Theory of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-MAPs

Khodabocus m. I. and Sookia n. u. h.

Abstract

Several specific types of generalized maps of a generalized topological space have been defined and investigated for various purposes from time to time in the literature of topological spaces. Our recent research in the field of a new class of generalized maps of a generalized topological space is reported herein as a starting point for more generalized classes.

Key words and phrases. Generalized topological space, generalized sets, generalized maps, generalized continuous maps, generalized irresolute maps, generalized homeomorphism maps

1. Introduction

The concepts ${ }^{1}$ of $\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-map $\pi: \mathfrak{T}_{\Omega} \rightarrow \mathfrak{T}_{\Sigma}[1,2], \mathfrak{g}-\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-map $\pi_{\mathfrak{g}}$: $\mathfrak{T}_{\Omega} \rightarrow \mathfrak{T}_{\Sigma}[9,18],\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-map $\pi: \mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Sigma}$ [3], and $\mathfrak{g}-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-map $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Sigma}[21]$, called, respectively, ordinary and generalized maps (briefly, \mathfrak{T}-map and \mathfrak{g} - \mathfrak{T}-map, respectively) between \mathcal{T}-spaces \mathfrak{T}_{Ω} and \mathfrak{T}_{Σ}, and ordinary and generalized maps (briefly, $\mathfrak{T}_{\mathfrak{g}}$-map and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-map, respectively) between $\mathcal{T}_{\mathfrak{g}}$-spaces $\mathfrak{T}_{\mathfrak{g}, \Omega}$ and $\mathfrak{T}_{\mathfrak{g}, \Sigma}$ are all fundamental concepts that have been introduced and investigated by several mathematicians [12, 16, 17, 20, 21, 23, 29, 31, 33].

Other concepts called ($\left.\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-continuous and $\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-irresolute maps and $\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-homeomorphism (briefly, \mathfrak{T}-continuous and \mathfrak{T}-irresolute maps, and \mathfrak{T} homeomorphism, respectively) [6, 24, 32], \mathfrak{g} - $\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-continuous and \mathfrak{g} - $\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$ irresolute maps and $\mathfrak{g}-\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-homeomorphism (briefly, \mathfrak{g} - \mathfrak{T}-continuous and $\mathfrak{g}-\mathfrak{T}$ irresolute maps, and \mathfrak{g} - \mathfrak{T}-homeomorphism, respectively) $[6,13,14,26]$, ($\left.\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$ continuous and $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-irresolute maps, $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-homeomorphism (briefly, $\mathfrak{T}_{\mathfrak{g}}$-continuous, $\mathfrak{T}_{\mathfrak{g}}$-irresolute maps, and $\mathfrak{T}_{\mathfrak{g}}$-homeomorphism, respectively) [14, 28] and \mathfrak{g} - $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-continuous and \mathfrak{g} - $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-irresolute maps, \mathfrak{g} - $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$ homeomorphism (briefly, \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-continuous and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-irresolute maps, and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ homeomorphism, respectively) [11, 22, 34] are all derived concepts based on the properties of \mathfrak{T}-map, \mathfrak{g} - \mathfrak{T}-map, $\mathfrak{T}_{\mathfrak{g}}$-map, and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-map. Having received extensive studies, all these ordinary and generalized mappings are at this date well-known important notions in ordinary and generalized topologies and their applications.

In this paper, we will show how further contributions can be added to the field in a unified way.

[^0]
2. Theory

2.1. preliminaries. Our discussion starts by recalling some basic definitions and notations of most essential concepts presented in the theory of $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$-sets in a $\mathcal{T}_{\mathfrak{g}}$ space.

The set \mathfrak{U} stands for the universe of discourse, fixed within the framework of the theory of $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$-maps and containing as elements all sets (Λ-sets: $\Lambda \in\{\Omega, \Sigma, \Upsilon\}$; $\mathcal{T}_{\Lambda}, \mathfrak{g}-\mathcal{T}_{\Lambda}, \mathfrak{T}_{\Lambda}, \mathfrak{g}-\mathfrak{T}_{\Lambda}$-sets; $\mathcal{T}_{\mathfrak{g}, \Lambda}, \mathfrak{g}-\mathcal{T}_{\mathfrak{g}, \Lambda}, \mathfrak{T}_{\mathfrak{g}, \Lambda}, \mathfrak{g}-\mathfrak{T}_{\mathfrak{g}, \Lambda}$-sets) considered in this theory, and $I_{n}^{0} \stackrel{\text { def }}{=}\left\{\nu \in \mathbb{N}^{0}: \nu \leq n\right\}$; index sets $I_{\infty}^{0}, I_{n}^{*}, I_{\infty}^{*}$ are defined similarly. Let $\Lambda \in$ $\{\Omega, \Sigma, \Upsilon\} \subset \mathfrak{U}$ be a given set and let $\mathcal{P}(\Lambda) \stackrel{\text { def }}{=}\left\{\mathcal{O}_{\mathfrak{g}, \nu} \subseteq \Lambda: \nu \in I_{\infty}^{*}\right\}$ be the family of all subsets $\mathcal{O}_{\mathfrak{g}, 1}, \mathcal{O}_{\mathfrak{g}, 2}, \ldots$, of Λ. Then every one-valued map of the type $\mathcal{T}_{\mathfrak{g}, \Lambda}$: $\mathcal{P}(\Lambda) \rightarrow \mathcal{P}(\Lambda)$ satisfying $\mathcal{T}_{\mathfrak{g}, \Lambda}(\emptyset)=\emptyset, \mathcal{T}_{\mathfrak{g}, \Lambda}\left(\mathcal{O}_{\mathfrak{g}}\right) \subseteq \mathcal{O}_{\mathfrak{g}}$, and $\mathcal{T}_{\mathfrak{g}, \Lambda}\left(\bigcup_{\nu \in I_{\infty}^{*}} \mathcal{O}_{\mathfrak{g}, \nu}\right)=$ $\bigcup_{\nu \in I_{*}^{*}} \mathcal{T}_{\mathfrak{g}, \Lambda}\left(\mathcal{O}_{\mathfrak{g}, \nu}\right)$ is called a \mathfrak{g}-topology on Λ, and the structure $\mathfrak{T}_{\mathfrak{g}, \Lambda} \stackrel{\text { def }}{=}\left(\Lambda, \mathcal{T}_{\mathfrak{g}, \Lambda}\right)$ is called a $\mathcal{T}_{\mathfrak{g}, \Lambda}$-space, on which no separation axioms are assumed unless otherwise mentioned [8, 7, 27]. The operator $\mathrm{cl}_{\mathfrak{g}, \Lambda}: \mathcal{P}(\Lambda) \rightarrow \mathcal{P}(\Lambda)$ carrying each $\mathfrak{T}_{\mathfrak{g}, \Lambda}$-set $\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}, \Lambda}$ into its closure $\operatorname{cl}_{\mathfrak{g}, \Lambda}\left(\mathcal{S}_{\mathfrak{g}}\right)=\mathfrak{T}_{\mathfrak{g}, \Lambda}-\operatorname{int}_{\mathfrak{g}, \Lambda}\left(\mathfrak{T}_{\mathfrak{g}, \Lambda} \backslash \mathcal{S}_{\mathfrak{g}}\right) \subset \mathfrak{T}_{\mathfrak{g}, \Lambda}$ is called a \mathfrak{g}-closure operator and the operator $\operatorname{int}_{\mathfrak{g}, \Lambda}: \mathcal{P}(\Lambda) \rightarrow \mathcal{P}(\Lambda)$ carrying each $\mathfrak{T}_{\mathfrak{g}, \Lambda}$-set $\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}, \Lambda}$ into its interior $\operatorname{int}_{\mathfrak{g}, \Lambda}\left(\mathcal{S}_{\mathfrak{g}}\right)=\mathfrak{T}_{\mathfrak{g}, \Lambda}-\operatorname{cl}_{\mathfrak{g}, \Lambda}\left(\mathfrak{T}_{\mathfrak{g}, \Lambda} \backslash \mathcal{S}_{\mathfrak{g}}\right) \subset \mathfrak{T}_{\mathfrak{g}, \Lambda}$ is called a \mathfrak{g}-interior operator; for clarity, we will use $\mathrm{cl}_{\mathfrak{g}}(\cdot), \operatorname{int}_{\mathfrak{g}}(\cdot)$, respectively, instead of $\mathrm{cl}_{\mathfrak{g}, \Lambda}(\cdot), \operatorname{int}_{\mathfrak{g}, \Lambda}(\cdot)$.

Let $\mathfrak{T}_{\mathfrak{g}, \Lambda}$ be a $\mathcal{T}_{\mathfrak{g}, \Lambda}$-space, let $\complement_{\Lambda}: \mathcal{P}(\Lambda) \rightarrow \mathcal{P}(\Lambda)$ denotes the absolute complement with respect to the underlying set $\Lambda \subset \mathfrak{U}$, and let $\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}, \Lambda}$ be any $\mathfrak{T}_{\mathfrak{g}, \Lambda}$-set. The classes

$$
\begin{align*}
\mathcal{T}_{\mathfrak{g}, \Lambda} & \stackrel{\text { def }}{=}\left\{\mathcal{O}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}, \Lambda}: \mathcal{O}_{\mathfrak{g}} \in \mathcal{T}_{\mathfrak{g}, \Lambda}\right\}, \\
\neg \mathcal{T}_{\mathfrak{g}, \Lambda} & \stackrel{\text { def }}{=} \quad\left\{\mathcal{K}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}, \Lambda}: \complement_{\Lambda}\left(\mathcal{K}_{\mathfrak{g}}\right) \in \mathcal{T}_{\mathfrak{g}, \Lambda}\right\}, \tag{2.1}
\end{align*}
$$

respectively, denote the classes of all $\mathcal{T}_{\mathfrak{g}, \Lambda}$-open and $\mathcal{T}_{\mathfrak{g}, \Lambda}$-closed sets relative to the \mathfrak{g}-topology $\mathcal{T}_{\mathfrak{g}, \Lambda}$, and the classes

$$
\begin{align*}
\mathrm{C}_{\mathcal{T}_{\mathfrak{g}, \Lambda}}^{\text {sub }}\left[\mathcal{S}_{\mathfrak{g}}\right] & \stackrel{\text { def }}{=}\left\{\mathcal{O}_{\mathfrak{g}} \in \mathcal{T}_{\mathfrak{g}, \Lambda}: \mathcal{O}_{\mathfrak{g}} \subseteq \mathcal{S}_{\mathfrak{g}}\right\}, \\
\mathrm{C}_{\neg \mathcal{T}_{\mathfrak{g}, \Lambda}}^{\text {sup }}\left[\mathcal{S}_{\mathfrak{g}}\right] & \stackrel{\text { def }}{=}\left\{\mathcal{K}_{\mathfrak{g}} \in \neg \mathcal{T}_{\mathfrak{g}, \Lambda}: \mathcal{K}_{\mathfrak{g}} \supseteq \mathcal{S}_{\mathfrak{g}}\right\}, \tag{2.2}
\end{align*}
$$

respectively, denote the classes of $\mathcal{T}_{\mathfrak{g}, \Lambda}$-open subsets and $\mathcal{T}_{\mathfrak{g}, \Lambda}$-closed supersets (complements of the $\mathcal{T}_{\mathfrak{g}, \Lambda}$-open subsets) of the $\mathfrak{T}_{\mathfrak{g}, \Lambda}$-set $\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}, \Lambda}$ relative to the \mathfrak{g} topology $\mathcal{T}_{\mathfrak{g}, \Lambda}$. To this end, the \mathfrak{g}-closure and the \mathfrak{g}-interior of a $\mathfrak{T}_{\mathfrak{g}}$-set $\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ in a $\mathcal{T}_{\mathfrak{g}, \Lambda}$-space [3] define themselves as

$$
\begin{equation*}
\operatorname{int}_{\mathfrak{g}, \Lambda}\left(\mathcal{S}_{\mathfrak{g}}\right) \stackrel{\text { def }}{=} \bigcup_{\mathcal{O}_{\mathfrak{g}} \in \mathrm{C}_{\mathcal{T}_{\mathfrak{g}}, \Lambda}^{\text {sub }}\left[\mathcal{S}_{\mathfrak{g}}\right]} \mathcal{O}_{\mathfrak{g}}, \quad \operatorname{cl}_{\mathfrak{g}, \Lambda}\left(\mathcal{S}_{\mathfrak{g}}\right) \stackrel{\text { def }}{=} \bigcap_{\mathcal{K}_{\mathfrak{g}} \in \mathrm{C}_{-\mathcal{T}_{\mathfrak{g}, \Lambda}^{\text {sup }}}\left[\mathcal{S}_{\mathfrak{g}}\right]} \mathcal{K}_{\mathfrak{g}} . \tag{2.3}
\end{equation*}
$$

Throughout this work, by $\operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}}(\cdot)$, $\operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}}(\cdot)$, and $\operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}}(\cdot)$, respectively, are meant $\mathrm{cl}_{\mathfrak{g}}\left(\operatorname{int}_{\mathfrak{g}}(\cdot)\right), \operatorname{int}_{\mathfrak{g}}\left(\mathrm{cl}_{\mathfrak{g}}(\cdot)\right)$, and $\mathrm{cl}_{\mathfrak{g}}\left(\operatorname{int}_{\mathfrak{g}}\left(\mathrm{cl}_{\mathfrak{g}}(\cdot)\right)\right)$; other composition operators are defined similarly. Also, the backslash $\mathfrak{T}_{\mathfrak{g}} \backslash \mathcal{S}_{\mathfrak{g}}$ refers to the set-theoretic difference $\mathfrak{T}_{\mathfrak{g}}-\mathcal{S}_{\mathfrak{g}}$. The mapping $\mathrm{op}_{\mathfrak{g}}: \mathcal{P}(\Lambda) \rightarrow \mathcal{P}(\Lambda)$ is called a \mathfrak{g}-operation on $\mathcal{P}(\Lambda)$ if the following statements hold:

$$
\begin{align*}
& \forall \mathcal{S}_{\mathfrak{g}} \in \mathcal{P}(\Lambda) \backslash\{\emptyset\}, \exists\left(\mathcal{O}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}}\right) \in \mathcal{T}_{\mathfrak{g}, \Lambda} \backslash\{\emptyset\} \times \neg \mathcal{T}_{\mathfrak{g}, \Lambda} \backslash\{\emptyset\}: \\
& \left(\mathrm{op}_{\mathfrak{g}}(\emptyset)=\emptyset\right) \vee\left(\neg \mathrm{op}_{\mathfrak{g}}(\emptyset)=\emptyset\right),\left(\mathcal{S}_{\mathfrak{g}} \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}}\right)\right) \vee\left(\mathcal{S}_{\mathfrak{g}} \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}}\right)\right), \tag{2.4}
\end{align*}
$$

where $\neg \mathrm{op}_{\mathfrak{g}}: \mathcal{P}(\Lambda) \rightarrow \mathcal{P}(\Lambda)$ is called the "complementary \mathfrak{g}-operation" on $\mathcal{P}(\Lambda)$ and, for all $\mathfrak{T}_{\mathfrak{g}}$-sets $\mathcal{S}_{\mathfrak{g}}, \mathcal{S}_{\mathfrak{g}, \nu}, \mathcal{S}_{\mathfrak{g}, \mu} \in \mathcal{P}(\Lambda) \backslash\{\emptyset\}$, the following axioms are satisfied:

- Ax. I. $\left(\mathcal{S}_{\mathfrak{g}} \subseteq \operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}}\right)\right) \vee\left(\mathcal{S}_{\mathfrak{g}} \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}}\right)\right)$,
- Ax. II. $\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right) \subseteq \mathrm{op}_{\mathfrak{g}} \circ \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}}\right)\right) \vee\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}} \circ \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}}\right)\right)$,
- Ax. iII. $\left(\mathcal{S}_{\mathfrak{g}, \nu} \subseteq \mathcal{S}_{\mathfrak{g}, \mu} \rightarrow \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \nu}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \mu}\right)\right) \vee\left(\mathcal{S}_{\mathfrak{g}, \mu} \subseteq \mathcal{S}_{\mathfrak{g}, \nu} \leftarrow\right.$ $\left.\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \mu}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \nu}\right)\right)$,
- Ax. IV. $\left(\mathrm{op}_{\mathfrak{g}}\left(\bigcup_{\sigma=\nu, \mu} \mathcal{S}_{\mathfrak{g}, \sigma}\right) \subseteq \bigcup_{\sigma=\nu, \mu} \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right) \vee\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\bigcup_{\sigma=\nu, \mu} \mathcal{S}_{\mathfrak{g}, \sigma}\right) \supseteq\right.$ $\left.\bigcup_{\sigma=\nu, \mu} \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right)$,
for some $\mathcal{T}_{\mathfrak{g}, \Lambda}$-open sets $\mathcal{O}_{\mathfrak{g}}, \mathcal{O}_{\mathfrak{g}, \nu}, \mathcal{O}_{\mathfrak{g}, \mu} \in \mathcal{T}_{\mathfrak{g}, \Lambda} \backslash\{\emptyset\}$ and $\mathcal{T}_{\mathfrak{g}, \Lambda}$-closed sets $\mathcal{K}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}, \nu}$, $\mathcal{K}_{\mathfrak{g}, \mu} \in \neg \mathcal{T}_{\mathfrak{g}, \Lambda}[4,19]$. The class $\mathcal{L}_{\mathfrak{g}}[\Omega]=\mathcal{L}_{\mathfrak{g}}^{\omega}[\Lambda] \times \mathcal{L}_{\mathfrak{g}}^{\kappa}[\Omega]$, where

$$
\begin{equation*}
\mathcal{L}_{\mathfrak{g}}[\Lambda] \stackrel{\text { def }}{=}\left\{\mathbf{o p}_{\mathfrak{g}, \nu \mu}(\cdot)=\left(\mathrm{op}_{\mathfrak{g}, \nu}(\cdot), \neg \mathrm{op}_{\mathfrak{g}, \mu}(\cdot)\right):(\nu, \mu) \in I_{3}^{0} \times I_{3}^{0}\right\} \tag{2.5}
\end{equation*}
$$

in the $\mathcal{T}_{\mathfrak{g}, \Lambda}$-space $\mathfrak{T}_{\mathfrak{g}, \Lambda}$, stands for the class of all possible \mathfrak{g}-operators and their complementary \mathfrak{g}-operators in the $\mathcal{T}_{\mathfrak{g}, \Lambda}$-space $\mathfrak{T}_{\mathfrak{g}, \Lambda}$. Its elements are defined as:

$$
\begin{align*}
\operatorname{op}_{\mathfrak{g}}(\cdot) & \in \mathcal{L}_{\mathfrak{g}}^{\omega}[\Lambda] \stackrel{\text { def }}{=}\left\{\operatorname{op}_{\mathfrak{g}, 0}(\cdot), \operatorname{op}_{\mathfrak{g}, 1}(\cdot), \mathrm{op}_{\mathfrak{g}, 2}(\cdot), \mathrm{op}_{\mathfrak{g}, 3}(\cdot)\right\} \\
& =\left\{\operatorname{int}_{\mathfrak{g}}(\cdot), \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}}(\cdot), \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}}(\cdot), \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}}(\cdot)\right\} ; \\
\neg \mathrm{op}_{\mathfrak{g}}(\cdot) & \in \mathcal{L}_{\mathfrak{g}}^{\kappa}[\Lambda] \stackrel{\text { def }}{=}\left\{\neg \operatorname{op}_{\mathfrak{g}, 0}(\cdot), \neg \operatorname{op}_{\mathfrak{g}, 1}(\cdot), \neg \mathrm{op}_{\mathfrak{g}, 2}(\cdot), \neg \mathrm{op}_{\mathfrak{g}, 3}(\cdot)\right\} \\
& =\left\{\mathrm{cl}_{\mathfrak{g}}(\cdot), \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}}(\cdot), \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}}(\cdot), \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}}(\cdot)\right\} . \tag{2.6}
\end{align*}
$$

