

Retinoid X Receptor Antagonists

Masaki Watanabe and Hiroki Kakuta*

Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University

1-1-1 Tsushima-naka, Kita-ku, Okayama, Okayama, Japan
700-8530

kakuta-h@okayama-u.ac.jp

Tel +81-(0)86-251-7963 Fax +81-(0)86-251-7926

Retinoid X receptor (RXR) antagonists are not only useful as chemical tools for biological research, but also are candidate drugs for treatment of various diseases, including diabetes and allergy, although no RXR antagonist has yet been approved for clinical use. In this review, we describe currently available RXR antagonists, their structural classification, and their evaluation, focusing on the latest research.

1. Introduction

Retinoid X receptors (RXRs) are nuclear receptors that function either as homodimers or as heterodimers with other receptors such as peroxisome proliferator-activated receptor (PPAR), liver X receptor (LXR), or farnesoid X receptor (FXR) and others.^{1,2} RXR heterodimers that can be activated by RXR agonists alone are known as permissive heterodimers.³ 9-*cis*-Retinoic acid (**1**, Figure 1) is an endogenous ligand of RXRs, but also works as an activator of retinoic acid receptors (RARs).⁴ The RXR synthetic agonist bexarotene (LGD1069, Targretin®, **2**, Figure 1) is used for the treatment of cutaneous T cell lymphoma (CTCL),⁵ but on the other hand, no RXR antagonist has yet entered clinical use, even though anti-type 2 diabetes⁶ and anti-allergy activities⁷ have been found in animal models. At present, RXR antagonists are mainly employed as analytical tools in studies of RXR function. In this review, we describe currently available RXR antagonists, their structural classification, and their evaluation, focusing on the latest research.

2. Representative RXR antagonists

RXR antagonists are classified into three categories; 1) compounds having a long-chain alkoxy group introduced to an RXR agonist structure as a scaffold (Table 1), 2) compounds possessing another side-chain group instead of the alkoxy group introduced to an RXR agonist structure as a scaffold (Table 2), and 3) compounds discovered from among natural products or by docking simulation or high-throughput screening (Table 3). The common structure of RXR agonists is composed of three parts: a hydrophobic moiety composed of a tetramethyltetraline structure, an acidic moiety composed of trienoic acid, benzoic acid, nicotinic acid, or pyrimidinecarboxylic acid, and a linking moiety between the two.

2-1. RXR antagonists having a long-chain alkoxy group

The chemical structures of RXR antagonists in this category are illustrated in Table 1. LG100754 (**3**) was reported as the first RXR antagonist in 1996.⁸ Prior to that, in 1994, Boehm et al. had noted that some compounds having RXR binding affinity but not showing RXR agonist activity might exhibit RXR antagonistic activity.⁹ Compound **3** was designed by introducing an *n*-propoxy group into the 3'-position of the backbone of tetrahydrotetramethylnaphthyl octatrienoic acid, whose chemical structure is similar to that of 9-*cis* retinoic acid (**1**) (Figure 2). A similar compound, AGN195393 (**4**),¹⁰ was

also reported. Compound **3** showed $IC_{50} = 16$ nM against 32 nM **2** ($EC_{50} = 33$ nM)⁸ in reporter assay for RXR α in CV-1 cells. Although initially identified as an RXR homodimer antagonist, subsequent experiments revealed that **3** acts as an agonist toward RAR/RXR, PPAR α /RXR¹¹ and PPAR γ /RXR¹².

Ro26-5450 (**5**)¹³ and LG101506 (**6**) have a (2E,4E,6Z)-7-(2-alkoxy-3,5-di-alkylbenzene)-3-methylocta-2,4,6-trienoic acid scaffold.¹⁴ Compound **6** binds to RXR α at low concentrations and shows RXR antagonist activity, but a synergistic effect with an agonist of PPAR γ was also found, and this compound was described as a RXR modulator. Subsequently, **7**, which has a ring structure at the 6 and 7 positions of the trienoic acid structure of **6**, and **8**, which has another ring structure at the 4 and 5 positions of **7**, were created. Compound **8** shows more potent RXR antagonist activity than **6**.¹⁶ Their K_i values for RXR α in the presence of [³H]9-*cis* retinoic acid are 3 nM (**6**), 9.9 nM (**7**), and 3 nM (**8**). Although the IC_{50} values toward RXR α in reporter assay using CV-1 cells were also reported as 8 nM (**6**), 10.3 nM (**7**), and 8 nM (**8**), the RXR agonist and the concentration used were not mentioned.^{14,15,16}

PA451 (**9a**) and PA452 (**9b**) are RXR antagonists having a pentoxy or a hexoxy group at the ortho position of the amino group on the benzene ring forming the tetramethyltetraline structure of an *N*-methyl derivative of RXR agonist PA024 (**27**). These compounds inhibit RXR/RAR heterodimers.¹⁷ The pA_2 value of **9b** in the presence of RXR agonist NET-TMN (**36**, $EC_{50} = 5.28$ nM)¹⁸ was determined as 7.11 from a Shild plot.¹⁹

Bl-1003 (**10a**)²⁰ is a propoxy derivative of RXR agonist **28**.²¹ Compounds **10b** and **10c** were designed by replacing the benzoic acid of **10a** with nicotinic acid and the propoxy group of **10a** with a butyl group, respectively. Reporter assay toward RXR α using 0.1 μ M **1** in CV-1 cells gave $IC_{50} = 1,100$ nM (**10a**), $> 10,000$ nM (**10b**), and 67 nM (**10c**), respectively.²² Interestingly, although **10c** showed a 10-times-greater K_d value than **10a** in a competition test using tritium-labeled **1**, the antagonism in the reporter assay was 20 times more potent.

UVI3003 (**11**) is an RXR antagonist obtained by converting the 3'-methyl group of RXR agonist CD3254 (**33**)²³ to a pentoxy group. In this study, the authors synthesized analogs with an alkyl chain ranging from C1 to C6 in length, and evaluated RXR agonistic and antagonistic activities. Compounds having a short alkoxy side chain act as partial or weak RXR agonists, but when the number of carbons is more than 3, they show RXR antagonist activity. Among them, **11** shows potent RXR antagonistic activity. Since **34**, the positional isomer of **11**, shows only weak RXR antagonist activity, the position of the alkoxy group is important for the activity.²⁴ Compound **11**

showed $IC_{50} = 0.24 \mu M$ against 10 nM IRX4204 (formerly designated AGN194204 and NRX 194204, RXR agonist)²⁵ in a reporter assay for RXR α in COS-7 cells.²⁶

2-2. RXR antagonists possessing another side group instead of the alkoxy group on an RXR agonist structure

RXR antagonists possessing another side group instead of the alkoxy chain are summarized in Table 2.

