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Abstract: In the present study, nonlinear vibration of a nanobeam resting on fractional order
viscoelastic Winkler-Pasternak foundation is studied using nonlocal elasticity theory. D’Alembert
principle is used to derive the governing equation and the associated boundary conditions. The
approximate analytical solution is obtained by applying the multiple scales method. Detailled
parametric study is conducted, the effects of variation in different parameters belonging to the
application problems on the system are calculated numerically and depicted. We remark that the
order and the coefficient of the fractional derivative have significant effect on the natural frequency
and the amplitude of vibrations.
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1. Introduction

Due to the recent and rapid advances in nanomechanics, nanobeam have become the most
important structure used extensively in technology such as those nano-electromechanical systems
(NEMs), opto-mechanichal or nanoresonator devices. The exclusive properties of nanoscale beam
are due to their size, this size plays an important role in static and in dynamic analysis. In front of
the difficulties of classical continuum mechanics to take into account the size effect in modelling the
behaviour of this structure kind , various size-dependent continuum theories have been developped.
These theories include nonlocal continuum theory, strain gradient theory or a combinaison of both
(nonlocal strain gradient theory), modified couple stress theory, micropolar theory and the surface
elasticity theory. Among these theories, Eringen’s nonlocal elasticty theory [1,2 ] was utilized by a
number of researchers to capture size-efects.
These kinds of structures can be modelled as a beam structure on a viscoelastic foundaton. The beam
can be modelled as Timoshenko beam [3,4], or as a Rayleigh beam [5] or as a Euler-bernouilli beam
[6 ] and the foundation as a Winkler model [7-9] or as a Pasternak model or combinaison of both
(Winkler-Pasternak model) or as a nonlinear elastic model and fractional order viscoelastic model
[10]. The Winkler model is a one parameter model namely Winkler-type elastic foundation, consists
of a serie of closely spaced elastic springs. Pasternak model is a two parameters model namely
Pasternak-type viscoelastic foundation, consists of a Winkler-type elastic springs and transverse shear
deformation. The nonlinear model is a three parameters in which the layer is indicated by linear elastic
spring, shear deformation and cubic nonlinearity elastic spring. Fractional order Winkler-Pasternak
[10] has been well developped, this fractional order is due to the long memory effects of some kind of
viscoelastic materials. In vibration analysis of nanostructures, it is so important to evaluate the impact
of surrounding medium on the dynamic of beams. Niknam and Aghdam [11] proposed an analytical
approach to study dynamic of nonlocal functionally graded beam resting on nonlinear elastic support.
A meshless approach for free transverse vibration of SWCNT was proposed by Kiani [12]. Eringen′s
nonlocal theory and timoshenko beam theory were used to make a bukling analysis of SWCNT on
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elastic medium [13, 14]. Non−conservative dynamic of nonlocal cantilever CNTs on viscoelastic
medium is proposed [15]. Mikhasev[16] researched localized modes of free vibrations of SWCNT.
Mustapha and Zhong [17] studied dynamic of non−prismatic SWCNT in viscoelastic medium, Lee and
Chang[18] studied dynamic of a viscous−fluid conveying SWCNT, Kiani[19,20] examined elastically
restrained DWCNT and SWCNT for delivering nanoparticules, instability analysis of CNT conveying
fluid is conducted [21], Yas and Samadi[22] examined CNT−reinforced composite on elastic medium
, small scale effect in nonuniform CNT conveying fluid on viscoelastic medium is examined[23],
Aydoglu[24] analysed nanorods on an elastic medium, dynamic analysis of nanotubes on elastic matrix
is conducted by Wang [25], dynamic of curved SWCNT on a Pasternak elastic foundation is examined
[26] . Aydogdu and Arda [27] researched the torsional dynamic of nonlocal DWCNTs. Necla [28]
studied nonlinear vibration of a nonlocal nanobeam resting on Winkler-type foundation. The work of
Anague [10] is based on dynamics of Rayleigh beams resting on fractional order viscoelastic Pasternak
foundation subjected to moving loads.
Many of time−space differential equations are very difficults to solve, sometimes these equations
are exactly impossible to solve. In front of these difficulties, it is needed sophisticated analytical and
numerical method to find appoximated solutions. Ozturk and Coskun[29] proposed the homotopy
pertubation method, multiple scale method is used to analyse nonlinear vibration of CNT [30−33],
He′s variational method exhibited more advantages [12, 34−37], the direct iterative method is used in
dynamical analysis of DWCNT [38], the finite element method [21,23], and the differential quadrature
method [13, 22] also exhibited more advantages.
The above investigations clearly show that most of the studies presented in the litterature are related
to the nonlocal and nonlinear structures, but studies on the nonlocal and nonlinear fractional order
vibration are very limited. When it is observed in the fields, linear and nonlinear frequencies amplitude
of beams are major topics but dynamic analysis of beams embedded in fractional order viscoelastic
medium is very rare. The nonlinear free vibration of the nanotube with damping effect was studied by
using nonlocal elasticity theory [31]. To our knowledge, there is no published work on a fractional
order nonlocal nonlinear vibration of nanobeam resting on viscoelastic foundation. The nonlinearity
of the problem is obtained by considering the von karman geometric nonlinearity that introduces
a cubic nonlinearity into the equations. In the present paper we analyse the nonlinear vibration of
a nanobeam resting on fractional order viscoelastic Winkler-Pasternak foundation using Eringen’s
nonlocal elasticity. Nonlinear fractional order frequency response and modes shapes are drawn for
nanobeam with different end conditions.

