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Abstract: In this paper, the Fourier-based synchrosqueezing transform (FSST) method is
introduced into the power system to realize low frequency oscillation identification. Firstly, the
modal components of low frequency oscillation signal are separated by FSST, and calculating the
instantaneous parameters including magnitude, frequency and phase of every mode component
with Hilbert transform. Then, calculating the damping ration of every modal component based on
above parameters and derived the formulas. Thus, it realized effective identification of of modal
parameters of low frequency oscillation signal. The experimental results of simulated data and
16-generator system demonstrate the validity and correctness of the FSST method. Comparing with
the classical Prony method shows that the FSST method is better in the identification accuracy
when the low frequency oscillation signal is polluted by noise. Finally, the effectiveness of the FSST
in Actual power grid is verified based on the real data from Sichuan power grid.

Keywords: Fourier-based synchrosqueezing transform; low frequency oscillation; instantaneous
parameters; damping ratio

1. Introduction

With the increase of the scale of the power grid, the increase of long- distance transmission and
weak interconnection of electric power and the large use of fast high magnification quick excitation
device, transient stability of the power grid and voltage quality are improved but the oscillation
instability of the power system is exacerbated. These factors are likely to lead to low-frequency
oscillation phenomenon of weak damping[1-3]. In recent years, there have been many
low-frequency oscillations in power grids both at home and abroad[4], which has brought great
harm to the power system and has become the bottleneck that limits the transmission capacity of the
interconnected power grid. Stability is an important issue for large power grids, and the
identification of low-frequency oscillation can provide an effective basis for the stable operation of
power grid and damping control[5]. In recent years, the phasor measurement units(PMU) has been
widely used in power system, which provides the basis for the low frequency oscillation analysis
based on the measurement data. Because the measured data truly reflected the dynamic
characteristics of the system, the analysis method based on the measured PMU data has a broad
application prospect. Now, many methods to identify low frequency oscillations based on PMU data
have been proposed.

The existing identification methods are mainly Prony algorithm, Short-time Fourier Transform
(STFT), Hilbert-Huang Transform (HHT) and Wavelet Transform method ,etc. The Prony method
uses a linear combination of exponential functions to describe the mathematical model of sampling
data at equal interval. The Prony method is fast and accurate, but it is greatly affected by the noise,
and it can not obtain the accurate oscillation mode parameters when the signal is interference by
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noise[6-8]. STFT is introduced in [9] and [10] to analyze the power system data with noises, the
STFT algorithm is more accurate and robust but it can not completely identify the oscillation mode
parameters. HHT method is especially effective for analysis of nonlinear and non-stationary low
frequency oscillation signal [11,12] . However, in the process of HHT analysis , there will be
endpoint effects and modal aliasing, which have a great influence on the effect of identification. The
wavelet ridge method is proposed in [12,13] to process the time-varying oscillatory signals, which is
of great significance in the identification of low frequency oscillation, but this method can’t obtain
high accuracy results when extracting multi-frequency component signals.

FSST(Fourier Synchrosqueezing Transform) is a non-linear time-frequency reassigned
algorithm which is developed on the basis of Short-time Fourier Transform[14]. FSST can obtain
higher accuracy time-frequency curve and improve the modal mixing phenomenon very well by
squeezing the coefficients of short time Fourier transform in the direction of frequency. Even if the
signal to be decomposed contains multiple harmonic signals with relatively close frequencies, FSST
can still extract them one by one[15]. Moreover, the FSST has good robustness to noises. When the
multiple harmonic signal is polluted by noise, the FSST can still obtain a clear time-frequency curve
and an approximate invariant decomposition result[16]. Fourier Synchrosqueezing Transform has
been successfully applied to the instantaneous frequency calculation[17], gravitational wave
analysis[18], vibration signal analysis[19] and so on. In this paper, FSST is applied to the parameter
extraction of low frequency oscillation in power system. Firstly, the low-frequency oscillation modes
are separated by FSST. Then, the instantaneous frequency and amplitude of modal are calculated by
Hilbert transform, and the damping ratio is calculated by instantaneous amplitude and frequency.
Finally, the simulation data, IEEE 16-machine 39-node system data and measured data of Sichuan
Provincial Power Grid are tested, and compared with the identification results of Prony algorithm.
The experimental results verify the effectiveness and accuracy of the proposed method.

