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Abstract: In this paper, we investigate an animal-human cohabitation problem with the help
of machine learning and fiber-wireless (FiWi) access networks integrating cloud and edge (fog)
computing. We propose an early warning system which detects wild animals nearby road/rail
with the help of wireless sensor networks and alerts passing vehicles of possible animal crossing.
Additionally, we show that animals” detection at the earliest and the related processing, if possible, at
sensors would reduce the energy consumption of edge devices and the end-to-end delay in notifying
vehicles, as compared to the scenarios where raw sensed data needs to be transferred up the base
stations or the cloud. At the same time, machine learning helps in classification of captured images
at edge devices, and in predicting different time-varying traffic profiles— distinguished by latency
and bandwidth requirements— at base stations, including animal appearance events at sensors, and
allocating bandwidth in FiWi access networks accordingly. We compare three scenarios of processing
data at sensor nodes, base stations and a hybrid case of processing sensed data at either sensors or
at base stations, and showed that dynamic allocation of bandwidth in FiWi access networks and
processing data at its origin leads to lowering the congestion of network traffic at base stations and
reducing the average end-to-end delay.

Keywords: Fiber-wireless networks; edge (fog) computing; sensors; machine learning, ZigBee.

1. Introduction

With every passing year the animal habitat is shrinking, and new infrastructures like highways,
railways, etc. are built across densely forested areas to connect cities. Thus, wild animals often stray
into human habitats, cross roads or rails, and sometimes results into deaths of humans as well as
animals due to various reasons, including non-intentional like animal-vehicle collision. Apart from
Asia and Africa, where animal-human conflict is common [1], according to a statistic [2] in Germany
alone 194,410 animals were involved in animal-vehicle collision in the years 2015-16. Even though the
technological advancements in the computing and networking are today utilized to build smart cities,
rails, etc., these systems have not been considered for animal-human cohabitation [3]. Various sensors
such as infrared cameras, optical fiber sensors, radars, etc. could be added to the smart hot zones
nearby the road/rail track or adjoining areas (to human habitation) to detect the movement of animals
and warn humans/vehicles in advance for a likelihood of animals forage. Nevertheless, there are a
few notable works that studied some aspects of the animal-human cohabitation problem [1,4-10]. A
smart fault detection system presented by [4] in Sri Lanka was proposed to detect breakages in electric
fences, which keeps wild elephants away from humans in order to protect both humans and animals.
Similarly, a wireless sensor network (WSN) system that uses passive nodes and infrasonic sounds was
deployed in India, as reported by [5] to deter elephants from crossing railways. The use of infrared
sensors and seismic sensors was proposed in [6] for detecting wild elephants entering villages. A new
WSN system proposed by [7,9] was developed to protect both animals and humans by alerting drivers
about possible wildlife crossing. Recently, [10] uses a wireless sensor network to collect information
about animals’ behaviors using a neural-network-based classification algorithm, which leads to lower
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power consumption and better behavior monitoring. Although past work [1,4-10] has tackled the
issues of animal monitoring or a warning system, a study of resource usage at edge/access as well as
higher layers such as a so-called fog and cloud layers (including base stations, mini clouds and the
cloud), with a smart management system for animal-human cohabitation has not been considered yet.

To take advantage of today’s smart systems to integrate early warning systems, we consider three
recent trends: fog-to-cloud distributed computing, artificial intelligence methods, and fiber-wireless
(FiWi) networks. With fog-to-cloud distributed computing, we can intelligently store, process and
communicate among various layers of edge, fog and cloud [11]. The ability of fog computing to process
data locally is critical for early warning system which is latency-sensitive. Artificial intelligence (AI)
techniques, such as machine learning, would on the other hand help alleviate network congestion by
processing the raw data at Al-enabled edge devices and transmitting only useful information to fog
nodes (e.g., base stations) using its inbuilt capabilities of learning, analysis and decision making [3,12].
For instance, a small computing edge device, e.g., Raspberry Pi, integrated with global positioning
system (GPS), camera and other sensors could run customized Al algorithms to transfer only relevant
data to the cloud, which could reduce the overall energy consumption in the data capturing, processing
and transmission. Finally, we propose to integrate the concept of passive optical and wireless networks,
known as fiber-wireless (FiWi) networks, to build an early warning system network. This is because
passive optical network (PON) is economical not only to provide broadband services, but also an
access to the next generation (5G) mobile networks.