A $\mathfrak{T}_{\mathfrak{g}, \Lambda}$-set $\mathcal{S}_{\mathfrak{g}, \Lambda} \subset \mathfrak{T}_{\mathfrak{g}}$ in a $\mathcal{T}_{\mathfrak{g}, \Lambda}$-space is called a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}, \Lambda}$-set if and only if there exist a pair $\left(\mathcal{O}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}}\right) \in \mathcal{T}_{\mathfrak{g}, \Lambda} \times \neg \mathcal{T}_{\mathfrak{g}, \Lambda}$ of $\mathcal{T}_{\mathfrak{g}, \Lambda}$-open and $\mathcal{T}_{\mathfrak{g}, \Lambda}$-closed sets, and a \mathfrak{g}-operator $\mathbf{o p}_{\mathfrak{g}}(\cdot) \in \mathcal{L}_{\mathfrak{g}}[\Lambda]$ such that the following statement holds:

$$
\begin{equation*}
(\exists \xi)\left[\left(\xi \in \mathcal{S}_{\mathfrak{g}}\right) \wedge\left(\left(\mathcal{S}_{\mathfrak{g}} \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}}\right)\right) \vee\left(\mathcal{S}_{\mathfrak{g}} \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}}\right)\right)\right)\right] . \tag{2.7}
\end{equation*}
$$

The $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}, \Lambda}$-set $\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}, \Lambda}$ is said to be of category ν if and only if it belongs to the following class of $\mathfrak{g}-\nu-\mathfrak{T}_{\mathfrak{g}, \Lambda}$-sets:

$$
\begin{align*}
& \mathfrak{g}-\nu-\mathrm{S}\left[\mathfrak{T}_{\mathfrak{g}, \Lambda}\right] \stackrel{\text { def }}{=}\left\{\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}, \Lambda}:\left(\exists \mathcal{O}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}}, \mathbf{o p}_{\mathfrak{g}, \nu}(\cdot)\right)\right. \\
& {\left.\left[\left(\mathcal{S}_{\mathfrak{g}} \subseteq \mathrm{op}_{\mathfrak{g}, \nu}\left(\mathcal{O}_{\mathfrak{g}}\right)\right) \vee\left(\mathcal{S}_{\mathfrak{g}} \supseteq \neg \mathrm{op}_{\mathfrak{g}, \nu}\left(\mathcal{K}_{\mathfrak{g}}\right)\right)\right]\right\} . } \tag{2.8}
\end{align*}
$$

It is called a $\mathfrak{g}-\nu-\mathfrak{T}_{\mathfrak{g}, \Lambda}$-open set if it satisfies the first property in $\mathfrak{g}-\nu-S\left[\mathfrak{T}_{\mathfrak{g}, \Lambda}\right]$ and a $\mathfrak{g}-\nu-\mathfrak{T}_{\mathfrak{g}, \Lambda}$-closed set if it satisfies the second property in $\mathfrak{g}-\nu-\mathrm{S}\left[\mathfrak{T}_{\mathfrak{g}, \Lambda}\right]$. The classes of $\mathfrak{g}-\nu-\mathfrak{T}_{\mathfrak{g}, \Lambda}$-open and $\mathfrak{g}-\nu-\mathfrak{T}_{\mathfrak{g}, \Lambda^{-}}$-closed sets, respectively, are defined by

$$
\mathfrak{g}-\nu-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}, \Lambda}\right] \quad \stackrel{\text { def }}{=}\left\{\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}, \Lambda}:\left(\exists \mathcal{O}_{\mathfrak{g}}, \mathbf{o p}_{\mathfrak{g}, \nu}(\cdot)\right)\left[\mathcal{S}_{\mathfrak{g}} \subseteq \mathrm{op}_{\mathfrak{g}, \nu}\left(\mathcal{O}_{\mathfrak{g}}\right)\right]\right\}
$$

$$
\begin{equation*}
\mathfrak{g}-\nu-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}, \Lambda}\right] \stackrel{\text { def }}{=}\left\{\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}, \Lambda}:\left(\exists \mathcal{K}_{\mathfrak{g}}, \mathbf{o p}_{\mathfrak{g}, \nu}(\cdot)\right)\left[\mathcal{S}_{\mathfrak{g}} \supseteq \neg \mathrm{op}_{\mathfrak{g}, \nu}\left(\mathcal{K}_{\mathfrak{g}}\right)\right]\right\} . \tag{2.9}
\end{equation*}
$$

From these classes, the following relation holds:

$$
\begin{align*}
\mathfrak{g}-\mathrm{S}\left[\mathfrak{T}_{\mathfrak{g}, \mathrm{A}}\right] & =\bigcup_{\nu \in I_{3}^{0}} \mathfrak{g}-\nu-\mathrm{S}\left[\mathfrak{T}_{\mathfrak{g}, \mathrm{A}}\right] \\
& =\bigcup_{\nu \in I_{3}^{0}}\left(\mathfrak{g}-\nu-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right] \cup \mathfrak{g}-\nu-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}}\right]\right) \\
& =\left(\cup_{\nu \in I_{3}^{0}} \mathfrak{g}-\nu-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}, \Lambda}\right]\right) \cup\left(\cup_{\nu \in I_{3}^{0}} \mathfrak{g}-\nu-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}, \Lambda}\right]\right) \\
& =\mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}, \Lambda}\right] \cup \mathfrak{g}-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}, \Lambda}\right] . \tag{2.10}
\end{align*}
$$

By omitting the subscript \mathfrak{g} in almost all symbols of the above definitions, we obtain very similar definitions but in a \mathcal{T}_{Λ}-space.

A \mathfrak{T}_{Λ}-set $\mathcal{S} \subset \mathfrak{T}_{\Lambda}$ in a \mathcal{T}_{Λ}-space is called a $\mathfrak{g}-\mathfrak{T}_{\Lambda}$-set if and only if there exists a pair $(\mathcal{O}, \mathcal{K}) \in \mathcal{T}_{\Lambda} \times \neg \mathcal{T}_{\Lambda}$ of \mathcal{T}_{Λ}-open and \mathcal{T}_{Λ}-closed sets, and an operator op $(\cdot) \in \mathcal{L}[\Lambda]$ such that the following statement holds:

$$
\begin{equation*}
(\exists \xi)[(\xi \in \mathcal{S}) \wedge((\mathcal{S} \subseteq \operatorname{op}(\mathcal{O})) \vee(\mathcal{S} \supseteq \neg \operatorname{op}(\mathcal{K})))] \tag{2.11}
\end{equation*}
$$

The $\mathfrak{g}-\mathfrak{T}_{\Lambda}$-set $\mathcal{S} \subset \mathfrak{T}_{\Lambda}$ is said to be of category ν if and only if it belongs to the following class of $\mathfrak{g}-\nu-\mathcal{T}_{\Lambda}$-sets:

$$
\begin{align*}
& \mathfrak{g}-\nu-\mathrm{S}\left[\mathfrak{T}_{\Lambda}\right] \stackrel{\text { def }}{=}\left\{\mathcal{S} \subset \mathfrak{T}_{\Lambda}:\left(\exists \mathcal{O}, \mathcal{K}, \mathbf{o p}_{\nu}(\cdot)\right)\right. \\
& {\left.\left[\left(\mathcal{S} \subseteq \mathrm{op}_{\nu}(\mathcal{O})\right) \vee\left(\mathcal{S} \supseteq \neg \mathrm{op}_{\nu}(\mathcal{K})\right)\right]\right\} . } \tag{2.12}
\end{align*}
$$

It is called a $\mathfrak{g}-\nu-\mathfrak{T}_{\Lambda}$-open set if it satisfies the first property in $\mathfrak{g}-\nu-\mathrm{S}\left[\mathfrak{T}_{\Lambda}\right]$ and a $\mathfrak{g}-\nu-\mathfrak{T}_{\Lambda}$-closed set if it satisfies the second property in $\mathfrak{g}-\nu-\mathrm{S}\left[\mathfrak{T}_{\Lambda}\right]$. The classes of $\mathfrak{g}-\nu-\mathfrak{T}_{\Lambda}$-open and $\mathfrak{g}-\nu-\mathfrak{T}_{\Lambda}$-closed sets, respectively, are defined by

$$
\begin{array}{ll}
\mathfrak{g}-\nu-\mathrm{O}\left[\mathfrak{T}_{\Lambda}\right] & \stackrel{\text { def }}{=}\left\{\mathcal{S} \subset \mathfrak{T}_{\Lambda}:\left(\exists \mathcal{O}, \mathbf{o p}_{\nu}(\cdot)\right)\left[\mathcal{S} \subseteq \mathrm{op}_{\nu}(\mathcal{O})\right]\right\}, \\
\mathfrak{g}-\nu-\mathrm{K}\left[\mathfrak{T}_{\Lambda}\right] & \stackrel{\text { def }}{=}\left\{\mathcal{S} \subset \mathfrak{T}_{\Lambda}:\left(\exists \mathcal{K}, \mathbf{o p}_{\nu}(\cdot)\right)\left[\mathcal{S} \supseteq \neg \mathrm{op}_{\nu}(\mathcal{K})\right]\right\} . \tag{2.13}
\end{array}
$$

As in the previous definitions, from these classes, the following relation holds:

$$
\begin{align*}
\mathfrak{g}-\mathrm{S}\left[\mathfrak{T}_{\Lambda}\right] & =\bigcup_{\nu \in I_{3}^{0}} \mathfrak{g}-\nu-\mathrm{S}\left[\mathfrak{T}_{\Lambda}\right] \\
& =\bigcup_{\nu \in I_{3}^{0}}\left(\mathfrak{g}-\nu-\mathrm{O}\left[\mathfrak{T}_{\Lambda}\right] \cup \mathfrak{g}-\nu-\mathrm{K}\left[\mathfrak{T}_{\Lambda}\right]\right) \\
& =\left(\bigcup_{\nu \in I_{3}^{0}} \mathfrak{g}-\nu-\mathrm{O}\left[\mathfrak{T}_{\Lambda}\right]\right) \cup\left(\bigcup_{\nu \in I_{3}^{0}} \mathfrak{g}-\nu-\mathrm{K}\left[\mathfrak{T}_{\Lambda}\right]\right) \\
& =\mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\Lambda}\right] \cup \mathfrak{g}-\mathrm{K}\left[\mathfrak{T}_{\Lambda}\right] . \tag{2.14}
\end{align*}
$$

The classes $\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}, \Lambda}\right]$ and $\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}, \Lambda}\right]$ denote the families of $\mathfrak{T}_{\mathfrak{g}, \Lambda}$-open and $\mathfrak{T}_{\mathfrak{g}, \Lambda}$-closed sets, respectively, in $\mathfrak{T}_{\mathfrak{g}, \Lambda}$, with $\mathrm{S}\left[\mathfrak{T}_{\mathfrak{g}, \Lambda}\right]=\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}, \Lambda}\right] \cup \mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}, \Lambda}\right]$; the classes $\mathrm{O}\left[\mathfrak{T}_{\Lambda}\right]$ and $\mathrm{K}\left[\mathfrak{T}_{\Lambda}\right]$ denote the families of \mathfrak{T}-open and \mathfrak{T}_{Λ}-closed sets, respectively, in \mathfrak{T}_{Λ}, with $\mathrm{S}\left[\mathfrak{T}_{\Lambda}\right]=\mathrm{O}\left[\mathfrak{T}_{\Lambda}\right] \cup \mathrm{K}\left[\mathfrak{T}_{\Lambda}\right]$. (Whenever we feel that the subscript $\Lambda \in\{\Omega, \Sigma, \Upsilon\}$ is understood from the context, it will be omitted for clarity.) We are now in a position to present a carefully chosen set of terms used in the theory of $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$-maps between $\mathcal{T}_{\mathfrak{g}}$-spaces.

A $\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-map and a $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-map, respectively, are mappings in the usual sense between \mathcal{T}-spaces and $\mathcal{T}_{\mathfrak{g}}$-spaces.
DEFINITION $2.1\left(\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right),\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)\right.$-Maps). Let $\mathfrak{T}_{\Omega}=\left(\Omega, \mathcal{T}_{\Omega}\right)$ and $\mathfrak{T}_{\Sigma}=\left(\Sigma, \mathcal{T}_{\Sigma}\right)$ be \mathcal{T}-spaces and, let $\mathfrak{T}_{\mathfrak{g}, \Omega}=\left(\Omega, \mathcal{T}_{\mathfrak{g}, \Omega}\right)$ and $\mathfrak{T}_{\mathfrak{g}, \Sigma}=\left(\Sigma, \mathcal{T}_{\mathfrak{g}, \Sigma}\right)$ be $\mathcal{T}_{\mathfrak{g}}$-spaces. Then, a map:

- I. $\pi: \mathfrak{T}_{\Omega} \rightarrow \mathfrak{T}_{\Sigma}$ is called a $\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-map from \mathfrak{T}_{Ω} into \mathfrak{T}_{Σ}.
- II. $\pi: \mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Sigma}$ is called a $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-map from $\mathfrak{T}_{\mathfrak{g}, \Omega}$ into $\mathfrak{T}_{\mathfrak{g}, \Sigma}$.

A $\mathfrak{g}-\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-map is a generalization of a $\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-map and, hence, is a distinguished mapping between \mathcal{T}-spaces which does not exhibit mapping properties in the usual sense but does exhibit mapping properties in the generalized sense.

DEFINITION $2.2\left(\mathfrak{g}-\nu-\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)\right.$-Map $)$. Let $\mathfrak{T}_{\Omega}=\left(\Omega, \mathcal{T}_{\Omega}\right)$ and $\mathfrak{T}_{\Sigma}=\left(\Sigma, \mathcal{T}_{\Sigma}\right)$ be \mathcal{T} spaces, and let op $(\cdot) \in \mathcal{L}[\Sigma]$. Then, a map $\pi_{\mathfrak{g}}: \mathfrak{T}_{\Omega} \rightarrow \mathfrak{T}_{\Sigma}$ is called a $\mathfrak{g}-\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)-$ map if and only if, for every pair $\left(\mathcal{O}_{\omega}, \mathcal{K}_{\omega}\right) \in \mathcal{T}_{\Omega} \times \neg \mathcal{T}_{\Omega}$ of \mathcal{T}_{Ω}-open and \mathcal{T}_{Ω}-closed
sets in \mathfrak{T}_{Ω} there corresponds a pair $\left(\mathcal{O}_{\sigma}, \mathcal{K}_{\sigma}\right) \in \mathcal{T}_{\Sigma} \times \neg \mathcal{T}_{\Sigma}$ of \mathcal{T}_{Σ}-open and \mathcal{T}_{Σ}-closed sets in \mathfrak{T}_{Σ} such that the following statement holds:

$$
\begin{equation*}
\left[\pi_{\mathfrak{g}}\left(\mathcal{O}_{\omega}\right) \subseteq \operatorname{op}\left(\mathcal{O}_{\sigma}\right)\right] \vee\left[\pi_{\mathfrak{g}}\left(\mathcal{K}_{\omega}\right) \supseteq \neg \operatorname{op}\left(\mathcal{K}_{\sigma}\right)\right] . \tag{2.15}
\end{equation*}
$$

A $\mathfrak{g}-\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-map is said to be of category ν if and only if it belongs to the following class of $\mathfrak{g}-\nu-\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-maps:

$$
\begin{align*}
& \mathfrak{g}-\nu-\mathrm{M}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right] \stackrel{\text { def }}{=}\left\{\pi_{\mathfrak{g}}:\left(\forall \mathcal{O}_{\omega}, \mathcal{K}_{\omega}\right)\left(\exists \mathcal{O}_{\sigma}, \mathcal{K}_{\sigma}, \mathbf{o p}_{\nu}(\cdot)\right)\right. \\
& \left.\quad\left[\left(\pi_{\mathfrak{g}}\left(\mathcal{O}_{\omega}\right) \subseteq \mathrm{op}_{\nu}\left(\mathcal{O}_{\sigma}\right)\right) \vee\left(\pi_{\mathfrak{g}}\left(\mathcal{K}_{\omega}\right) \supseteq \neg \mathrm{op}_{\nu}\left(\mathcal{K}_{\sigma}\right)\right)\right]\right\} . \tag{2.16}
\end{align*}
$$

It is called a $\mathfrak{g}-\nu-\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-open map if it satisfies the first property in $\mathfrak{g}-\nu-\mathrm{M}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right]$ and a $\mathfrak{g}-\nu-\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-closed map if it satisfies the second property in $\mathfrak{g}-\nu-\mathrm{M}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right]$. The classes of $\mathfrak{g}-\nu-\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-open and $\mathfrak{g}-\nu-\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-closed maps, respectively, are defined by

$$
\begin{align*}
& \mathfrak{g}-\nu-\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right] \stackrel{\text { def }}{=}\left\{\pi_{\mathfrak{g}}:\left(\forall \mathcal{O}_{\omega}\right)\left(\exists \mathcal{O}_{\sigma}, \mathbf{o p}_{\nu}(\cdot)\right)\left[\pi_{\mathfrak{g}}\left(\mathcal{O}_{\omega}\right) \subseteq \mathrm{op}_{\nu}\left(\mathcal{O}_{\sigma}\right)\right]\right\}, \\
& \mathfrak{g}-\nu-\mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right] \stackrel{\text { def }}{=}\left\{\pi_{\mathfrak{g}}:\left(\forall \mathcal{K}_{\omega}\right)\left(\exists \mathcal{K}_{\sigma}, \mathbf{o p}_{\nu}(\cdot)\right)\left[\pi_{\mathfrak{g}}\left(\mathcal{K}_{\omega}\right) \supseteq \mathrm{op}_{\nu}\left(\mathcal{K}_{\sigma}\right)\right]\right\} . \tag{2.17}
\end{align*}
$$

From the class $\mathfrak{g}-\nu-\mathrm{M}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right]$, consisting of the classes $\mathfrak{g}-\nu-\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right]$ and $\mathfrak{g}-\nu-\mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right]$, respectively, of $\mathfrak{g}-\nu-\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-open and $\mathfrak{g}-\nu-\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-closed maps, where $\nu \in I_{3}^{0}$, there results in the following definition.

