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Abstract

The demographic history of anatomically modern humans (AMH) involves multiple migration
events, population extinctions and genetic adaptations. As genome-wide data from complete
genome sequencing becomes increasingly abundant and available even from extinct hominins,
new insights of the evolutionary history of our species are discovered.

It is currently known that AMH introgressed with archaic hominins once they left the African
continent. Current out of African human genomes carry fragments of archaic origin. This review
focuses on the fitness consequences of archaic interbreeding in current human populations. We
discuss new insights and challenges that researchers face when interpreting the potential impact
of introgression on fitness and testing hypotheses about the role of selection within the context of

health and disease.
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Widespread interbreeding between hominins

The demographic history of anatomically modern humans (AMH) is complex, and
involves a large number of migrations, genetic admixtures and introgressions, population
extinctions and genetic adaptations, which overlap both in time and in space (see Figure 1). Due
to this complexity, the evolutionary history of humankind is still far from being fully understood
(Nielsen et al., 2017). During the last 30 years, the most accepted demographic scenario for
explaining recent evolution of AMH has been the Out of Africa model (OOA). According to this
model, AMH evolved in Africa around 100-200 thousands years ago (kya) in East Africa and
migrated to the rest of the world. Classical “pure” OOA assumes that admixture with other
archaic populations such as Neanderthals or Denisovans, present at the time of the rise of AMH,

either did not occur or was negligible (Lalueza-Fox & Gilbert, 2011).
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Figure 1. Family tree of the four groups of early humans living in Eurasia 50,000 years ago and
the inferred gene flow between the groups due to interbreeding (based on Priifer et al., 2014;
Mondal et al., 2016; Hsieh et al., 2016; Medina-Gomez et al., 2017). The direction and estimated
magnitude of inferred gene flow events are shown. Branch lengths and timing of gene flows are
not scaled. The dashed line indicates that it is uncertain whether Denisovan gene flow into
modern humans in mainland Asia occurred directly or via Oceania. Light violet color indicates
introgression events from unknown archaic populations (Ghost).

However, genomic studies of ancient DNA have revealed that AMH interbred with other
hominid lineages, such as Neanderthals and Denisovans, present in Eurasia up to ~30,000—
50,000 years ago (Kelso & Priifer, 2014; Quach & Quintana-Murci, 2017; Vattathil & Akey,
2015). Whole-genome sequences from ancient specimens have revealed the presence of DNA of

Neanderthal ancestry accounting for ~2% of the genome in Europeans to ~4% in Asians (Green
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et al., 2014). In contrast, DNA introgressed into modern humans from Denisovans is found
mostly in Australo-Melanesians, who may account for up to 6% of Denisovan DNA in their
genomes and, to a lesser extent, in South East Asians (Mallick et al., 2016). These estimates are
averages across the modern human genome. However, specific regions of the genome may have
degrees of Neanderthal ancestry as high as 64% in Europeans and 62% in Asians.

New studies based on current genetic diversity are suggesting that the events of archaic
introgression in AMH did occur out of Africa with other hidden ghost” archaic populations
(Mondal et al., 2016). Furthermore, there is growing evidence that archaic introgression occurred
also within Africa (Labuda et al., 2000; Hammer et al., 2011; Lachance et al., 2012; Hsieh et al.,
2016; Xu et al., 2017; Zanolli et al., 2017), raising the exciting possibility that other unknown
archaic groups may have contributed to human genetic diversity. Therefore, recent work suggests
that apparently distinct species can exchange the genetic material along their evolutionary history
(Mallet et al., 2016). The biological implications of such introgression, including their

consequences on modern human health is reviewed in the following sections.

Selection against introgressed regions at the level of genomes and individual loci

Introgressed alleles in a foreign genetic background frequently have the negative fitness
effects regardless of the amount of adaptive introgression. Martin and Jiggins (2017) made two
important considerations when dealing with models of selection against introgressed genomic
tracts. First, as many of the factors that influence selection -such as recombination rate and gene
density- are interdependent, the models that account for combined effects of both factors are
more feasible, especially if they incorporate specific predictions such as the decline in selective
sweep strength with increasing distance from selected loci. Juric et al. (2016) modelled the level
of Neanderthal ancestry in human populations as a function of the recombination distance from
nearby selected alleles and estimated both the density of selected loci and the strength of
selection. Second, interpretations of the landscape of ancient introgression into human species
may vary depending on underlining assumptions. For example, the majority of models assume
that introgressed blocks are selected independently of each other in the genetic background of the
recipient population. However, Harris and Nielsen (2016) showed that much of the selection
against introgression may occur in early generations, since early generation hybrids should have

