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Abstract: We conducted an in-situ crystal structure analysis of ferroselite at non-ambient conditions.
The aim is to provide a solid ground to further the understanding of the properties of this material
in a broad range of conditions. Ferroselite, marcasite-type FeSe,, was studied under high pressures
up to 46 GPa and low temperatures, down to 50 K using single-crystal microdiffraction techniques.
High pressure and low temperatures were generated using a diamond anvil cell and a cryostat. We
found no evidences of structural instability in the explored P-T space. The deformation of the
orthorhombic lattice is slightly anisotropic. As expected, the compressibility of the Se-Se dumbbell,
the longer bond in the structure, is larger than that of the Fe-Se bonds. Less obvious is the behavior
of the octahedral bonds, the shorter bond is the most compressible determining a small increase in
the octahedron distortion with pressure. We also achieved a robust structural analysis of ferroselite
at low temperature in the diamond anvil cell. Structural changes upon temperature decrease are
small but qualitatively similar to those produced by pressure.
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1. Introduction

Iron selenides form economically important ore deposits and are relevant to the
geochemical cycle of chalcogenides. In material science, dichalcogenides are
extensively explored for solar energy applications because of their suitable
thermoelectric and optical properties along with their availability and low toxicity
[1], [2], [3]. Compounds with the marcasite crystal structure display a variety of
intriguing physical properties intimately related to their structural
arrangements[4]. Furthermore, the marcasite structure type is adopted by a number
of interesting high-pressure phases such as Fe, Rh and Os pernitrides[5], [6], [7].

Ferroselite is a mineral of the chalcogenide series with end-member composition
FeSe, and with the marcasite- type crystal structure. Ferroselite is the stable phase
of iron diselenide at ambient conditions. Upon heating at ambient pressure FeSe,
does not show phase transitions until its decomposition at 580 °C[8]; upon heating
at 1200 K under moderately high pressure (65 Kbar) iron diselenide adopts the
pyrite structure type [9], [10]. Iron is bonded to six selenium atoms in ferroselite,
whereas selenium forms a monatomic bond and 3 bonds with iron (Fig. .1). The
FeSes edge-sharing octahedra form chains along the c-direction, while the Se-Se
dumbbell bond lies in the ab plane connecting octahedral chains. In the marcasite-
type structure, symmetry constrains impose some degree of distortion to the
coordination geometries. The octahedron shows angular distortion and features
two different bond lengths, in ferroselite those with multiplicity two are slightly
shorter than the four equatorial bonds. Iron is located in 2a with all symmetry-
constrained coordinated whereas selenium, located in 4g, shows variable
coordinates x and y.

Figure .1. Representation of the crystal structure of marcasite-type FeSe; generated with VESTA[11].
Iron atoms (blue) are coordinated to 6 selenium atoms (yellow) defining a tetragonally compressed
octahedron. Selenium dumbbells lie in the ab plane and connect the chains of octahedra running parallel
to the c-axis.

The thermal expansion of the ferroselite lattice has been explored from ambient
conditions up to decomposition temperatures[8], while magnetism and electrical
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properties were explored in a broad range of temperatures [2]. Mechanically
alloyed ferroselite nanocrystalline materials were studied under pressure via
absorption spectroscopy up to 19 GPa, showing no evidence of phase
transitions[12]. The elastic properties of FeSe, were recently determined by means
of first-principles calculations [13].

In order to study the bulk and atomic response of FeSe; to external high pressure
and to low temperature we performed synchrotron single-crystal microdiffraction
experiments using a diamond anvil cell and a cryostat to generate target external
conditions. We performed three different experiments: 1) compression at ambient
temperature up to ~ 46 GPa; i1) cooling down to 50 K at ambient pressure; ii1) a
combined high-pressure low- temperature experiment down to 110 K at 3.8 GPa.
Both low-temperature experiments were conducted with single crystals loaded in
a diamond anvil cell (DAC) contained in a cryostat (hereafter DAC&Cryostat).

2. Materials and Methods

The specimen investigated in this study is a mineral from Paradox Valley, Uravan
District, Montrose County, Colorado, USA obtained from the RRUFF collection
(RRUFF.info/R070461). The composition reported in the RRUFF database [14]
was determined via electron micro- probe analysis. Measured elements were Se,
Fe, Pb, S, Zn, Cu, Ag; within experimental resolution, the sample is pure and
stoichiometric.

Conditions of high pressure and of low temperature were generated with a 4-post
diamond anvil cell (DAC) and with a liquid-flow helium cryostat (Fig. .2). The
DAC was equipped with conical diamonds anvils[15] of 850 aperture and 0.3 and
0.6 mm culet diameter for high pressure and low temperature data respectively.
Gaskets were fabricated from pure Re or W foils; 160 and 360 um diameter holes
in the center of 35 um thick indentations provided the sample chambers for the
high-pressure and the low-temperature experiments respectively. The sample
chambers were filled with pre-pressurize neon in order to maintain quasi-
hydrostatic stress on the crystals in the whole range of experimental conditions.