DEFINITION 2.3. Let $\mathfrak{T}_{\Omega}=\left(\Omega, \mathcal{T}_{\Omega}\right)$ and $\mathfrak{T}_{\Sigma}=\left(\Sigma, \mathcal{T}_{\Sigma}\right)$ be \mathcal{T}-spaces. If, for each $\nu \in I_{3}^{0}, \mathfrak{g}-\nu-\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right]$ and $\mathfrak{g}-\nu-\mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right]$, respectively, denote the classes of $\mathfrak{g}-\nu-\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-open and $\mathfrak{g}-\nu-\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-closed maps, then

$$
\begin{align*}
\mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right] & =\bigcup_{\nu \in I_{3}^{0}} \mathfrak{g}-\nu-\mathrm{M}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right] \\
& =\bigcup_{\nu \in I_{3}^{0}}\left(\mathfrak{g}-\nu-\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right] \cup \mathfrak{g}-\nu-\mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right]\right) \\
& =\left(\bigcup_{\nu \in I_{3}^{0}} \mathfrak{g}-\nu-\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right]\right) \cup\left(\bigcup_{\nu \in I_{3}^{0}} \mathfrak{g}-\nu-\mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right]\right) \\
& =\mathfrak{g}-\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right] \cup \mathfrak{g}-\mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right] . \tag{2.18}
\end{align*}
$$

As above, the $\mathfrak{g}-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-map is a generalization of the $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-map and, thus, is a distinguished mapping between $\mathcal{T}_{\mathfrak{g}}$-spaces which does not exhibit mapping properties in the usual sense but does exhibit mapping properties in the generalized sense.

Definition $2.4\left(\mathfrak{g}-\nu-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)\right.$-Map). Let $\mathfrak{T}_{\mathfrak{g}, \Omega}=\left(\Omega, \mathcal{T}_{\mathfrak{g}, \Omega}\right)$ and $\mathfrak{T}_{\mathfrak{g}, \Sigma}=\left(\Sigma, \mathcal{T}_{\mathfrak{g}, \Sigma}\right)$ be $\mathcal{T}_{\mathfrak{g}}$-spaces, and let $\mathbf{o p}_{\mathfrak{g}}(\cdot) \in \mathcal{L}_{\mathfrak{g}}[\Sigma]$. Then, a map $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Sigma}$ is called a $\mathfrak{g}-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-map if and only if, for every pair $\left(\mathcal{O}_{\mathfrak{g}, \omega}, \mathcal{K}_{\mathfrak{g}, \omega}\right) \in \mathcal{T}_{\mathfrak{g}, \Omega} \times \neg \mathcal{T}_{\mathfrak{g}, \Omega}$ of $\mathcal{T}_{\mathfrak{g}, \Omega^{-}}$ open and $\mathcal{T}_{\mathfrak{g}, \Omega}$-closed sets in $\mathfrak{T}_{\mathfrak{g}, \Omega}$ there corresponds a pair $\left(\mathcal{O}_{\mathfrak{g}, \sigma}, \mathcal{K}_{\mathfrak{g}, \sigma}\right) \in \mathcal{T}_{\mathfrak{g}, \Sigma} \times$ $\neg \mathcal{T}_{\mathfrak{g}, \Sigma}$ of $\mathcal{T}_{\mathfrak{g}, \Sigma \text {-open }}$ and \mathcal{T}_{Σ}-closed sets in $\mathfrak{T}_{\mathfrak{g}, \Sigma}$ such that the following statement holds:

$$
\begin{equation*}
\left[\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right] \vee\left[\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right] \tag{2.19}
\end{equation*}
$$

A $\mathfrak{g}-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-map is said to be of category ν if and only if it belongs to the following class of $\mathfrak{g}-\nu-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}}, \Sigma\right)$-maps:

$$
\begin{gather*}
\mathfrak{g}-\nu-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] \stackrel{\text { def }}{=}\left\{\pi_{\mathfrak{g}}:\left(\forall \mathcal{O}_{\mathfrak{g}, \omega}, \mathcal{K}_{\mathfrak{g}, \omega}\right)\left(\exists \mathcal{O}_{\mathfrak{g}, \sigma}, \mathcal{K}_{\mathfrak{g}, \sigma}, \mathbf{o p}_{\mathfrak{g}, \nu}(\cdot)\right)\right. \\
\left.\left[\left(\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right) \subseteq \mathrm{op}_{\mathfrak{g}, \nu}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right) \vee\left(\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}, \nu}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right)\right]\right\} . \tag{2.20}
\end{gather*}
$$

It is called a $\mathfrak{g}-\nu-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-open map if it satisfies the first property in the class $\mathfrak{g}-\nu-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ and a $\mathfrak{g}-\nu-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-closed map if it satisfies the second property in $\mathfrak{g}-\nu-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$. The classes of $\mathfrak{g}-\nu-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-open maps and $\mathfrak{g}-\nu-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-closed maps, respectively, are defined by

$$
\begin{align*}
& \mathfrak{g}-\nu-\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] \stackrel{\text { def }}{=}\left\{\pi_{\mathfrak{g}}:\right.\left(\forall \mathcal{O}_{\mathfrak{g}, \omega}\right)\left(\exists \mathcal{O}_{\mathfrak{g}, \sigma}, \mathbf{o p}_{\mathfrak{g}, \nu}(\cdot)\right) \\
& {\left.\left[\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right) \subseteq \mathrm{op}_{\mathfrak{g}, \nu}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right]\right\}, } \\
& \mathfrak{g}-\nu-\mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] \stackrel{\text { def }}{=}\left\{\pi_{\mathfrak{g}}:\left(\forall \mathcal{K}_{\omega}\right)\left(\exists \mathcal{K}_{\mathfrak{g}, \sigma}, \mathbf{o p}_{\mathfrak{g}, \nu}(\cdot)\right)\right. \\
& {\left.\left[\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right) \supseteq \mathrm{op}_{\mathfrak{g}, \nu}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right]\right\} . } \tag{2.21}
\end{align*}
$$

From the class $\mathfrak{g}-\nu-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$, consisting of the classes $\mathfrak{g}-\nu-\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ and $\mathfrak{g}-\nu-\mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ of $\mathfrak{g}-\nu-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-open and $\mathfrak{g}-\nu-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-closed maps, where $\nu \in I_{3}^{0}$, respectively, there results in the following definition.

DEFINITION 2.5. Let $\mathfrak{T}_{\mathfrak{g}, \Omega}=\left(\Omega, \mathcal{T}_{\mathfrak{g}, \Omega}\right)$ and $\mathfrak{T}_{\mathfrak{g}, \Sigma}=\left(\Sigma, \mathcal{T}_{\mathfrak{g}, \Sigma}\right)$ be $\mathcal{T}_{\mathfrak{g}}$-spaces. If, for each $\nu \in I_{3}^{0}, \mathfrak{g}-\nu-\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ and $\mathfrak{g}-\nu-\mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$, respectively, denote the classes of $\mathfrak{g}-\nu-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-open and $\mathfrak{g}-\nu-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-closed maps, then

$$
\begin{align*}
\mathfrak{g}-\mathrm{M} & {\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]=\bigcup_{\nu \in I_{3}^{0}} \mathfrak{g}-\nu-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] } \\
& =\bigcup_{\nu \in I_{3}^{0}}\left(\mathfrak{g}-\nu-\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma \Sigma}\right] \cup \mathfrak{g}-\nu-\mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]\right) \\
& =\left(\bigcup_{\nu \in I_{3}^{0}} \mathfrak{g}-\nu-\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]\right) \cup\left(\bigcup_{\nu \in I_{3}^{0}} \mathfrak{g}-\nu-\mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma \Sigma}\right]\right) \\
& =\mathfrak{g}-\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] \cup \mathfrak{g}-\mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] . \tag{2.22}
\end{align*}
$$

DEFINITION 2.6 ($\mathfrak{g}-\nu-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-Continuous). Let $\mathfrak{T}_{\mathfrak{g}, \Omega}=\left(\Omega, \mathcal{T}_{\mathfrak{g}, \Omega}\right)$ and $\mathfrak{T}_{\mathfrak{g}, \Sigma}=$ $\left(\Sigma, \mathcal{T}_{\mathfrak{g}, \Sigma}\right)$ be $\mathcal{T}_{\mathfrak{g}}$-spaces, and let $\mathbf{o p}_{\mathfrak{g}}(\cdot) \in \mathcal{L}_{\mathfrak{g}}[\Omega]$. Then, a map $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Sigma}$ is said to be $\mathfrak{g}-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-continuous if and only if, for every pair $\left(\mathcal{O}_{\mathfrak{g}, \sigma}, \mathcal{K}_{\mathfrak{g}, \sigma}\right) \in$ $\mathcal{T}_{\mathfrak{g}, \Sigma} \times \neg \mathcal{T}_{\mathfrak{g}, \Sigma}$ of $\mathcal{T}_{\mathfrak{g}, \Sigma}$-open and \mathcal{T}_{Σ}-closed sets in $\mathfrak{T}_{\mathfrak{g}, \Sigma}$ there corresponds a pair $\left(\mathcal{O}_{\mathfrak{g}, \omega}, \mathcal{K}_{\mathfrak{g}, \omega}\right) \in \mathcal{T}_{\mathfrak{g}, \Omega} \times \neg \mathcal{T}_{\mathfrak{g}, \Omega}$ of $\mathcal{T}_{\mathfrak{g}, \Omega^{-}}$-open and $\mathcal{T}_{\mathfrak{g}, \Omega^{-}}$-closed sets in $\mathfrak{T}_{\mathfrak{g}, \Omega}$ such that the following statement holds:

$$
\begin{equation*}
\left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right] \vee\left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right] . \tag{2.23}
\end{equation*}
$$

A \mathfrak{g} - $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-continuous map is said to be of category ν if and only if it belongs to the following class of $\mathfrak{g}-\nu-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-continuous maps:

$$
\mathfrak{g}-\nu-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] \stackrel{\text { def }}{=}\left\{\pi_{\mathfrak{g}}:\left(\forall \mathcal{O}_{\mathfrak{g}, \sigma}, \mathcal{K}_{\mathfrak{g}, \sigma}\right)\left(\exists \mathcal{O}_{\mathfrak{g}, \omega}, \mathcal{K}_{\mathfrak{g}, \omega}, \mathbf{o p}_{\mathfrak{g}, \nu}(\cdot)\right)\right.
$$

$$
\begin{equation*}
\left.\left[\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right) \subseteq \mathrm{op}_{\mathfrak{g}, \nu}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right) \vee\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}, \nu}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right)\right]\right\} \tag{2.24}
\end{equation*}
$$

Definition 2.7. Let $\mathfrak{T}_{\mathfrak{g}, \Omega}=\left(\Omega, \mathcal{T}_{\mathfrak{g}, \Omega}\right)$ and $\mathfrak{T}_{\mathfrak{g}, \Sigma}=\left(\Sigma, \mathcal{T}_{\mathfrak{g}, \Sigma}\right)$ be $\mathcal{T}_{\mathfrak{g}}$-spaces. If, for each $\nu \in I_{3}^{0}, \mathfrak{g}-\nu-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ denotes the class of $\mathfrak{g}-\nu-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-continuous maps, then

$$
\begin{equation*}
\mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]=\bigcup_{\nu \in I_{3}^{0}} \mathfrak{g}-\nu-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] . \tag{2.25}
\end{equation*}
$$

DEFINITION $2.8\left(\mathfrak{g}-\nu-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)\right.$-Irresolute). Let $\mathfrak{T}_{\mathfrak{g}, \Omega}=\left(\Omega, \mathcal{T}_{\mathfrak{g}, \Omega}\right)$ and $\mathfrak{T}_{\mathfrak{g}, \Sigma}=$ $\left(\Sigma, \mathcal{T}_{\mathfrak{g}, \Sigma}\right)$ be $\mathcal{T}_{\mathfrak{g}}$-spaces, and let $\mathbf{o p}_{\mathfrak{g}}(\cdot) \in \mathcal{L}_{\mathfrak{g}}[\Omega]$. Then, a map $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Sigma}$ is said to be $\mathfrak{g}-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-irresolute if and only if, for every pair $\left(\mathcal{O}_{\mathfrak{g}, \sigma}, \mathcal{K}_{\mathfrak{g}, \sigma}\right) \in$ $\mathcal{T}_{\mathfrak{g}, \Sigma} \times \neg \mathcal{T}_{\mathfrak{g}, \Sigma}$ of $\mathcal{T}_{\mathfrak{g}, \Sigma}$-open and \mathcal{T}_{Σ}-closed sets in $\mathfrak{T}_{\mathfrak{g}, \Sigma}$ there corresponds a pair
 following statement holds:

$$
\begin{equation*}
\left[\pi_{\mathfrak{g}}^{-1}\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right] \vee\left[\pi_{\mathfrak{g}}^{-1}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right] \tag{2.26}
\end{equation*}
$$

A \mathfrak{g} - $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-irresolute map is said to be of category ν if and only if it belongs to the following class of $\mathfrak{g}-\nu-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-irresolute maps:

$$
\begin{align*}
& \mathfrak{g}-\nu-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] \stackrel{\text { def }}{=}\left\{\pi_{\mathfrak{g}}:\left(\forall \mathcal{O}_{\mathfrak{g}, \sigma}, \mathcal{K}_{\mathfrak{g}, \sigma}\right)\left(\exists \mathcal{O}_{\mathfrak{g}, \omega}, \mathcal{K}_{\mathfrak{g}, \omega}, \mathbf{o p}\right.\right. \\
& {\left[(\pi _ { \mathfrak { g } , \nu } ^ { - 1 } (\cdot \mathrm { op } _ { \mathfrak { g } , \nu } (\mathcal { O } _ { \mathfrak { g } , \sigma })) \subseteq \operatorname { o p } _ { \mathfrak { g } , \nu } (\mathcal { O } _ { \mathfrak { g } , \omega })) \vee \left(\pi_{\mathfrak{g}}^{-1}\right.\right.}\left(\neg \mathrm{op}_{\mathfrak{g}, \nu}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right) \supseteq \\
&\left.\left.\left.\neg \mathrm{op}_{\mathfrak{g}, \nu}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right)\right]\right\} . \tag{2.27}
\end{align*}
$$

Definition 2.9. Let $\mathfrak{T}_{\mathfrak{g}, \Omega}=\left(\Omega, \mathcal{T}_{\mathfrak{g}, \Omega}\right)$ and $\mathfrak{T}_{\mathfrak{g}, \Sigma}=\left(\Sigma, \mathcal{T}_{\mathfrak{g}, \Sigma}\right)$ be $\mathcal{T}_{\mathfrak{g}}$-spaces. If, for each $\nu \in I_{3}^{0}, \mathfrak{g}-\nu-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ denotes the class of $\mathfrak{g}-\nu-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-irresolute maps, then

$$
\begin{equation*}
\mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]=\bigcup_{\nu \in I_{3}^{0}} \mathfrak{g}-\nu-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] . \tag{2.28}
\end{equation*}
$$

Definition 2.10. Let $\mathfrak{T}_{\mathfrak{g}, \Omega}=\left(\Omega, \mathcal{T}_{\mathfrak{g}, \Omega}\right)$ and $\mathfrak{T}_{\mathfrak{g}, \Sigma}=\left(\Sigma, \mathcal{T}_{\mathfrak{g}, \Sigma}\right)$ be $\mathcal{T}_{\mathfrak{g}}$-spaces and, let $\mathfrak{T}_{\Omega}=\left(\Omega, \mathcal{T}_{\Omega}\right)$ and $\mathfrak{T}_{\Sigma}=\left(\Sigma, \mathcal{T}_{\Sigma}\right)$ be \mathcal{T}-spaces.