2. Theoretical of low frequency oscillation parameter identification by FSST

2.1. FSST decomposition of low frequency oscillation signal

When the given window function is g, the short-time Fourier transform of signal f(t) is

defined as
Vfg (t, 77) = .[R f (r)g*(t _T)efZim;(tfr)dT

Low-frequency oscillation signals f (t)often contain multiple components, and each component

has its own local feature. f (t) can be expressed as

=3 0+ 1) = A (1) cos( (1) + (1) 0

Where A (t) = A<e_ﬂkt is the instantaneous amplitude of the kth component, @, (t) =@ t+y, is

the instantaneous phase of the kth component , r(t) is noise or error and K represents the

number of signal components. It has been shown that in the time-frequency map of the Short-time
Fourier Transform, the frequency spectra of the signal is wide and the boundary is

ambiguous[14,15]. For the more complex multi-component signals, there are often severe spectral
aliasing between the STFT spectra of the component signals f, (t).

FSST is based on Short-time Fourier transform, and by refining the time-frequency curve of
STFT, the amplitude A, (t) and instantaneous frequency ¢ (t) of each component f, (t) can be
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effectively extracted. As a special reorganization method, FSST reassigns the coefficient V? (t,77) to
different points [t,®; (t,77)] in the time-frequency plane according to local properties of STFT

coefficient V7 (t,77) ( @, (t,77) denotes the instantaneous frequency of the signal at (t,77) ).

Therefore, FSST makes the time-frequency curve more detailed and clearer. The frequency
resolution is improved and the modal mixing is reduced in the time-frequency map of FSST, so the
reconstruction precision of the component signal is obviously higher.

For any point (t,77) in the result of STFT , the instantaneous frequency of the signal can be

estimated by the deriving of STFT coefficients[16]:

AL
@f(t,ﬂ)Z%ﬁtarg{vg(t,n)}:R{&}

2izVE(t,n)
where arg{Z} and R{Z} denote the argument and the real part of the complex Z
respectively, and 0, denotes the partial derivative of the function for t.

Based on the instantaneous frequency, FSST establishs the mapping from

t,n) = [t, ®, (t,n7)], and the STFT coefficient V? (t, is transformed from the "t — 7" plane to
n f\L77 £ \L77 np

the " t—a,(t,7) " plane. In FSST, the STFT coefficients in the interval
~ 1 ~ 1 . . 2
[, —EAa), w; + EA(O] with certain center frequency @; are squeezed to the center frequency

@; and obtain the FSST value T/7 (t,®) . Synchronous squeeze of STFT coefficient can achieve the

purpose of improving frequency resolution and reducing frequency mixing. In the actual

calculation, the calculation formula of FSST coefficient is:

T (t o) = Ve (t.n)olo—a; (t,7)]dy

70!
g"(0) YV a7y

where 7 is the given threshold. Comparing the time-frequency spectrums of FSST, CWT and
STFT by a time-varying signal f(t). f(t) is composed of three signals with different frequency

: 20Hz cosine signal f,(t) = c0os(40xt) in 0-0.7s, 30Hz cosine signal f,(t) = cos(607zt) in 0.3-1s,

the cosine frequency modulation signal oscillating at 80Hz f,(t) = cos[1607t —5cos(30t)] in

0-1s . f(t) is added to the Gaussian white noise with a SNR of 3dB. The noisy signal is
decomposed respectively by STFT, CWT and FSST, the time-frequency maps of three methods are

shown in Figure 1.According to figure 1, it can be seen that the time-frequency map of FSST is more
focused and clearer. Compared with STFT and CWT, the time-frequency map of FSST has higher

frequency resolution and time resolution.
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Figure 1. Spectrum comparison of cosine signal