In this paper, we propose and study an early warning system using the “things"-fog-cloud system
comprising of sensors or Internet-of-Things (cameras, optical fiber sensors), base stations (BSs) and the
cloud. In the proposed system, we first detect movements of animals at sensor nodes, then transfer
sensor data to fog nodes (at BSs) over wireless sensor aggregation networks, and finally to the cloud for
further processing over passive optical network (PON). The information processed is then distributed
to humans (or vehicles) that are living (or passing by) areas of animal habitats. Since an early warning
system is a latency-critical application, thus the main question we try to answer is whether to transfer
all data to higher layers for better inference (with respect to classification or alert accuracy) or to process
data at edge devices before transferring to the fog nodes. At the same time, however, processing
of data at its origin, i.e., edge devices (that would result in transferring lesser data) could result in
false alarms being generated due to the limited store, compute and processing power of edge devices.
Thus, first we try to find a trade-off between communication cost and computation/processing
cost through an experimental setup by showing the average amount of current drawn (or energy
consumed) during image capturing, processing and transmission. Then, we show the trade-off between
end-to-end latency (time between animal appearance to notification) and data volume transferred
for each animal detection event in our distributed computing and Al-enabled early warning system
through a simulation.

The rest of this paper is organized as follows. Sections 2 and 3 briefly describe the suitability of
FiWi networks and machine learning, respectively, in the proposed animal-human cohabitation system.
Section 4 shows the communication and computation costs through experimental measurements. We
describe implementation details of an early warning system in Section 5, and evaluate the performance
through a simulation approach in Section 5.2. Finally, we conclude the paper in Section 6.

2. FiWi Networks

The dependency on cloud-based services is growing, and so is the amount of network traffic from
Internet-of-Things (IoT) devices to the cloud, and vice versa. Thus, hybrid fiber-wireless networks
presents a viable solution to ensure high capacity, high flexibility and low-cost broadband access to
Cloud-based services [13]. A typical architecture of a FiWi network is an integrated passive optical
network (PON) and wireless networks, where each optical network unit (ONU) is connected to several
wireless nodes (e.g., sensors, smartphones) through a wireless gateway (e.g., base station). Fig. 1
illustrates the envisioned FiWi architecture that integrates passive optical network (PON) and wireless
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Figure 1. An architecture of FiWi network to carry cellular, FTTx, and animal traffic; and applications
of Al techniques in different network subsystems are shown.

sensor networks (WSNs), and shows an example of network subsystems in all three layers: edge
(sensors), fog (BSs, ONUs), and the cloud. As a main block of a FiWi network, a PON consists of an
optical line terminal (OLT) at the service provider’s central office, passive splitter and optical network
units (ONUs). An OLT is a terminal equipment that includes a gateway router to connect PON to the
fiber backbone or core networks. Additionally, its main function is to define transmission window and
allocate bandwidth to optical network units (ONUs) which are near the end users. ONUs are expected
to serve heterogeneous traffic of end-devices, since they would connect to wired, e.g., fiber-to-the-home
(FTTH) subscribers, and wireless traffic through BSs in the 5th generation mobile networks. A single
or a group of passive splitters allows to share a PON network among many end users by means
of splitting power in Ethernet PON and/or demultiplexing wavelengths in wavelength-division
multiplexing (WDM) PON .

In this paper, we use orthogonal frequency-division multiplexing (OFDM)-PON architecture,
where each ONU processes only its assigned fraction of the OFDM spectrum generated by the OLT. This
is because of its known better performance in terms of latency and synchronization compared to other
PON technologies [14]. Also, dynamic bandwidth allocation techniques used in OFDM-PON fully
exploit the spectrum flexibility. This motivates us to use the system such that we allocate subcarriers’
bandwidth based on the traffic volume of each class (cellular, FTTH and animal) within each ONU.
At the same time, however, segregation of bandwidth requires the classification and prediction of
traffic volumes, which in fact can be done through Al techniques. Various Al-based applications can
be envisioned in Fig. 1, including the management of network devices and bandwidth allocation. For
instance, instead of running a centralized bandwidth management of PON subsystems at the cloud,
a central office (OLT) could dynamically allocate spectrum in PON subsystems based on the traffic
predicted at its ONUs. This would help improve the bandwidth management and also latency.

In Fig. 1, wireless sensor nodes (edge devices) form an aggregation network along the road (e.g.,
to mimic a point of human-animal conflict) and they are wirelessly connected with the so-called sinks,
denoted as base stations (BSs). Whenever a WSN node detects animals” presence, it tries to send
sensed data (e.g., picture/video) of its surroundings to a nearest BS. The energy aspect is also relevant
for systems that are not connected with power grid and are, for example, either battery-based, or
solar-powered. Another advantage of Al techniques is that it could also relieve the network congestion
by avoiding the unnecessary data transfers, which also improves the end-to-end delay of those transfers
that need to go over the network. On the other hand, a limited processing and storage resource pool at
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sensors would also have negative impact on the accuracy of classification and prediction. In contrast, a
cloud-based infrastructure connected to the ONUs could deduce information from the animals’ raw
data with more accuracy in classification and prediction. This makes it interesting to investigate the
role and placement of Al-based methods in animal welfare and human-animal cohabitation systems
based on FiWi.