HX531 (**12**) was designed by introducing a nitro group into the structure of the diazepinylbenzoic acid derivative RXR agonist HX600 (**35**).²⁷ Compound **12** showed $IC_{50} = 1.0 \mu M$ against 10 nM IRX4204 in a reporter assay toward RXR α in COS-7 cells.²⁶ Compound **12** has been reported to show antagonism towards not only RXR, but also RAR.²⁷ It also shows antagonistic activity against RAR/RXR or PPAR γ /RXR heterodimers.⁶ Compound **12** shows a hypoglycemic effect in an animal model of type 2 diabetes, and is thought to improve insulin resistance through antagonism to PPAR γ /RXR heterodimer.⁶ An improvement of leptin resistance was also reported.²⁸ However, the C_{max} value at 100 mg/kg oral administration of **12** to mice was 4.1 $\mu g/mL$ (8.5 μM). Two-week administration of diet containing **12** at 0.1% weight showed a hypoglycemic effect.⁶ For the purpose of improving the oral availability of **12**, **13a** and **13b** were created.²⁹ When they were orally administered to rats at 1 mg/kg, the C_{max} values were 468 nM and 519 nM, respectively. Further development of these structures yielded **13c**, which was reported to show a hypoglycemic effect in KK-Ay mouse, a type 2 diabetes model.³⁰

Compound **14** has a boron cluster (carborane) at the hydrophobic site instead of tetramethyltetraline structure.³¹ At 1 μM , **14** completely represses RXR α transcription induced by 10 nM RXR agonist PA024 (**31**).

Morishita and colleagues produced new RXR antagonists, **15a** and **15b**, having a sulfonamide on an amino linking group instead of the N-ethyl group of NET-TMN (**36**).³² However, their RXR antagonist activity was weaker than that of HX531 (**12**).

To reduce the lipid solubility of existing RXR agonists, the RXR full agonist NET-3IB (**37**, $EC_{50} = 19 \text{ nM}$), which has an isobutoxy group at a hydrophobic site, was designed.^{33,34} The para position to the isobutoxy group on the benzene ring is electron-rich because this position is also at the ortho position relative to the nitrogen atom of the amino linking group. Therefore, it is easily halogenated. A new RXR antagonist **16**, which has a stilbene structure, was created by transformation of an iodine precursor using a palladium catalyst.¹⁹ The pA_2 value of **16** toward RXR α agonist NET-TMN ($EC_{50} = 5.28$

nM)¹⁸ was 8.23 based on a Shild plot, while that of PA452 (**9b**) was 7.11; thus, **16** is one of the strongest RXR antagonists so far discovered.

2-3. RXR antagonists discovered among natural products or by docking simulation or high-throughput screening

The chemical structures and assay data of RXR antagonists classsified in this category are shown in Table 3.

Danthron (**17a**), a component of rhubarb, used in Chinese medicine, showed RXR antagonist activity with $IC_{50} = 0.11 \mu M$ for 1 μM **1** in a reporter assay for Gal4-RXR α -LBD in HEK293T cells.³⁵ The Kd value for RXR α is 6.2 μM . Compound **17a** shows antagonist activity toward not only RXR homodimer, but also heterodimers such as PPAR γ /RXR α and LXRA/RXR α . Compound **17a** has also been evaluated in vivo and was found to improve insulin resistance in DIO mice. Rhein (**17b**), another compound derived from rhubarb, likewise shows RXR antagonist activity with $IC_{50} = 0.75 \mu M$ for **1** in the same assay system.³⁶

β -Apo-13-carotenone (**18**), which is produced by β -carotene cleavage, antagonizes RXR α activation by **1** through receptor tetramerization, which stabilizes the inactive state.³⁷ Though competition assay against **1** in a reporter assay in COS-7 cells has been investigated, the IC_{50} value was not described.

R-Etodolac (**19**), a non-steroidal anti-inflammatory drug (NSAID), induces apoptosis of tumor cells in a mouse model of prostate cancer.³⁸ Zhang et al reported that **19** acts as an antagonist of RXR α and down-regulates RXR. A competition assay with 38.1 nM [3 H]**1** revealed that the IC_{50} value of **19** is about 200 μM . After this study, sulindac (**20**), another NSAID, was also found to bind to RXR α and induce apoptosis.³⁹ The IC_{50} value of **20** in competition assay for [3 H]**1** is 82.9 μM . K-80003 (**21a**) was created to improve the affinity for RXR ($IC_{50} = 2.4 \mu M$) and to eliminate COX inhibition.^{40,41} Though K-8008 (**22b**), which has a tetrazole instead of the carboxylic acid moiety of **21a**, showed a slightly decreased affinity for RXR α ($IC_{50} = 16.8 \mu M$), crystal structure analysis showed that it binds at the RXR α interface and stabilizes the tetramer of RXR.⁴¹

Zhang et al. also discovered triptolide (**22a**)⁴², which has antagonistic activity against RXR α and induces apoptosis, as well as NSC-640358 (**23**),⁴³ by virtual screening. The Kd value of **23** for RXR α is 15.7 μM . Furthermore, they conducted a one hybrid assay using their in-house compound library and identified **24** and **25**, which are nitrostyrene derivatives, as RXR α modulators.⁴⁴ They detected RXR agonistic activity in the mammalian one-hybrid assay using Gal4-DBD-RXR α -LBD, and

antagonistic activity in reporter assay using the full-length RXR homodimer. Zhang et al. demonstrated that nitrostyrene derivatives **24** and **25** could inhibit the TNF α /NF κ B signaling pathway by binding to N-terminally truncated RXR α (tRXR α), leading to TNF α and tRXR α -dependent apoptosis of cancer cells.

Moreover, Zhang et al. identified **26** and **27** as RXR antagonists by means of virtual screening using the structure of RXR α -LBD in the complex with CD3254 (**33**) and a coactivator peptide (PDB code, 3FUG).⁴⁵ These compounds do not bind to the ligand-binding pockets, but bind at the surface of the co-regulator binding site and inhibit co-regulator binding there. Reporter assay using 0.1 μ M **1** toward RXR α in MCF-7 cells yielded IC₅₀ values of 2 μ M for **26** and 2.45 μ M for **27**.

Zhang and colleagues also found that the statin drugs fluvastatin (**28**) and pitavastatin (**29**) are RXR antagonists by virtual screening of an FDA-approved drug database.⁴⁶ Further structure optimization of **28** afforded **30**, whose Kd value for RXR α is 5.1 μ M, which is lower than that of danthron (**17a**).

3. Evaluation of RXR antagonistic activity

Though various RXR antagonists have been reported so far, their antagonistic activity has been evaluated in various ways, i.e., in terms of the dissociation constant (Ki value) using a tritium-labeled ligand such as 9-*cis*-retinoic acid (**1**), the binding constant obtained by the SPR method, the Kd value, the IC₅₀ value, and pA₂ against an RXR agonist in reporter assay (Tables 1, 2 and 3).

The dissociation constant has been measured by using radioisotopes. However, this technique is complicated and requires special laboratory equipment as well as disposal arrangements for radioactive waste. So far, no method using a fluorescent ligand has been established. Also, even if binding ability to the receptor is detected, poor membrane permeability of the compound may influence the actual activity, as in the cases of **10a** and **10c**.²²

Antagonistic activity of LG100754 (**3**), the first reported RXR antagonist, was evaluated in terms of IC₅₀ value on transcriptional activation by **2** in reporter gene assays using CV-1 cells.⁸ Similarly, PA452 (**9b**)¹⁷ and UVI3003 (**11**)²³ were evaluated using PA024 (**31**) and CD3254 (**33**) as agonists, respectively. Since the activity differs depending on the coexisting RXR agonist, it is difficult to compare observed potencies. The most widely used RXR agonist for reporter gene assays is **1** at the concentration of 0.1 μ M. Therefore, it may be better to use this method as one index of activity in screening for new RXR antagonists.

