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Abstract: In this paper, the Fourier-based synchrosqueezing transform (FSST) method is 

introduced into the power system to realize low frequency oscillation identification. Firstly, the 

modal components of low frequency oscillation signal are separated by FSST, and calculating the 

instantaneous parameters including magnitude, frequency and phase of every mode component 

with Hilbert transform. Then, calculating the damping ration of every modal component based on 

above parameters and derived the formulas. Thus, it realized effective identification of of modal 

parameters of low frequency oscillation signal.  The experimental results of simulated data and 

16-generator system demonstrate the validity and correctness of the FSST method. Comparing with 

the classical Prony method shows that the FSST method is better in the identification accuracy 

when the low frequency oscillation signal is polluted by noise. Finally, the effectiveness of the FSST 

in Actual power grid is verified based on the real data from Sichuan power grid.  

Keywords: Fourier-based synchrosqueezing transform; low frequency oscillation; instantaneous 

parameters; damping ratio 

 

1. Introduction 

With the increase of the scale of the power grid, the increase of long- distance transmission and 

weak interconnection of electric power and the large use of fast high magnification quick excitation 

device, transient stability of the power grid and voltage quality are improved but the oscillation 

instability of the power system is exacerbated. These factors are likely to lead to low-frequency 

oscillation phenomenon of weak damping[1-3]. In recent years, there have been many 

low-frequency oscillations in power grids both at home and abroad[4], which has brought great 

harm to the power system and has become the bottleneck that limits the transmission capacity of the 

interconnected power grid.  Stability is an important issue for large power grids,  and the 

identification of low-frequency oscillation can provide an effective basis for the stable operation of 

power grid and damping control[5]. In recent years, the phasor measurement units(PMU) has been 

widely used in power system,  which provides the basis for the low frequency oscillation analysis 

based on the measurement data.  Because the measured data truly reflected the dynamic 

characteristics of the system, the analysis method based on the measured PMU data has a broad 

application prospect. Now, many methods to identify low frequency oscillations based on PMU data 

have been proposed.  

The existing identification methods are mainly Prony algorithm, Short-time Fourier Transform 

(STFT), Hilbert-Huang Transform (HHT) and Wavelet Transform method ,etc.  The Prony method 

uses a linear combination of exponential functions to describe the mathematical model of sampling 

data at equal interval. The Prony  method is fast and accurate, but it is greatly affected by the noise, 

and it can not obtain the accurate oscillation mode parameters when the signal is interference by 
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noise[6-8].  STFT is introduced in [9] and [10] to analyze the power system data with noises,  the 

STFT algorithm is more accurate and robust but it can not completely identify the oscillation mode 

parameters. HHT method is especially effective for analysis of nonlinear and non-stationary  low 

frequency oscillation signal [11,12] .  However,  in the process of  HHT analysis , there will be 

endpoint effects and modal aliasing, which have a great influence on the effect of identification. The 

wavelet ridge method is proposed in [12,13] to process the time-varying oscillatory signals, which is 

of great significance in the identification  of  low frequency oscillation, but this method can’t obtain 

high accuracy results when extracting multi-frequency component signals. 

FSST(Fourier Synchrosqueezing Transform) is a non-linear time-frequency reassigned 

algorithm which is developed on the basis of Short-time Fourier Transform[14].  FSST can obtain 

higher accuracy time-frequency curve and improve the modal mixing phenomenon very well by 

squeezing the coefficients of short time Fourier transform in the direction of frequency. Even if the 

signal to be decomposed contains multiple harmonic signals with relatively close frequencies, FSST 

can still extract them one by one[15].  Moreover, the FSST has good robustness to noises. When the 

multiple harmonic signal is polluted by noise, the FSST can still obtain a clear time-frequency curve 

and an approximate invariant decomposition result[16]. Fourier Synchrosqueezing Transform has 

been successfully applied to the instantaneous frequency calculation[17], gravitational wave 

analysis[18], vibration signal analysis[19] and so on. In this paper, FSST is applied to the parameter 

extraction of low frequency oscillation in power system. Firstly, the low-frequency oscillation modes 

are separated by FSST. Then, the instantaneous frequency and amplitude of modal are calculated by 

Hilbert transform, and the damping ratio is calculated by instantaneous amplitude and frequency. 

Finally, the simulation data, IEEE 16-machine 39-node system data and measured data of Sichuan 

Provincial Power Grid are tested, and compared with the  identification results of Prony algorithm. 

The experimental results verify the effectiveness and accuracy of the proposed method. 