3. The Role of Machine Learning

Al techniques, especially machine learning (ML), are mainly used in networking to make a
distributed computing system intelligent enough to take decision on its own on various aspects, for
example changing device setting based on collected and processed data; how much data to transmit
from edge devices to fog nodes and/or to the cloud, etc. Machine leaning would help particularly in
identification of animals’ movement using image classification algorithms, and predicting animals’
movement or traffic in general, correlate it with human movement and traffic, or classifying animals’
behavior. Additionally, based on the network data traffic predicted, a hybrid approach of processing
and communication could be used. In other words, animals” data could be processed at the source
sensor (or end device) when the animal movement is predicted as more likely to happen. On the
other hand, when animal movement is less likely to happen, during that period, most of the data
collected could be transferred to mini-cloud (fog) nodes for more accurate processing. On the other
hand, and as previously mentioned, attention needs to be paid to the accuracy of the classification and
the prediction, which is a challenge.

Machine learning has also been successfully used in optical transmission systems and networks,
as presented in a survey [12]. In our OFDM-PON architecture, machine learning could also split
optical resources flexibly based on predicted traffic demands of heterogeneous services. For example,
in PON, upstream flow scheduling at ONUs is more critical due to lower data rate (e.g., 2.5 Gb/s) as
compared to downstream traffic at OLT with higher data rate (e.g., 10 Gb/s). Moreover, ONU needs to
allocate OFDM subcarriers in OFDM-PON or time slot in Ethernet PON to various types of application
demands keeping their requirements (latency, bandwidth) in mind. As observed in the literature,
peak and low of various traffic patterns occur at different times during a day. Thus, ML-based traffic
prediction could allocate just-enough bandwidth to data traffic demands [15]. In 5G, for example,
cellular connections would need to satisfy latency in the order of milliseconds. Therefore, a set of
dedicated but flexible frequency bands and slots must be assigned for latency-sensitive applications.
More importantly, lightweight ML image classification models, such as MobileNet [16], can be run
on power and resource constrained end devices, and they could be helpful in identifying animals’
presence or absence, and other related information.

To address the issue of the said granularity of traffic patterns, we consider multi-class (three)
traffic scenarios and use machine learning-based traffic prediction to allocate bandwidth as per traffic
demands of each class. Specifically, we use a long short-term memory (LSTM) network model- a
recurrent neural network with LSTM units [17], for the time-series traffic prediction, since it is capable
of learning long-term dependencies. More importantly, it avoids vanishing gradients, which is a
common problem in machine learning algorithms where the gradient of error functions decreases
quickly without improving the learning process. To get a good prediction, a machine learning algorithm
needs to be trained with many and different traffic patterns, and depending on the number of hidden
layers, neurons per layer and training datasets, it predicts (also classify) the future events. In our
approach, we first generate a time-varying traffic (real data) using the superposition of sinusoidal
functions with different frequency components for training (67%), and for validation and testing (33%)
of LSTM networks. We used an input layer, a hidden layer with 4 LSTM blocks or neurons, and an
output layer for prediction.

In Fig. 2, a small fraction of real data and predicted data during training and testing are shown
to illustrate the design. We can see that the LSTM neural network-based prediction is very good,
as root mean square errors during training and testing are 3.04 and 3.08 respectively. Thus, LSTM
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Figure 2. A fraction of real data and predicted data.

networks can learn various traffic patterns to predict the future traffic, which is the reason why we
propose to use it in allocating spectrum proportionately. Additionally, for animal identification on
end devices (Raspberry Pi) connected with sensors, we use a convolutional neural network-based
MobileNet model, which is described in the next section.

4. Computation vs. Communication: an Expremental Approach

With the advances in edge or fog computing and acknowledging the fact that end devices are
mostly power and resource constrained, even though they are capable of some amount of computing
and processing, an important aspect in a Internet-of-Things (IoT)-fog-to-cloud system is to analyze
the trade-off between computation cost and communication cost in terms of energy consumption at
end devices. In this section, we show this trade-off through an experimental setup and measurement
results. Throughout this paper, we assume that an edge (end) device, e.g., Raspberry Pi, has some
computational capability and it can also communicate to other edge devices or upper layer nodes, e.g.,
base stations or servers. The end devices are integrated with various sensors.
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Figure 3. An experimental setup of a single-hop communication between two ZigBee (XBee)
transceivers, one configured as an end device (WSN node) and another as a coordinator (sink). A
Raspberry pi (R Pi) as an end device is integrated with an IR camera, a PIR sensor, and a XBee

transceiver.