- I. The classes $\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right]$ and $\mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right]$ denote the families of \mathfrak{T} open and \mathfrak{T}-closed maps, respectively, from \mathfrak{T}_{Ω} into \mathfrak{T}_{Σ}, with $\mathrm{M}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right]=$ $\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right] \cup \mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right]$.
- II. The classes $\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ and $\mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ denote the families of $\mathfrak{T}_{\mathfrak{g}}$-open and $\mathfrak{T}_{\mathfrak{g}}$-closed maps, respectively, from $\mathfrak{T}_{\mathfrak{g}, \Omega}$ into $\mathfrak{T}_{\mathfrak{g}, \Sigma}$, with $\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]=\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] \cup \mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$.

The following sections present the main results of the theory of $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$-maps.
2.2. Main Results. The purpose of the following lines is to explore properties and characterizations of \mathfrak{g} - $\left(\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-maps $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Sigma}$ belonging to the class $\mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$.
THEOREM 2.11. If $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Sigma}$ is a $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-open or $a\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-closed map, then

$$
\begin{equation*}
\pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] \cup \mathfrak{g}-\mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] \tag{2.29}
\end{equation*}
$$

Proof. Let $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Sigma}$ be a $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-map. Then, for every $\left(\mathcal{O}_{\mathfrak{g}, \omega}, \mathcal{K}_{\mathfrak{g}, \omega}\right) \in$ $\mathcal{T}_{\mathfrak{g}, \Omega} \times \neg \mathcal{T}_{\mathfrak{g}, \Omega}$ there exists $\left(\mathcal{O}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}, \sigma}\right) \in \mathcal{T}_{\mathfrak{g}, \Sigma} \times \neg \mathcal{T}_{\mathfrak{g}, \Sigma}$ such that

$$
\left[\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right) \subseteq \mathcal{O}_{\mathfrak{g}, \sigma}\right] \vee\left[\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right) \supseteq \mathcal{K}_{\mathfrak{g}, \sigma}\right] .
$$

But, $\mathcal{O}_{\mathfrak{g}, \sigma} \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)$ and $\mathcal{K}_{\mathfrak{g}, \sigma} \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)$. Consequently,

$$
\left[\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right] \vee\left[\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right] .
$$

Hence, $\pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] \cup \mathfrak{g}-\mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$.
Q.E.D.

The converse of Thm. 2.11 is clearly false, because the statement $" \pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow$ $\mathfrak{T}_{\mathfrak{g}, \Sigma}$ is a $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-map and $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Sigma}$ is not a \mathfrak{g} - $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-map" is untrue. The following theorem states that, the image of a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-set in a $\mathcal{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}, \Omega}$ is a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-set in a $\mathcal{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}, \Sigma}$ if and only if the map $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Sigma}$ is a $\mathfrak{g}-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-map.

Theorem 2.12. A necessary and sufficient condition for $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Sigma}$ to be a \mathfrak{g} - $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-map is that, for every $\left(\mathcal{O}_{\mathfrak{g}, \omega}, \mathcal{K}_{\mathfrak{g}, \omega}\right) \in \mathcal{T}_{\mathfrak{g}, \Omega} \times \neg \mathcal{T}_{\mathfrak{g}, \Omega}$,

$$
\begin{align*}
{[} & \left.\pi_{\mathfrak{g}}\left(\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right)\right] \vee[
\end{align*} \pi_{\mathfrak{g}}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right) \supseteq .
$$

Proof. Necessity. Let $\pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$. Then for $\left(\mathcal{O}_{\mathfrak{g}, \omega}, \mathcal{K}_{\mathfrak{g}, \omega}\right) \in \mathcal{T}_{\mathfrak{g}, \Omega} \times \neg \mathcal{T}_{\mathfrak{g}, \Omega}$ there corresponds $\left(\mathcal{O}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}, \sigma}\right) \in \mathcal{T}_{\mathfrak{g}, \Sigma} \times \neg \mathcal{T}_{\mathfrak{g}, \Sigma}$ such that

$$
\left[\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right] \vee\left[\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right]
$$

Because $\left[\mathcal{O}_{\mathfrak{g}, \omega} \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right] \vee\left[\mathcal{K}_{\mathfrak{g}, \omega} \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right]$, it consequently follows that,

$$
\begin{aligned}
{\left[\pi_{\mathfrak{g}}\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right) \subseteq \mathrm{op}_{\mathfrak{g}} \circ \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right] } & \vee\left[\pi_{\mathfrak{g}}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right)\right. \\
& \left.\supseteq \neg \mathrm{op}_{\mathfrak{g}} \circ \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right] .
\end{aligned}
$$

But, since

$$
\operatorname{op}_{\mathfrak{g}} \circ \operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right), \neg \mathrm{op}_{\mathfrak{g}} \circ \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right),
$$

the proof at once follows.
Sufficiency. For every $\left(\mathcal{O}_{\mathfrak{g}, \omega}, \mathcal{K}_{\mathfrak{g}, \omega}\right) \in \mathcal{T}_{\mathfrak{g}, \Omega} \times \neg \mathcal{T}_{\mathfrak{g}, \Omega}$, let

$$
\begin{aligned}
& {\left[\pi_{\mathfrak{g}}\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right)\right] \vee\left[\pi_{\mathfrak{g}}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right) \supseteq\right.} \\
&\left.\neg \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right)\right] .
\end{aligned}
$$

Then,

$$
\begin{aligned}
& {\left[\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right) \subseteq \pi_{\mathfrak{g}}\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right]} \\
& \vee\left[\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right) \supseteq \pi_{\mathfrak{g}}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right]
\end{aligned}
$$

because, $\mathcal{O}_{\mathfrak{g}, \omega} \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right), \mathcal{K}_{\mathfrak{g}, \omega} \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right), \pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)$, and $\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)$. Therefore,

$$
\left[\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right] \vee\left[\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right]
$$

Thus, $\pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$, which completes the proof.
THEOREM 2.13. If $\pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ and $\pi_{\mathfrak{g}, \beta} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$, then $\pi_{\mathfrak{g}, \beta} \circ$ $\pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$.
Proof. Let $\pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ and $\pi_{\mathfrak{g}, \beta} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$. Then, for every $\left(\mathcal{O}_{\mathfrak{g}, \omega}, \mathcal{K}_{\mathfrak{g}, \omega}\right) \in \mathcal{T}_{\mathfrak{g}, \Omega} \times \neg \mathcal{T}_{\mathfrak{g}, \Omega}$ there exists $\left(\mathcal{O}_{\mathfrak{g}, \sigma}, \mathcal{K}_{\mathfrak{g}, \sigma}\right) \in \mathcal{T}_{\mathfrak{g}, \Sigma} \times \neg \mathcal{T}_{\mathfrak{g}, \Sigma}$ and, for every $\left(\mathcal{O}_{\mathfrak{g}, \sigma}, \mathcal{K}_{\mathfrak{g}, \sigma}\right) \in \mathcal{T}_{\mathfrak{g}, \Sigma} \times \neg \mathcal{T}_{\mathfrak{g}, \Sigma}$ there exists $\left(\mathcal{O}_{\mathfrak{g}, v}, \mathcal{K}_{\mathfrak{g}, v}\right) \in \mathcal{T}_{\mathfrak{g}, \Upsilon} \times \neg \mathcal{T}_{\mathfrak{g}, \Upsilon}$ such that

$$
\begin{aligned}
& {\left[\pi_{\mathfrak{g}, \alpha}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right] \vee\left[\pi_{\mathfrak{g}, \alpha}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right],} \\
& {\left[\pi_{\mathfrak{g}, \beta}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, v}\right)\right] \vee\left[\pi_{\mathfrak{g}, \beta}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, v}\right)\right] .}
\end{aligned}
$$

From the first line, aided with the second, the logical statement preceding \vee becomes

$$
\begin{aligned}
\pi_{\mathfrak{g}, \alpha}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right) & \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right) \\
\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right) & \subseteq \pi_{\mathfrak{g}, \beta}\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}, \beta}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, v}\right),
\end{aligned}
$$

and, that following \vee becomes

$$
\begin{aligned}
\pi_{\mathfrak{g}, \alpha}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right) & \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right) \\
\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right) & \supseteq \pi_{\mathfrak{g}, \beta}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}, \beta}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, v}\right) .
\end{aligned}
$$

Thus, $\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$, which proves the theorem.
Q.E.D.

ThEOREM 2.14. Let $\pi_{\mathfrak{g}, \alpha}: \mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Sigma}$ be $a\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-map and let $\pi_{\mathfrak{g}, \beta}: \mathfrak{T}_{\mathfrak{g}, \Sigma} \rightarrow$ $\mathfrak{T}_{\mathfrak{g}, \Upsilon}$ be a $\left(\mathfrak{T}_{\mathfrak{g}, \Sigma}, \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right)$-map. Then:

- I. $\pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}}, \Omega ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ implies $\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$.
- II. $\pi_{\mathfrak{g}, \beta} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$ implies $\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$.

Proof. I. Let $\pi_{\mathfrak{g}, \alpha}$ be a $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-map and $\pi_{\mathfrak{g}, \beta}$ a $\left(\mathfrak{T}_{\mathfrak{g}, \Sigma}, \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right)$-map. Then, for every $\left(\mathcal{O}_{\mathfrak{g}, \omega}, \mathcal{K}_{\mathfrak{g}, \omega}\right) \in \mathcal{T}_{\mathfrak{g}, \Omega} \times \neg \mathcal{T}_{\mathfrak{g}, \Omega}$, there exists $\left(\mathcal{O}_{\mathfrak{g}, \sigma}, \mathcal{K}_{\mathfrak{g}, \sigma}\right) \in \mathcal{T}_{\mathfrak{g}, \Sigma} \times \neg \mathcal{T}_{\mathfrak{g}, \Sigma}$ and, for every $\left(\mathcal{O}_{\mathfrak{g}, \sigma}, \mathcal{K}_{\mathfrak{g}, \sigma}\right) \in \mathcal{T}_{\mathfrak{g}, \Sigma} \times \neg \mathcal{T}_{\mathfrak{g}, \Sigma}$, there exists $\left(\mathcal{O}_{\mathfrak{g}, v}, \mathcal{K}_{\mathfrak{g}, v}\right) \in \mathcal{T}_{\mathfrak{g}, \Upsilon} \times \neg \mathcal{T}_{\mathfrak{g}, \Upsilon}$ such that

$$
\begin{aligned}
& {\left[\pi_{\mathfrak{g}, \alpha}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right) \subseteq \mathcal{O}_{\mathfrak{g}, \sigma}\right] \vee\left[\pi_{\mathfrak{g}, \alpha}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right) \supseteq \mathcal{K}_{\mathfrak{g}, \sigma}\right]} \\
& {\left[\pi_{\mathfrak{g}, \beta}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right) \subseteq \mathcal{O}_{\mathfrak{g}, v}\right] \vee\left[\pi_{\mathfrak{g}, \beta}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right) \supseteq \mathcal{K}_{\mathfrak{g}, v}\right]}
\end{aligned}
$$

The logical statements expressing the relations $\pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ and $\pi_{\mathfrak{g}, \alpha} \in$ $\mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$ are, respectively,

$$
\begin{array}{lll}
{\left[\pi_{\mathfrak{g}, \alpha}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right]} & \vee & {\left[\pi_{\mathfrak{g}, \alpha}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right]} \\
{\left[\pi_{\mathfrak{g}, \beta}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, v}\right)\right]} & \vee & {\left[\pi_{\mathfrak{g}, \beta}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, v}\right)\right]}
\end{array}
$$

Therefore, if only the relation $\pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ holds, then

$$
\begin{aligned}
& {\left[\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right) \subseteq \pi_{\mathfrak{g}, \beta}\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right)\right] } \vee\left[\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right. \\
&\left.\supseteq \pi_{\mathfrak{g}, \beta}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right)\right] \\
& \Rightarrow \quad\left[\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}, \beta}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right)\right] \vee\left[\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right. \\
&\left.\supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}, \beta}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right)\right] \\
&\left.\Rightarrow \quad\left[\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, v}\right)\right)\right] \vee\left[\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, v}\right)\right],
\end{aligned}
$$

and, hence, $\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \mathfrak{r}}\right]$.
II. If only the relation $\pi_{\mathfrak{g}, \beta} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$ holds, then

$$
\begin{aligned}
& {\left[\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right) \subseteq \pi_{\mathfrak{g}, \beta}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right] \vee\left[\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right) \supseteq \pi_{\mathfrak{g}, \beta}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right] } \\
\Rightarrow \quad & {\left.\left[\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right) \subseteq \operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, v}\right)\right)\right] \vee\left[\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, v}\right)\right], }
\end{aligned}
$$

and, hence, $\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \mathfrak{r}}\right]$.
Q.E.D.

Proposition 2.15. Let $\pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ and $\pi_{\mathfrak{g}, \beta} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Omega}\right]$, satisfying

$$
\begin{align*}
& {\left[\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right] \vee\left[\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right],} \\
& {\left[\pi_{\mathfrak{g}, \alpha} \circ \pi_{\mathfrak{g}, \beta}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right) \subseteq \operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right] \vee\left[\pi_{\mathfrak{g}, \alpha} \circ \pi_{\mathfrak{g}, \beta}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right],} \tag{2.31}
\end{align*}
$$

respectively. Then, there exist inverse maps $\pi_{\mathfrak{g}, \alpha}^{-1} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ and $\pi_{\mathfrak{g}, \beta}^{-1} \in$ $\mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Omega}\right]$ such that $\pi_{\mathfrak{g}, \beta}=\pi_{\mathfrak{g}, \alpha}^{-1}$ and $\pi_{\mathfrak{g}, \alpha}=\pi_{\mathfrak{g}, \beta}^{-1}$.
Proof. It is clear that, $\mathcal{O}_{\mathfrak{g}, \mu} \subseteq \operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \mu}\right)$ or $\mathcal{K}_{\mathfrak{g}, \mu} \supseteq \operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \mu}\right)$ for every $\mu \in$ $\{\omega, \sigma\}$. But, $\pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ or $\pi_{\mathfrak{g}, \beta} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Omega}\right]$ satisfy

$$
\begin{aligned}
& {\left[\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right] \vee\left[\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right],} \\
& {\left[\pi_{\mathfrak{g}, \alpha} \circ \pi_{\mathfrak{g}, \beta}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right] \vee\left[\pi_{\mathfrak{g}, \alpha} \circ \pi_{\mathfrak{g}, \beta}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right] .}
\end{aligned}
$$

Hence, there exist $\pi_{\mathfrak{g}, \alpha}^{-1} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ and $\pi_{\mathfrak{g}, \beta}^{-1} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Omega}\right]$ such that $\pi_{\mathfrak{g}, \beta}=\pi_{\mathfrak{g}, \alpha}^{-1}$ and $\pi_{\mathfrak{g}, \alpha}=\pi_{\mathfrak{g}, \beta}^{-1}$. This proves the proposition. \quad Q.E.D.
THEOREM 2.16. Let $\pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$. Given any $\mathfrak{T}_{\mathfrak{g}, \Sigma \text {-set }} \mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}, \Sigma}$ and any pair $\left(\mathcal{O}_{\mathfrak{g}, \omega}, \mathcal{K}_{\mathfrak{g}, \omega}\right) \in \mathcal{T}_{\mathfrak{g}, \Omega} \times \neg \mathcal{T}_{\mathfrak{g}, \Omega}$ of $\mathcal{T}_{\mathfrak{g}, \Omega}$-open and $\mathcal{T}_{\mathfrak{g}, \Omega}$-closed sets satisfying

$$
\begin{equation*}
\left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{S}_{\mathfrak{g}}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right] \vee\left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{S}_{\mathfrak{g}}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right] \tag{2.32}
\end{equation*}
$$

then:

- I. $\pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ implies the existence of a $\mathcal{T}_{\mathfrak{g}, \Sigma}$-open set $\mathcal{O}_{\mathfrak{g}, \sigma} \supseteq \mathcal{S}_{\mathfrak{g}}$ such that $\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)$.
- II. $\pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ implies the existence of a $\mathcal{T}_{\mathfrak{g}, \Sigma}$-closed set $\mathcal{K}_{\mathfrak{g}, \sigma} \supseteq \mathcal{S}_{\mathfrak{g}}$ such that $\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)$.
Proof. I. Let $\mathcal{O}_{\mathfrak{g}, \sigma}=\Sigma-\pi_{\mathfrak{g}}\left(\Omega-\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right)$. Then, since $\pi_{\mathfrak{g}}^{-1}\left(\mathcal{S}_{\mathfrak{g}}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)$ and $\pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$, there exists a $\mathcal{T}_{\mathfrak{g}, \Sigma}$-open set $\mathcal{O}_{\mathfrak{g}, \sigma} \in \mathcal{T}_{\mathfrak{g}, \Sigma}$ such that $\mathcal{O}_{\mathfrak{g}, \sigma} \supseteq \mathcal{S}_{\mathfrak{g}}$. But, since

$$
\begin{aligned}
\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right) & =\Omega-\pi_{\mathfrak{g}}^{-1} \circ \pi_{\mathfrak{g}}\left(\Omega-\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right) \\
& \subseteq \Omega-\left(\Omega-\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right)=\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right),
\end{aligned}
$$

the proof of I . follows.
II. Let $\mathcal{K}_{\mathfrak{g}, \sigma}=\Sigma-\pi_{\mathfrak{g}}\left(\Omega-\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right)$. Then, because $\pi_{\mathfrak{g}}^{-1}\left(\mathcal{S}_{\mathfrak{g}}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)$ and $\pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$, there exists a $\mathcal{T}_{\mathfrak{g}, \Sigma}$-closed $\mathcal{K}_{\mathfrak{g}, \sigma} \in \neg \mathcal{T}_{\mathfrak{g}, \Sigma}$ such that $\mathcal{K}_{\mathfrak{g}, \sigma} \supseteq \mathcal{S}_{\mathfrak{g}}$. But, since

$$
\begin{aligned}
\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right) & =\Omega-\pi_{\mathfrak{g}}^{-1} \circ \pi_{\mathfrak{g}}\left(\Omega-\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right) \\
& \supseteq \Omega-\left(\Omega-\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right)=\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right),
\end{aligned}
$$

the proof of II. follows.
Q.E.D.