2. Preliminaries

2.1. Fractional order viscoelasticity

Fractional calculus is a part of mathematical analysis that has found many applications in
nanomechanics. The role of fractional calculus is studied of an arbitrary real or complex order
integrals and derivatives. There are many definitions of fractional order integrals and derivatives that
were given by different authors. However, in our study we will consider only the Riemann-Liouville’s
definition of fractional derivative as follows: If x (•) is an absolutely continuous function in [a, b] and
0 ≺ a ≺ 1, then

1 The left Riemann-Liouville fractional derivative of order α is of the form

aDα
t =

1
Γ (1− α)

d
dt

t∫
a

x (τ)
(t− τ)α dτ, t ∈ [a, b] (1)

2 The right Riemann-Liouville fractional derivative of order α is of the form

aDα
t =

1
Γ (1− α)

(
− d

dt

) t∫
a

x (τ)
(τ − t)α dτ, t ∈ [a, b] (2)
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Figure 1. Boundary conditions for different beam support. (a) Simple-Simple case and (b)
Clamped-Clamped case.

Fractional derivatives are used in the accurate modelling in rheology as well as structural mechanics
to model internal damping. In [39], it was shown that classical viscoelastic models failed to describe
damping of viscoelastic solid and that improved fractional derivative based models need to be
considered. Such models have few advances. First, they are based on molecular theories [40]. Second,
such models are satisfying thermodynamic laws. At least, they require a few parameters to describe
viscoelastic behavior.

In follow, we give a constitutive relation of fractional order viscoelastic Winkler-Pasternak
foundation beam interaction force (per unit length of the beam’s axis) which is obtained including the
fractional derivative term as [41]

q (x, t) = kw (x, t) + c
∂w (x, t)

∂t
− [µe + µvDα

t ]
∂2w (x, t)

∂x2 , (3)

in which the deformed beam can be described by the tranverse deflection w (x, t), k and c are foundation
stiffness and damping coefficients, µe and µv are foundation shear elastic and viscosity coefficients. Dα

t
is the fractional derivative with order α.