4.1. Experimental Setup and Measurement Results

The experimental setup is shown in Fig. 3. A Raspberry Pi3 (model B) as an end device is
connected to a passive infrared (PIR) sensor to detect the movement of animals and used to wake up
a 5 megapixel (MP) IR camera module, which captures animals’ images. Additionally, We utilize a
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low-power ZigBee communication protocol to transfer data between an end device and a server (PC).
For which, we use two XBee transceivers, one is configured as an end device and connected to the
Raspberry Pi, and another is configured as a coordinator and it is connected to a server situated a few
meters apart. Since the Raspberry Pi can compute and process images with the help of an ML image
classification algorithm, we evaluate two scenarios: i) capture-transfer, and ii) capture-process-transfer.
The first scenario captures an image and then transfers its binary data to the server. On the other hand,
the later scenario captures an image, processes it to detect whether animals are present or not and
their types, and finally it transfers only a message about the animals’ presence in its vicinity. For the
image processing and classification we install a pre-trained model (trained on a PC) using TensorFlow
[16] on Raspberry Pi and run a convolutional neural network (CNN) algorithm whenever an image
classification is needed (e.g., second scenario). The current measurement setup is shown in Fig. 3. We
use an oscilloscope to measure the amount of current drawn by the Raspberry Pi module. The current
is measured from the voltage drop across a very low shunt resistor (1 Ohm), which is connected in
series to the Raspberry Pi module.
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Figure 4. Average drawn current: (a) in capturing an 89 Killo bytes (KB) image, (b) for transmission
of 89 KB image, (c) for classification of a captured image of the same image, (d) for transmission of
processed data of size 12 bytes.

To find the trade-off between communication and computation costs in terms of average
consumption of energy, let us evaluate individual parts associated with these scenarios. Fig. 4(a) shows
the average current required to capture an 89 Kilobytes (KB) image, which includes the triggering by a
PIR sensor. The amount of current drawn depends on various parameters: camera resolution, picture
size, color quantization, image compression (raw, jpeg, png), etc. For this measurement, we used a
5 MP camera and set it up to capture 299 x 299 pixel color images. We used jpeg as compression
format. The average time required for the camera to capture an 89 KB image is around 0.84 second.
The second part in this scenario is transmitting the image captured in the previous step. The energy
consumed (or current drawn) by the system during transmission varies depending on the amount of
data transmitted, distance between the sender and the receiver, and the selected working mode since
the XBee transceiver module may work on different modes: coordinator, router or end device. In this setup
we evaluate a single-hop transmission, i.e., one XBee as an end device (integrated with the Raspberry
Pi) and another as a coordinator (attached to a PC by a USB connector). The right part of the Fig. 4(b)
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shows the average current drawn by the Raspberry Pi module by transmitting an 89 KB image. The
transmission time for this operation is around 19.33 seconds, which corresponds to an average data rate
of ~ 37 Kbit/s, which is lower than the maximum data rate that a ZigBee (or IEEE 802.15.4) end device
can transfer, i.e., 250 Kbit/s in 2.4 GHz spectrum band. Therefore, the energy consumed in the first
scenario, the capture-transfer, at 5V is approximately given as 5 x (0.44 x 0.84 + 0.39 x 19.33) = 39.5],
which uses the average current 0.44A for image capturing, and 0.39A for transmission.

For the second scenario, the capture-process-transfer, we process a captured image before
transmitting some relevant information, thus, Fig. 4(c) shows the average current required to process
an image. For the image classification (processing), we used one of the widely used CNN models on
constrained devices: MobileNet. MobileNet is a small size CNN that can support different input image
resolution. The classification accuracy improves with higher resolution, however, at the expense of
more processing time. The model is retrained to recognize two classes of images: the presence or the
absence of an animal inside the captured image. The classification time for an 89 KB image is around
6.8 seconds. Finally, a 12 bytes data message about the presence or absence of animals and their types
are transferred from the end device to the server, for which the average drawn current is shown in 4(d),
which takes 0.05 second. The total runtime for the three operations shown in Figs. 4(a), (c) and (d) is
around 7.6 seconds, and the energy consumed during the second scenario, the capture-process-transfer,
at5V isaround 5 x (0.44 x 0.84 + 0.44 x 6.8 + 0.40 x 0.05) = 16.9], which results in ~ 57.2% energy
saving as compare to the previous scenario. Thus, we can conclude that the communication cost in
power constrained devices could be very high if they require to transfer more data. Therefore, it is
better to compute and process at the end devices, if possible, and transfer only relevant information to
the server. It should be noted that the energy consumption can be further reduced by processing data
near the sensor nodes using lightweight ML algorithms, such as support vector machine, however, the
classification accuracy would be reduced, which might result in generating more false alarms [18].