complex ancestries in which epistasis can lead to non-additive fitness effects. Another
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assumption pointed out in this study is that weakly deleterious mutations segregating in the
donor population would be the main driver of selection against Neanderthal introgression in
humans. Under such a model, the lower effective population size in Neanderthals would have led
to the accumulation of weakly deleterious alleles that, once introgressed into humans, would
reduce the relative fitness of the hybrid. However, in such context, even if both species bear
recessive deleterious alleles but at differing sites, hybrids might have enhanced overdominant
fitness variation regardless these deleterious recessives, which leads to the conclusion that
Neanderthal introgression may have initially been favoured by selection in humans (Harris &

Nielsen, 2016).

Disproportionate role for sex chromosomes in species differences and hybrid
incompatibility constitutes a consistent pattern in speciation (Presgraves, 2008; Qvarnstrom &
Bailey, 2009). The compelling evidence of these processes has been reported in the genomes of
non-African humans, which have sequences devoid of introgressed variation (“deserts”) from
Neanderthals and Denisovans, possibly driven by selection against introgression described by
Sankararaman et al. (2014; 2016). Furthermore, the authors indicated that the introgression
landscape of Neanderthal and Denisovan in modern humans is similar. Of particular interest is a
significant reduction in admixture associated with genes showing testes-specific expression,
suggesting that admixture may have led to reduced male fertility and supporting evidence of
reduced introgression on sex chromosomes (Sankararaman et al., 2014; Sankararaman et al.,
2016). However, this genomic evidence must be interpreted with caution (Garrigan et al., 2012).
When selection against introgression occurs at a large number of loci throughout the genome, its
combined effects on many loci can leave detectable patterns, even though selection on any
individual locus may be weak (Martin & Jiggins, 2017). Moreover, weaker signals of
introgression have been observed in parts of the genome with high gene density and/or low
recombination (Sankararaman et al., 2016), agreeing with theoretical work, which predicted that
the strength of selection against introgression depends on the density of selected sites and the

recombination rate (Barton & Bengtsson, 1986).

Evidence for the role of purifying selection in shaping introgression landscape come from
particular categories of genes experiencing different amounts of introgression as previously

demonstrated for non-human species (Fontaine et al., 2015; JanousSek et al., 2015; Runemark et
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al., 2018; Schumer et al., 2016). This is also true for the autosomal regions deficient in both
Neanderthal and Denisovan ancestries, which contain a significant enrichment of genes
transcribed in meiotic germ cells (Jégou et al., 2017). The phenotypic traits and the type of
selective regime acting on them are summarized in Figure 2, and their corresponding genomic
regions are listed in Supporting Table. Taking into account that there has been strong selection
against archaic introgression among protein-coding genes (Fu et al., 2016; Sankararaman et al.,
2016; Vernot & Akey, 2014), functional regions contributing to the uniqueness of some modern
human traits could be identified if they are strongly depleted of archaic ancestry (Vernot et al.,
2016). For example, no Neanderthal ancestry has been detected around the forkhead box protein
P2 (FOXP2) gene, mutations of which are associated with language disorders (Konopka &
Roberts, 2016). Similarly, Neanderthals and Denisovans carry a single copy of AMY1 gene,
encoding an amylase enzyme responsible for starch digestion. In contrast, AMH carry multiple
copies of the gene and there is no evidence of Neanderthal introgression. This has been
interpreted as an evidence that the production of larger amounts of salivary amylase for starch
digestion has been under positive selection to modern humans compared to archaic species
(Perry et al., 2015). Moreover, regions depleted of both Neanderthal and Denisova ancestry are
enriched for genes expressed in specific brain regions (e.g. the ventral frontal cortex-
ventrolateral prefrontal cortex in infants and the striatum in adulthood; Vernot et al., 2016).
Another genomic study of Chintalapati et al. (2017) on small indels introgressed from
Neanderthal demonstrated that negative selection affected these variants more than other variants
segregating in modern humans and confirmed that deletions evolved under more constraint than
insertions, the vast majority of them laying in the intronic regions. Besides, introgressed variants
that may influence on the phenotype of their carriers were identified (Supporting Table). Among
them, an introgressed deletion associated with a decrease in the time to menarche may constitute
an example of a former Neandertal-specific trait contributing to modern human phenotypic
diversity (Chintalapati et al., 2017; Supporting Table).