The FSST transform is reversible. For multi-component signals, T/ (t,®) can not only
reconstruct the original signal f (t), but also reconstruct each component signal f, (t) accurately.
Suppose that (t, @ (t)) is the Kth ridge line of f (t) , the reconstruction formula of f, (t) is[14]

f®~][ T8 (t, @)d@ @

@ lo—gy (I<d}
where @, (t) which is usually calculated by ridge extraction is an approximate estimate of ¢ (t) ,

and d is the given ridge error threshold[17]. Compared with FSST and STFT (as shown in Figure
1), STFT decomposition can not achieve accurate division of the frequency band, and there are often
serious spectrum mixing and energy leakage between sub-bands. However, the frequency band of

the time-varying signal f(t) can be more accurately divided by FSST, and the spectrum mixing
between sub-bands is better weakened. Therefore, each component f,(t) can be accurately
reconstructed from different frequency spectral sub-band, and then the amplitude, frequency and
damping parameter of the component signal f, (t) can be obtained. So, this paper adopts FSST to
identify the parameters of low frequency oscillation signal of the power system.

2.2. Hilbert transform of low frequency oscillation mode components

In the low-frequency oscillation of power system, an oscillation mode component can be

expressed as:

X(t) = Ae ™ cos(awt +y) )
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where A is the initial amplitude, ¥ is the initial phase angle, A is the attenuation coefficient

and @ is the oscillation angle frequency. For continuous signal X(t), its Hilbert transform is
1 (= x(7)
y)==[ =dr @
it
Then the corresponding analytic signal is obtained as
2(t) = x(1) + jy() = a(t)e" ©)

Where «(t),0(t) are instantaneous amplitude and instantaneous phase respectively,

a(t) =x°(t)+ y*(t), O(t)=arctan Yy (6)

X(t)
1 do(t)

The instantaneous frequency is calculated as: f (t) = =————=. Comparing formula (3) and (5),it

27 dt

can conclude that

a(t) = Ae ™
ot)=wt+y
By introducing a logarithmic operator on a(t),the following equation is obtained :
Ina(t)=—At+In A )
Where Ina(t) is alinear function of time. In order to obtain the attenuation coefficient A and the

initial amplitude A accurately, the least squares fitting of the linear function is carried out to
Ina(t). Then the fitting slope is (—A) and the fitting interceptis In A.

The instantaneous phase of the analytic signal is
ot)=ot+y (8)
In order to obtain the angular frequency @ and the initial phase angle ¥ accurately , the least

square fitting of the linear function is performed to phase. Then the fitted slope is the angular
frequency @ and the fitted intercept is the initial phase angle ¥ .

2.3. Damping ratio of low frequency oscillation mode component

-t

According to control theory, the oscillation mode component X(t) = Ae " cos(wt + ) has

the oscillation characteristics in the damping oscillation as follows:

X(t) = Aye " cos(wy/1— &2t + )

Where ¢ is damping ratio and @, is un-damped frequency. Thus,

Sy = A
o\1-E =
Therefore, the damping ratio is calculated as

A

i ©
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3. Steps of identifying low frequency oscillation mode parameters

The identifying steps of low frequency oscillation modal parameters by using of FSST method
are as follows.
Step 1: the original low frequency oscillation signal is decomposed by FSST, and a group

intrinsic mode type function(IMTF) are obtained.

Step 2: The Hilbert transform of each IMTF is carried out, and the instantaneous amplitude a(t)
and instantaneous phase @(t) are identified according to the formula (6).

Step 3: calculating the logarithm of instantaneous amplitude a(t), then the least square fitting
of the linear function is used to fit the logarithm of a(t). The opposite number of the fitted slope is

the attenuation coefficient A, and the fitted intercept is the In A, then the initial amplitude A

can be obtained.

Step 4: Perform the least square fitting of the linear function to phase @(t) . The fitted slope is
the angular frequency @ and the fitted intercept is the initial phase angle i .

Step 5: calculating the damping coefficient & according to equation (9).

Repeat steps 2 to 5 above to complete the identification of low-frequency oscillation parameters.
3. Experiment and analysis

3.1. Analysis of simulation low frequency oscillation signal

The low frequency oscillation signal can be seen as a linear combination of some cosine signals
(oscillating mode) with certain frequency, and the amplitudes of which change according to the
exponential function. Then the low frequency oscillation data with random noise can be expressed

X(t) = Zn: Ae” cos(2z ft+¢ )+ A(t)

where A(t) is white noise. A test signal with noise is constructed as

X, (1) = X, (£) + X, () + A(t) = 26 °* cos(27r x 0.5t + %) +e7°% cos(27 x1.2t + %) +A(t)
The frequency of X,(t) satisfies the frequency range of the low-frequency

oscillation (0.2 ~ 2.5Hz), and X,(t) contains different attenuation coefficients and phase angles.