5. An Early Warning System: a Simulation Approach

In this section, we present a framework for an early warning system, describing its implementation
details, and evaluate it by a simulation approach.
5.1. Implementation Details

To analyze the performance of the proposed network system, we design the following subsystems,
earlier illustrated in Fig. 1: (i) animal detection; (ii) message transfer to fog nodes (BSs); (iii) alert
transmission to vehicles/humans, when necessary; and (iv) bandwidth allocation subsystem in PON,
located between fog nodes and the cloud. Let us now present and discuss each subsystem one-by-one.

Animals’ movement?

Y
Capture images (360°)
Al enabled?

N

Transfer Data to BS

Process data

Figure 5. An implementation of program flow chart.

Animal detection subsystem is the most crucial part of the animal-human cohabitation system.
As energy is a major issue in remote sensors, only a few sensors need to continuously sense the effects
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for detection of animal crossing, like pressure, vibration etc. At the same time, disturbances caused by
the wind and other events that can create false alarms (such as large birds) need to be differentiated
from relevant animal events. It has been shown earlier that fiber- or infrared-based sensors are most
suitable for this purpose [1]. Once animals are detected, the animal triggering sensors would wake
up other sensors to capture mainly images, which then needs to be processed to find animals’ size,
position, speed, numbers, direction and other specific features. As we discussed before, the processing
of raw data either at origin (end devices) or at higher layers (fog or cloud) depends on the capability of
sensor nodes as well as on network ability to transfer data without congestion. Even though a capable
end-device with various sensors could process the raw data, in case of images, the processed data
need to be send to fog nodes (see Fig. 5), which can reprocess it to decide whether to generate an alert
message or not.

The second subsystem is responsible for transfer of the processed or unprocessed data to fog (BS)
nodes. For this purpose, whenever a sensor detects movements of animals, it tries to send raw data
(e.g., pictures, GPS signal) or just relevant (processed) data to a sink node, i.e., BS. Whether to send raw
or only relevant data depends on the Al running capability of end devices. We utilize a low-power
ZigBee communication protocol to transfer data from sensor nodes to BSs, which specifies a maximum
250 kb/s data rate and transmits 128 bytes per packet over unlicensed spectrum of 2.4 GHz. As the
sensor nodes are assumed to be deployed along rail/road track, and ZigBee utilizes the shortest path
to send a packet from a sensor to a BS, we use tree topology in Riverbed (earlier known as OPNET)
Modeler simulator [19]. The simulator models three different kind of nodes: End Devices, Routers and
Coordinators. End Devices only act as sensor nodes without routing capabilities, while routers can
play both sensor and forwarding roles. Finally, coordinators, acting as sinks, are responsible for the
connection among all nodes, and are also capable to act as sensor or router nodes.

0
/ :
/! i BN
v
----- : -
== e = ===
End Device 1 Router 1 End Device 2 Router 2 End Device 3

Figure 6. WSN topology per BS simulated by Riverbed Modeler [19]

The third subsystem is dedicated to alert transmission to humans, and to this end, it needs to be
designed to process the data at fog nodes (BSs) and to trigger the alarm (notification) signal, when
necessary. Although the alert signal is generated at BSs, animals’ related traffic still needs to be sent to
the cloud for long-term statistics and efficient execution of notification messages by sharing them with
neighboring BSs. Therefore, we assume that the fog nodes (BSs, ONUs) locally connect to servers or
a mini-cloud for processing and classification of various traffic (cellular, FTTH, animal). In this way,
the mini-cloud is also the part of a fog computing system, able to replacing the cloud functions in the
system, which is fog’s salient feature.

As can be seen in Fig. 1, each BS is connected directly to an ONU through Gigabit Ethernet
interface, and the OLT schedules the ONU'’s traffic by allocating required bandwidth as per their
overall traffic demand. However, it should be noticed that various types of traffic share the ONU
upstream bandwidth. Thus, as mentioned in Section 3, the forth subsystem utilizes the predicted
traffic to dynamically allocate bandwidth of OFDM subcarriers per traffic class at ONUs. A new
service request is routed over an existing lightpath that has free sufficient bandwidth, otherwise a new
lightpath is created to carry traffic of a new request if sufficient resources (spectrum, transceiver) are
free. It should also be noted that the cellular and other connection requests are blocked if resources
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are not sufficient to satisfy the demand. The exception to this is animals’ traffic, as it needs to be
transferred to the cloud for long-term statistics. In our approach, animal’s traffic is transferred either
immediately or whenever resources are free, therefore we assume that a queue can be maintained at
ONUs/BSs with sufficiently large size to store animals’ data.