Further evidence of the deleterious effect of Neanderthal introgression can be identified
at the expression level. Analysis of gene expression of Neanderthal alleles in current individuals
shows a significant downregulation at testes and brain compared to other tissues (Dannemann et

al., 2017; McCoy et al., 2017).
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Figure 2. The prevalent phenotypic impact of introgressed variants from ancient genomes over
modern human organs and systems (see Supporting Table for details).

+ - advantageous variation;

- - detrimental variation.

Genomic signatures of adaptive introgression from archaic to modern humans

The footprint of purifying selection against archaic alleles is widespread in the human
genome. Nevertheless, given that archaic species evolved for long times in environments for
which early AMH were not biologically adapted, interbreeding between anatomically modern
humans with archaic species could have facilitated adaptation to specific environments (Racimo
et al., 2015; Gittelman et al., 2016; see Supporting Table). This evolutionary process could bring
variants at a higher frequency than de novo mutations, providing linked blocks of sequence with
multiple functional mutations, potentially including co-adapted alleles (Hedrick, 2013). This
process, known as adaptive introgression, has risen to prominence based on a series of high
profile examples in human genomes (Kelso & Priifer, 2014; Racimo et al., 2015; Vattathil &
Akey, 2015) (see Figure 2). For example, genes involved in functions related to keratin
filaments, sugar metabolism, muscle contraction, body fat distribution, enamel thickness and

oocyte meiosis have been targeted by adaptive introgression from Neanderthals (Sankararaman
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et al., 2014; Racimo et al., 2017; Zanolli et al., 2017). Genes involved in the variation of skin
pigmentation and hair morphology (BNC2, MC1R) also show the signature of positive selection
as the result of adaptation to diverse habitats with different degree of insolation (Dannemann &
Kelso, 2017; Ding et al., 2014; Frost et al., 2017). Advantageous immune variants introduced
into the modern human population from archaic genomes have substantially contributed in the
present-day diversity of immune genes (Mendez et al., 2012; Mendez et al., 2013; Deschamps &
Quintana-Murci, 2016; Nédélec et al., 2016; Quach et al., 2016; Racimo et al., 2015). Since
innate immunity genes have evolved under stronger purifying selection than the rest of the
genome (Deschamps et al., 2016), this enrichment of introgressed alleles suggests the presence
of strong positive selection at the immune system. Similarly, EGLN1 and EPASI genes,
associated with hemoglobin concentration and response to hypoxia, display a high degree of
Denisovan ancestry in Tibetans, suggesting that this population acquired advantageous alleles for
high altitude life through ancient admixture (Hu et al., 2017; Huerta-Sanchez et al., 2014; Tashi
et al., 2017). In contrast to these evidences of positive selection, evidence for balancing selection
in humans is largely circumstantial (Quach & Quintana-Murci, 2017). However, host defense
genes such as those encoding several membrane glycoproteins, the KIR regions that coevolve
with HLA ligands, and other genes encoding proteins involved in cell migration or innate
immunity, apparently are subject to this otherwise rare selective regime (Andrés et al., 2009;
DeGiorgio, Lohmueller, & Nielsen, 2014; Leffler et al., 2013; Norman et al., 2007; Single et al.,
2007). The HLA region, a paradigm of balancing selection in humans, harbors functional
variants that were probably introgressed from Neanderthals and Denisovans (Abi-Rached et al.,
2011). An alternative explanation by Yasukochi and Ohashi (2017) based on phylogenetic
analysis do not support the introgression hypothesis and conclude that it is highly likely that
supposedly introgressed allelic lineage HLA-B*73 has been maintained in the direct ancestors of

modern humans (Yasukochi & Ohashi, 2017).