The white noise variance is taken as 0.02 and the sampling frequency is taken as 1 kHz.
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Fig.2 decomposition results of simulation data by FSST

The FSST decomposition result of X,(t) is shown in Fig,2. From Fig.2, it can be seen that

two IMTFs c, and c,are obtained after FSST decomposition. To verify the correctness of

the signal decomposition by the FSST, an error curve between the original signal without
noise and the signal reconstructed by two IMTFs is given, as shown in Fig.3.
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Fig.3 reconstructiontfrror of FS5T +
The error curve in Fig.3 shows that the error between the original signal and the
reconstructed signal is very small, and the magnitude of the error is 10™*. Therefore, the
decomposition of the signal by FSST is accurate and effective. Fig.4 describes the process of
parameter identification for the first IMTF.
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Figure 4. parameter identification processing by FSST
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After the fitting calculation, it can be found that C; is a low-frequency oscillation mode with an
amplitude of 2.00226MW, a frequency of 0.50055Hz, and an attenuation of 1.0067. The oscillation
parameters can be obtained by the same processing for C,.After the identification results of Prony

method are obtained, comparing the identification results of two methods and the ideal value of

parameters, and the comparing results are shown in Table 1.

Table 1. parameter identification of simulation data

Prony FSST
real
Mode Identification Identification
value error(%) error(%)
value value
initial amplitude /MW 2 2.04294 2.147 2.00226 0.113
1 oscillation frequency/Hz 0.5 0.51192 2.384 0.50075 0.150
attenuation coefficient 0.1 0.10326 3.260 0.10067 0.670
initial amplitude/MW 1 0.98219 1.781 1.00314 0.314
2 oscillation frequency/Hz 1.2 1.23113 2.594 1.20962 0.802
attenuation coefficient 0.3 0.30799 2.663 0.30137 0.557

It is known from Table 1 that the maximum relative errors of initial amplitude, oscillation
frequency and attenuation coefficient obtained by Prony method are 2.147%, 2.594% , 3.260%,
respectively; and the maximum relative errors of initial amplitude, oscillation frequency and
attenuation coefficient obtained by FSST are 0.314%, 0.802%, 0.670%, respectively. For the
simulation data, it can be seen that the FSST method can accurately identify the parameters of the
low frequency oscillation signal, and the identification results are better than the classic Prony

method.

3.2. Low frequency oscillation analysis of 16 machines and 39 nodes system

In this paper, the effectiveness of FSST method to identify low-frequency oscillation is tested by
16 machine system simulation data. The system architecture of the 16-machine system is shown in
Fig.5, which is a simplified system of the New England-New York interconnected system with 16
generators, 68 buses and 86 lines. The generator uses a detailed model that the generators G1 to G9
are equipped with DC Exciter and generators G1 to G12 are equipped with Power System Stabilizer
(PSS). The system load is a constant power load[20].
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Figure 5. The 16-mechine system

The system can be divided into five areas: Groupl (G1 to G9), Group2 (G10 to G13),
Group3 (G14), Group4 (G15), Group5 (G16). By solving the eigenvalues of the state matrix of the
system linearization model, there are 4 inter-area oscillation modes in the system, as shown in Table
2.

Table 2. real parameters of low frequency oscillation of 16 machine system

Mode Oscillation frequency/Hz Damping ratio /%
1 0.388 5.02
2 0.522 0.85
3 0.677 3.91
4 0.793 3.53

Mode 1 is the oscillation of Groupl and Group2 relative to Group3 to Group5, Mode 2 is the
oscillation of Groupl to Group4 relative to Group5, Mode 3 is the oscillation of Groupl relative to
Group2 and Mode 4 is the oscillation of Group3 and Group5 relative to Group4. The active power of
line 1-47 and 8-9 are selected respectively to monitor mode 1 and mode 3, and the active power of
line 41-42 are selected to monitor mode 2 and mode 4.

