4 

2.2 

3.1 

11.1 

12.6 

13.6 

12.9 

9.0 

6.6 

5.3 

4.9 

3.8 

3.8 

2.7 

2.4 

2.2 

3.2 

11.1 

12.5 

13.6 

12.7 

9.1 

6.6 

5.3 

5.0 

3.7 

3.8 

2.7 

2.4 

2.2 

3.1 

10.9 

12.4 

13.7 

13.0 

9.1 

6.6 

5.2 

4.9 

3.9 

3.8 

2.7 

2.4 

2.2 

3.2 

10.9 

12.7 

13.6 

12.9 

9.0 

6.6 

5.3 

4.9 

3.8 

3.7 

2.7 

2.4 

2.2 
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65-74 

75+ 

3.1 

3.2 

3.1 

3.1 

3.1 

3.2 

3.0 

3.2 

3.0 

3.2 

 294 

The distribution of the three outcomes were heaped in the 2013 DHS dataset, perhaps due to 295 
small sample size. In the global assessment of the simulated population by PSU/EA in Oshikoto, 296 

Namibia, the distributions of households per wealth quintile, contraceptive use among reproductive 297 
age women, and percent children who received 3rd DPT vaccination were consistent between the 298 
2013 DHS PSUs and the synthetic population EAs in all five realizations of the population (Figure 3). 299 
A key difference is that the Oshikoto synthetic populations distribute more households in the lowest 300 

wealth quintile, while the DHS measured a greater percent of Oshikoto households in the second 301 
lowest wealth quintile. 302 

Maps showing simulated household wealth by EA followed expected spatial patterns with 303 
higher wealth in planned urban neighbourhoods and large rural towns, and lowest household wealth 304 
in remote rural areas (Figure 4, realization 1). Similarly, higher rates of contraceptive use were located 305 

in urban EAs, and wealthier rural EAs, as expected. Namibia has greater DTP3 vaccination coverage 306 
in rural, rather than urban, populations, which is atypical of LMICs [52]. This atypical pattern is 307 
reflected in the maps of DPT3 vaccination coverage among one of the simulated population. 308 

Figure 3. Comparison of outcome variables in the 2013 Namibia DHS (Oshikoto region only) 309 

(solid line) and five synthetic population realizations (dotted lines) 310 

 311 
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  314 
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Figure 4. Maps of outcome variables by EA in one simulated population (synth_pop_1) of 315 

Oshikoto, Namibia 316 

 317 

 318 
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In the local EA-level assessment, we found that DHS estimates for each of the 38 Oshikoto 319 

clusters fell within the 95% confidence interval of repeated random simulated samples from the 320 
simulated population EAs near to the DHS PSU. This implies that the observed DHS results could 321 
potentially have been drawn from the synthetic population.  322 

Figure 5. 2013 Namibia DHS PSU-level estimates of outcome variables versus the distribution of 100 323 
samples selected in EAs located within 5 kilometres of DHS PSU, for five synthetic population realizations 324 

 325 

4. Discussion 326 

Close-to-reality simulated populations are needed to answer questions at the forefront of spatial 327 
demographic research and survey methodological development while reducing disclosure risks of 328 
releasing high spatial resolution census data. We outline a novel process to simulate multiple 329 
realizations of a population linked to realistic latitude-longitude coordinates in a LMIC setting. Our 330 

approach uses the strengths of two commonly available population datasets – household surveys and 331 
census microdata samples. We also draw together computational methods in microsimulation of 332 
individuals and households and high-resolution mapping of household characteristics that uses 333 
geospatial data. The result is a full enumeration of a synthetic population with household relations 334 

and characteristics, linked to realistic locations. The simulated population was assessed and found to 335 
be realistic in terms of socioeconomic and health outcomes at both regional and local (community) 336 
levels. We released the code and five realizations of the simulated population to encourage additional 337 
simulations of close-to-reality populations to realistic latitude-longitude coordinates, and to support 338 
development of household surveys and gridded population survey sample frames for LMICs. 339 

One such question is whether one-stage sampling can result in precise and feasible household 340 
surveys compared to the classic two-stage sampling design. Nearly every nationally-representative 341 
multi-topic household survey implemented since the 1980s in LMICs has used a two-stage sampling 342 
design with census enumeration areas comprising the first-stage sample frame and a manual 343 
household listing comprising the second-stage sample frame [9]. This has proven to be an effective 344 

sample design when census EAs are the only available first-stage sample frame, maximizing 345 
statistical power while reducing field costs [55]–[57]. Two-stage sampling, however, requires that two 346 
field visits are made to each sampled household several months (or even years) apart, making it more 347 
likely that mobile and vulnerable households are excluded from the survey or fail to respond 348 
compared to stable long-term households [58]. This problem is of increasing concern in LMICs cities 349 

today as rates of urbanization and mobility increase [51], possibly leading to increased bias in 350 
standard two-stage household surveys. Gridded sampling frames open the door for  one-stage 351 
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surveys, such that households are listed and interviewed on the same day, which can theoretically 352 

improve the accuracy of poor and vulnerable households in household surveys, however, one-stage 353 
sampling comes at the risk of increased design effect, requiring increased sample size. The use of 354 
close-to-reality simulated populations can be used to compare various sample designs under 355 
different realistic conditions of population distribution, mobility, and characteristics. 356 

Another application of close-to-reality population simulations is the evaluation of gridded 357 
population dataset accuracy at the cell-level. Several gridded population datasets are generated at 358 
100 metre by 100 metre scale from census data [3], [4]. Accuracy of these models is often performed 359 
at the geographic scale of the input census data, however accuracy is never evaluated at the grid cell-360 
level. Microdata located to realistic household locations and aggregated to 100 metre X 100 metre 361 

grid cells provides a first opportunity for this kind of accuracy assessment. 362 
One limitation of this work is that it relied on manually digitised building point locations and 363 

delineation of urban rich vs poor household locations. This data creation step was manageable for a 364 
subnational region but would require substantial time to scale nationally. It took one GIS analyst 365 
nearly one week of full-time work to generate building point locations in Oshikoto for this analysis. 366 

However, as coverage of publicly available sub-metre satellite imagery increases globally, so does 367 
automated feature extraction of individual buildings in LMICs [59], which is promising to help scale 368 
this simulation approach to larger geographic areas. Note that if feature extraction is used to generate 369 
building locations, additional information or researcher judgement may still be needed to identify 370 

multi-household building locations and to remove non-residential buildings. Machine learning 371 
techniques are showing promise in mapping neighbourhood types from very high resolution 372 
imagery [60] and other building datasets [61] which can also help address this limitation. 373 

One might wonder why not generate random points for building locations within administrative 374 
areas near roads, or by using some other set of simple rules, as other researchers have done to 375 

simulate close-to-reality populations [19]. While this would permit certain types of analysis such as 376 
the comparison of one-stage and two-stage sampling, creation of random points for households 377 
within large administrative areas is not recommended if the simulated population will be used to 378 
evaluate accuracy of gridded population models, particularly gridded populations with real-world 379 
spatial covariates at fine geographic scale (e.g. 100 metre X 100 metre). There is a large amount of 380 

heterogeneity in human population distribution, and this must be reflected accurately at a very local 381 
level to be able to evaluate gridded population models on a cell-by-cell basis. 382 

This novel method to simulate close-to-reality household records linked to realistic building 383 
locations in a LMIC stands to support development of more accurate household survey methods and 384 

gridded population datasets as household survey sample frames. These methods are feasible to 385 
implement in other LMIC settings and will become globally scalable as feature extraction methods 386 
evolve. 387 

  388 
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