2.2. Nonlocal theory

In the nonlocal elasticity theory the stress at a point x is a function of the strains at all other points
of an elastic body. The integral form of nonlocal constitutive relation for three dimensional structure is

σij (x) =
∫

χ
(∣∣x− x′

∣∣ , τ
)
tij
(
x′
)

dV(x′), ∀x ∈ V, (4)

where σij is the nonlocal stress tensor, tij is the local or classical stress tensors at a point x′, χ (|x− x′| , τ)

denotes attenuation function which imcorporates nonlocal effects into the constitutive equation, |x− x′|
is a distance in Euclidian norm and τ = e0a/

l is nonlocal parameter where l is the external characteristic
length (crack length or wave length), a is internal characteristic length (lattice parameter, granular
etc.) and e0 is a material constant that can be determined from molecular dynamics simulations or by
using dispersive curve of the Born-Karman model of lattice dynamics. Later, Eringen [2] proposed a
differential form of constitutive relation with an appropriate kernel function as(

1− τ2l2∇2
)

σij = tij. (5)

For one dimensional case, the local stress txx at a point x′ can be explained according to the Hooke’s
law as

txx
(

x′
)
= Eεxx

(
x′
)

, (6)
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where E denotes elastic modulus and εxx the strain. That yields the following differential form of
nonlocal constitutive equation for one dimensional elastic body

σxx − µ
∂2σxx

∂x2 = Eεxx, (7)

where µ = (e0a)2 is the nonlocal parameter and σxx is the nonlocal stress.

3. Governing equation of nanobeam resting on fractional order viscoelastic foundation

This study is carried out on the basis of the nonlocal Euler-Bernouilli nanobeam of length
L, cross sectional area A, density ρ and tranverse deflection w (x, t) in z direction . Two types of
boundary conditions, which are simple-simple and clamped-clamped are considered in this work
and shown in Fig. 1. We assume that cross sectional area is constant along the x coordinate and that
material of a nanobeam is homogeneous. The nanobeam is resting on a fractional order viscoelastic
Winkler-Pasternak foundation in which k and c are stiffness and damping coefficient, µe and µv are
foundation shear elastic and viscosity coefficients. We also consider that the nanobeam is under the
influence of time varying axial load. According to Euler-Bernouilli beam theory, the displacement
fields at any point of beam can be expressed as

ux (x, z, t) = u (x, t)− z
∂w (x, t)

∂x
, uy = 0, uz = w (x, t) , (8)

where u and w are the axial and tranverse displacements, respectively. By assuming the von Karman
nonlinear strain displacement relation for the given displacement fields, we get

ε0 =
∂u
∂x

+
1
2

(
∂w
∂x

)2
, ε1 = −zk̄, k̄ =

∂2w
∂x2 . (9)

where ε0 is the nonlinear extensional strain and k̄ is the bending strain. The von Karman nonlinear
normal strain can be expressed as

ε = ε0 + ε1 =
∂u
∂x

+
1
2

(
∂w
∂x

)2
− z

∂2w
∂x2 . (10)

By applying D’Alembert principle to the infinitesimal element of the nanobeam, equilibrium equation
can be obtained as

ρA
∂2u
∂t2 =

∂T
∂x

, (11a)

ρA
∂2w
∂t2 =

∂Q
∂x

+ T
∂2w
∂x2 − q (x, t) , (11b)

ρI
∂3w

∂x∂t2 = Q− ∂M
∂x

, (11c)

in which the stress resultant is defined as

(Q, T, M) =

A∫
0

(τ̄xz, σ̄xx, zσ̄xx)dA, (12)

where Q , T, and M are the transversal force, the axial force and the bending moment, respectively. τ̄xz

and σ̄xx are shear and normal stress components. The longitudinal inertia ∂2u
∂t2 can be neglected based
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on the discussion about the nonlinear vibration of continuous systems [42,43], then the axial normal
force T can be represented as

T = F +
EA
2L

L∫
0

(
∂w
∂x

)2
dx. (13)

Assuming that the axial force is periodic and time-dependent and combining Equation (11) and
Equation (7), the nonlinear vibration equation of motion for the nanobeam resting on the fractional
order viscoelastic Pasternak-type foundaton in terms of transversal displacements is obtained as
follows