In order to simulate the small random fluctuation of the load in the power system, 0.5% load is
set as the random fluctuation load at the main load point of the 16 machine system. The simulation
time is 10 min. After obtaining the system free oscillation signal, in order to verify the robustness of
the proposed method to noise, 5dB Gaussian white noise is superposed with the ideal signal
obtained by the simulation.

The proposed FSST method is used to identify the parameters of low frequency oscillation of
the system, and the identification results are compared with the identification results of the Prony

method. During the experiment, 100 experiments were carried out, the average value was taken as
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the final experimental results, and the identification results of frequency and damping ratio were as

shown in Table 3.

Table 3. identification results of frequency and damping ratio

Prony FSST
Mode
Identification value error(%) Identification value error(%)
Oscillation frequency/Hz 0.37642 2.985 0.38432 0.948
Damping ratio/% 5.368 6.932 5.071 1.016
Oscillation frequency/Hz 0.54414 4.241 0.52634 0.831
Damping ratio/% 0.798 6.118 0.842 0.941
Oscillation frequency/Hz 0.65571 3.145 1.20962 0.619
Damping ratio/% 4.079 4.319 3.943 0.842
Oscillation frequency/Hz 0.78447 1.076 0.78580 0.908
Damping ratio/% 3.718 5.332 3.501 0.822

It can be seen from table 3 that the maximum frequency error of the proposed method is 0.948%,
and the maximum frequency error of Prony method is 4.241%. Comparing the obtained frequency
identification results of 4 modes by the proposed method and Prony method, it is found that the
frequency identification effect of FSST method is better than the Prony method as a whole .

Table 3 shows that the identification value of damping ratio by FSST method is close to the true
value. Compared with Prony, the damping ratio errors of FSST are obviously smaller. It shows that
the FSST method is more accurate for estimating the damping ratio of low frequency oscillation. The
experimental results in Table 3 show that the FSST method can effectively identify the low frequency

oscillation parameters of the 16 machine simulation system.

3.2. Low frequency oscillation analysis of 16 machines and 39 nodes system

In this section, the identification effect of low frequency oscillation parameters of FSST method
for actual grid is tested by the PMU measured data of Sichuan power grid. Before October 2014, the
Sichuan power grid was connected with central China power grid through Huangwan line and
Hongban line. According to the existing literatures[21], it is found that there exists a 0.32Hz mode
between Sichuan power gird and central China power grid, and its damping ratio is often changing
under the influence of system operation conditions. In June 19, 2014, 20:44:16, a single-phase
grounding short circuit fault occurred in a 500kV high voltage bus in Sichuan power grid[22]. After
the failure, the active power oscillation curve of HuangWan line and HongBan line is shown in Fig.6.
Huangwan line and HongBan line are key connection between Sichuan power grid and central
China grid. So, the existing low frequency oscillation mode can be observed well by their active
powers.

Therefore, the active power data of two lines is selected as the test signals to analyze the low
frequency oscillation, the length of selected signals is 17s. The identification results of frequency
and damping ration by FSST are shown as Table 5. The examperimental results show that the
identification frequency by FSST method is very close to the reference value. So, the FSST method

can be used to identify the parameters of the low frequency oscillation in the actual power grid.
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Figure 6. Active power of Hongban and Huangwan tieline in Sichuan power grid

Table 4 identification results of measured PMU data by FSST

Method Oscillation frequency Damping ratio/%

FSST 0.3215 5.227

4. Conclusion

In this paper, the Fourier synchrosqueezing transform(FSST) is introduced to identify
parameters of low frequency oscillation, and the formulas of amplitude, frequency, attenuation
coefficient and damping ratio of oscillation modal component are derived based on the theory of
FSST. The experimental results of simulated data and 16-mechine system data show that the FSST
method can effectively identify the parameters of low frequency oscillation. Compared with the
Prony method, when the low frequency oscillation signal is polluted by noise, the performance of
the FSST method is better and the identification result is more accurate. Finally, the identification
effect of FSST method is verified by the measured PMU data of Sichuan power grid, and the
identification results show that FSST method can be applied to parameter identification of low

frequency oscillation in real power grid.
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