X-ray microdiffraction data were collected at the insertion device station 161D-B
of HPCAT, Sector 16, Advanced Photon Source, Argonne National Laboratory.
Experiments were performed using hard x-rays (A=0.40662, 0.36793 A) focused
to about 5x5 um FWHM at the sample position. The experimental station was
equipped with a heavy-duty motorized sample stage suitable for measurements
with a cryostat for high pressure studies. The cryostat provided wide angular x-ray
access and was equipped with a gas membrane for pressure control. Diffracted X-
rays were collected with the rotation method using a MAR165-CCD area detector
and a MAR345IP detector, which was calibrated using powder patterns of CeO»
standard and the GSASII software [16]. The rotation range was 720 for high-
pressure data and 60o for low- temperature data, the x-ray access was reduced by
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the gas membrane and cryostat body in the latter case. For the samples in the
cryostat diffraction images were collected with the detector (CCD) at three
different locations in the horizontal direction perpendicular to the beam. The
maximum resolution achieved was 0.6 A.

Figure .2. Cryostat for combined high-pressure and low-temperature conditions mounted on the sample
stage of the 161D-B beamline of the APS, ANL.

Pressure was calibrated using the equation of state of platinum[17] for ambient
temperature data and ruby[18] for low-temperature data. Temperature was
measured us- ing silicon diode thermocouples positioned on the DAC body and on
the copper block, the two differ by less than two degrees during data collection.
Data reduction was performed GSE ADA & RSV[19] , WinGX][20], and
DIOPTAS[21]. Structural refinements were carried out using Shelxl [22]. Standard
powder patterns were analyzed with GSASII[16].

3. Results and discussion

3.1Ambient conditions structural refinements

Measuring structure factors in the diamond anvil cell with micron-sized x-ay
beams is an established technique providing extremely valuable and robust results
in spite of its challenges. In addition to high-pressure measurements, here we
collected data from small single crystals loaded in the DAC which was then loaded
in a cryostat (Fig. .2). The cryostat we used for high pressure measurements is a
relatively bulky device with several connections, the most cumbersome being the
liquid helium supply line and the vacuum line. These connections pull the sample
stage causing an increase in the sphere of confusion of the rotation axis. Because
crystals are roughly 20 um in diameter and the beam is around 5 pm FWHM, we
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anticipated that the x-ray flux on the crystals would vary more dramatically during
data collection compared with ambient temperature measurements. As a
consequence, the set of observed structure factors would not be in scale.
Furthermore, for relatively low-symmetry crystals, a reliable empirical correction
calculated from comparing sets of equivalent reflections might be difficult to
define due to the low data redundancy. In order to compensate for such effects we
loaded three crystals with different crystallographic orientations in the diamond
anvil cell for low temperature work. Furthermore, we collected several rotation
images in a small grid fashion around the crystal center for a few datapoint. In table
I literature data are compared with some of our results. All data collections were
performed with samples in environmental cells, DAC and DAC&cryostat, before
conditions were changed. In addition to the scale factor, we refined the two
symmetry- unconstrained fractional coordinates of Se and isotropic displacement
parameters for both atoms for a total of 5 variables. Overall results are in good
agreement. We note that: 1) because we always measured a good number of
reflections and we only had 2 positional parameters to refine for the heavier
element, these were always reason- able, including high R factors refinements; ii)
merging grid diffraction patterns provided in most cases excellent results and low
disagreements between equivalent reflections and better results than empirical
corrections; iii) datasets are not uniform because, we infer, the increase in the
sphere of confusion caused by the cryostat is not fully reproducible. In conclusion,
it appears beneficial to acquire redundant datasets, this allow adopting different
data reduction strategies and provide the best likelihood that robust refinements
can be obtained.

Table 1. AMBIENT-CONDITIONS UNIT-CELL PARAMETERS AND ATOMIC FRACTIONAL
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3.2 High pressure

Diffraction data of ferroselite were collected up to 46 GPa. There are no indications
of phase transitions but the highest pressure pattern shows moderate peak
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broadening that might be the result of non hydrostatic stress as well as the
manifestation of an incipient phase transition. The datapoint at 3.63 GPa was
collected with the DAC&cryostat before decreasing temperature, structural
parameters at this pressure are in the same trend of data collected in the DAC,
confirming our ability to collect full datasets in these conditions without
introducing systematic errors in our analysis. The anisotropy of the deformation of
the orthorhombic cell of ferroselite under quasi-hydrostatic compression is clear
after 17 GPa. As shown in Fig. .3 the lattice is more compressible in the direction
of the a-axis and is stiffer along the h-axis. This observation is consistent with the
recently predicted behavior[13]. The bulk compression of marcasite-FeSe; can be
modeled by a second-order Birch—Murnaghan EoS with an ambient bulk modulus
of 121.6 GPa. Although we collected too few datasets to reliably fit a third order
EoS, it can be inferred from the plot in Fig. .4 that a third order EoS might be more
appropriate to describe the compressibility of this material, and indeed values
significantly larger than 4 for Ko’ have been suggested for FeS, marcasite[25] and
several other marcasite-type chalcogenides. Fixing Ko’ to 4.6, a value that both
leads to best fitting and is close to the value in marcasite, and using the third- order
Birch—Murnaghan EoS results in a Ko of 114.1 GPa. We could not however
satisfactorily fit our data with the same EoS equation and using the recently
proposed bulk modulus 74.7 GPa[13].
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Figure .3. Relative compression of the orthorhombic unit-cell edges.