ρA
∂2w
∂t2 − ρI

∂4w
∂x2∂t2 −

(
F cos Ωt +

EA
2L

∫ (
∂w
∂x

)2
dx

)
∂2w
∂x2 + kw+ c

∂w
∂t

+(µe + µvDα
t )

∂2w
∂x2 +EI

∂4w
∂x4

− µ
∂2

∂x2

(
ρA

∂2w
∂t2 − ρI

∂4w
∂x2∂t2

)
+ µ

∂2

∂x2

((
F cos Ωt +

EA
2L

∫ (
∂w
∂x

)2
dx

)
∂2w
∂x2

)

− µ
∂2

∂x2

(
kw + c

∂w
∂t

+ (µe + µvDα
t )

∂2w
∂x2

)
= 0, (14)

where F is the amplitude of axial load and Ω is the frequency of this load. The following
non-dimensional quantities aims to study problem under general form as

x̄ =
x
L

, w̄ =
w
L

, t̄ =
t

L2

√
EI
ρA

, η2 =
µ

L2 , K =
kL4

EI
, εC = c

√
L4

ρA (EI)
, KP =

µeL2

EI
, εF̄ =

FL2

EI

εCP =
µvL2(1−α)

(ρA)
1
2 α(EI)

1
2 (2−α)

, δ =
I

AL2 . (15)

In the non-dimensional Equation (14) and Equation (15) can be expressed as

∂2w̄
∂t̄2 − δ

∂4w̄
∂x̄2∂t̄2 −

(
εF̄ cos Ω̄t̄ +

1
2

ε
∫ (

∂w̄
∂x̄

)2
dx̄

)
∂2w̄
∂x̄2 + Kw̄ + εC

∂w̄
∂t̄

+
(
KP + εCPDα

t̄
) ∂2w̄

∂x̄2 +
∂4w̄
∂x̄4

− η2 ∂2

∂x̄2

(
∂2w̄
∂t̄2 − δ

∂4w̄
∂x̄2∂t̄2

)
+ η2 ∂2

∂x̄2

((
εF̄ cos Ω̄t̄ +

1
2

ε
∫ (

∂w̄
∂x̄

)2
dx̄

)
∂2w̄
∂x̄2

)

− η2 ∂2

∂x̄2

(
Kw̄ + εC

∂w̄
∂t̄

+
(
KP + εCPDα

t̄
) ∂2w̄

∂x̄2

)
= 0, (16)

in which K and C denote dimensionless stiffness and viscosity medium, KP and CP denote
dimensioless shear elastic and viscosity coefficient, F̄ represent the dimensionless amplitude of axial
load, η, w̄ and t̄ denote the nonlocal parameter, transversal displacement and time, respectively,
in dimensionless form. The small bookkeeping parameter ε is used to emphase the transversal
deformatin, viscosity coefficients and tension fluctuation compared to the other terms.
The non-dimensional form of boundary conditions can be expressed as

Simple-Simple case:
w̄ (0) = 0, w̄ (1) = 0, w̄′′ (0) = 0, w̄′′ (1) = 0; (17)

Clamped-Clamped case:

w̄ (0) = 0, w̄ (1) = 0, w̄′ (0) = 0, w̄′ (1) = 0. (18)
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Figure 2. First three vibration modes shape for Simple-Simple case boundary condition.

Figure 3. First three vibration modes shape for Clamped-Clamped case boundary condition.

3.1. Solution of the governing equation

The dimensionless fractional order nonlinear partial differential equation, Equation (16) describes
the transversal vibration of nanobeam resting on fractional order viscoelastic foundation under the
influence of periodic axial load. In order to obtain the asymptotic approximate solution in the first
order for the problem, the pertubation method of multiple scales will be employed. By applying
Garlekin method we assume the asymptotic approximate solution in the following form

w̄ (x̄, t̄) = q (t̄) φ (x̄) , (19)

in which q (t̄) is the unknown time function and φ (x̄) is the linear mode shape determined from the
boundary conditions. the linear mode shape of Equation (17) and Equation (18) are given by