Increasing evidence suggests that regulatory variants play a central role in adaptive
processes (Fraser, 2013; Pickrell, 2014; Schaub et al., 2012). A compelling example of local
adaptation detected on the expression level is at the apelin receptor gene APLNR. Apelin is a
signal peptide that influences several aspects of cardiac, digestive, brain, and vascular function,
including regulation of oxygen levels. This gene exhibits strong allele-specific expression

favoring the Neanderthal allele in brain tissues, but allele-specific expression favoring the
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modern human allele in non-brain tissues (McCoy et al., 2017). There are also a number of
examples of local adaptation driven by regulatory variants resulting in population differences in
immune responses (Dannemann et al., 2017; Nédélec et al., 2016; Quach et al., 2016). Despite
the evidence that functional archaic alleles (non-synonymous and associated with expression)
have decreased in frequency over the past 8,500 years, four loci were identified where the
archaic alleles associated with differential expression show large increases in frequency over
time. Among these are introgressed alleles modifying expression of the OAS1/OAS2/OAS3
genes involved in innate immunity and whose tissue-specific effects suggest that they may be
functionally relevant (Mendez et al., 2013; Dannemann et al., 2017). Archaic alleles in OAS]1 are
associated with higher expression in subcutaneous adipose tissue and sun-exposed skin, while
higher expression in thyroid and pancreas and vagina is associated with archaic alleles in OAS2
and OAS3, respectively. In contrast, individuals carrying archaic alleles show down-regulation
of OASI and OAS3 in esophagus mucosa and spleen, and individuals carrying archaic alleles
show down-regulation of OAS2 in fibroblasts and OAS3 in fibroblasts as well as three brain
regions (hippocampus, putamen, and caudate nucleus) (Dannemann et al., 2017). Other examples
of local adaptation influencing the levels of expression include expression of gene ERAP2,
involved in susceptibility to Crohn’s disease; CCRI1, limiting leukocyte recruitment and
preventing inflammatory responses; HLA-DQA1, associated with susceptibility to celiac disease;
and TLR1, associated with markedly lower levels of inflammatory response gene expression
(Nédélec et al., 2016; Quach et al., 2016). Apparently, introgression from Neanderthals also
contributed to the diversification of transcriptional responses to infection in human populations.
The introgressed genetic segments in European genomes contain regulatory variants with effects
on steady-state expression and responses to TLR7/8 stimulation and influenza virus (Quach et
al., 2016; Quach & Quintana-Murci, 2017). Furthermore, the archaic variants of several eQTLs
have been reported as potential candidates for adaptive introgression conferring better adaptation
through the regulation of gene expression. Examples are the gene DARS associated with
neuroinflammatory and white matter disorders (Nédélec et al., 2016); the archaic variants of
OAS locus apparently associated with diverse flavivirus resistance phenotypes (Sams et al.,
2016); and PNMAI1 harboring a response eQTL for influenza virus and stimulating interferon
production (Quach et al., 2016). Another regulatory archaic variant modifies the expression of

TNPO3 in brain being associated with multiple autoimmune phenotypes (Dannemann et al.,
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2017). All these studies clearly show that selection and archaic admixture affected substantially
present-day inter-population differences in immune responses, at least in terms of transcriptional
variability, supporting the notion that variation in gene expression has been an important vehicle
for human adaptation (Fraser, 2013). Furthermore, it has been shown that the higher frequency
archaic variants contribute significantly more to gene expression changes than lower frequency
archaic variants. This suggests that at least some of the archaic alleles that modify gene
expression may have been driven to higher frequencies by positive selection, supporting the idea
that changes in gene expression are likely to have important adaptive effects in humans

(Dannemann et al., 2017).

However, whatever the potential benefits of archaic introgression in the past, alleles of
Neanderthal origin have been also associated with several neurological, dermatological, and
immunological phenotypes, indicating an influence of ancient admixture on current disease risk
in humans (Mozzi et al., 2017; Simonti et al., 2016; Taskent et al., 2017). For example,
introgressed alleles associated to the immune system response can increase the risk of
inflammation or autoimmunity under the environmental factors changing overtime (Barreiro &
Quintana-Murci, 2010; Brinkworth & Barreiro, 2014; Corbett et al., 2018; Sironi & Clerici,
2010; S. C. Stearns, 2012). The case of celiac disease neatly illustrates the tradeoff between past
selection and current maladaptation. Taskent et al. (Taskent et al., 2017) detected an evidence of
Neanderthal introgression in the chemokine receptor (CCR) gene family constituting the risk
alleles for celiac disease, which was possibly maintained by selective forces in early European
population. Furthermore, population genetic analyses have shown that the high frequency of
several risk alleles of genes associated with celiac disease such as IL12A, IL1ISRAP and SH2B3
(Hunt et al., 2008) in Europeans results from past positive selection events (Barreiro & Quintana-
Murci, 2010; Zhernakova et al., 2010). Another example came from a nonsynonymous variant of
the ZNF365D gene present in ~32% of Europeans and absent from Africans, which was
inherited from Neanderthals and is associated with a higher risk of Crohn’s disease
(Sankararaman et al., 2014). Likewise, variants of TLR6-1-10 inherited from Neanderthals and
Denisovans and present in Europeans and Asians have been associated with greater susceptibility

to allergies (Dannemann et al., 2016).
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Further investigations are required, but the studies published to date have provided
invaluable resources and increased our understanding of the molecular and cellular processes

underlined by introgressed genetic variants and different selective regimes acting on them.
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Conclusions and perspectives