We next investigate further properties and give characterizations of those elements which belong to the class \mathfrak{g}-C $\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$.

THEOREM 2.17. If $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Sigma}$ is a $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-continuous map, then $\pi_{\mathfrak{g}} \in$ $\mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$.
Proof. If $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Sigma}$ is a $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-continuous map, then, for every $\left(\mathcal{O}_{\mathfrak{g}, \sigma}, \mathcal{K}_{\mathfrak{g}, \sigma}\right) \in \mathcal{T}_{\mathfrak{g}, \Sigma} \times \neg \mathcal{T}_{\mathfrak{g}, \Sigma}$, there exists $\left(\mathcal{O}_{\mathfrak{g}, \omega}, \mathcal{K}_{\mathfrak{g}, \omega}\right) \in \mathcal{T}_{\mathfrak{g}, \Omega} \times \neg \mathcal{T}_{\mathfrak{g}, \Omega}$ such that

$$
\left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right) \subseteq \mathcal{O}_{\mathfrak{g}, \omega}\right] \vee\left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right) \supseteq \mathcal{K}_{\mathfrak{g}, \omega}\right]
$$

But, for every $\left(\mathcal{O}_{\mathfrak{g}, \omega}, \mathcal{K}_{\mathfrak{g}, \omega}\right) \in \mathcal{T}_{\mathfrak{g}, \Omega} \times \neg \mathcal{T}_{\mathfrak{g}, \Omega}$,

$$
\left[\mathcal{O}_{\mathfrak{g}, \omega} \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right] \vee\left[\mathcal{K}_{\mathfrak{g}, \omega} \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right],
$$

and, consequently,

$$
\left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right] \vee\left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right] .
$$

Hence, $\pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$.
Q.E.D.

THEOREM 2.18. If $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Sigma}$ is a $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-map satisfying, for every $\left(\mathcal{O}_{\mathfrak{g}, \sigma}, \mathcal{K}_{\mathfrak{g}, \sigma}\right) \in \mathcal{T}_{\mathfrak{g}, \Sigma} \times \neg \mathcal{T}_{\mathfrak{g}, \Sigma}$,

$$
\left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right)\right] \vee\left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right)\right]
$$

then $\pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$.

Proof. For every $\left(\mathcal{O}_{\mathfrak{g}, \sigma}, \mathcal{K}_{\mathfrak{g}, \sigma}\right) \in \mathcal{T}_{\mathfrak{g}, \Sigma} \times \neg \mathcal{T}_{\mathfrak{g}, \Sigma}$, it is evident that

$$
\begin{array}{ll}
& {\left[\mathcal{O}_{\mathfrak{g}, \sigma} \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right] \vee\left[\mathcal{K}_{\mathfrak{g}, \sigma} \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right]} \\
\Rightarrow \quad & {\left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right) \subseteq \pi_{\mathfrak{g}}^{-1}\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right)\right] \vee\left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right) \supseteq \pi_{\mathfrak{g}}^{-1}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right)\right]} \\
\Rightarrow \quad & {\left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right)\right] \vee\left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right)\right] .}
\end{array}
$$

Hence, there exists $\left(\mathcal{O}_{\mathfrak{g}, \omega}, \mathcal{K}_{\mathfrak{g}, \omega}\right) \in \mathcal{T}_{\mathfrak{g}, \Omega} \times \neg \mathcal{T}_{\mathfrak{g}, \Omega}$ such that $\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right) \subseteq \mathcal{O}_{\mathfrak{g}, \omega}$ and $\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right) \supseteq \mathcal{K}_{\mathfrak{g}, \omega}$. Consequently, $\pi_{\mathfrak{g}} \in \mathfrak{g}$-C $\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$, which completes the proof.
Q.E.D.

Definition 2.19 ($\left(\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-Bijective Map). A $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-map $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow$ $\mathfrak{T}_{\mathfrak{g}, \Sigma}$ is said to be bijective if and only if it belongs the following class:
(2.33) $\mathfrak{g}-\mathrm{B}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] \stackrel{\text { def }}{=}\left\{\pi_{\mathfrak{g}}:\left(\forall \zeta \in \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)\left(\exists!\xi \in \mathfrak{T}_{\mathfrak{g}, \Omega}\right)\left[\pi_{\mathfrak{g}}(\xi)=\zeta\right]\right\}$.

Theorem 2.20. If $\pi_{\mathfrak{g}} \in \mathfrak{g}$-B $\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$, then

$$
\begin{equation*}
\pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] \Leftrightarrow \pi_{\mathfrak{g}}^{-1} \in \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Omega}\right] . \tag{2.34}
\end{equation*}
$$

Proof. Necessity. Let $\pi_{\mathfrak{g}}^{-1} \in \mathfrak{g}$-C $\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Omega}\right]$. Then

$$
\left[\left(\pi_{\mathfrak{g}}^{-1}\right)^{-1}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right] \vee\left[\left(\pi_{\mathfrak{g}}^{-1}\right)^{-1}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right]
$$

But $\pi_{\mathfrak{g}} \in \mathfrak{g}$-B $\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ implies $\left(\pi_{\mathfrak{g}}^{-1}\right)^{-1}\left(\mathcal{S}_{\mathfrak{g}}\right)=\pi_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right)$ for every $\mathcal{S}_{\mathfrak{g}} \in \mathcal{T}_{\mathfrak{g}, \Omega} \cup$ $\neg \mathcal{T}_{\mathfrak{g}, \Omega}$. Consequently,

$$
\left[\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right] \vee\left[\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right] .
$$

Hence, $\pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$.
Sufficiency. Let $\pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$. Then,

$$
\left[\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right] \vee\left[\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right] .
$$

But $\pi_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right)=\left(\pi_{\mathfrak{g}}^{-1}\right)^{-1}\left(\mathcal{S}_{\mathfrak{g}}\right)$ for every $\mathcal{S}_{\mathfrak{g}} \in \mathcal{T}_{\mathfrak{g}, \Omega} \cup \neg \mathcal{T}_{\mathfrak{g}, \Omega}$, since $\pi_{\mathfrak{g}} \in \mathfrak{g}$-B $\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$. Consequently,

$$
\left[\left(\pi_{\mathfrak{g}}^{-1}\right)^{-1}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right] \vee\left[\left(\pi_{\mathfrak{g}}^{-1}\right)^{-1}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right]
$$

Thus, $\pi_{\mathfrak{g}}^{-1} \in \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Omega}\right]$.
Q.E.D.

Theorem 2.21. If $\pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ and $\pi_{\mathfrak{g}, \beta} \in \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \mathfrak{r}}\right]$, then $\pi_{\mathfrak{g}, \beta} \circ$ $\pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$.

Proof. Let $\pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}$-C $\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ and $\pi_{\mathfrak{g}, \beta} \in \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \mathfrak{r}}\right]$. Then $\pi_{\mathfrak{g}, \alpha}^{-1} \in$ $\mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Omega}\right]$ and $\pi_{\mathfrak{g}, \beta}^{-1} \in \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Upsilon} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$, implying

$$
\begin{aligned}
{\left[\pi_{\mathfrak{g}, \alpha}^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right] } & \vee & {\left[\pi_{\mathfrak{g}, \alpha}^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right], } \\
{\left[\pi_{\mathfrak{g}, \beta}^{-1}\left(\mathcal{O}_{\mathfrak{g}, v}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right] } & \vee & {\left[\pi_{\mathfrak{g}, \beta}^{-1}\left(\mathcal{K}_{\mathfrak{g}, v}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right] }
\end{aligned}
$$

respectively. Combining both logical statements, there follows that

$$
\begin{aligned}
& {\left[\pi_{\mathfrak{g}, \beta}^{-1}\left(\mathcal{O}_{\mathfrak{g}, v}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right] \vee\left[\pi_{\mathfrak{g}, \beta}^{-1}\left(\mathcal{K}_{\mathfrak{g}, v}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right]} \\
& \Rightarrow \quad\left[\pi_{\mathfrak{g}, \alpha}^{-1} \circ \pi_{\mathfrak{g}, \beta}^{-1}\left(\mathcal{O}_{\mathfrak{g}, v}\right) \subseteq \pi_{\mathfrak{g}, \alpha}^{-1}\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right)\right] \vee\left[\pi_{\mathfrak{g}, \alpha}^{-1} \circ \pi_{\mathfrak{g}, \beta}^{-1}\left(\mathcal{K}_{\mathfrak{g}, v}\right)\right. \\
& \left.\supseteq \pi_{\mathfrak{g}, \alpha}^{-1}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right)\right] \\
& \Rightarrow \quad\left[\pi_{\mathfrak{g}, \alpha}^{-1} \circ \pi_{\mathfrak{g}, \beta}^{-1}\left(\mathcal{O}_{\mathfrak{g}, v}\right) \subseteq \operatorname{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}, \alpha}^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right)\right] \vee\left[\pi_{\mathfrak{g}, \alpha}^{-1} \circ \pi_{\mathfrak{g}, \beta}^{-1}\left(\mathcal{K}_{\mathfrak{g}, v}\right)\right. \\
& \left.\supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}, \alpha}^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right)\right] \\
& \Rightarrow \quad\left[\pi_{\mathfrak{g}, \alpha}^{-1} \circ \pi_{\mathfrak{g}, \beta}^{-1}\left(\mathcal{O}_{\mathfrak{g}, v}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right] \vee\left[\pi_{\mathfrak{g}, \alpha}^{-1} \circ \pi_{\mathfrak{g}, \beta}^{-1}\left(\mathcal{K}_{\mathfrak{g}, v}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right] .
\end{aligned}
$$

Since $\pi_{\mathfrak{g}, \alpha}^{-1} \circ \pi_{\mathfrak{g}, \beta}^{-1}\left(\mathcal{S}_{\mathfrak{g}}\right)=\left(\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha}\right)^{-1}\left(\mathcal{S}_{\mathfrak{g}}\right)$ for every $\mathcal{S}_{\mathfrak{g}} \in \mathcal{T}_{\mathfrak{g}, \Upsilon} \cup \neg \mathcal{T}_{\mathfrak{g}, \Upsilon}$, there follows that $\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$, which was to be proved.
Q.E.D.

THEOREM 2.22. Let $\pi_{\mathfrak{g}, \alpha}: \mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Sigma}$ be a $\left(\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-map and, let the collection $\left\{\left\langle\mathcal{O}_{\mathfrak{g}, \alpha}\right\rangle_{\alpha \in I_{n}^{*}}: \Omega \subseteq \operatorname{op}_{\mathfrak{g}}\left(\bigcup_{\alpha \in I_{n}^{*}} \mathcal{O}_{\mathfrak{g}, \alpha}\right)\right\}$ and the collection $\left\{\left\langle\mathcal{K}_{\mathfrak{g}, \alpha}\right\rangle_{\alpha \in I_{n}^{*}}\right.$: $\left.\Omega \subseteq \neg \operatorname{op}_{\mathfrak{g}}\left(\bigcup_{\alpha \in I_{n}^{*}} \mathcal{K}_{\mathfrak{g}, \alpha}\right)\right\}$, respectively, be $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$-open and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-closed coverings of Ω, where $\left\langle\mathcal{O}_{\mathfrak{g}, \alpha}\right\rangle_{\alpha \in I_{n}^{*}}$ and $\left\langle\mathcal{K}_{\mathfrak{g}, \alpha}\right\rangle_{\alpha \in I_{n}^{*}}$, respectively, denote sequences of $\mathcal{T}_{\mathfrak{g}}$-open sets and $\mathcal{T}_{\mathfrak{g}}$-closed sets. If, for every $\alpha \in I_{n}^{*}$, $\pi_{\mathfrak{g}} \circ \iota_{\mathfrak{g}, \alpha} \in \mathfrak{g}$ - $\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$, where $\iota_{\mathfrak{g}, \alpha}: \mathcal{O}_{\mathfrak{g}, \alpha} \hookrightarrow \mathfrak{T}_{\mathfrak{g}, \Omega}$ or $\iota_{\mathfrak{g}, \alpha}: \mathcal{O}_{\mathfrak{g}, \alpha} \hookrightarrow \mathfrak{T}_{\mathfrak{g}, \Omega}$, then $\pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$.
Proof. For every $\alpha \in I_{n}^{*}$, let $\pi_{\mathfrak{g}} \circ \iota_{\mathfrak{g}, \alpha} \in \mathfrak{g}$-C [$\left.\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$. Then, for every pair $\left(\mathcal{O}_{\mathfrak{g}, \sigma(\alpha)}, \mathcal{K}_{\mathfrak{g}, \sigma(\alpha)}\right) \in \mathcal{T}_{\mathfrak{g}, \Sigma} \times \neg \mathcal{T}_{\mathfrak{g}, \Sigma}$, there exists $\left(\mathcal{O}_{\mathfrak{g}, \omega(\alpha)}, \mathcal{K}_{\mathfrak{g}, \omega(\alpha)}\right) \in \mathcal{T}_{\mathfrak{g}, \Omega} \times \neg \mathcal{T}_{\mathfrak{g}, \Omega}$ such that

$$
\begin{aligned}
& \\
& {\left[\left(\pi_{\mathfrak{g}} \circ \iota_{\mathfrak{g}, \alpha}\right)^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma(\alpha)}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega(\alpha)}\right)\right] \vee\left[\left(\pi_{\mathfrak{g}} \circ \iota_{\mathfrak{g}, \alpha}\right)^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma(\alpha)}\right)\right.} \\
& \left.\supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega(\alpha)}\right)\right] \\
\Rightarrow \quad & {\left[\bigcup_{\alpha \in I_{n}^{*}}\left(\pi_{\mathfrak{g}} \circ \iota_{\mathfrak{g}, \alpha}\right)^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma(\alpha)}\right) \subseteq \bigcup_{\alpha \in I_{n}^{*}} \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega(\alpha)}\right)\right] } \\
& \vee\left[\bigcup_{\alpha \in I_{n}^{*}}\left(\pi_{\mathfrak{g}} \circ \iota_{\mathfrak{g}, \alpha}\right)^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma(\alpha)}\right) \supseteq \bigcup_{\alpha \in I_{n}^{*}} \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega(\alpha)}\right)\right] \\
\Rightarrow \quad & {\left[\bigcup_{\alpha \in I_{n}^{*}}\left(\pi_{\mathfrak{g}} \circ \iota_{\mathfrak{g}, \alpha}\right)^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma(\alpha)}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\bigcup_{\alpha \in I_{n}^{*}} \mathcal{O}_{\mathfrak{g}, \omega(\alpha)}\right)\right] } \\
& \vee\left[\bigcup_{\alpha \in I_{n}^{*}}\left(\pi_{\mathfrak{g}} \circ \iota_{\mathfrak{g}, \alpha}\right)^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma(\alpha)}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\bigcup_{\alpha \in I_{n}^{*}} \mathcal{K}_{\mathfrak{g}, \omega(\alpha)}\right)\right] .
\end{aligned}
$$

Since the following relations hold

$$
\begin{aligned}
& \pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma(\alpha)}\right)=\bigcup_{\alpha \in I_{n}^{*}}\left(\pi_{\mathfrak{g}} \circ \iota_{\mathfrak{g}, \alpha}\right)^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma(\alpha)}\right), \\
& \pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma(\alpha)}\right)=\bigcup_{\alpha \in I_{n}^{*}}\left(\pi_{\mathfrak{g}} \circ \iota_{\mathfrak{g}, \alpha}\right)^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma(\alpha)}\right),
\end{aligned}
$$

the proof of the theorem follows.
Q.E.D.

Henceforth, we investigate some properties and give some characterizations of $\mathfrak{g}-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-irresolute maps.

ThEOREM 2.23. $A\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-map $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Sigma}$ is a \mathfrak{g} - $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-irresolute map if and only if, for every $\left(\mathcal{O}_{\mathfrak{g}, \sigma}, \mathcal{K}_{\mathfrak{g}, \sigma}\right) \in \mathcal{T}_{\mathfrak{g}, \Sigma} \times \neg \mathcal{T}_{\mathfrak{g}, \Sigma}$,

$$
\begin{align*}
{\left[\pi_{\mathfrak{g}}^{-1}\left(\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right)\right] } & \vee\left[\pi_{\mathfrak{g}}^{-1}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right) \supseteq\right. \\
& \left.\neg \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right)\right] . \tag{2.35}
\end{align*}
$$

Proof. Necessity. Let $\pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$. Then, there exists $\left(\mathcal{O}_{\mathfrak{g}, \omega}, \mathcal{K}_{\mathfrak{g}, \omega}\right) \in$ $\mathcal{T}_{\mathfrak{g}, \Omega} \times \neg \mathcal{T}_{\mathfrak{g}, \Omega}$ such that, for every $\left(\mathcal{O}_{\mathfrak{g}, \sigma}, \mathcal{K}_{\mathfrak{g}, \sigma}\right) \in \mathcal{T}_{\mathfrak{g}, \Sigma} \times \neg \mathcal{T}_{\mathfrak{g}, \Sigma}$,

$$
\left[\pi_{\mathfrak{g}}^{-1}\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right] \vee\left[\pi_{\mathfrak{g}}^{-1}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right] .
$$

But since $\pi_{\mathfrak{g}}^{-1}\left(\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right) \subseteq \pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)$ and $\pi_{\mathfrak{g}}^{-1}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right) \supseteq \pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)$, it follows that

$$
\begin{aligned}
{\left[\pi_{\mathfrak{g}}^{-1}\left(\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right)\right] } & \vee\left[\pi_{\mathfrak{g}}^{-1}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right) \supseteq\right. \\
& \left.\neg \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right)\right] .
\end{aligned}
$$

Sufficiency. Let $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Sigma}$ be a $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-map satisfying, for every $\left(\mathcal{O}_{\mathfrak{g}, \sigma}, \mathcal{K}_{\mathfrak{g}, \sigma}\right) \in \mathcal{T}_{\mathfrak{g}, \Sigma} \times \neg \mathcal{T}_{\mathfrak{g}, \Sigma}$,

$$
\begin{aligned}
{\left[\pi_{\mathfrak{g}}^{-1}\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right)\right] } & \vee\left[\pi_{\mathfrak{g}}^{-1}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right) \supseteq\right. \\
& \left.\neg \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right)\right] .
\end{aligned}
$$

But, $\pi_{\mathfrak{g}}^{-1}\left(\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right) \subseteq \pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)$ and $\pi_{\mathfrak{g}}^{-1}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right) \supseteq \pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)$. Therefore, there exists $\left(\mathcal{O}_{\mathfrak{g}, \omega}, \mathcal{K}_{\mathfrak{g}, \omega}\right) \in \mathcal{T}_{\mathfrak{g}, \Omega} \times \neg \mathcal{T}_{\mathfrak{g}, \Omega}$ such that $\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)$ and $\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)$. Consequently,

$$
\left[\pi_{\mathfrak{g}}^{-1}\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right] \vee\left[\pi_{\mathfrak{g}}^{-1}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right] .
$$

Thus, $\pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$, which completes the proof.
Q.E.D.