2. Theoretical of low frequency oscillation parameter identification by FSST 

2.1. FSST decomposition of low frequency oscillation signal 

When the given window function is g , the short-time Fourier transform of  signal ( )f t   is 

defined as 

                   
* 2 ( )( , ) ( ) ( )g i t

f
R

V t f g t e d    − −= −  

Low-frequency oscillation signals ( )f t often contain multiple components, and each component 

has its own local feature. ( )f t
 can be expressed as  

            
1 1

( ) ( ) ( ) ( )cos( ( )) ( )
K K

k k k

k k

f t f t r t A t t r t
= =

= + = + 
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 Where ( ) kt

k kA t A e
−

=
 
is the instantaneous amplitude of the kth component, ( )k k kt t  = + is 

the instantaneous phase of the kth component , ( )r t  is noise or error and K  represents the 

number of signal components.  It has been shown that in the time-frequency map of the Short-time 

Fourier Transform, the frequency spectra of the signal is wide and the boundary is 

ambiguous[14,15]. For the more complex multi-component signals,  there are often severe spectral 

aliasing between the STFT spectra  of  the component signals ( )kf t . 

FSST  is based on Short-time Fourier transform, and by refining the time-frequency curve of  

STFT, the amplitude ( )kA t
 
and instantaneous frequency ( )k t

 
of each component ( )kf t  can be 
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effectively extracted. As a special reorganization method, FSST reassigns the coefficient ( , )g

fV t   to 

different points ˆ[ , ( , )]ft t  in the time-frequency plane according to local properties of STFT 

coefficient ( , )g

fV t   ( ˆ ( , )f t  denotes the instantaneous frequency of the signal at ( , )t  ). 

Therefore, FSST makes the time-frequency curve more detailed and clearer.  The frequency 

resolution is improved and the modal mixing is reduced in the time-frequency map of FSST, so the 

reconstruction precision of the component signal is obviously higher.  

For any point ( , )t   in the result of STFT , the instantaneous frequency of the signal can be 

estimated by the deriving of STFT coefficients[16]: 

( , )1
( , ) arg{ ( , )}

2 2 ( , )

g

t fg

f t f g

f

V t
t V t R

i V t


  

  

  
=  =  

  

  

where  arg{ }Z  and { }R Z  denote the argument and the real part of the complex Z  

respectively, and t  denotes the partial derivative of the function for t . 

Based on the instantaneous frequency, FSST establishs the mapping from 

ˆ( , ) [ , ( , )]ft t t  → , and the STFT coefficient ( , )g

fV t   is transformed from the " t − " plane to 

the " ˆ ( , )ft t − " plane.  In FSST, the STFT coefficients in the interval 

1 1
ˆ ˆ[ , ]

2 2
f f   −  +  with certain center frequency ˆ

f  are squeezed to the center frequency 

ˆ
f  and obtain the FSST value 

, ( , )g

fT t  . Synchronous squeeze of STFT coefficient can achieve the 

purpose of improving frequency resolution and reducing frequency mixing. In the actual 

calculation, the calculation formula of FSST coefficient is: 

,

* { ,| ( , )| }

1
ˆ( , ) ( , ) [ ( , )]

(0)
g
f

g g

f f f
V t

T t V t t d
g



  
      


= −  

where   is the given threshold.  Comparing the time-frequency spectrums of FSST, CWT and 

STFT by a time-varying signal ( )f t .   ( )f t  is composed of three signals with different frequency 

: 20Hz cosine signal 1( ) cos(40 )f t t=  in 0-0.7s, 30Hz cosine signal 2 ( ) cos(60 )f t t=  in 0.3-1s, 

the cosine frequency modulation signal oscillating at 80Hz 3( ) cos[160 5cos(30 )]f t t t= −  in  

0-1s . ( )f t  is added to the Gaussian white noise with a SNR of 3dB.  The noisy signal is 

decomposed respectively by STFT, CWT and FSST, the time-frequency maps of three methods are 

shown in Figure 1.According to figure 1, it can be seen that the time-frequency map of FSST is more 

focused and clearer. Compared with STFT and CWT, the time-frequency map of FSST has higher 

frequency resolution and time resolution.                                                                
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The FSST transform is reversible. For multi-component signals, 
, ( , )g

fT t  can not only 

reconstruct the original signal ( )f t , but also reconstruct each component signal ( )kf t  accurately. 