φ (x̄) = c1 exp iα1 x̄ + c2 exp iα2 x̄ + c3 exp iα3 x̄ + c4 exp iα4 x̄. (20)

The boundary conditions are applied, the constants ci and αi can be obtained. Mode shape of the
linear first frequency are plotted in Figure 2 and Figure 3. By introducing Equation (19) into Equation
(16), multiplying the results by the linear mode shape function φ (x̄) and then integrating them over
the length of the nanobeam, we obtain a fractional order nonlinear ordinary differential equation
expressed as

d2q
dt̄2 + εC̃

dq
dt̄

+
(

w2
0 + εγF̄ cos Ω̄t̄

)
q +

1
4

εχq3 + εC̃P
dαq
dt̄α

= 0, (21)
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where w0 is the natural frequency for the linear system, C̃ and C̃P are normal damping ratio and shear
damping ratio, χ is the reduced nonlinear stiffness and γ is the constant

w2
0 =

K
(
a1 − η2a2

)
+ KP

(
−a2 + η2a3

)
+ a3

(a1 − η2a2) + δ (−a2 + η2a3)
, C̃ =

C
(
a1 − η2a2

)
(a1 − η2a2) + δ (−a2 + η2a3)

,

γ =

(
a2 − η2a3

)
(a1 − η2a2) + δ (−a2 + η2a3)

, χ =
2a4

(
−a2 + η2a3

)
(a1 − η2a2) + δ (−a2 + η2a3)

,

C̃P =
CP
(
−a2 + η2a3

)
(a1 − η2a2) + δ (−a2 + η2a3)

, {a1, a2, a3, a4} =
L∫

0

{
φ2, φφ′, φφIV ,

(
φ′
)2
}

. (22)

Differential equation Equation (21) is a new form of parametrical excited Duffing differential equation
due to the presence of fractional order term. In order to determine the asymptotic approximate solution
with combined effects of nonlinearity, parametric excitation and fractional order damping, we will
apply the pertubation method of multiple scales. A straightforward asymptotic expansion can be
introduced

q (t̄; ε) = ε0q0 (T0, T1) + ε1q1 (T0, T1) , (23)

where T0 = t̄ and T1 = εt̄ represent the fast and low timescale. The fast timescale is associated with
the linear unpertubed system, while the slow timescale is characterized by modulation of amplitude
and phase in the presence of possible resonance. Denoting D0 = ∂/

∂T0
, D1 = ∂/

∂T1
, the ordinary times

derivatives can be transformed into partial derivative as

d
dt

= D0 + εD1 + ...,
d2

dt2 = D2
0 + 2εD0D1 + ...,

(
d
dt

)α

= Dα
0 + εαDα−1

0 D1 + ..., (24)

Inserting Equation (23) and Equation (24) into Equation (21), we obtain the following relation(
ε0
)

: D2
0q0 + ω2

0q0 = 0, (25a)(
ε1
)

: D2
0q1 + ω2

0q1 = −2D0D1q0 − C̃PDα
0 q0 − C̃D0q0 −

1
4

χq3
0 + γF̄ cos (Ω̄T0), (25b)

Fundamental frequencies are obtained by solving the first order of expansion and the solvability
condition is obtained by solving the second order of expansion. The solution of first order equation is
given as

q0 (T0, T1) = A (T1) exp iω0T0 + Ā (T1) exp−iω0T0, (26)

where i =
√
−1, A is complex function of slow timescale and Ā is the complex conjugate. Excitation

frequency is assumed to close to one of the natural frequencies of the system, the dimensionless form
of this excitation frequency can be written as

Ω̄ = ω0 + εσ, (27)

where σ is a detuning parameter. Substituting Equation (26) in the second order of expansion and
using the dimensionless form of excitation frequency, yields

D2
0q1 + ω2

0q1 = −2iω0

(
D1 A +

1
2

C̃A
)

exp iω0T0

−
(

3
4

χA2 Ā + (iω0)
αC̃P A +

1
2

γĀF̄ exp (σT1)