Theorem 2.24. A \mathfrak{g} - $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-map $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Sigma}$ is a \mathfrak{g} - $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$ irresolute map if and only if, for every $\left(\mathcal{O}_{\mathfrak{g}, \omega}, \mathcal{K}_{\mathfrak{g}}\right) \in \mathcal{T}_{\mathfrak{g}, \Omega} \times \neg \mathcal{T}_{\mathfrak{g}, \Omega}$,

$$
\begin{align*}
{\left[\pi_{\mathfrak{g}}\left(\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right) \supseteq \operatorname{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right)\right] \vee } & {\left[\pi_{\mathfrak{g}}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right) \subseteq\right.} \\
& \left.\neg \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right)\right] . \tag{2.36}
\end{align*}
$$

Proof. Necessity. Let $\pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$. Then, there exists $\left(\mathcal{O}_{\mathfrak{g}, \omega}, \mathcal{K}_{\mathfrak{g}, \omega}\right) \in$ $\mathcal{T}_{\mathfrak{g}, \Omega} \times \neg \mathcal{T}_{\mathfrak{g}, \Omega}$ such that, for every $\left(\mathcal{O}_{\mathfrak{g}, \sigma}, \mathcal{K}_{\mathfrak{g}, \sigma}\right) \in \mathcal{T}_{\mathfrak{g}, \Sigma} \times \neg \mathcal{T}_{\mathfrak{g}, \Sigma}$,

$$
\begin{aligned}
& {\left[\pi_{\mathfrak{g}}^{-1}\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right] \vee\left[\pi_{\mathfrak{g}}^{-1}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right] } \\
\Rightarrow \quad & {\left[\pi_{\mathfrak{g}}\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right) \supseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right] \vee\left[\pi_{\mathfrak{g}}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right) \subseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right] . }
\end{aligned}
$$

But since $\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right) \supseteq \pi_{\mathfrak{g}}\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right)$ and $\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right) \subseteq \pi_{\mathfrak{g}}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right)$, it follows that

$$
\begin{aligned}
{\left[\pi_{\mathfrak{g}}\left(\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right) \supseteq \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right)\right] \vee } & {\left[\pi_{\mathfrak{g}}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right) \subseteq\right.} \\
& \left.\neg \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right)\right] .
\end{aligned}
$$

Sufficiency. Let $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Sigma}$ be a \mathfrak{g} - $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-map satisfying, for every $\left(\mathcal{O}_{\mathfrak{g}, \omega}, \mathcal{K}_{\mathfrak{g}, \omega}\right) \in \mathcal{T}_{\mathfrak{g}, \Omega} \times \neg \mathcal{T}_{\mathfrak{g}, \Omega}$,

$$
\begin{aligned}
{\left[\pi_{\mathfrak{g}}\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right) \supseteq \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right)\right] \vee } & {\left[\pi_{\mathfrak{g}}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right) \subseteq\right.} \\
& \left.\neg \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right)\right] .
\end{aligned}
$$

Then,

$$
\begin{aligned}
{\left[\pi_{\mathfrak{g}}^{-1}\left(\mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right)\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right] \vee } & {\left[\pi_{\mathfrak{g}}^{-1}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right)\right) \supseteq\right.} \\
& \left.\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right] .
\end{aligned}
$$

But, $\pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ equivalently implies the existence of $\left(\mathcal{O}_{\mathfrak{g}, \sigma}, \mathcal{K}_{\mathfrak{g}, \sigma}\right) \in \mathcal{T}_{\mathfrak{g}, \Sigma} \times$ $\neg \mathcal{T}_{\mathfrak{g}, \Sigma}$ such that, for every $\left(\mathcal{O}_{\mathfrak{g}, \omega}, \mathcal{K}_{\mathfrak{g}, \omega}\right) \in \mathcal{T}_{\mathfrak{g}, \Omega} \times \neg \mathcal{T}_{\mathfrak{g}, \Omega}$, op $_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)$ or $\neg \operatorname{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)$. Consequently,

$$
\left[\pi_{\mathfrak{g}}^{-1}\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right] \vee\left[\pi_{\mathfrak{g}}^{-1}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right]
$$

Thus, $\pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$, which completes the proof.
Q.E.D.

ThEOREM 2.25. Let $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Sigma}$ be a $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-map. Then, (2.37) $\pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] \cap \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] \Rightarrow \pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$.

Proof. Let $\pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] \cap \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$. Then, there exists a pair $\left(\mathcal{O}_{\mathfrak{g}, \omega}, \mathcal{K}_{\mathfrak{g}, \omega}\right) \in \mathcal{T}_{\mathfrak{g}, \Omega} \times \neg \mathcal{T}_{\mathfrak{g}, \Omega}$ such that, for every $\left(\mathcal{O}_{\mathfrak{g}, \sigma}, \mathcal{K}_{\mathfrak{g}, \sigma}\right) \in \mathcal{T}_{\mathfrak{g}, \Sigma} \times \neg \mathcal{T}_{\mathfrak{g}, \Sigma}$,

$$
\left[\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right] \vee\left[\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right]
$$

and there exists $\left(\mathcal{O}_{\mathfrak{g}, \sigma}, \mathcal{K}_{\mathfrak{g}, \sigma}\right) \in \mathcal{T}_{\mathfrak{g}, \Sigma} \times \neg \mathcal{T}_{\mathfrak{g}, \Sigma}$ such that, for every $\left(\mathcal{O}_{\mathfrak{g}, \omega}, \mathcal{K}_{\mathfrak{g}, \omega}\right) \in$ $\mathcal{T}_{\mathfrak{g}, \Omega} \times \neg \mathcal{T}_{\mathfrak{g}, \Omega}$,

$$
\left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right] \vee\left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right]
$$

From the first statement, there follows that

$$
\left[\mathcal{O}_{\mathfrak{g}, \omega} \subseteq \pi_{\mathfrak{g}}^{-1}\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right)\right] \vee\left[\mathcal{K}_{\mathfrak{g}, \omega} \supseteq \pi_{\mathfrak{g}}^{-1}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right)\right] .
$$

But,

$$
\begin{aligned}
{\left[\pi_{\mathfrak{g}}^{-1}\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right)\right] \vee } & {\left[\pi_{\mathfrak{g}}^{-1}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right) \supseteq\right.} \\
& \left.\neg \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right)\right] ;
\end{aligned}
$$

and, from the second statement, there follows that

$$
\left[\operatorname{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right] \vee\left[\neg \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right.
$$

From these last two logical statements, it consequently follows that

$$
\left[\pi_{\mathfrak{g}}^{-1}\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right] \vee\left[\pi_{\mathfrak{g}}^{-1}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right]
$$

and, hence, $\pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$, which completes the proof.
Q.E.D.

THEOREM 2.26. If \mathfrak{g}-C $\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ and $\mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$, respectively, denote the classes of $\mathfrak{g}-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-continuous and $\mathfrak{g}-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-irresolute maps, then

$$
\begin{equation*}
\mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] \supseteq \mathfrak{g}-\mathrm{T}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] . \tag{2.38}
\end{equation*}
$$

Proof. Let $\pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$. Then, there exists $\left(\mathcal{O}_{\mathfrak{g}, \sigma}, \mathcal{K}_{\mathfrak{g}, \sigma}\right) \in \mathcal{T}_{\mathfrak{g}, \Sigma} \times \neg \mathcal{T}_{\mathfrak{g}, \Sigma}$ such that, for every $\left(\mathcal{O}_{\mathfrak{g}, \omega}, \mathcal{K}_{\mathfrak{g}, \omega}\right) \in \mathcal{T}_{\mathfrak{g}, \Omega} \times \neg \mathcal{T}_{\mathfrak{g}, \Omega}$,

$$
\left[\pi_{\mathfrak{g}}^{-1}\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right] \vee\left[\pi_{\mathfrak{g}}^{-1}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right] .
$$

But, $\pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ is equivalent to

$$
\begin{aligned}
{\left[\pi_{\mathfrak{g}}^{-1}\left(\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right)\right] \vee } & {\left[\pi_{\mathfrak{g}}^{-1}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right) \supseteq\right.} \\
& \left.\neg \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right)\right],
\end{aligned}
$$

and, $\operatorname{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)$ and $\neg \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)$. Consequently, $\pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ implies

$$
\left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right] \vee\left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right]
$$

and, hence, $\pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$, which completes the proof.
Q.E.D.

Theorem 2.27. If $\pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ and $\pi_{\mathfrak{g}, \beta} \in \mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$, then $\pi_{\mathfrak{g}, \beta} \circ$ $\pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}}, \Omega ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$.
Proof. Let $\pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ and $\pi_{\mathfrak{g}, \beta} \in \mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \mathfrak{r}}\right]$. Then, for every $\left(\mathcal{O}_{\mathfrak{g}, v}, \mathcal{K}_{\mathfrak{g}, v}\right) \in \mathcal{T}_{\mathfrak{g}, \Upsilon} \times \neg \mathcal{T}_{\mathfrak{g}, \Upsilon}$ there exists $\left(\mathcal{O}_{\mathfrak{g}, \sigma}, \mathcal{K}_{\mathfrak{g}, \sigma}\right) \in \mathcal{T}_{\mathfrak{g}, \Sigma} \times \neg \mathcal{T}_{\mathfrak{g}, \Sigma}$ and for every $\left(\mathcal{O}_{\mathfrak{g}, \sigma}, \mathcal{K}_{\mathfrak{g}, \sigma}\right) \in \mathcal{T}_{\mathfrak{g}, \Sigma} \times \neg \mathcal{T}_{\mathfrak{g}, \Sigma}$ there exists $\left(\mathcal{O}_{\mathfrak{g}, \omega}, \mathcal{K}_{\mathfrak{g}, \omega}\right) \in \mathcal{T}_{\mathfrak{g}, \Omega} \times \neg \mathcal{T}_{\mathfrak{g}, \Omega}$ such that

$$
\begin{array}{lll}
{\left[\pi_{\mathfrak{g}, \beta}^{-1}\left(\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, v}\right)\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right]} & \vee & {\left[\pi_{\mathfrak{g}, \beta}^{-1}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, v}\right)\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right],} \\
{\left[\pi_{\mathfrak{g}, \alpha}^{-1}\left(\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right]} & \vee & {\left[\pi_{\mathfrak{g}, \alpha}^{-1}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right],}
\end{array}
$$

respectively. Consequently,

$$
\begin{aligned}
& {\left[\pi_{\mathfrak{g}, \alpha}^{-1} \circ \pi_{\mathfrak{g}, \beta}^{-1}\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, v}\right)\right)\right.}\left.\subseteq \pi_{\mathfrak{g}, \alpha}^{-1}\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right)\right] \\
& \vee\left[\pi_{\mathfrak{g}, \alpha}^{-1} \circ \pi_{\mathfrak{g}, \beta}^{-1}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, v}\right)\right) \supseteq \pi_{\mathfrak{g}, \alpha}^{-1}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right)\right] \\
& \Rightarrow \quad\left[\pi_{\mathfrak{g}, \alpha}^{-1} \circ \pi_{\mathfrak{g}, \beta}^{-1}\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, v}\right)\right)\right.\left.\subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right] \\
& \vee\left[\pi_{\mathfrak{g}, \alpha}^{-1} \circ \pi_{\mathfrak{g}, \beta}^{-1}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, v}\right)\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right] .
\end{aligned}
$$

But $\pi_{\mathfrak{g}, \alpha}^{-1} \circ \pi_{\mathfrak{g}, \beta}^{-1}=\left(\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha}\right)^{-1}$. Hence, $\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$. Q.E.D.
We generalize the notion of $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-homeomorphism in a natural way and then investigate some properties and give some characterizations of such generalization on this basis.

Definition 2.28. Two $\mathcal{T}_{\mathfrak{g}}$-spaces $\mathfrak{T}_{\mathfrak{g}, \Omega}=\left(\Omega, \mathcal{T}_{\mathfrak{g}, \Omega}\right)$ and $\mathfrak{T}_{\mathfrak{g}, \Sigma}=\left(\Sigma, \mathcal{T}_{\mathfrak{g}, \Sigma}\right)$ are called $" \mathfrak{g}-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-homeomorphic," written $\mathfrak{T}_{\mathfrak{g}, \Omega} \cong \mathfrak{T}_{\mathfrak{g}, \Sigma}$, if and only if

$$
\begin{equation*}
\left(\exists \pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{B}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]\right)\left[\left(\pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]\right) \wedge\left(\pi_{\mathfrak{g}}^{-1} \in \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Omega}\right]\right)\right] . \tag{2.39}
\end{equation*}
$$

The map $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Sigma}$ is called a $" \mathfrak{g}-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-homeomorphism," written $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g}, \Omega} \cong \mathfrak{T}_{\mathfrak{g}, \Sigma}$, and belongs to the following class:

$$
\begin{equation*}
\mathfrak{g} \text {-Hom }\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] \stackrel{\text { def }}{=}\left\{\pi_{\mathfrak{g}}: \pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g}, \Omega} \cong \mathfrak{T}_{\mathfrak{g}, \Sigma}\right\} \tag{2.40}
\end{equation*}
$$

THEOREM 2.29. If $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Sigma}$ is a $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-homeomorphism, then it is a \mathfrak{g} - $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-homeomorphism: $\pi_{\mathfrak{g}} \in \mathfrak{g}$-Hom $\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$
Proof. Let $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Sigma}$ be a $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-homeomorphism. Then, for every $\left(\mathcal{O}_{\mathfrak{g}, \sigma}, \mathcal{K}_{\mathfrak{g}, \sigma}\right) \in \mathcal{T}_{\mathfrak{g}, \Sigma} \times \neg \mathcal{T}_{\mathfrak{g}, \Sigma}$ there exists $\left(\mathcal{O}_{\mathfrak{g}, \omega}, \mathcal{K}_{\mathfrak{g}, \omega}\right) \in \mathcal{T}_{\mathfrak{g}, \Omega} \times \neg \mathcal{T}_{\mathfrak{g}, \Omega}$ and for every $\left(\mathcal{O}_{\mathfrak{g}, \omega}, \mathcal{K}_{\mathfrak{g}, \omega}\right) \in \mathcal{T}_{\mathfrak{g}, \Omega} \times \neg \mathcal{T}_{\mathfrak{g}, \Omega}$ there exists $\left(\mathcal{O}_{\mathfrak{g}, \sigma}, \mathcal{K}_{\mathfrak{g}, \sigma}\right) \in \mathcal{T}_{\mathfrak{g}, \Sigma} \times \neg \mathcal{T}_{\mathfrak{g}, \Sigma}$ such that

$$
\left.\begin{array}{rl}
{\left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right.} & \left.\subseteq \mathcal{O}_{\mathfrak{g}, \omega}\right]
\end{array}\right)\left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right) \supseteq \mathcal{K}_{\mathfrak{g}, \omega}\right], \quad\left[\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right) \subseteq \mathcal{O}_{\mathfrak{g}, \sigma}\right] \vee\left[\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right) \supseteq \mathcal{K}_{\mathfrak{g}, \sigma}\right], ~ \$
$$

respectively. But, $\left[\mathcal{O}_{\mathfrak{g}, \nu} \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \nu}\right)\right] \vee\left[\mathcal{K}_{\mathfrak{g}, \nu} \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \nu}\right)\right]$ for every $\nu \in\{\omega, \sigma\}$. Consequently,

$$
\begin{gathered}
{\left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right] \vee\left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right],} \\
{\left[\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right] \vee\left[\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right] .}
\end{gathered}
$$

Therefore, $\pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ and $\pi_{\mathfrak{g}}^{-1} \in \mathfrak{g}$-C $\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Omega}\right]$; thus, it follows that $\pi_{\mathfrak{g}} \in \mathfrak{g}$-Hom $\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$.
Q.E.D.