The *pA*₂ value is used as an index of competitive antagonist activity. It is the negative logarithm of the molar concentration of the competitive antagonist required to shift the agonist's EC₅₀ to 2-fold higher concentration. The *pA*₂ value is also consistent with the affinity constant for the receptor.⁴⁷ Thus, it is desirable to include this method in a more rigorous evaluation of antagonist activity. However, in order to obtain these data, it is necessary to obtain a capacity activity curve of the agonist at three different antagonist concentrations at minimum. Compounds **9b** and **16** have been evaluated using the *pA*₂ value as an indicator of competitive antagonist activity.¹⁹

RXR forms not only RXR homodimers, but also heterodimers with various nuclear receptors.² Therefore, it is interesting to know whether RXR antagonists act as homodimer antagonists and/or heterodimer antagonists. Though **3** was found as an RXR homodimer antagonist, subsequent experiments revealed that it also acts as an agonist toward RAR/RXR, PPAR α /RXR¹¹ and PPAR γ /RXR¹². Compound **6** has been found to show a synergistic effect in the presence of an agonist of PPAR γ .¹⁴ Compound **9b** selectively antagonizes RXR in RXR/RAR heterodimer.¹⁷ One μ M **12** suppressed the activity of 100 nM rosiglitazone (PPAR γ agonist) toward PPAR γ /RXR to about a half.⁶ Compound **17a** has antagonistic activity not only towards RXR homodimer, but also towards heterodimers such as PPAR γ /RXR α , FXR/RXR α , LXR α /RXR α , etc.³⁵ However, there was no description of the concentration of each agonist for partner receptors. Among them, for LXR/RXR, T0901317⁴⁸ with an EC₅₀ of 20 nM for LXR α was used at 5 μ M. Based on these facts, it seems necessary to standardize assay systems for heterodimers.

4. Latest research on RXR antagonists

Here, we will briefly summarize research on RXR antagonists reported in the last 5 years, and then consider the prospects for RXR antagonists.

LG100754 (**3**) was reported to have a protective effect against oxidative stress in retinal pigment epithelial cells.⁴⁹ This effect is thought to be caused by activation of PPAR γ /RXR.

PA452 (**9b**) was reported to decrease an infection marker concentration-dependently in an HBV infection model using human hepatic stem cells.⁵⁰ It is considered that **9b** suppresses transcription of viral RNA in HBV-infected hepatocyte-like cells by antagonizing RXR.

Teratogenicity of UVI3003 (**11**) was studied using zebrafish and *Xenopus*.^{51,52} A difference in gene expression in *Xenopus* eggs was found depending on the exposure

time to **11**.⁵³ In 2017, **11** was found to activate PPAR γ in a reporter assay using *Xenopus* embryos. Moreover, studies using *Xenopus* treated with RXR agonist bexarotene (**2**) or **11** revealed that T3-dependent gene expression was altered during transformation of tadpoles.⁵⁴

Ro26-5405 (**5**) is reported to block T helper 2 differentiation and to prevent allergic lung inflammation.⁷ The mechanism was suggested to be inhibition of Th2 differentiation by antagonizing RXR. In addition, in an atopic dermatitis model mouse, **11** was used as a tool to investigate the expression of thymic stromal lymphopoietin (TSLP), which is triggered in atopic dermatitis and is involved in suppression.⁵⁵ TSLP is an IL-7-like cytokine and was shown to be a master switch of allergic inflammation at the epithelial cell—dendritic cell interface, leading to allergic sensitization. It is reported that the expression of TSLP involves RAR γ /RXR.

Huang et al. used **12** as a tool to show that activation of RXR has a protective effect against hypoxia-reoxygenation disorder in H9c2 cardiomyocytes.⁵⁶ Franklin and colleagues revealed that phagocytosis and remyelination of myelin debris accompanying aging progressed upon activation of RXR using **12**.⁵⁷ Kajita et al. reported that apoptotic neurotoxic activity of 4-para-nonylphenol occurs simultaneously with RXR activation and a decrease in classical estrogen receptor signaling. They found that the effect of 4-para-nonylphenol on mitochondrial membrane potential was canceled by **12**, indicating that this neurotoxicity involves activation of RXR.⁵⁸ Compound **12** is also reported to decrease both mobility and growth of *Trichuris muris* (a parasite) in vitro, indicating its potential as an anthelmintic drug.⁵⁹ RXR is negatively regulated by **1** and **12** through a nongenomic effect on platelets and thrombus formation.⁶⁰

Compound **12** is also used as a tool to investigate the influence of environmental hormones on RXR. For example, the mechanism of neurotoxicity by dichlorodiphenyl dichloroethylene (DDE),⁶¹ the effect of tributyltin on osteogenesis,⁶² and the toxicity of organotin⁶³ were found to involve transcriptional activation of RXR.

Zhang and colleagues found that *R*-etodolac (**19**), a NSAID, induces an antitumor effect via antagonistic activity toward RXR α , and also induces degradation of RXR α via the ubiquitin-proteasome system.³⁵ Subsequently, they also found RXR antagonist activity of sulindac (**20**), another NSAID. They suggested that nongenomic action of an N-terminally truncated RXR α (tRXR α) could play a role in the crosstalk with TNF α signaling in cancer cells.^{36,64} tRXR α , which is produced by proteolytic cleavage of full-length RXR α , is highly expressed in a variety of tumor cells and tissues.⁶⁵ Furthermore, **20** was structurally developed to afford compounds **21a** and **21b**.^{37,38}

Crystal structure analysis of **21b** in RXR α revealed that it binds to the RXR interface rather than the ligand-binding pocket, stabilizing RXR tetramers.³⁸

Similarly, Zhang et al. discovered triptolide (**22a**) in a natural product library. Compound **22a** regulates the survival of tRXR α -dependent cancer cells by apoptosis induction. Furthermore, **22a** was structurally converted to TRC4 (**22b**), and **22b** showed tRXR α -selective antagonism without transcriptional activation of RXR α .⁶⁷ In addition, NSC-640358 (**23**), which was discovered by virtual screening ($K_d = 15.7 \mu\text{M}$), induces apoptosis of cancer cells.⁴⁰ Compound **23** has been reported to inhibit the transcriptional activation of RXR homodimer by **1**, but the IC_{50} value was not given.