)
exp iω0T0 + cc + NST, (28)
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where cc and NST represent the complex conjugate and the non-secular term, respectively. The
solvability condition for Equation (28) is obtained as follows

2iω0

(
D1 A +

1
2

C̃A
)
+

3
4

χA2 Ā + (iω0)
αC̃P A− 1

2
γĀF̄ exp (σT1) = 0. (29)

Taking into account the real amplitude a and phase β, the complex amplitude A can be written as

A = a (T1) exp iβ (T1) . (30)

Then amplitude and phase modulation equations are

D1a +
1
2

C̃a +
1
2

ωα−1
0 C̃Pa sin

απ

2
+

1
4

γaF̄
ω0

sin ψ = 0, (31a)

D1β− 3χ

8ω0
a2 − 1

2
ωα−1

0 C̃P cos
απ

2
− 1

4
γF̄
ω0

cos ψ, (31b)

in which ψ = σT1 − 2β is the new phase angle. In the steady-case, Equation (31) will be solved in the
future section.

4. Numerical Results

Numerical examples of frequencies are presented in this section. The linear fundamental
frequencies for different kinds of boundary conditions will be evaluated and the fractional order
nonlinear frequencies for free vibrations will also be evaluated in the case of steady-state. To show
correctness of presented study, we compared obtained results with results proposed by Mustapha
and Zhong [17], Yokoyama [44] and Togun et al [28]. Detailed parametric study will be conducted to
investivate the effects of system parameters such as stiffness and damping of viscoelastic foundation,
nonlocal parameter and fractional parameter on the dimensional fractional order nonlinear natural
frequencies of nanobeam with Simple-Simple boundary conditions and frequency response curve
obtained by pertubation method . For free vibraton F̄ = 0, in the case of steady-state, we obtain

D1a = 0⇒ a = a0. (32)

By introducing Eq.(32) in Eq.(31b), we get

β (T1) =

(
3χ

8ω0
a2

0 +
1
2

ωα−1
0 C̃P cos

απ

2

)
T1 + β0, (33)

where a0 and β0 are the constants steady-state real amplitude and phase which are determined from
the initial conditions. Introducing the obtained results into Eq.(26), gives the first order vibration
response

q0 (T0, T1) = a0 exp i
(

3χ

8ω0
a2

0 +
1
2

ωα−1
0 C̃P cos

απ

2

)
εt̄× exp i (ω0 t̄ + β0) + cc, (34)

and hence the fractional order nonlinear frequency is

ω
(α)
nl = ω0 + D1β = ω0 + ε

3χ

8ω0
a2

0 + ε
1
2

ωα−1
0 C̃P cos

απ

2
, (35)
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Table 1. The first five non-dimensional natural frequencies of a local Euler-Bernouilli beam resting
on Winkler-Pasternak foundation for the Simple-Simple boundary condition.(η = 0, δ = 0, K = 25,
Kp = 25).

Mode Present Ref [28] Ref [17] Ref [44]

1 19.2133 19.2133 19.2178 19.21
2 50.7002 50.7002 50.7804 50.71
3 100.6767 100.677 - -
4 170.0281 170.028 - -
5 258.9868 258.987 - -

where λ = 3χ
8ω0

is the nonlinear correction coefficient and the third term is a correction of natural
frequency due to the fractional order damping term. At the steady-state D1a = 0 and D1ψ = 0. The
detuning parameter or amplitude-frequency response is as follows

σ =
3χ

4ω0
a2

0 + ωα−1
0 C̃P cos

απ

2
±
√

1
4

γ2 F̄2

ω2
0
−
(

C̃ + ωα−1
0 C̃P sin

απ

2

)2
. (36)