Theorem 2.30. If $\pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}$-Hom $\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ and $\pi_{\mathfrak{g}, \beta} \in \mathfrak{g}$-Hom $\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$, then $\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}$-Hom $\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$.
Proof. Let $\pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}$ - $\operatorname{Hom}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ and $\pi_{\mathfrak{g}, \beta} \in \mathfrak{g}$ - $\operatorname{Hom}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$. Then, there exists exactly one $\xi \in \mathfrak{T}_{\mathfrak{g}, \Omega}$ such that, for all $\zeta \in \mathfrak{T}_{\mathfrak{g}, \Sigma}, \pi_{\mathfrak{g}, \alpha}(\xi)=\zeta$ and, there exists exactly one $\zeta \in \mathfrak{T}_{\mathfrak{g}, \Sigma}$ such that, for all $\eta \in \mathfrak{T}_{\mathfrak{g}, \Upsilon}, \pi_{\mathfrak{g}, \beta}(\zeta)=\eta$. Therefore there exists exactly one $\xi \in \mathfrak{T}_{\mathfrak{g}, \Omega}$ such that, for all $\eta \in \mathfrak{T}_{\mathfrak{g}, \Upsilon}, \pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha}(\xi)=\eta$; hence, $\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{B}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$. On the one hand, $\pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ and $\pi_{\mathfrak{g}, \beta} \in$ $\mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$ implies $\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$ and, on the other hand, $\pi_{\mathfrak{g}, \alpha}^{-1} \in$ \mathfrak{g}-C $\left[\mathfrak{T}_{\mathfrak{g}, \Sigma \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Omega}\right]$ and $\pi_{\mathfrak{g}, \beta}^{-1} \in \mathfrak{g}$-C $\left[\mathfrak{T}_{\mathfrak{g}, \Upsilon} ; \mathfrak{T}_{\mathfrak{g}, \Sigma \Sigma}\right]$ implies $\pi_{\mathfrak{g}, \alpha}^{-1} \circ \pi_{\mathfrak{g}, \beta}^{-1} \in \mathfrak{g}$-C $\left[\mathfrak{T}_{\mathfrak{g}, \Upsilon} ; \mathfrak{T}_{\mathfrak{g}, \Omega}\right]$. But, $\pi_{\mathfrak{g}, \alpha}^{-1} \circ \pi_{\mathfrak{g}, \beta}^{-1}=\left(\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha}\right)^{-1}$. Hence, $\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}$-Hom $\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$, which proves the theorem.
Q.E.D.

Theorem 2.31. If $\pi_{\mathfrak{g}} \in \mathfrak{g}$-Hom $\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$, then, for every $\left(\mathcal{O}_{\mathfrak{g}, \sigma}, \mathcal{K}_{\mathfrak{g}, \sigma}\right) \in \mathcal{T}_{\mathfrak{g}, \Sigma} \times$ $\neg \mathcal{T}_{\mathfrak{g}, \Sigma}$,

$$
\begin{align*}
{\left[\pi_{\mathfrak{g}}^{-1}\left(\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right)=\mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right)\right] } & \vee \\
& {\left[\pi_{\mathfrak{g}}^{-1}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right)\right.} \tag{2.41}\\
& \left.=\neg \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right)\right] .
\end{align*}
$$

Proof. Let $\pi_{\mathfrak{g}} \in \mathfrak{g}$-Hom $\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$. Then, $\pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{B}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ and

$$
\left(\pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]\right) \wedge\left(\pi_{\mathfrak{g}}^{-1} \in \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Omega}\right]\right)
$$

Consequently,

$$
\begin{aligned}
\pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] \cap \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] & \Rightarrow \pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] \\
\pi_{\mathfrak{g}}^{-1} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Omega}\right] \cap \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Omega}\right] & \Rightarrow \pi_{\mathfrak{g}}^{-1} \in \mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Omega}\right]
\end{aligned}
$$

But, $\pi_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma \Sigma}\right]$ and $\pi_{\mathfrak{g}}^{-1} \in \mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Omega}\right]$ are equivalent to

$$
\begin{aligned}
{\left[\pi_{\mathfrak{g}}^{-1}\left(\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right)\right] \vee } & {\left[\pi_{\mathfrak{g}}^{-1}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right) \supseteq\right.} \\
& \left.\neg \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right)\right], \\
{\left[\pi_{\mathfrak{g}}^{-1}\left(\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right) \supseteq \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right)\right)\right] \vee } & {\left[\pi_{\mathfrak{g}}^{-1}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right) \subseteq\right.} \\
& \left.\neg \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right)\right)\right],
\end{aligned}
$$

respectively. Hence, equality holds.
Q.E.D.

Corollary 2.32. If $\pi_{\mathfrak{g}} \in \mathfrak{g}$-Hom [$\left.\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$, then, for every $\left(\mathcal{O}_{\mathfrak{g}, \omega}, \mathcal{K}_{\mathfrak{g}, \omega}\right) \in \mathcal{T}_{\mathfrak{g}, \Omega} \times$ $\neg \mathcal{T}_{\mathfrak{g}, \Omega}$,

$$
\begin{align*}
{\left[\pi_{\mathfrak{g}}\left(\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right)=\mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right)\right)\right] } & \vee\left[\pi_{\mathfrak{g}}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right)\right. \\
& \left.=\neg \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)\right)\right] . \tag{2.42}
\end{align*}
$$

THEOREM 2.33. A \mathfrak{g} - $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-homeomorphism is an equivalence relation between $\mathcal{T}_{\mathfrak{g}}$-spaces.
Proof. Reflexivity. The identity map $\operatorname{id}_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Omega}$ is a bicontinuous bijection. Therefore, it is a $\mathfrak{g}-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-homeomorphism $\mathrm{id}_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g}, \Omega} \cong \mathfrak{T}_{\mathfrak{g}, \Omega}$ and, hence, $\operatorname{id}_{\mathfrak{g}}(\cdot) \in \mathfrak{g}$-Hom $\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Omega}\right]$.

Symmetry. Let $\pi_{\mathfrak{g}} \in \mathfrak{g}$-Hom $\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$. Then, the map $\pi_{\mathfrak{g}}^{-1}: T_{\mathfrak{g}, \Sigma} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Omega}$ is a \mathfrak{g} - $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-homeomorphism $\pi_{\mathfrak{g}}^{-1}: \mathfrak{T}_{\mathfrak{g}, \Sigma} \cong \mathfrak{T}_{\mathfrak{g}, \Omega}$ and, thus, it follows that $\pi_{\mathfrak{g}}^{-1} \in \mathfrak{g}-\operatorname{Hom}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Omega}\right]$.

Transitivity. The proof follows from $\pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}$ - $\operatorname{Hom}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ and $\pi_{\mathfrak{g}, \beta} \in$ \mathfrak{g}-Hom $\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$ imply $\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\operatorname{Hom}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$. \quad Q.E.D.

3. Discussion

3.1. Categorical Classifications. Having adopted a categorical approach in the classifications of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-maps between any two of such $\mathcal{T}_{\mathfrak{g}}$-spaces $\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}$, and $\mathfrak{T}_{\mathfrak{g}, \Upsilon}$, the twofold purposes of the following developments are to establish the various relationships between the classes of $\left(\mathfrak{T}_{\mathfrak{g}, \Lambda}, \mathfrak{T}_{\mathfrak{g}, \Theta}\right)$-maps and \mathfrak{g} - $\left(\mathfrak{T}_{\Lambda}, \mathfrak{T}_{\Theta}\right)$ maps, the classes of $\left(\mathfrak{T}_{\mathfrak{g}}, \Lambda, \mathfrak{T}_{\mathfrak{g}}, \Theta\right)$-continuous maps and $\mathfrak{g}-\left(\mathfrak{T}_{\Lambda}, \mathfrak{T}_{\Theta}\right)$-continuous maps, the classes of $\left(\mathfrak{T}_{\mathfrak{g}, \Lambda}, \mathfrak{T}_{\mathfrak{g}, \Theta}\right)$-irresolute maps and \mathfrak{g} - $\left(\mathfrak{T}_{\Lambda}, \mathfrak{T}_{\Theta}\right)$-irresolute maps, and the classes of $\left(\mathfrak{T}_{\mathfrak{g}, \Lambda}, \mathfrak{T}_{\mathfrak{g}, \Theta}\right)$-homeomorphism maps and \mathfrak{g} - $\left(\mathfrak{T}_{\Lambda}, \mathfrak{T}_{\Theta}\right)$-homeomorphism maps, where $\Lambda, \Theta \in\{\Omega, \Sigma, \Upsilon\}$, and to illustrate them through specific diagrams called, map, categorical map, continuous map, irresolute map, homeomorphism map, and continuous-irresolute map diagrams.

We have seen that, $\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] \subseteq \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$. But,

$$
\begin{aligned}
\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] & =\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] \cup \mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right], \\
\mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] & =\mathfrak{g}-\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] \cup \mathfrak{g}-\mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right], \mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] & \subseteq \mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right], \\
\mathfrak{g}-\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right], \mathfrak{g}-\mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] & \subseteq \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right],
\end{aligned}
$$

which, in turn, imply

$$
\begin{array}{ll}
\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] \subseteq \mathfrak{g}-\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] & \subseteq \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right], \\
\mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] \subseteq \mathfrak{g}-\mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] & \subseteq \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right],
\end{array}
$$

respectively. In Fig. 1, we present the relations between the class $\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]=$ $\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] \cup \mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ of $\left(\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-open and $\left(\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-closed maps and, also, the class $\mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]=\mathfrak{g}-\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] \cup \mathfrak{g}-\mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ of \mathfrak{g} - $\left(\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-open and $\mathfrak{g}-\left(\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-closed maps. The diagram in FIG. 1 shall be termed a map diagram.

Figure 1. Relationships: Map diagram.
For every $\nu \in I_{3}^{0}$, it is plain that, $\mathfrak{g}-\nu-\mathrm{M}\left[\mathfrak{T} \Omega ; \mathfrak{T}_{\Sigma}\right] \subseteq \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right]$ and, also, $\mathfrak{g}-\nu-\mathrm{M}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right] \subseteq \mathfrak{g}-\nu-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] \subseteq \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$. Further, $\mathfrak{g}-2-\mathrm{M}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right] \subseteq$ $\mathfrak{g}-3-\mathrm{M}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right] ;$ likewise, $\mathfrak{g}-0-\mathrm{M}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right] \subseteq \mathfrak{g}-1-\mathrm{M}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right] \subseteq \mathfrak{g}-3-\mathrm{M}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right]$ and
$\mathfrak{g}-2-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] \subseteq \mathfrak{g}-3-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ and also, the relation $\mathfrak{g}-0-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] \subseteq$ $\mathfrak{g}-1-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] \subseteq \mathfrak{g}-3-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ holds. In fact, for every $\mathfrak{T}_{\mathfrak{g}}$-set $\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$, the following relations hold:

$$
\begin{aligned}
\operatorname{int}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right) & \subseteq \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right) \subseteq \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right) \supseteq \operatorname{int}_{\mathfrak{g}} \circ \mathrm{cl}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right), \\
\operatorname{cl}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right) & \supseteq \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right) \supseteq \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right) \subseteq \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right) .
\end{aligned}
$$

Consequently, for every $\left(\mathcal{O}_{\mathfrak{g}, \omega}, \mathcal{K}_{\mathfrak{g}, \omega}\right) \in \mathcal{T}_{\mathfrak{g}, \Omega} \times \neg \mathcal{T}_{\mathfrak{g}, \Omega}$ there exists $\left(\mathcal{O}_{\mathfrak{g}, \sigma}, \mathcal{K}_{\mathfrak{g}, \sigma}\right) \in$ $\mathcal{T}_{\mathfrak{g}, \Sigma} \times \neg \mathcal{T}_{\mathfrak{g}, \Sigma}$ such that

$$
\begin{aligned}
\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right) & \subseteq \mathrm{op}_{\mathfrak{g}, 0}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right) \\
& \subseteq \mathrm{op}_{\mathfrak{g}, 1}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right) \subseteq \mathrm{op}_{\mathfrak{g}, 3}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right) \supseteq \mathrm{op}_{\mathfrak{g}, 2}\left(\mathcal{O}_{\mathfrak{g}, \sigma}\right) \supseteq \pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \omega}\right) \\
\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right) & \supseteq \neg \mathrm{op}_{\mathfrak{g}, 0}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right) \\
& \supseteq \neg \mathrm{op}_{\mathfrak{g}, 1}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}, 3}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right) \subseteq \neg \mathrm{op}_{\mathfrak{g}, 2}\left(\mathcal{K}_{\mathfrak{g}, \sigma}\right) \subseteq \pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}, \omega}\right)
\end{aligned}
$$

In Fig. 2, we present the relationships between the class $\mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]=$ $\bigcup_{\nu \in I_{3}^{0}} \mathfrak{g}-\nu-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ of $\mathfrak{g}-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-maps of categories $0,1,2$ and 3, and the class $\mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right]=\bigcup_{\nu \in I_{3}^{0}} \mathfrak{g}-\nu-\mathrm{M}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right]$ of $\mathfrak{g}-\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-maps of categories 0 , 1, 2 and 3. These characteristics may be indicated, as in Fig. 2, by what we shall term a categorical map diagram.

Figure 2. Relationships: Categorical Map diagram.
Now, suppose we are given $\pi_{\mathfrak{g}, \alpha}: \mathfrak{T}_{\mathfrak{g}, \Omega} \cong \mathfrak{T}_{\mathfrak{g}, \Sigma}$ and $\pi_{\mathfrak{g}, \alpha}: \mathfrak{T}_{\mathfrak{g}, \Sigma} \cong \mathfrak{T}_{\mathfrak{g}, \Upsilon}$. Then, by virtue of previous theorems, $\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}$ - $\operatorname{Hom}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$. Also, $\pi_{\mathfrak{g}, \alpha} \in$ $\operatorname{Hom}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right], \pi_{\mathfrak{g}, \beta} \in \operatorname{Hom}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$, and $\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha} \in \operatorname{Hom}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$ imply $\pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\operatorname{Hom}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right], \pi_{\mathfrak{g}, \beta} \in \mathfrak{g}$ - $\operatorname{Hom}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$, and the relation $\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha} \in$ \mathfrak{g}-Hom $\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \mathfrak{r}}\right]$, respectively. These features may be indicated, as in Fig. 3, by what we shall term a homeomorphism map diagram.

Next, suppose we are given $\pi_{\mathfrak{g}, \alpha}: \mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Sigma}$ and $\pi_{\mathfrak{g}, \alpha}: \mathfrak{T}_{\mathfrak{g}, \Sigma} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Upsilon}$. If $\pi_{\mathfrak{g}, \alpha} \in$ $\mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma \Sigma}\right]$ and $\pi_{\mathfrak{g}, \beta} \in \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$ then, by virtue of previous theorems, $\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$. Moreover, $\pi_{\mathfrak{g}, \alpha} \in \mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right], \pi_{\mathfrak{g}, \beta} \in \mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$,

THEORY OF \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-MAPS

Figure 3. Relationships: Homeomorphism map diagram.
and $\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha} \in \mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$, respectively, imply $\pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right], \pi_{\mathfrak{g}, \beta} \in$ $\mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$, and $\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$. These features may be indicated, as in Fig. 4, by what we shall term a continuous map diagram.

Figure 4. Relationships: Continuous map diagram.
Finally, suppose we are given $\pi_{\mathfrak{g}, \alpha}: \mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Sigma}$ and $\pi_{\mathfrak{g}, \alpha}: \mathfrak{T}_{\mathfrak{g}, \Sigma} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Upsilon}$. If $\pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ and $\pi_{\mathfrak{g}, \beta} \in \mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$ then, by virtue of previous theorems, $\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \mathfrak{r}}\right]$. On the other hand, $\pi_{\mathfrak{g}, \alpha} \in \mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$, $\pi_{\mathfrak{g}, \beta} \in \mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$, and $\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha} \in \mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$, respectively, imply $\pi_{\mathfrak{g}, \alpha} \in$ $\mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right], \pi_{\mathfrak{g}, \beta} \in \mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$, and $\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$. These features may be indicated, as in Fig. 5, by what we shall term a irresolute map diagram.

Let us end this discussion section with a concise summary of the principal implications of the findings regardless of categorical classifications. We have the relations \mathfrak{g}-C $\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] \supseteq \mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ and $\mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right], \mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right] \subseteq$

Figure 5. Relationships: Irresolute map diagram.
$\mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$; the relation $\mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right] \supseteq \mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right]$ and, also, $\mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right]$, $\mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right] \subseteq \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right] ; \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right] \subseteq \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$. Consequently, it follows that $\mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ is related with $\mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ and $\mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$; $\mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right]$ is related with $\mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right]$ and $\mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right] ; \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$ is related with $\mathfrak{g - M}\left[\mathfrak{T}_{\Omega} ; \mathfrak{T}_{\Sigma}\right]$. These relations may be indicated, as in Fig. 6, by what we shall term a continuity-irresolute map diagram.

Figure 6. Relationships: Continuous-Irresolute map diagram.
As in the papers of $[5,10,15,29,30]$, among others, the manner we have positioned the arrows is solely to stress that, in general, none of the implications in Figs 1,2 and 1 is reversible.