Robust crystal structure analysis allow exploring the changes in atomic
arrangement with pressure. Fig. .5 shows the pressure dependence of interatomic
distances and their relative changes. As could be expected, the longest bond, the
Se-Se dumbbell, shows the greatest compressibility. The octahedral bonds
however show a less obvious behavior, with the shorter bond being more
compressible than the longer bond, hence the octahedral distortion increases with
pressure.
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Table 2. UNIT CELL PARAMETERS AND ATOMIC FRACTIONAL COORDINATES OF
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Figure .4. Bulk compressibility of FeSe,. The blue symbol shows data collected at ambient pressure in

DAC&cryostat. The black line shows a second order Birch—Murnaghan EoS fit, the red line a third order
Birch—Murnaghan EoS fit (see text).
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3.3 Low Temperature

Structural data of FeSe, were collected ambient pressure at three temperatures
198.2, 148.4, and 50.4 K and at about 3.7 GPa at 197 and 116 K (Table. III). Upon
attempting to maintain a constant pressure in the sample chamber during further
cooling by increasing the gas membrane pressure, the experiment failed abruptly
when the load on the DAC applied with the gas membrane was rapidly transferred
to the diamond anvils upon overcoming the DAC friction.
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Figure .6. Absolute and relative variation of the unit cell parameters lengths as a function of temperature
at ambient pressure. Red, Blue and green symbols: different crystals in the same sample chamber; black:
weighted average of the three crystals.

We expected the effect on structural parameters of lowering temperature from 300
to 50 K to be small, close to the resolution of our experiment. Hence we loaded
three crystals with different orientations for this experiment in order to obtain a
more complete sampling of the reciprocal space and increase data redundancy.
Because of the limited access to the reciprocal space different crystallographic
directions can be probed with different precision in differ- ently oriented crystals
as can be seen inspecting error bars in Fig. .6A-C. Plots of unit cell variations of
individual crystals hardly show discernible trends, however trends are appreciable
when weighted average are considered (Fig. .6, black symbols). As for the high
pressure behavior and for the high temperature behavior[8] , the greatest lattice
parameters variations are observed in the direction of the a-axis (Fig. .6D) . Unit-
cell edges variations along the other principal axes are close to uncertainties.
Variations of the Fe-Se bond lengths are also within uncertainties as shown in
Fig. .8, the Se-Se bond decreases from 2.552 A to 2.537 A.
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The anisotropy of the lattice at low temperature is qualitatively similar to that
observed at high pressure. The unit cell volume decreases by ~0.6 % upon cooling
from ambient temperatures down to 50 K, a change that corresponds to a pressure
of 0.8-0.9 GPa depending on the EoS adopted (see above).

We were able to collected just two pressure points at combined low temperature
and high pressure (Table III). Variations on the structure of ferroselite induced by
temperature at this pressure are within uncertainties.
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Figure .7. Variation of the unit cell volume as a function of temperature at ambient pressure.
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Figure .8. Normalized bond lengths vs temperature at ambient pressure.
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Table 3. UNIT CELL PARAMETERS AND ATOMIC FRACTIONAL COORDINATES AT LOW
TEMPERATURE AND BOTH AMBIENT PRESSURE AND HIGH PRESSURE. FOR AMBIENT

»
(
~
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;
1
e

;

PRESSURE, WEIGHED AVERAGES OF THREE CRYSTALS ARE REPORTED.

5. Conclusions

The physical properties of materials important for critical technologies such as
solar energy ought to be defined in great detail. Studying a material’s behavior in
a broad range of conditions allows more stringent constraints to modeling hence a
better general understanding of the material. We conducted a detailed examination
of the crystal structure of marcasite-type iron diselenide at pressures up to 46 GPa,
temperatures down to 50.4 K and combined high pressure and low temperature
conditions of ~ 3.8 GPa and 197 and 116 K. The phase shows no clear signs of
phase transitions in this range, even though it is probably metastable at the highest
pressures, considering that it transforms to the pyrite structure above ~ 6.5 GPa
upon heating[9]. We described in details the anisotropy of the lattice response to
external conditions and changes in the atomic arrangement.

Maintaining sufficient centering of microcrystals while performing rotation data
collections of samples in bulky environmental cells such as combined DAC and
cryostat is challenging and not necessarily reproducible. Hence we find that
collecting redundant datasets, in this case grid scans, is the safest way to gather
datasets from which reliable structure factors can be extracted. Multiple crystal
orientations allow obtaining a uniform precision in lattice parameters
determinations in addition to better coverage of the reciprocal space.
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