4.1. Validation study

Studies related to the nonlinear nonlocal nanobeam resting on Winkler-Pasternak viscoelastic
foundation in the litterature are so limited. In order to validate present analitycal results for
amplitude -frequency response of the dynamical fractional order nonlinear nonlocal nano-beam
with Simple-Simple boundary condition, we compared obtained results proposed by Mustapha and
Zhong [17], Yokoyama [44] and Togun et al [28]. Let us consider the case of free vibration and only the
classical damping influence (α = 1), thus, the fractonal order correction to the natural frequency is
absent in Eq. (35) and Eq. (36) and then, we recognise the common form of nonlinear frequency and
detuning parameter

ωnl = ω0

(
1 + ε

3χ

8ω2
0

a2
0

)
, (37)

σ =
3χ

4ω0
a2

0 ±
√

1
4

γ2 F̄2

ω2
0
− µ2, (38)

where λ = 3χ
8ω0

is the nonlinear correction coefficient and µ = C̃ + C̃P the damping coefficient.
The work of Mustapha and Zhong [17] studies the non-uniform SWCNT depended on a nonlocal
Rayleigh beam resting on pasternak-type foundation, Yokoyama [44] studies free transverse vibration
of the classical Euler-Bernouilli beam resting on a Winkler-Pasternak foundation and Togun et
al [28] studies nonlinear vibration of a nonlocal nanobeam on a Winkler-Pasternak foundation
using Euler-Bernouilli beam theory. A comparison study is performed to check the correctness
of the present study. For this aim, linear frequency of local case of our nanobeam resting on
a Winkler-Pasternak foundation for the Simple-Simple boundary condition are compared with
those of the work of Mustapha and Zhong [17], Yokoyama [44] and Togun et al [28]. It can be
seen from the Table 1 and Table 2 that there is good harmony between the four results. Figure
4 shows the nonlocal parameter effect on the fractional nonlinear frequency, it can be deduced
that the natural frequency decreases when the nonlocal parameter increases. Variation of the
fractional nonlinear frequency with amplitude for the first three modes of vibration is shown in
Figure 5. It can be seen from Figure 5 that the fractional nonlinear frequencies increases with
an increase in the mode number. In Figures 6-8 the fractional nonlinear frequency versus
amplitude for different values of system parameter are shown for the first mode of vibration.
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Table 2. The first five non-dimensional natural frequencies of a local Euler-Bernouilli beam resting
on Winkler-Pasternak foundation for the Simple-Simple boundary condition.(η = 0, δ = 0, K = 36,
Kp = 36).

Mode Present Ref [28] Ref [17] Ref [44]

1 22.1069 22.1069 22.1112 -
2 54.9160 54.916 55.1873 -
3 105.4698 105.47 - -
4 175.0932 175.093 - -
5 264.1956 264.196 - -

Figure 4. First three mode of fractional nonlinear frequency versus nonlocalty η ( α = 0.5, K = 5,
Kp = 2, Cp = 0.001).

Figure 5. First three mode of fractional nonlinear frequency versus amplitude ( α = 0.5, K = 5,
Kp = 2, Cp = 0.001, η = 0.5).
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Figure 6. Fractional nonlinear frequency versus amplitude for different value of Kp ( α = 0.5,
K = 100, Cp = 0.001, η = 0.5).

Figure 7. Fractional nonlinear frequency versus amplitude for different value of K ( α = 0.5, Kp = 5,
Cp = 0.001, η = 0.5).