The ongoing deluge of sequencing data from thousands of individuals and different
populations worldwide, including some archaic hominins, has provided new insight into the
evolutionary history of our species. Genomic studies of introgression between early Eurasians
and archaic human species, such as Neanderthals and Denisovans, are beginning to offer novel
insights into the evolutionary and phenotypical consequences of hybridization. There is quite
common evidence for widespread selection against introgression across the genome, but adaptive
introgression may also be considered an important force driving adaptation of modern humans to
new environments. However, additional human datasets advances, integration of different
sources of information and development of new statistical and analytical methods are critical for
understanding the biological and medical implications of much of such signals of selection.

Supporting Table illustrates that our knowledge of the functional consequences of the
introgressed variation is essentially based on populations with European ancestry. Informative
data from other ethnic groups and sequencing additional samples from ancient hominins will
further deepen our knowledge of the contribution of archaic hominins to the diversity of human
traits and complex diseases. Furthermore, it will help to identify the functional changes that have
contributed to human adaptation and survival over time. Moreover, multigenerational
prospective cohort studies from multiple human populations will allow direct measurements of
genetic variation and selection intensity for common traits in contemporary populations,
performed in a range of nutritional, cultural and geographic conditions, constituting the best way
of characterization of the magnitude and importance of complex ecological, epidemiological,
demographic and evolutionary shifts. In addition to the genome databases of European origins as
the Framingham cohort in the USA, the Uppsala Birth Cohort in Sweden and the Lifelines
Cohort in the Netherlands such cohorts now include H3Africa Initiative on Human Heredity and
Health in Africa and the Tohoku Medical Megabank Project in Japan. Data desideratum
supplemented with genomic and medical information will further increase our understanding of
the antagonistic pleiotropic effects that contribute to the burden of non-infectious diseases and
provide new clues to disease causes, potential therapies and possible adverse effects of novel
therapies (Corbett et al., 2018).

In the case of integrating different sources of information, studies of genetic variants with

regulatory effects on gene expression (eQTL) have already provided insight into the genetic and
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evolutionary determinants of population phenotypic diversity (Fairfax & Knight, 2014). One of
the first global approaches is the GTEx project. GTEx explores the landscape of gene expression
across 54 different tissues, providing the richest catalog of tissue-specific and shared eQTL
(Ardlie et al., 2015; GTEx Consortium, 2017). It was already used in the analyses of expression
patterns of introgressed haplotypes in the recent studies conducted by McCoy et al. (2017) and
Dannemann et al. (2017). The future population genetic analyses should apply the extension of
this across-tissue rationale to multiple populations from different ethnic backgrounds to provide
a comprehensive picture of the physiological mechanisms underlying adaptation to
environmental pressure and the maintenance of homeostasis.

In the case of new methods, the challenge for the future will be to develop robust
statistical models and computational methods for detecting selection, quantifying the frequency
of adaptive introgression more widely and understanding the circumstances where it is likely to
play a predominant role in adaptation. An exciting future prospect is that our interpretations of
observations in nature will be aided by simulation studies (Harris and Nielsen 2016) and
empirical studies of the consequences of introgression for phenotype and fitness (McCoy et al.
2017). In this context, there are no accurate estimates of the timing of most of the signatures of
selection now being detected in the human genome (lactase persistence as an exception; Field et
al., 2016; Tishkoff et al., 2007), or good methods for estimating the ages and natures of the
environments in which past selection occurred (Corbett et al., 2018). Future studies should be
able to discriminate with confidence between different time-scales of selection, for example, as a
result of the agricultural revolution 8,000—10,000 years ago or the industrial revolution 100-300
years ago.

In conclusion, the integration of all of these datasets into a clinical, epidemiological, and
population genetics framework will provide new insights on the history of adaptations in the
genus Homo, and the ways our genetic and non-genetic makeup, together with changes in our

environment and cultural behaviors, influence phenotypic variation in both health and disease.
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