In addition, Zhang et al. carried out one-hybrid assay with a compound library and found nitrostyrene derivatives **24** and **25** as RXR modulators.⁴¹ Although these compounds showed RXR activity in mammalian one-hybrid assay using Gal4-DBD-RXR α -LBD, they showed antagonist activity in reporter assay using full-length RXR homodimer. Interestingly, **24** and **25** stabilize the RXR homodimer, unlike **21b**. Size-exclusion chromatography indicated that the structure of the homodimer differs from the activated structure. These compounds have no activity to down-regulate tRXR α . Compounds **26**, **27** were also discovered by virtual screening.⁴⁴

5. Important points in the use of RXR antagonists

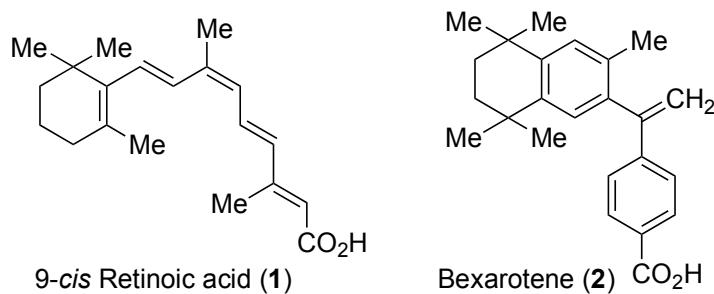
Some RXR antagonists reported to date show agonistic activity on RXR heterodimers. For example, LG100754 (**4**), in addition to antagonism of the RXR homodimer,⁸ shows agonist activity toward PPAR α /RXR and PPAR γ /RXR¹¹. UVI3003 (**11**) also shows agonistic activity for PPAR γ /RXR.²⁶ HX531 (**12**), the most widely used RXR antagonist *in vivo*, has also been reported to antagonize RAR.⁴ Chen et al. reported that down-regulation of RXR α leads to cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production in aged macrophages.⁶⁸ These data were obtained by administering **12** to mice. However, **12** was administered at a high concentration of 10 mg/kg *i.p.* every 24 hours for 7 days. The C_{\max} of **12** in mice after 100 mg/kg oral administration was only 4.1 $\mu\text{g}/\text{mL}$ (8.5 μM).⁶ In order to improve oral absorption, **13a**, **13b** and **13c** were created.^{28,29} But, although **13a** and **13b** give C_{\max} values of approximately 500 nM after oral administration to rats at 1 mg/kg, there is no report as yet on their activities toward RXR heterodimers.

6. Conclusion

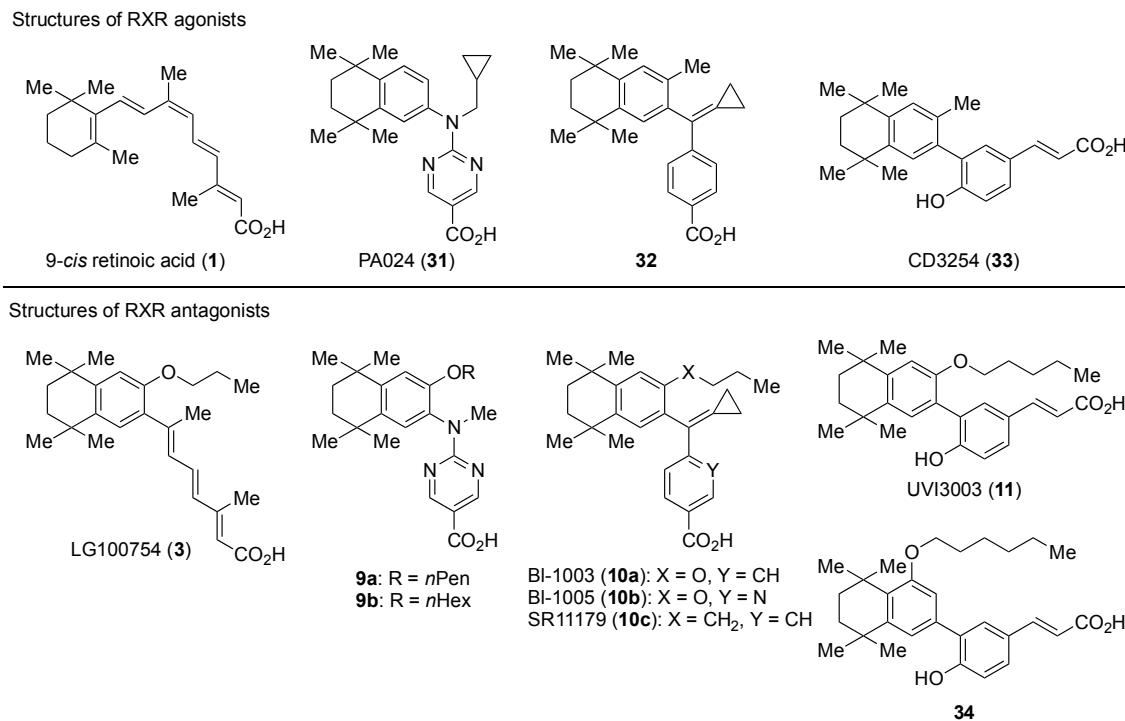
RXR antagonists are of increasing interest because of their therapeutic effects, i.e., hypoglycemic effect in type 2 diabetes models and anti-tumor effect via tRXR α .

However, currently available RXR antagonists require high dosages *in vivo* when orally administered because of their poor absorption, and some of them activate heterodimers. Thus, there is still a need to develop new RXR antagonists to overcome these problems, and such compounds would be promising drug candidates, as well as useful experimental tool for biological studies on the roles of nuclear receptors.