Figure 6 shows the effect of Pasternak parameter Kp on the fractional nonlinear frequency versus
amplitude curves. It can be seen in Figure 6 that the fractional nonlinear frequency increases with
an increase of Kp. In Figure 7, the fractional nonlinear frequency also increases with an increase of
Winkler stiffness parameter K. In Figure 8, the fractional nonlinear frequency versus amplitude for
different values of fractional damping coefficient Cp is shown. It can be deduced from Figure 8 that
the fractional nonlinear frequency increases slowly when the fractional damping coefficient increases.
It is normal because the fractional nonlinear frequency have a direct relation with Cp. Also it can be
observed a hardening behavior in Figures 6-8 because the fractional nonlinear frequency increases as
the amplitude increases. Frequency response curves are presented in Figure 9 for different values of
nondimensional nonlinear coefficient. It can be seen from Figure 9 that our system is really nonlinear.
In Figures 10-12, the fractional contribution frequency versus Winkler parameter K and nonlocal
parameter η for different values of fractional parameter α are shown. It can be seen from Figures
10-12 that the fractional contribution frequency increases and reaches to the constant maximum value
when the nonlocal parameter increases. For the small values of the nonlocal parameter the fractional
contribution increases quickly, but for the high values this contribution is constant. In Figures 13-14,
the fractional contribution frequency versus Pasternak parameter Kp and nonlocal parameter η curves
for different values of fractional parameter α are shown. It is observed that the variation of fractional
contribution depend of the interval of variation of the nonlocal parameter η. For the small value of η,
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Figure 8. Fractional nonlinear frequency versus amplitude for different value of Cp ( α = 0.5,
Kp = 5, K = 100, η = 0.5).

Figure 9. Frequency-response curves versus amplitude for different value of χ ( α = 1, C = 0.025,
Cp = 0.025, wo = 1, F̄ = 0.2).

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 June 2018                   doi:10.20944/preprints201806.0259.v1

Peer-reviewed version available at Fractal Fract 2018, 2, 21; doi:10.3390/fractalfract2030021

http://dx.doi.org/10.20944/preprints201806.0259.v1
http://dx.doi.org/10.3390/fractalfract2030021


13 of 18

Figure 10. Fractional Contribution frequency versus stiffness K and nonlocalty η ( α = 0.2).

Figure 11. Fractional Contribution frequency versus stiffness K and nonlocalty η ( α = 0.5).

Figure 12. Fractional Contribution frequency versus stiffness K and nonlocalty η ( α = 0.8).
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Figure 13. Fractional Contribution frequency versus stiffness Kp and nonlocalty η ( α = 0.2).

Figure 14. Fractional Contribution frequency versus stiffness Kp and nonlocalty η ( α = 0.5).

the fractional contribution increases but for the high value of η, this fractional contribution decreases.
In Figures 15-17, the fractional contribution frequency versus fractional damping coefficient Cp and
nonlocal parameter η curves are shown for different values of fractional parameter α. It can be seen
that the fractional contribution increases when Cp increases. In front of these all observations, it is
easily normal to say that every system parameter has significant effect on the natural frequency of
nanobeam, specially the fractional parameter and fractional damping coefficient.
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Figure 15. Fractional contribution frequency versus fractional damping coefficient Cp and
nonlocalty η ( α = 0.2).

Figure 16. Fractional contribution frequency versus fractional damping coefficient Cp and
nonlocalty η ( α = 0.5).

Figure 17. Fractional contribution frequency versus fractional damping coefficient Cp and
nonlocalty η ( α = 1).
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5. Conclusion

In this study, using the concept of fractional derivative, nonlinear vibration of nanobeam resting
on fractional order viscoelastic Winkler- Pasternak foundation is studied using nonlocal elasticity
theory. For this purpose, Eringen’s nonlocal elasticity theory, the von Karman geometric nonlinearity
and the Euler-Bernouilli beam theory are employed. D’Alembert principle is used to derive the
governing equation and the associated boundary conditions. In the solution procedure, employing the
Garlekin scheme, the fractional integro-partial differential governing equation is first simplified
into the time-dependant fractional ordinary differential equation. This new equation is known
as fractional order nonlinear Duffing equation which is then solved by multiple scales method.
Detailled parametric study is conducted to get the effects of system parameter such as Winkler
stiffness parameter, Pasternak stiffness parameter, nonlocal parameter, nonlinear coefficient, fractional
damping coefficient and fractional parameter on the fractional nonlinear frequency of the nanobeam.
It is found that fractional nonlinear frequency decreases when the nonlocal parameter increases. Also
this fractional nonlinear frequency increases when Winkler parameter, Pasternak parameter, mode,
fractional damping coefficient and amplitude increases. It is further found that every parameter of the
system has significant effect on the fractional contribution frequency.
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