Table 1. Different parameters for the simulation

Value (for different line rates)

Parameters Cellular FITH Animal
Bit rate (in Gb/s) 1 10 0.00025

Arrival rate
exp(Ay) exp(Az) exp(A3)

(Requests per second)
Holding-time
(in minutes)

exp(u; = 10) | exp(pp = 10) | 0.00067

5.2. Simulation Results

The scenario we analyze using the Riverbed Modeler simulator consists of three end-devices and
two routers per coordinator (BS), as shown in Fig. 6. End-devices act as sensor nodes, and routers
act as relay as well as sensors, detecting the animal presence and capturing images of surrounding
to deduce animal information, including animal position, movement direction, speed etc. Data is
split into packets of 128 bytes payload (ZigBee), which are queued for transmission. The packets are
consecutively forwarded to the coordinator acting as a sink (BS). We assume OFDM-PON as an optical
access network with 16 ONUs, and a WSN network with 5 sensors is connected to each base station
with shortest routing path, and each base station is directly connected to an ONU. The WSN topology is
an aggregation-based network, as shown earlier in Fig. 1, where the BSs act as sink nodes. Wireless link
capacity is assumed to be 250 kilobits per second (Kbps) in ZigBee protocol. We assume fiber capacity
as 4 THz in OFDM-PON, which is divided among 320 spectrum slices, each with granularity of 12.5
GHz. Each spectrum slice could support a maximum of 25 Gb/s using QPSK modulation format. All
16 ONUs share equal proportion of fiber bandwidth, i.e., each ONU can reserve 20 spectrum slices.

We evaluate the performance of our animal-human cohabitation system by means of latency
observed (i) with Al, that transfers the processed data from sensors to BSs (ii) without Al, that transfers
raw sensed data, and (iii) the so-called hybrid approach that transfers most of the data during low traffic
condition and only relevant information during busy hour.
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Figure 7. Real traffic vs. predicted traffic of three classes of services, namely cellular, FTTH and animal
are shown in (a), (b) and (c), respectively.

We consider three classes of services: cellular (class-1), FTTH (class-2) and animal traffic (class-3).
Fig. 7 illustrates real and predicted traffic of these three classes. The simulation parameters are listed
in Table 1. It should be noted that traffic arrival rate varies with time ¢, and the traffic per class is
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calculated as Try(t) = (N * Ar(t)/px), where N is the number of class-k traffic sources, Ay is the class-k
arrival rate at the source of traffic, and y is mean holding (service) time of class-k connections at ONUs.
Notice that we kept the mean holding time of animal traffic arriving from sensors as constant (40
milliseconds), since the data volume (processed) of each animal connection that needs to be transferred
from ONU s to the central office is fixed as 1 KB and the bit rate is 250 Kbit/s. However, remember
that the latency required to transmit sensor data from edge devices to BSs mainly depends on the
congestion in WSN networks. Furthermore, we are focused on upstream reservation, therefore, all
results presented here are based on upstream reservation from edge devices to BSs to central office.
We maintain a sufficiently large fixed size queue to store data packets of animal class at each ONU.
Other latency-sensitive classes of traffic (cellular and FTTH) are either served immediately or blocked.
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Figure 8. Average end-to-end packet delay (latency) from sensors to BSs.

Fig. 8 illustrates the average per packet delay (latency) between sensors and BSs of animal traffic
under three data transmission scenarios: 1 KB, 100 KB and hybrid (i.e., a mix of 1 and 100 KB) using
ZigBee protocol. These scenarios also depict the case of the data processing at different layers: edge
(sensors), fog (BS) and a hybrid approach, i.e., processing either at the edge or at BSs. We could also
compare these scenarios with the cloud processing, where raw sensed data is sent to the cloud for
the processing and decision making. However, we ignore this scenario, as we did not simulate the
core networks and the cloud. But it is obvious that the latency obtained in the cloud processing will
be much higher than that of the other three scenarios presented here. Furthermore, we assume that
the given specified data volume is transmitted for every animal detection event at sensors. In the
first scenario, we assume that sensors are attached to some processing unit, thus they could run a
simple machine learning algorithm to detect and classify animals’ related data and transmit only 1 KB
of data (or 8 packets) for every detection. In the second scenario, we assume that sensors leave the
processing task to the fog layer (BSs) and transmit 100 KB data (or 800 packets) to BSs. The hybrid
case, on the other hand, takes predicted animal traffic into the account to decide whether to process
data at the edge layer (sensors) or at the fog layer (BSs). The decision threshold is shown by a black
dotted line in Fig. 7(c), and it could be set or even varied by monitoring the congestion or by predicted
animal traffic. In the hybrid case, we enforce processing at sensor nodes (1 KB transmission) when
the predicted arrival rate is higher than the threshold, otherwise transmit 100 KB data per animal
detection. From Fig. 8, we observe that when the raw data is processed at end devices, and only 1
KB data is transferred to BSs for per animal detection event then the average packet latency varies
between 26 to 30 milliseconds, thus it can be deduced that WSNs are not congested. However, the
effect of congestion on packet latency can be seen in the 100 KB transmission case, and the latency
increases by two order of magnitude than that of the prior scenario (1 KB transmission). Interestingly,
the average packet latency in the hybrid scenario can be reduced from a few seconds to milliseconds
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during the congestion hours of the day by applying an intelligent control mechanism using the traffic

prediction.
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Figure 9. Average notification time in seconds to alert vehicles.