References


1. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schütz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM. *Cell* **1995**, *83*, 835–839.
2. Mangelsdorf DJ, Evans RM. *Cell* **1995**, *83*, 841–850.
3. Forman BM, Umesono K, Chen J, Evans RM. *Cell* **1995**, *81*, 541–550.
4. G Allenby, M T Bocquel, M Saunders, S Kazmer, J Speck, M Rosenberger, A Lovey, P Kastner, J F Grippo, P Chambon. *Proc. Natl. Acad. Sci. USA* **1993**, *90*, 30–34.
5. Pileri A, Delfino C, Grandi V, Pimpinelli N. *Immunotherapy* **2013**, *5*, 427–433.
6. Yamauchi T, Waki H, Kamon J, Murakami K, Motojima K, Komeda K, Miki H, Kubota N, Terauchi Y, Tsuchida A, Tsuboyama-Kasaoka N, Yamauchi N, Ide T, Hori W, Kato S, Fukayama M, Akanuma Y, Ezaki O, Itai A, Nagai R, Kimura S, Tobe K, Kagechika H, Shudo K, Kadowaki T. *J. Clin. Invest.* **2001**, *108*, 1001–1013.
7. Grenningloh R, Gho A, di Lucia P, Klaus M, Bollag W, Ho IC, Sinigaglia F, Panina-Bordignon P. *J. Immunol.* **2006**, *176*, 5161–5166.
8. Canan Koch SS, Dardashti LJ, Hebert JJ, White SK, Croston GE, Flatten KS, Heyman RA, Nadzan AM. *J. Med. Chem.* **1996**, *39*, 3229–3234.
9. Boehm MF, Zhang L, Badea BA, White SK, Mais DE, Berger E, Suto CM, Goldman ME, Heyman RA. *J. Med. Chem.* **1994**, *37*, 2930–2941.
10. WO2001019770, <https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2001019770>
11. Lala DS, Mukherjee R, Schulman IG, Koch SS, Dardashti LJ, Nadzan AM, Croston GE, Evans RM, Heyman RA. *Nature* **1996**, *383*, 450–453.
12. Cesario RM, Klausing K, Razzaghi H, Crombie D, Rungta D, Heyman RA, Lala DS. *Mol. Endocrinol.* **2001**, *15*, 1360–1369.
13. WO2000053562, <https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2000053562>
14. Michellys PY, Ardecky RJ, Chen JH, Crombie DL, Etgen GJ, Faul MM, Falkner AL, Grese TA, Heyman RA, Karanewsky DS, Klausing K, Leibowitz MD, Liu S, Mais DA, Mapes CM, Marschke KB, Reifel-Miller A, Ogilvie KM, Rungta D, Thompson AW, Tyhonas JS, Boehm MF. *J. Med. Chem.* **2003**, *46*, 2683–2696.
15. Michellys PY, Ardecky RJ, Chen JH, D'Arrigo J, Grese TA, Karanewsky DS, Leibowitz MD, Liu S, Mais DA, Mapes CM, Montrose-Rafizadeh C, Ogilvie KM, Reifel-Miller A, Rungta D, Thompson AW, Tyhonas JS, Boehm MF. *J. Med. Chem.* **2003**, *46*, 4087–4103.
16. Michellys PY, D'Arrigo J, Grese TA, Karanewsky DS, Leibowitz MD, Mais DA, Mapes CM, Reifel-Miller A, Rungta D, Boehm MF. *Bioorg. Med. Chem. Lett.* **2004**, *14*, 1593–1598.
17. Takahashi B, Ohta K, Kawachi E, Fukasawa H, Hashimoto Y, Kagechika H. *J. Med. Chem.* **2002**, *45*, 3327–3330.
18. Fujii S, Ohsawa F, Yamada S, Shinozaki R, Fukai R, Makishima M, Enomoto S, Tai A, Kakuta

H. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 5139–5142.


- 19. Nakayama M, Yamada S, Ohsawa F, Ohta Y, Kawata K, Makishima M, Kakuta H. *ACS Med. Chem. Lett.* **2011**, *2*, 896–900.
- 20. Cavasotto CN, Liu G, James SY, Hobbs PD, Peterson VJ, Bhattacharya AA, Kolluri SK, Zhang XK, Leid M, Abagyan R, Liddington RC, Dawson MI. *J. Med. Chem.* **2004**, *47*, 4360–4372.
- 21. Dawson MI, Hobbs PD, Jong L, Xiao D, Chao WR, Pan C, Zhang XK. *Bioorg. Med. Chem. Lett.* **2000**, *10*, 1307–1310.
- 22. Lu J, Dawson MI, Hu QY, Xia Z, Dambacher JD, Ye M, Zhang XK, Li E. *Magn. Reson. Chem.* **2009**, *47*, 1071–1080.
- 23. Nahoum V, Pérez E, Germain P, Rodríguez-Barrios F, Manzo F, Kammerer S, Lemaire G, Hirsch O, Royer CA, Gronemeyer H, de Lera AR, Bourguet W. *Proc. Natl. Acad. Sci. USA.* **2007**, *104*, 17323–17328.
- 24. Pérez Santín E, Germain P, Quillard F, Khanwalkar H, Rodríguez-Barrios F, Gronemeyer H, de Lera AR, Bourguet W. *J. Med. Chem.* **2009**, *52*, 3150–3158.
- 25. Vuligonda V, Thacher SM, Chandraratna RA. *J. Med. Chem.* **2001**, *44*, 2298–2303.
- 26. Zhu J, Janesick A, Wu L, Hu L, Tang W, Blumberg B, Shi H. *Toxicol. Appl. Pharmacol.* **2017**, *314*, 91–97.
- 27. Ebisawa M, Umemiya H, Ohta K, Fukasawa H, Kawachi E, Christoffel G, Gronemeyer H, Tsuji M, Hashimoto Y, Shudo K, Kagechika H. *Chem. Pharm. Bull.* **1999**, *47*, 1778–1786.
- 28. Yotsumoto T, Naitoh T, Kanaki T, Tsuruzoe N. *Metabolism* **2005**, *54*, 573–578.
- 29. Sakaki J, Konishi K, Kishida M, Gunji H, Kanazawa T, Uchiyama H, Fukaya H, Mitani H, Kimura M. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 4808–4811.
- 30. Sakaki J, Kishida M, Konishi K, Gunji H, Toyao A, Matsumoto Y, Kanazawa T, Uchiyama H, Fukaya H, Mitani H, Arai Y, Kimura M. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 4804–4807.
- 31. Ohta K, Iijima T, Kawachi E, Kagechika H, Endo Y. *Bioorg. Med. Chem. Lett.* **2004**, *14*, 5913–5918.
- 32. Morishita K, Yakushiji N, Ohsawa F, Takamatsu K, Matsuura N, Makishima M, Kawahata M, Yamaguchi K, Tai A, Sasaki K, Kakuta H. *Bioorg. Med. Chem. Lett.* **2009**, *19*, 1001–1003.
- 33. Takamatsu K, Takano A, Yakushiji N, Morohashi K, Morishita K, Matsuura N, Makishima M, Tai A, Sasaki K, Kakuta H. *Chem. Med. Chem.* **2008**, *3*, 780–787.
- 34. Kawata K, Morishita K, Nakayama M, Yamada S, Kobayashi T, Furusawa Y, Arimoto-Kobayashi S, Oohashi T, Makishima M, Naitou H, Ishitsubo E, Tokiwa H, Tai A, Kakuta H. *J. Med. Chem.* **2015**, *58*, 912–926.
- 35. Zhang H, Zhou R, Li L, Chen J, Chen L, Li C, Ding H, Yu L, Hu L, Jiang H, Shen X. *J. Biol. Chem.* **2011**, *286*, 1868–1875.
- 36. Zhang H, Chen L, Chen J, Jiang H, Shen X. *J. Biol. Chem.* **2011**, *286*, 24593–24598.