Suppose that ( , ( ))kt t  is the Kth ridge line of ( )f t  , the reconstruction formula of ( )kf t  is[14] 

,

{ ,| ( )| }
( ) ( , )

k

g

k f
t d

f t T t d

  
 

− 
                        (2) 

where ( )k t  which is usually calculated by ridge extraction is an approximate estimate of ( )k t ， 

and d  is the given ridge error threshold[17]. Compared with FSST and STFT (as shown in Figure 

1), STFT decomposition can not achieve accurate division of the frequency band, and there are often 

serious spectrum mixing and energy leakage between sub-bands. However, the frequency band of 

the time-varying signal ( )f t  can be more accurately divided by FSST, and the spectrum mixing  

between sub-bands is better weakened. Therefore, each component ( )kf t  can be accurately 

reconstructed from different frequency spectral sub-band, and then the amplitude, frequency and 

damping parameter of the component signal ( )kf t  can be obtained. So, this paper adopts FSST to 

identify the parameters of low frequency oscillation signal of the power system. 

2.2. Hilbert transform of low frequency oscillation mode components 

In the low-frequency oscillation of power system, an oscillation mode component can be 

expressed as: 

                            ( ) cos( )tx t Ae t  −= +                           (3) 

(a) frequency spectrum of STFT   (b) frequency spectrum of CWT   (c) frequency spectrum of FSST               

Figure 1.  Spectrum comparison of cosine signal                                    
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where A  is the initial amplitude,   is the initial phase angle,   is the attenuation coefficient 

and   is the oscillation angle frequency. For continuous signal ( )x t , its Hilbert transform is 

                            
1 ( )

( )
x

y t d
t




 



−
=

−                              (4) 

Then the corresponding analytic signal is obtained as 

( )( ) ( ) ( ) ( ) j tz t x t jy t a t e = + =                      (5) 

Where ( )t , ( )t are instantaneous amplitude and instantaneous phase respectively, 

2 2( ) ( ) ( )a t x t y t= + ，
( )

( ) arctan
( )

y t
t

x t
 =                  (6) 

The instantaneous frequency is calculated as: 
1 ( )

( )
2

d t
f t

dt




= . Comparing formula (3) and (5),it 

can conclude that  

( )

( )

ta t Ae

t t



  

− =


= +
                                                                      

By introducing a logarithmic operator on ( )a t ,the following equation is obtained :       

 ln ( ) lna t t A= − +                                (7) 

Where ln ( )a t  is a linear function of time. In order to obtain the attenuation coefficient   and the 

initial amplitude A  accurately, the least squares fitting of the linear function is carried out to 

ln ( )a t . Then the fitting slope is ( )−  and  the fitting intercept is ln A . 

The instantaneous phase of the analytic signal is 

                              ( )t t  = +                                     (8) 

In order to obtain the angular frequency   and the initial phase angle   accurately , the least 

square fitting of the linear function is performed to phase. Then the fitted slope is the angular 

frequency   and the fitted intercept is the initial phase angle  . 

2.3. Damping ratio of low frequency oscillation mode component  

According to control theory, the oscillation mode component ( ) cos( )tx t Ae t  −= +  has 

the oscillation characteristics in the damping oscillation  as follows: 

0 2

0 0( ) cos( 1 )
t

x t A e t
   −

= − +  

Where   is damping ratio and 0  is un-damped  frequency. Thus, 

0

2

0 1

 

  

=


− =

 

Therefore, the damping ratio is calculated as 

                             
2 2




 
=

+
                                  (9) 
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3. Steps of identifying low frequency oscillation mode parameters 

The identifying steps of low frequency oscillation modal parameters by using of FSST method 

are as follows. 

Step 1: the original low frequency oscillation signal is decomposed by FSST, and a group 

intrinsic mode type function(IMTF) are obtained. 

Step 2: The Hilbert transform of each IMTF is carried out, and the instantaneous amplitude ( )a t  

and instantaneous phase ( )t  are identified according to the formula (6). 

Step 3:  calculating the logarithm of instantaneous amplitude ( )a t , then the least square fitting 

of the linear function is used to fit the logarithm of ( )a t . The opposite number of the fitted slope is 

the attenuation coefficient  , and the fitted intercept is the ln A ,  then the initial amplitude A  

can be obtained.  

Step 4: Perform the least square fitting of the linear function to phase ( )t . The fitted slope is 

the angular frequency   and the fitted intercept is the initial phase angle . 

Step 5: calculating the damping coefficient   according to equation (9). 

 Repeat steps 2 to 5 above to complete the identification of low-frequency oscillation parameters. 