Fig. 9 shows the approximate average notification time, which is the time difference between
animal detection and the alert message disbursed to the passing vehicles/humans. The notification
time is calculated as the sum of data transmission time, average packet latency and processing time.
We ignore the delay in disbursing alert messages from BSs to passing vehicles, since it is negligible as
compared to other delays and remains same in all scenarios. Furthermore, we assume that processing
times at sensors and BSs are 5 seconds and 1 second, respectively. ZigBee transmits 128 bytes data per
packet at a maximum rate of 250 Kbit/s, thus the total transmission times of 1KB and 100 KB data are
approximately 0.04 second and 4 seconds, respectively. As can be seen in Fig. 9, the notification time in
case of transferring raw data (100 KB) varies from 6.5 seconds to 8 seconds as compare to transferring
just relevant information (1 KB), which is around 5 seconds. It should be noted that even though the
processing time at the edge layer (5 seconds) is selected four times higher than that of the fog layer
(1 second), it is advisable to process data at the edge layer and transfer only relevant data to higher
layers during peak hours (dawn and dusk) as done in the hybrid processing, especially in WSNs with
low power communication protocol (e.g., ZigBee), since the packet latency and the transmission time
are the main contributors in the notification time.

Finally, Fig. 10 illustrates the normalized fraction of dropped requests due to congestion of cellular
and FTTH traffic with and without machine learning-based traffic prediction and bandwidth allocation,
i.e., dynamic and static bandwidth allocation (DBA & SBA) in OFDM-PON. Without machine learning,
the bandwidth allocated to each ONU is statically divided among the three classes of traffic based on
the proportion of their long-term average traffic per day. With machine learning, the system divides
bandwidth based on the predicted traffic for every hour, thus it exploits the dynamic assignment
of subcarriers. Furthermore, the animal traffic is very low as compare to cellular and FITTH, thus
animal (class-3) packets are stored in enough memory when they could not be sent to the central office
immediately. Thus, there is no dropped packets for the class-3 traffic at ONUs/BSs. The normalized
fraction of dropped requests of a class in an hour is calculated as the ratio of blocked requests in
an hour and the maximum requests generated per hour during a day. In Fig. 10, we can see that
Al-enabled dynamic management of optical resources decreases the fraction of dropped connections
during the peak hours of both traffic classes by assigning proportional bandwidth required for the
traffic classes, thus effectively utilizing the statistical multiplexing gain. More importantly, the gain for
one class (FTTH) could come at the cost of increasing the fraction of dropped connections for other
class (cellular) during a short-interval in a day, and it depends on the accuracy of predicted traffic.
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Figure 10. Fraction of blocked requests of cellular and FTTH traffic.

6. Conclusion

In this paper, we proposed a novel early warning system framework to improve animal-human
cohabitation. The proposed system is fiber-wireless-based and could detect wild animals nearby
road/rail and transfers sensed data to base stations in order to generate alert messages for passing
vehicles or humans, if necessary. We compared three scenarios of processing data at sensor nodes, BSs
and a hybrid case of processing sensed data at either sensors or at BSs depending on the congestion
in WSN, and showed that dynamic allocation of bandwidth in access networks and processing data
at its origin could eventually lead to lowering the congestion of network traffic at base stations and,
most importantly, reducing the average end-to-end delay. Furthermore, we showed that the energy
consumption can be reduced by processing data at the sensor nodes. We believe that this kind of system
can be integrated into ongoing smart city and smart transportation infrastructure at no significant
additional cost, while improving quality of life for humans and animals.

Author Contributions: This work has been carried out in collaboration between all authors. S. K. Singh conceived
and designed the idea, the architecture and the experiments; S. K. Singh and F. Carpio developed the experimental

setup and simulation framework for the early warning system; A. Jukan supervised the overall development; and
S. K. Singh and F. Carpio with the supervision and coordination of A. Jukan wrote the paper.

Funding: This research received no external funding.
Acknowledgments: The authors would like to thank Mortadha Dhkar for setting up the experiments.

Conflicts of Interest: The authors declare no conflict of interest.

1. Suman, P; Gupta, P; Kassey, P.B.; Saxena, N.; Choudhary, Y.; Singh, V.; Radhakrishna, M. Identification of
trespasser from the signatures of buried single mode fiber optic sensor cable. India Conference (INDICON),
2015 Annual IEEE. IEEE, 2015, pp. 1-6.

2. http:/ /www.jagdverband.de/content/wildunfallstatistik.