37. Sun J, Narayanasamy S, Curley RW Jr, Harrison EH. *J. Biol. Chem.* **2014**, *289*, 33118–33124.
38. Kolluri SK, Corr M, James SY, Bernasconi M, Lu D, Liu W, Cottam HB, Leoni LM, Carson DA, Zhang XK. *Proc. Natl. Acad. Sci. USA.* **2005**, *102*, 2525–2530.
39. Zhou H, Liu W, Su Y, Wei Z, Liu J, Kolluri SK, Wu H, Cao Y, Chen J, Wu Y, Yan T, Cao X, Gao W, Molotkov A, Jiang F, Li WG, Lin B, Zhang HP, Yu J, Luo SP, Zeng JZ, Duester G, Huang PQ, Zhang XK. *Cancer Cell* **2010**, *17*, 560–573.
40. Wang ZG, Chen L, Chen J, Zheng JF, Gao W, Zeng Z, Zhou H, Zhang XK, Huang PQ, Su Y. *Eur. J. Med. Chem.* **2013**, *62*, 632–648.
41. Chen L, Wang ZG, Aleshin AE, Chen F, Chen J, Jiang F, Alitongbieke G, Zeng Z, Ma Y, Huang M, Zhou H, Cadwell G, Zheng JF, Huang PQ, Liddington RC, Zhang XK, Su Y. *Chem. Biol.* **2014**, *21*, 596–607.
42. Lu N, Liu J, Liu J, Zhang C, Jiang F, Wu H, Chen L, Zeng W, Cao X, Yan T, Wang G, Zhou H, Lin B, Yan X, Zhang XK, Zeng JZ. *PLoS One* **2012**, *7*, e35722
43. Chen F, Chen J, Lin J, Cheltsov AV, Xu L, Chen Y, Zeng Z, Chen L, Huang M, Hu M, Ye X, Zhou Y, Wang G, Su Y, Zhang L5, Zhou F, Zhang XK, Zhou H. *Protein Cell* **2015**, *6*, 654-666.
44. Zeng Z, Sun Z, Huang M, Zhang W, Liu J, Chen L, Chen F, Zhou Y, Lin J, Huang F, Xu L, Zhuang Z, Guo S, Alitongbieke G, Xie G, Xu Y, Lin B, Cao X, Su Y, Zhang XK, Zhou H. *Cancer Res.* **2015**, *75*, 2049–2060.
45. Chen F, Liu J, Huang M, Hu M, Su Y, Zhang XK. *ACS Med. Chem. Lett.* **2014**, *5*, 736–741.
46. Xu D, Cai L, Guo S, Xie L, Yin M, Chen Z, Zhou H, Su Y, Zeng Z, Zhang X. *Bioorg. Med. Chem. Lett.* **2017**, *27*, 1055–1061.
47. Lazareno S, Birdsall NJ. *Br. J. Pharmacol.* **1993**, *109*, 1110-1119.
48. Schultz JR, Tu H, Luk A, Repa JJ, Medina JC, Li L, Schwendner S, Wang S, Thoelen M, Mangelsdorf DJ, Lustig KD, Shan B. *Genes Dev.* **2000**, *14*, 2831-2838.
49. Ayala-Peña VB, Pilotti F, Volonté Y, Rotstein NP, Politi LE, German OL. *Biochim. Biophys. Acta.* **2016**, *1863*, 1134–1145.
50. Xia Y, Carpentier A, Cheng X, Block PD, Zhao Y, Zhang Z, Protzer U, Liang TJ. *J. Hepatol.* **2017**, *66*, 494–503.
51. Zheng L, Xu T, Li D, Zhou J. *J. Appl. Toxicol.* **2015**, *35*, 280–286.
52. Zheng L, Yu J, Shi H, Xia L, Xin Q, Zhang Q, Zhao H, Luo J, Jin W, Li D, Zhou J. *J. Appl. Toxicol.* **2015**, *35*, 1049–1057.
53. Zhu J, Shi H, Zhu P, Hu L, Wu L, Yang Y, Rotchell JM. *Environ. Toxicol. Pharmacol.* **2014**, *38*, 153–162.
54. Mengeling BJ, Goodson ML, Furlow JD. *Endocrinology* en.2018-00172
55. Mihály J, Gericke J, Lucas R, de Lera AR, Alvarez S, Töröcsik D, Rühl R. *Immunobiology* **2016**, *221*, 161–165.

56. Shan PR, Xu WW, Huang ZQ, Pu J, Huang WJ. *World J. Emerg. Med.* **2014**, *5*, 122-127.
57. Natrajan MS, de la Fuente AG, Crawford AH, Linehan E, Nuñez V, Johnson KR, Wu T, Fitzgerald DC, Ricote M, Bielekova B, Franklin RJ. *Brain.* **2015**, *138*, 3581-3597.
58. Litwa E, Rzemieniec J, Wnuk A, Lason W, Krzeptowski W, Kajta M. *J. Steroid Biochem. Mol. Biol.* **2014**, *144*, 334-347.
59. Hurst RJ, Hopwood T, Gallagher AL, Partridge FA, Burgis T, Sattelle DB, Else KJ. *BMC Infect. Dis.* **2014**, *14*, 520.
60. Unsworth AJ, Flora GD, Sasikumar P, Bye AP, Sage T, Kriek N, Crescente M, Gibbins JM. *Arterioscler. Thromb. Vasc. Biol.* **2017**, *37*, 812-822.
61. Wnuk A, Rzemieniec J, Litwa E, Lason W, Krzeptowski W, Wójtowicz AK, Kajta M. *Neurotox. Res.* **2016**, *29*, 155-72.
62. Baker AH, Watt J, Huang CK, Gerstenfeld LC, Schlezinger JJ. *Chem. Res. Toxicol.* **2015**, *28*, 1156-1166.
63. Urushitani H, Katsu Y, Kagechika H, Sousa ACA, Barroso CM, Ohta Y, Shiraishi H, Iguchi T, Horiguchi T. *Aquat. Toxicol.* **2018**, *199*, 103-115.
64. Wang GH, Jiang FQ, Duan YH, Zeng ZP, Chen F, Dai Y, Chen JB, Liu JX, Liu J, Zhou H, Chen HF, Zeng JZ, Su Y, Yao XS, Zhang XK. *Cancer Res.* **2013**, *73*, 307-318.
65. Gao W, Liu J, Hu M, Huang M, Cai S, Zeng Z, Lin B, Cao X, Chen J, Zeng JZ, Zhou H, Zhang XK. *Carcinogenesis* **2013**, *34*, 1208-1215.
66. Zhang XK, Su Y, Chen L, Chen F, Liu J, Zhou H. *Acta Pharmacol. Sin.* **2015**, *36*, 102-112.
67. Wang PY, Zeng WJ, Liu J, Wu YL, Ma Y, Zeng Z, Pang JY, Zhang XK, Yan X, Wong AST, Zeng JZ. *Biochem. Pharmacol.* **2017**, *124*, 19-28.
68. Chen H, Ma F, Hu X, Jin T, Xiong C, Teng X. *Biochem. Biophys. Res. Commun.* **2013**, *440*, 157-162.

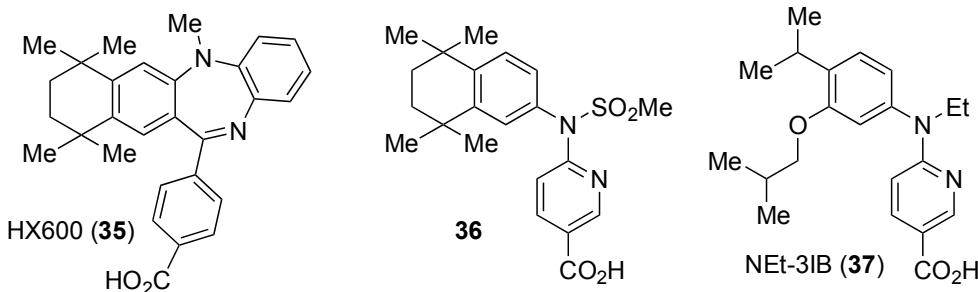


Figure 1. Chemical structures of 9-cis retinoic acid (**1**) and bexarotene (**2**).