3. Experiment and analysis 

3.1. Analysis of simulation low frequency oscillation signal 

The low frequency oscillation signal can be seen as a linear combination of some cosine signals 

(oscillating mode) with  certain frequency, and the amplitudes of which change according to the 

exponential function. Then the low frequency oscillation data with random noise can be expressed 

as 

1

( ) cos(2 ) ( )i

n
t

i i i

i

x t Ae f t t
   

=

= + +  

where ( )t  is white noise.  A test signal with noise is constructed as 

0.1 0.3

0 1 2( ) ( ) ( ) ( ) 2 cos(2 0.5 ) cos(2 1.2 ) ( )
3 6

t tx t x t x t t e t e t t
 

   − −= + + =  + +  + +  

The frequency of 0 ( )x t  satisfies the frequency range of the low-frequency 

oscillation (0.2 ~ 2.5 )Hz , and 0 ( )x t contains different attenuation coefficients and phase angles. 

The white noise variance is taken as 0.02 and the sampling frequency is taken as 1 kHz. 
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The FSST decomposition result of 0 ( )x t
 
is shown in Fig,2. From Fig.2, it can be seen that 

two IMTFs 1c  and 2c are obtained after FSST decomposition. To verify the correctness of 

the signal decomposition by the FSST, an error curve between the original signal without 

noise and the signal reconstructed by two IMTFs is given, as shown in Fig.3.  

 

The error curve in Fig.3 shows that the error between the original signal and the 

reconstructed signal is very small, and the magnitude of the error is 
410−
. Therefore, the 

decomposition of the signal by FSST is accurate and effective. Fig.4 describes the process of 

parameter identification for the first IMTF.   

 

             Figure 4.  parameter identification processing by FSST                         
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After the fitting calculation, it can be found that 1c  is a low-frequency oscillation mode  with an 

amplitude of 2.00226MW, a frequency of 0.50055Hz, and an attenuation of 1.0067.  The oscillation 

parameters can be obtained by the same processing for 2c .After the identification results of Prony 

method are obtained,  comparing the identification results of two methods and the ideal value of 

parameters,  and the comparing results are shown in Table 1.  

                 Table 1.  parameter identification of simulation data 

Mode 
real 

value 

Prony FSST 

Identification 

value 
error(%) 

Identification 

value 
error(%) 

 initial amplitude /MW 2 2.04294 2.147 2.00226 0.113 

1 oscillation frequency/Hz 0.5 0.51192 2.384 0.50075 0.150 

 attenuation coefficient 0.1 0.10326 3.260 0.10067 0.670 

 initial amplitude/MW 1 0.98219 1.781 1.00314 0.314 

2 oscillation frequency/Hz 1.2 1.23113 2.594 1.20962 0.802 

 attenuation coefficient 0.3 0.30799 2.663 0.30137 0.557 

  It is known from Table 1 that the maximum relative errors of initial amplitude, oscillation 

frequency and attenuation coefficient obtained by Prony method are 2.147%, 2.594% , 3.260%, 

respectively; and the maximum relative errors of initial amplitude, oscillation frequency and 

attenuation coefficient obtained by FSST are 0.314%, 0.802%, 0.670%, respectively.  For the 

simulation data, it can be seen that the FSST method can accurately identify the parameters of the 

low frequency oscillation signal, and the identification results are better than the classic Prony 

method. 

3.2. Low frequency oscillation analysis of 16 machines and 39 nodes system  

In this paper, the effectiveness of FSST method to identify low-frequency oscillation is tested by 

16 machine system simulation data. The system architecture of the 16-machine system is shown in 

Fig.5, which is a simplified system of the New England-New York interconnected system with 16 

generators, 68 buses and 86 lines. The generator uses a detailed model that the generators G1 to G9 

are equipped with DC Exciter and generators G1 to G12 are equipped with Power System Stabilizer 

(PSS). The system load is a constant power load[20]. 
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Figure 5. The 16-mechine system 

 The system can be divided into five areas: Group1 (G1 to G9), Group2 (G10 to G13), 

Group3 (G14), Group4 (G15), Group5 (G16). By solving the eigenvalues of the state matrix of the 

system linearization model, there are 4 inter-area oscillation modes in the system, as shown in Table 

2.  

Table 2. real parameters of low frequency oscillation of 16 machine system 

Mode Oscillation frequency/Hz Damping ratio /% 

1 0.388 5.02 

2 0.522 0.85 

3 0.677 3.91 

4 0.793 3.53 

Mode 1 is the oscillation of Group1 and Group2 relative to Group3 to Group5, Mode 2 is the 

oscillation of Group1 to Group4 relative to Group5, Mode 3 is the oscillation of Group1 relative to 

Group2 and Mode 4 is the oscillation of Group3 and Group5 relative to Group4. The active power of 

line 1-47 and 8-9 are selected respectively to monitor mode 1 and mode 3, and the active power of 

line 41-42 are selected to monitor mode 2 and mode 4. 