3. Jukan, A.; Masip-Bruin, X.; Amla, N. Smart Computing and Sensing Technologies for Animal Welfare: A
Systematic Review. ACM Computing Surveys (CSUR) 2017, 50, 1-27.

4. Tennakoon, E.; Madusanka, C.; De Zoysa, K.; Keppitiyagama, C.; Iyer, V.; Hewage, K.; Voigt, T.
Sensor-based breakage detection for electric fences. Sensors Applications Symposium (SAS), 2015 IEEE.
IEEE, 2015, pp. 1-4.

5. Mathur, P; Nielsen, R.H.; Prasad, N.R.; Prasad, R. Wildlife conservation and rail track monitoring using
wireless sensor networks. Wireless Communications, Vehicular Technology, Information Theory and
Aerospace & Electronic Systems (VITAE), 2014 4th International Conference on. IEEE, 2014, pp. 1-4.

6. Nakandala, M.; Namasivayam, S.; Chandima, D.; Udawatta, L. Detecting wild elephants via WSN for
early warning system. Information and Automation for Sustainability (ICIAfS), 2014 7th International
Conference on. IEEE, 2014, pp. 1-6.


http://dx.doi.org/10.20944/preprints201806.0281.v1
http://dx.doi.org/10.3390/jsan7030035

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 June 2018 d0i:10.20944/preprints201806.0281.v1

13 0f 13

7. Viani, F; Rocca, P; Lizzi, L.; Rocca, M.; Benedetti, G.; Massa, A. WSN-based early alert system
for preventing wildlife-vehicle collisions in Alps regions. Antennas and Propagation in Wireless
Communications (APWC), 2011 IEEE-APS Topical Conference on. IEEE, 2011, pp. 106-109.

8. Zhang, J.; Luo, X.; Chen, C.; Liu, Z.; Cao, S. A wildlife monitoring system based on wireless image sensor
networks. Sensors & Transducers 2014, 180, 104.
9. Viani, F; Polo, A.; Giarola, E.; Robol, E; Benedetti, G.; Zanetti, S. Performance assessment of a smart road

management system for the wireless detection of wildlife road-crossing. Smart Cities Conference (ISC2),
2016 IEEE International. IEEE, 2016, pp. 1-6.

10. Dominguez-Morales, J.P; Rios-Navarro, A., Dominguez-Morales, M.; Tapiador-Morales, R.;
Gutierrez-Galan, D.; Cascado-Caballero, D.; Jiménez-Fernandez, A.; Linares-Barranco, A. Wireless sensor
network for wildlife tracking and behavior classification of animals in Dofiana. IEEE Communications
Letters 2016, 20, 2534-2537.

11. Masip-Bruin, X.; Marin-Tordera, E.; Tashakor, G.; Jukan, A.; Ren, G.J. Foggy clouds and cloudy fogs: a real
need for coordinated management of fog-to-cloud computing systems. IEEE Wireless Communications 2016,
23,120-128.

12. Mata, J.; de Miguel, I; Durdn, R.J.; Merayo, N.; Singh, S.K,; Jukan, A.; Chamania, M. Artificial intelligence
(AI) methods in optical networks: A comprehensive survey. Optical Switching and Networking 2018.

13. Ranaweera, C.; Wong, E.; Lim, C.; Nirmalathas, A. Next generation optical-wireless converged network
architectures. IEEE Network 2012, 26.

14. Habel, K.; Koepp, M.; Weide, S.; del Rosal, L.E; Kottke, C.; Jungnickel, V. 100G OFDM-PON for Converged
5G Networks: From Concept to Realtime Prototype. Optical Fiber Communication Conference. Optical
Society of America, 2017, pp. W1K—4.

15. Singh, S.K.; Jukan, A. Machine-Learning-Based Prediction for Resource (Re) allocation in Optical Data
Center Networks. Journal of Optical Communications and Networking 2018, 10, D12-D28.

16.  https://www.tensorflow.org/mobile/tflite/.

17. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural computation 1997, 9, 1735-1780.

18. Mahdavinejad, M.S.; Rezvan, M.; Barekatain, M.; Adibi, P.; Barnaghi, P.; Sheth, A.P. Machine learning for
Internet of Things data analysis: A survey. Digital Communications and Networks 2017.

19. Riverbed. Riverbed Modeler Academic Edition release 17.5 A PL7, 2014.


http://dx.doi.org/10.20944/preprints201806.0281.v1
http://dx.doi.org/10.3390/jsan7030035

	Introduction
	FiWi Networks
	The Role of Machine Learning
	Computation vs. Communication: an Expremental Approach
	Experimental Setup and Measurement Results

	An Early Warning System: a Simulation Approach
	Implementation Details
	Simulation Results

	Conclusion
	References