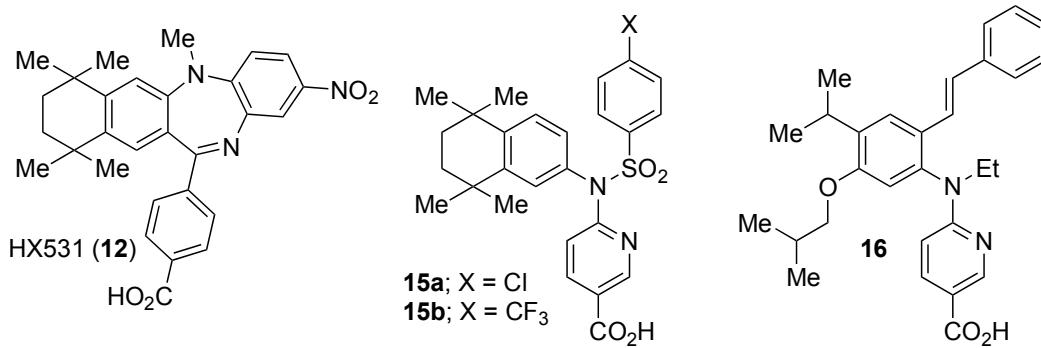
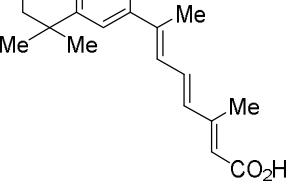
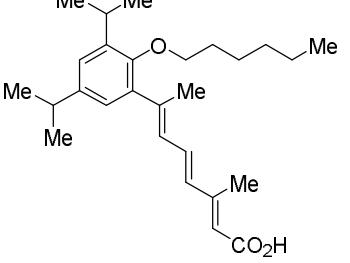
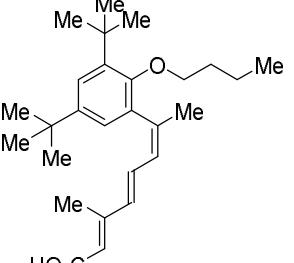
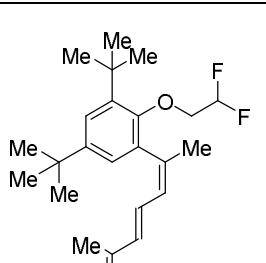
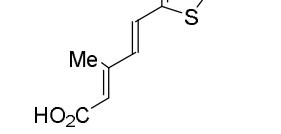
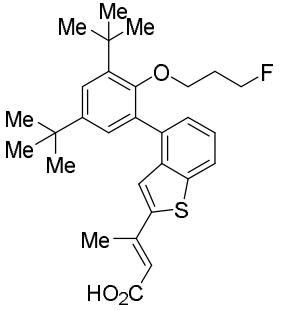
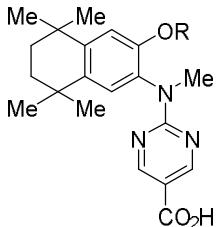
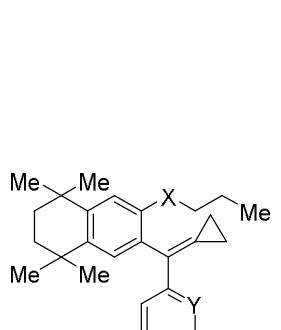


Figure 2. Chemical structures of RXR agonists and RXR antagonists having a long-chain alkoxy group.

Structures of RXR agonists





Structures of RXR antagonists

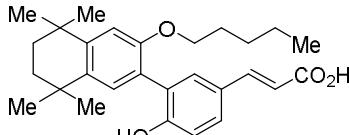


Figure 3. Chemical structures of RXR agonists and RXR antagonists possessing another side group instead of the alkoxy group on an RXR agonist structure.

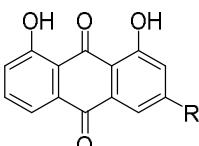
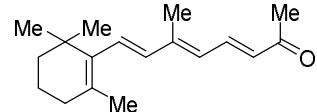
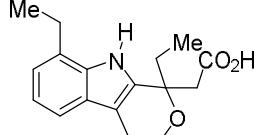
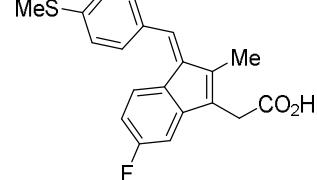
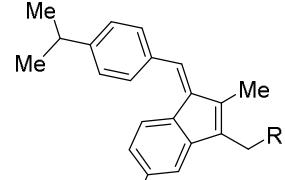
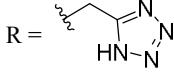
Table 1. Chemical structures, binding affinities and RXR antagonistic activities of RXR antagonists having an alkoxy side chain on an RXR agonistic scaffold.

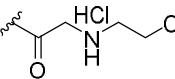
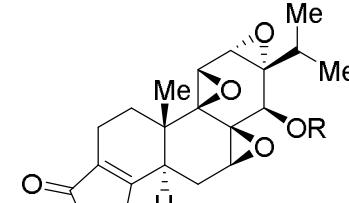
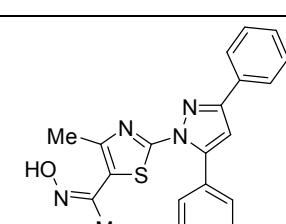
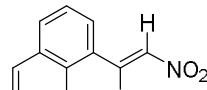
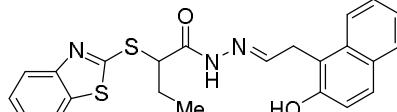
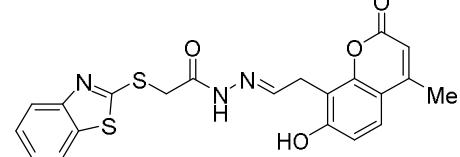
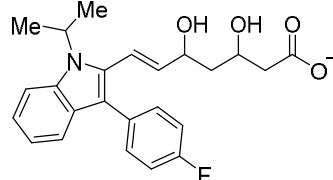
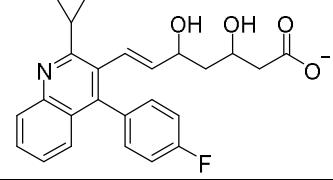
Compounds	Structures	Binding	Transactivity (RXR α)	Ref
LG100754 (3)		$K_i = 8 \text{ nM}$ (RXR α , [^3H]2) $K_i = 3 \text{ nM}$ (RXR α , [^3H]1)	$IC_{50} = 16 \text{ nM}$ (vs 32 nM 2, CV-1 cells)	8
AGN195393 (4)		N.D.	N.D.	10
Ro26-5405 (5)		$K_i = 0.9 \text{ nM}$ (RXR α , [^3H]2)	N.D.	10, 13
LG101506 (6)		$K_i = 3 \text{ nM}$ (RXR α , [^3H]2) $K_i = 3 \text{ nM}$ (RXR α , [^3H]1)	$IC_{50} = 8 \text{ nM}$ (CV-1 cells)	10, 14