 In order to simulate the small random fluctuation of the load in the power system, 0.5% load is 

set as the random fluctuation load at the main load point of the 16 machine system.  The simulation 

time is 10 min. After obtaining the system free oscillation signal, in order to verify the robustness of 

the proposed method to noise, 5dB Gaussian white noise   is superposed with the ideal signal 

obtained by the simulation. 

The proposed  FSST method is used to identify the parameters of low frequency oscillation of 

the system, and the identification results are compared with the identification results of the Prony 

method. During the experiment, 100 experiments were carried out, the  average value was taken as 
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the final experimental results, and the identification results of frequency and damping ratio were as 

shown in Table 3. 

Table 3. identification results of frequency and damping ratio 

Mode 
Prony FSST 

Identification value error(%) Identification value error(%) 

1 
Oscillation frequency/Hz 0.37642 2.985 0.38432 0.948 

Damping ratio/% 5.368 6.932 5.071 1.016 

2 
Oscillation frequency/Hz 0.54414 4.241 0.52634 0.831 

Damping ratio/% 0.798 6.118 0.842 0.941 

3 
Oscillation frequency/Hz 0.65571 3.145 1.20962 0.619 

Damping ratio/% 4.079 4.319 3.943 0.842 

4 
Oscillation frequency/Hz 0.78447 1.076 0.78580 0.908 

Damping ratio/% 3.718 5.332 3.501 0.822 

It can be seen from table 3 that the maximum frequency error of the proposed method is 0.948%,  

and the maximum frequency error of Prony method is 4.241%. Comparing the obtained frequency 

identification results of 4 modes by the proposed method and Prony method, it is found that the 

frequency identification effect of FSST method is better than the Prony method as a whole .  

Table 3 shows that the identification value of damping ratio by FSST method is close to the true 

value. Compared with Prony, the damping ratio errors of  FSST are obviously smaller. It shows that 

the FSST method is more accurate for estimating the damping ratio of low frequency oscillation. The 

experimental results in Table 3 show that the FSST method can effectively identify the low frequency 

oscillation parameters of the 16 machine simulation system.  

3.2. Low frequency oscillation analysis of 16 machines and 39 nodes system 

In this section, the identification effect of low frequency oscillation parameters of FSST method 

for actual grid is tested by the PMU measured data of Sichuan power grid. Before October 2014, the 

Sichuan power grid was connected with central China power grid  through Huangwan line and 

Hongban line.  According to the existing literatures[21], it is found that there exists a 0.32Hz mode 

between Sichuan power gird and central China power grid, and its damping ratio is often changing 

under the influence of system operation conditions.  In June 19, 2014, 20:44:16, a single-phase 

grounding short circuit fault occurred in a 500kV high voltage bus in Sichuan power grid[22]. After 

the failure, the active power oscillation curve of HuangWan line and HongBan line is shown in Fig.6.  

Huangwan line and HongBan line are key connection between Sichuan power grid and central 

China grid. So, the existing low frequency oscillation mode can be observed well by their active 

powers.  

Therefore, the active power data of two lines is selected as the test signals to analyze the low 

frequency oscillation, the length of selected signals is 17s.  The identification results of frequency 

and damping ration by FSST are shown as Table 5. The examperimental  results show that the 

identification frequency by FSST method is very close to the reference value. So, the FSST method 

can be used to identify the parameters of the low frequency oscillation in the actual power grid.   
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Table 4 identification results of measured PMU data by FSST 

Method Oscillation frequency  Damping ratio/% 

FSST 0.3215 5.227 

4. Conclusion 

In this paper, the Fourier synchrosqueezing transform(FSST) is introduced to identify 

parameters of low frequency oscillation, and the formulas of amplitude, frequency, attenuation 

coefficient and damping ratio of oscillation modal component are derived based on the theory of 

FSST.  The experimental results of simulated data and 16-mechine system data show that  the FSST 

method can effectively identify the parameters of low frequency oscillation. Compared with the 

Prony method, when the low frequency oscillation signal is polluted by noise,  the performance of 

the FSST method is better and the identification result is more accurate.  Finally, the identification 

effect of FSST method is verified by the measured PMU data of Sichuan power grid, and the 

identification results show that FSST method can be applied to parameter identification of low 

frequency oscillation in real power grid.  
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