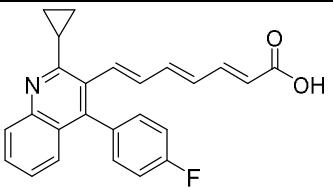
7		$K_i = 9.9 \text{ nM}$ $(\text{RXR}\alpha, [^3\text{H}]\mathbf{1})$	$\text{IC}_{50} = 10.3 \text{ nM}$ (CV-1 cells)	15
8		$K_i = 3 \text{ nM}$ $(\text{RXR}\alpha, [^3\text{H}]\mathbf{1})$	$\text{IC}_{50} = 8 \text{ nM}$ (CV-1 cells)	16
PA451 (9a) R = n-Pen		N.D.	N.D.	17
PA452 (9b) R = n-Hex		N.D.	$pA_2 = 7.11$ (vs NEt-TMN: $\text{EC}_{50} = 5.28 \text{ nM}$ [18], COS-1 cell)	17, 19
Bl-1003 (10a) X = O, Y = CH		$K_d = 26 \text{ nM}$ (RXR α -LBD, fluorescence titration)	$\text{IC}_{50} = 1,100 \text{ nM}$ (vs 1 @ 0.1 μM , CV-1 cells)	20, 22
Bl-1005 (10b) X = O, Y = N		$K_d = 329 \text{ nM}$ (RXR α -LBD, fluorescence titration)	$\text{IC}_{50} \geq 10,000 \text{ nM}$ (vs 1 @ 0.1 μM , CV-1 cells)	20, 22
SR11179 (10c) C = CH ₂ , Y = CH		$K_d = 15 \text{ nM}$ (RXR α -LBD, fluorescence)	$\text{IC}_{50} = 67 \text{ nM}$ (vs 1 @ 0.1 μM , CV-1 cells)	20, 22

		titration) $IC_{50} = 450$ nM (RXR α -LBD, [3 H]1)		
UVI3003 (11)		N.D.	$IC_{50} = 0.24$ μ M (vs IRX4204: $EC_{50} = 0.2$ nM [25] @ 10 nM, COS-7 cells)	23, 26

N.D. means that the datum was not described in the cited manuscript.







Table 2. Chemical structures, binding affinities and RXR antagonistic activities of RXR antagonists having a non-alkoxy side chain or another structure on an RXR agonistic scaffold.









Compounds	Structures	Binding	Transactivity (RXR α)	Ref
HX531 (12)		N.D.*	IC ₅₀ = 1.0 mM (vs IRX4204: EC ₅₀ = 0.2 nM [25] @ 10 nM, COS-7 cells)	26, 27
13a R ¹ = Et, R ² = NHSO ₂ -(3-CF ₃)Ph X = H		N.D.	IC ₅₀ = 0.095 μ M (vs 1 @ 20 nM, HEK-293 cells)	29
13b R ¹ = n-Pr, R ² = NHSO ₂ -(3-CF ₃)Ph X = H		N.D.	IC ₅₀ = 0.076 μ M (vs 1 @ 20 nM, HEK-293 cells)	29
13c R ¹ = Et, R ² = CN X = F		N.D.	IC ₅₀ = 0.50 μ M (vs 1 , HEK-293 cells)	30
14		N.D.	N.D.	31
15a X = Cl		N.D.	IC ₅₀ = 4.1 μ M (vs 2 @ 10 nM, COS-1 cells)	32
15b X = CF ₃		N.D.	IC ₅₀ = 3.2 μ M (vs 2 @ 10 nM, COS-1 cells)	32


16		N.D.	$pA_2 = 8.23$ (vs NEt-TMN: $EC_{50} = 5.28$ nM [18], COS-1 cells)	19
----	--	------	---	----

*N.D. means that the datum was not described in the cited manuscript.

Table 3. Chemical structures, binding affinities and RXR antagonistic activities of RXR antagonists from natural products or others.

Compounds	Structures	Binding	Transactivity (RXR α)	Ref
Danthron (17a) R = H		$K_d = 6.2 \mu\text{M}$ (RXR α -LBD, SPR) $K_d = 7.5 \mu\text{M}$ (RXR α -LBD, ITC)	$IC_{50} = 0.11 \mu\text{M}$ (vs 1 @ 0.1 μM , HEK-293T cells)	35
Rhein (17b) R = CO ₂ H		N.D.*	$IC_{50} = 0.75 \mu\text{M}$ (vs 1 @ 0.1 μM , HEK-293T cells)	36
β -Apo-13-carotenone (18)		N.D.	IC_{50} value is not described (vs 1 @ 0.01 ~ 1000 nM, COS-7 cells)	37
<i>R</i> -Etodolac (19)		$IC_{50} \approx 200 \mu\text{M}$ (RXR α -LBD, [³ H] 1)	N.D.	38
Sulindac sulfide (20)		$IC_{50} = 80 \mu\text{M}$ (RXR α -LBD, [³ H] 1)	N.D.	39
K-80003 (21a) X = F, R = CO ₂ H		$IC_{50} = 2.4 \mu\text{M}$ (RXR α -LBD, [³ H] 1)	N.D.	39, 40
K-8008 (21b) X = H R =		$IC_{50} = 16.8 \mu\text{M}$ TR-FRET, GST- RXR α -LBD, 1 @ 10 nM)	$IC_{50} = 13.2 \mu\text{M}$ (vs 1 @ 100 nM, HCT-116 cells)	40, 41
Triptolide (22a) R = H		N.D.	N.D.	42

TRC4 (22b) R =		N.D.	N.D.	67
NSC-640358 (23)		$K_i = 15.7 \mu\text{M}$ (RXR α -LBD, $[^3\text{H}]1$)	N.D.	43
24		$K_i = 0.28 \mu\text{M}$ (RXR α -LBD, $[^3\text{H}]1$)	N.D.	44
25		$K_i = 0.81 \mu\text{M}$ (RXR α -LBD, $[^3\text{H}]1$)	N.D.	44
26		N.D.	$IC_{50} = 2 \mu\text{M}$ (vs 1 @ 0.1 μM , HEK-293T cells)	45
27		$K_d = 488 \text{ nM}$ (RXR α -LBD, SPR)	$IC_{50} = 2.45 \mu\text{M}$ (vs 1 @ 0.1 μM , HEK-293T cells)	45
Fluvastatin (28)		$K_d = 11.04 \mu\text{M}$ (RXR α -LBD, SPR)	IC_{50} value is not described. (vs 1 @ 100 nM, MCF-7 cells)	46
Pitavastatin (29)		$K_d = 13.30 \mu\text{M}$ (RXR α -LBD, SPR)	IC_{50} value is not described. (vs 1 @ 10 nM, MCF-7 cells)	46

30		$K_d = 5.12 \mu\text{M}$ (RXR α -LBD, SPR)	IC ₅₀ value is not described. (vs 1 @ 100 nM, MCF-7 cells)	46
----	---	---	---	----

*N.D. means that the datum was not described in the cited manuscript.