At this stage, a nice application is worth considering, and is presented in the following section.
3.2. A Nice Application. By focusing on important concepts from the viewpoint of the theory of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-maps, we shall now present a nice application based upon fivepoint sets. Let $\Omega=\left\{\xi_{\nu}: \nu \in I_{5}^{*}\right\}, \Sigma=\left\{\zeta_{\nu}: \nu \in I_{5}^{*}\right\}$, and $\Upsilon=\left\{\eta_{\nu}: \nu \in I_{5}^{*}\right\}$
denote the underlying sets, and consider the $\mathcal{T}_{\mathfrak{g}}$-spaces $\mathfrak{T}_{\mathfrak{g}, \Omega}=\left(\Omega, \mathcal{T}_{\mathfrak{g}, \Omega}\right), \mathfrak{T}_{\mathfrak{g}, \Sigma}=$ $\left(\Sigma, \mathcal{T}_{\mathfrak{g}, \Sigma}\right)$, and $\mathfrak{T}_{\mathfrak{g}, \Upsilon}=\left(\Upsilon, \mathcal{T}_{\mathfrak{g}, \Upsilon}\right)$, where

$$
\begin{align*}
\mathcal{T}_{\mathfrak{g}}(\Omega) & =\left\{\emptyset,\left\{\xi_{1}\right\},\left\{\xi_{2}, \xi_{3}\right\},\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}\right\} \\
& =\left\{\mathcal{O}_{\mathfrak{g}, \omega_{1}}, \mathcal{O}_{\mathfrak{g}, \omega_{2}}, \mathcal{O}_{\mathfrak{g}, \omega_{3}}, \mathcal{O}_{\mathfrak{g}, \omega_{4}}\right\}, \\
\neg \mathcal{T}_{\mathfrak{g}}(\Omega) & =\left\{\Omega,\left\{\xi_{2}, \xi_{3}, \xi_{4}, \xi_{5}\right\},\left\{\xi_{1}, \xi_{4}, \xi_{5}\right\},\left\{\xi_{4}, \xi_{5}\right\}\right\} \\
& =\left\{\mathcal{K}_{\mathfrak{g}, \omega_{1}}, \mathcal{K}_{\mathfrak{g}, \omega_{2}}, \mathcal{K}_{\mathfrak{g}, \omega_{3}}, \mathcal{K}_{\mathfrak{g}, \omega_{4}}\right\}, \tag{3.1}\\
\mathcal{T}_{\mathfrak{g}}(\Sigma) & =\left\{\emptyset,\left\{\zeta_{2}\right\},\left\{\zeta_{3}, \zeta_{4}\right\},\left\{\zeta_{2}, \zeta_{3}, \zeta_{4}\right\}\right\} \\
& =\left\{\mathcal{O}_{\mathfrak{g}, \sigma_{1}}, \mathcal{O}_{\mathfrak{g}, \sigma_{2}}, \mathcal{O}_{\mathfrak{g}, \sigma_{3}}, \mathcal{O}_{\mathfrak{g}, \sigma_{4}}\right\}, \\
\neg \mathcal{T}_{\mathfrak{g}}(\Sigma) & =\left\{\Sigma,\left\{\zeta_{1}, \zeta_{3}, \zeta_{4}, \zeta_{5}\right\},\left\{\zeta_{1}, \zeta_{2}, \zeta_{5}\right\},\left\{\zeta_{1}, \zeta_{5}\right\}\right\} \\
& =\left\{\mathcal{K}_{\left.\mathfrak{g}, \sigma_{1}, \mathcal{K}_{\mathfrak{g}, \sigma_{2}}, \mathcal{K}_{\mathfrak{g}, \sigma_{3}}, \mathcal{K}_{\mathfrak{g}, \sigma_{4}}\right\},}^{\mathcal{T}_{\mathfrak{g}}(\Upsilon)}\right. \tag{3.2}
\end{align*}=\left\{\emptyset,\left\{\eta_{3}\right\},\left\{\eta_{4}, \eta_{5}\right\},\left\{\eta_{3}, \eta_{4}, \eta_{5}\right\}\right\},
$$

respectively, stand for the classes of $\mathcal{T}_{\mathfrak{g}}$-open and $\mathcal{T}_{\mathfrak{g}}$-closed sets relative to the $\mathcal{T}_{\mathfrak{g}}$-spaces $\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}$, and $\mathfrak{T}_{\mathfrak{g}, \Upsilon}$. For any $\mathcal{T}_{\mathfrak{g}} \in\left\{\mathcal{T}_{\mathfrak{g}, \Omega}, \mathcal{T}_{\mathfrak{g}, \Sigma}, \mathcal{T}_{\mathfrak{g}, \Upsilon}\right\}$, since conditions $\mathcal{T}_{\mathfrak{g}}(\emptyset)=\emptyset, \mathcal{T}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \nu}\right) \subseteq \mathcal{O}_{\mathfrak{g}, \nu}$ for every $\nu \in I_{4}^{*}$, and $\mathcal{T}_{\mathfrak{g}}\left(\bigcup_{\nu \in I_{4}^{*}} \mathcal{O}_{\mathfrak{g}, \nu}\right)=$ $\bigcup_{\nu \in I_{4}^{*}} \mathcal{T}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}, \nu}\right)$ are satisfied, it is evident that, for every $\Lambda \in\{\Omega, \Sigma, \Upsilon\}$, the one-valued map $\mathcal{T}_{\mathfrak{g}}: \mathcal{P}(\Lambda) \rightarrow \mathcal{P}(\Lambda)$ is a \mathfrak{g}-topology. Furthermore, for any $\mathfrak{T} \in$ $\left\{\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}, \mathfrak{T}_{\Upsilon}\right\}$, it is easily checked that, $\mathcal{O}_{\mathfrak{g}, \mu} \in \mathfrak{g}-\nu-\mathrm{O}[\mathfrak{T}]$ for every $(\nu, \mu) \in I_{3}^{0} \times I_{4}^{*}$. Hence, the $\mathcal{T}_{\mathfrak{g}}$-open sets forming the \mathfrak{g}-topology $\mathcal{T}_{\mathfrak{g}}: \mathcal{P}(\Lambda) \rightarrow \mathcal{P}(\Lambda)$ of the $\mathcal{T}_{\mathfrak{g}}$ space $\mathfrak{T}_{\mathfrak{g}}=\left(\Lambda, \mathcal{T}_{\mathfrak{g}}\right)$ are \mathfrak{g} - \mathfrak{T}-open sets relative to the \mathcal{T}-space $\mathfrak{T}=(\Lambda, \mathcal{T})$, where $\Lambda \in\{\Omega, \Sigma, \Upsilon\}, \mathcal{T} \in\left\{\mathcal{T}_{\Omega}, \mathcal{T}_{\Sigma}, \mathcal{T}_{\Upsilon}\right\}$, and $\mathfrak{T} \in\left\{\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}, \mathfrak{T}_{\Upsilon}\right\}$.

After calculations, the classes $\mathfrak{g}-\nu-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}, \Lambda}\right]$ and $\mathfrak{g}-\nu-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}, \Lambda}\right]$, respectively, of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}, \Lambda}$-open and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}, \Lambda}$-closed sets of categories $\nu \in\{0,2\}$, where $\Lambda \in\{\Omega, \Sigma, \Upsilon\}$, then take the following forms:

$$
\begin{align*}
\mathfrak{g}-\nu-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}, \Omega}\right]= & \mathcal{T}_{\mathfrak{g}, \Omega} \cup\left\{\left\{\xi_{2}\right\},\left\{\xi_{3}\right\},\left\{\xi_{1}, \xi_{2}\right\},\left\{\xi_{1}, \xi_{3}\right\}\right\} ; \\
\mathfrak{g}-\nu-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}, \Omega}\right]= & \neg \mathcal{T}_{\mathfrak{g}, \Omega} \cup\left\{\left\{\xi_{3}, \xi_{4}, \xi_{5}\right\},\left\{\xi_{1}, \xi_{2}, \xi_{4}, \xi_{5}\right\},\right. \\
& \left.\quad\left\{\xi_{1}, \xi_{3}, \xi_{4}, \xi_{5}\right\},\left\{\xi_{2}, \xi_{4}, \xi_{5}\right\}\right\} \forall \nu \in\{0,2\} ; \tag{3.4}\\
\mathfrak{g}-\nu-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma}\right]= & \mathcal{T}_{\mathfrak{g}, \Sigma} \cup\left\{\left\{\zeta_{3}\right\},\left\{\zeta_{4}\right\},\left\{\zeta_{2}, \zeta_{3}\right\},\left\{\zeta_{2}, \zeta_{4}\right\}\right\} ; \\
\mathfrak{g}-\nu-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma}\right]= & \neg \mathcal{T}_{\mathfrak{g}, \Sigma} \cup\left\{\left\{\zeta_{1}, \zeta_{4}, \zeta_{5}\right\},\left\{\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{5}\right\},\right. \\
& \left.\left\{\zeta_{1}, \zeta_{2}, \zeta_{4}, \zeta_{5}\right\},\left\{\zeta_{1}, \zeta_{3}, \zeta_{5}\right\}\right\} \forall \nu \in\{0,2\} ; \tag{3.5}\\
\mathfrak{g}-\nu-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}, \Upsilon]=}=\right. & \mathcal{T}_{\mathfrak{g}, \Upsilon} \cup\left\{\left\{\eta_{4}\right\},\left\{\eta_{5}\right\},\left\{\eta_{3}, \eta_{4}\right\},\left\{\eta_{3}, \eta_{5}\right\}\right\} ; \\
\mathfrak{g}-\nu-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]= & \neg \mathcal{T}_{\mathfrak{g}, \Upsilon} \cup\left\{\left\{\eta_{1}, \eta_{2}, \eta_{5}\right\},\left\{\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}\right\},\right. \\
& \left.\left\{\eta_{1}, \eta_{2}, \eta_{3}, \eta_{5}\right\},\left\{\eta_{1}, \eta_{2}, \eta_{4}\right\}\right\} \forall \nu \in\{0,2\} . \tag{3.6}
\end{align*}
$$

On the other hand, those of categories $\nu \in\{1,3\}$ take the following forms:

$$
\begin{align*}
\mathfrak{g}-\nu-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}, \Lambda}\right] & =\mathcal{T}_{\mathfrak{g}, \Lambda} \cup\left\{\mathcal{O}_{\mathfrak{g}}: \mathcal{O}_{\mathfrak{g}} \in \mathcal{P}(\Lambda) \backslash \mathcal{T}_{\mathfrak{g}, \Lambda}\right\} ; \\
\mathfrak{g}-\nu-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}, \Lambda}\right] & =\neg \mathcal{T}_{\mathfrak{g}, \Lambda} \cup\left\{\mathcal{K}_{\mathfrak{g}}: \mathcal{K}_{\mathfrak{g}} \in \mathcal{P}(\Lambda) \backslash \neg \mathcal{T}_{\mathfrak{g}, \Lambda}\right\} \quad \forall \nu \in\{1,3\}, \tag{3.7}
\end{align*}
$$

where $\Lambda \in\{\Omega, \Sigma, \Upsilon\}$. We choose to consider the \mathfrak{g} - $\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-map $\pi_{\mathfrak{g}, \alpha}: \mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow$ $\mathfrak{T}_{\mathfrak{g}, \Sigma}$ and the $\mathfrak{g}-\left(\mathfrak{T}_{\Sigma}, \mathfrak{T}_{\Upsilon}\right)$-map $\pi_{\mathfrak{g}, \beta}: \mathfrak{T}_{\mathfrak{g}, \Sigma} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Upsilon}$ defined, respectively, by

$$
\begin{aligned}
& \pi_{\mathfrak{g}, \alpha}\left(\xi_{1}\right)=\zeta_{2}, \pi_{\mathfrak{g}, \alpha}\left(\xi_{2}\right)=\zeta_{3}, \pi_{\mathfrak{g}, \alpha}\left(\xi_{3}\right)=\zeta_{4}, \pi_{\mathfrak{g}, \alpha}\left(\xi_{4}\right)=\zeta_{1}, \pi_{\mathfrak{g}, \alpha}\left(\xi_{5}\right)=\zeta_{5} \\
& \pi_{\mathfrak{g}, \beta}\left(\zeta_{1}\right)=\eta_{1}, \pi_{\mathfrak{g}, \beta}\left(\zeta_{2}\right)=\eta_{3}, \pi_{\mathfrak{g}, \beta}\left(\zeta_{3}\right)=\eta_{4}, \pi_{\mathfrak{g}, \beta}\left(\zeta_{4}\right)=\eta_{5}, \pi_{\mathfrak{g}, \beta}\left(\zeta_{5}\right)=\eta_{2}
\end{aligned}
$$

Finally, we set the relations $\pi_{\mathfrak{g}, \alpha}\left(\mathcal{O}_{\mathfrak{g}, \omega_{1}}\right)=\mathcal{O}_{\mathfrak{g}, \sigma_{1}}$ and $\pi_{\mathfrak{g}, \beta}\left(\mathcal{O}_{\mathfrak{g}, \sigma_{1}}\right)=\mathcal{O}_{\mathfrak{g}, v_{1}}$ so that $\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha}\left(\mathcal{O}_{\mathfrak{g}, \omega_{1}}\right)=\mathcal{O}_{\mathfrak{g}, v_{1}}$. As for the composite $\mathfrak{g}-\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Upsilon}\right)$-map $\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha}$: $\mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Upsilon}$, a simple calculation shows that

$$
\begin{aligned}
\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha}\left(\xi_{1}\right) & =\eta_{3}, \pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha}\left(\xi_{2}\right)=\eta_{4}, \pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha}\left(\xi_{3}\right)=\eta_{5}, \\
\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha}\left(\xi_{4}\right) & =\eta_{1}, \pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha}\left(\xi_{5}\right)=\eta_{2} .
\end{aligned}
$$

At this stage, we have all the basic ingredients to discuss any class of $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$-maps between any two of such $\mathcal{T}_{\mathfrak{g}}$-spaces $\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}$, and $\mathfrak{T}_{\mathfrak{g}, \Upsilon}$. We choose to discuss some elements of the classes $\mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Lambda} ; \mathfrak{T}_{\mathfrak{g}, \Theta}\right], \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Lambda} ; \mathfrak{T}_{\mathfrak{g}, \Theta}\right]$, $\mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Lambda} ; \mathfrak{T}_{\mathfrak{g}, \Theta}\right]$, and \mathfrak{g}-Hom $\left[\mathfrak{T}_{\mathfrak{g}, \Lambda} ; \mathfrak{T}_{\mathfrak{g}, \Theta}\right]$ of $\left(\mathfrak{T}_{\mathfrak{g}, \Lambda}, \mathfrak{T}_{\mathfrak{g}, \Theta}\right)$-maps, $\left(\mathfrak{T}_{\mathfrak{g}, \Lambda}, \mathfrak{T}_{\mathfrak{g}, \Theta}\right)$-continuous, $\left(\mathfrak{T}_{\mathfrak{g}, \Lambda}, \mathfrak{T}_{\mathfrak{g}, \Theta}\right)$ irresolute, and $\left(\mathfrak{T}_{\mathfrak{g}, \Lambda}, \mathfrak{T}_{\mathfrak{g}, \Theta}\right)$-homeomorphism maps, respectively, where $\Lambda, \Theta \in$ $\{\Omega, \Sigma, \Upsilon\}$. A first sequence of calculations shows that

$$
\begin{aligned}
\pi_{\mathfrak{g}, \alpha}\left(\mathcal{O}_{\mathfrak{g}, \omega_{\mu}}\right) & =\mathcal{O}_{\mathfrak{g}, \sigma_{\mu}} \subseteq \operatorname{op}_{\mathfrak{g}, \nu}\left(\mathcal{O}_{\mathfrak{g}, \sigma_{\mu}}\right), \\
\pi_{\mathfrak{g}, \alpha}\left(\mathcal{K}_{\mathfrak{g}, \omega_{\mu}}\right) & =\mathcal{K}_{\mathfrak{g}, \sigma_{\mu}} \supseteq \neg \operatorname{op}_{\mathfrak{g}, \nu}\left(\mathcal{K}_{\mathfrak{g}, \sigma_{\mu}}\right) \quad \forall(\nu, \mu) \in I_{3}^{0} \times I_{4}^{*} ; \\
\pi_{\mathfrak{g}, \beta}\left(\mathcal{O}_{\mathfrak{g}, \sigma_{\mu}}\right) & =\mathcal{O}_{\mathfrak{g}, v_{\mu}} \subseteq \operatorname{op}_{\mathfrak{g}, \nu}\left(\mathcal{O}_{\mathfrak{g}, v_{\mu}}\right), \\
\pi_{\mathfrak{g}, \beta}\left(\mathcal{K}_{\mathfrak{g}, \sigma_{\mu}}\right) & =\mathcal{K}_{\mathfrak{g}, v_{\mu}} \supseteq \neg \operatorname{op}_{\mathfrak{g}, \nu}\left(\mathcal{K}_{\mathfrak{g}, v_{\mu}}\right) \quad \forall(\nu, \mu) \in I_{3}^{0} \times I_{4}^{*} .
\end{aligned}
$$

Hence, we conclude that, $\pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$, $\pi_{\mathfrak{g}, \beta} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$, and $\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$. On the other hand, a second sequence of calculations shows that

$$
\begin{aligned}
\pi_{\mathfrak{g}, \alpha}^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma_{\mu}}\right) & =\mathcal{O}_{\mathfrak{g}, \omega_{\mu}} \subseteq \mathrm{op}_{\mathfrak{g}, \nu}\left(\mathcal{O}_{\mathfrak{g}, \omega_{\mu}}\right), \\
\pi_{\mathfrak{g}, \alpha}^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma_{\mu}}\right) & =\mathcal{K}_{\mathfrak{g}, \omega_{\mu}} \supseteq \neg \mathrm{op}_{\mathfrak{g}, \nu}\left(\mathcal{K}_{\mathfrak{g}, \omega_{\mu}}\right) \quad \forall(\nu, \mu) \in I_{3}^{0} \times I_{4}^{*} ; \\
\pi_{\mathfrak{g}, \beta}^{-1}\left(\mathcal{O}_{\mathfrak{g}, v_{\mu}}\right) & =\mathcal{O}_{\mathfrak{g}, \sigma_{\mu}} \subseteq \operatorname{op}_{\mathfrak{g}, \nu}\left(\mathcal{O}_{\mathfrak{g}, \sigma_{\mu}}\right), \\
\pi_{\mathfrak{g}, \beta}^{-1}\left(\mathcal{K}_{\mathfrak{g}, v_{\mu}}\right) & =\mathcal{K}_{\mathfrak{g}, \sigma_{\mu}} \supseteq \neg \mathrm{op}_{\mathfrak{g}, \nu}\left(\mathcal{K}_{\mathfrak{g}, \sigma_{\mu}}\right) \quad \forall(\nu, \mu) \in I_{3}^{0} \times I_{4}^{*} .
\end{aligned}
$$

From the above expressions, it then follows that, $\pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}$-C $\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$, $\pi_{\mathfrak{g}, \beta} \in$ \mathfrak{g}-C $\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$, and $\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$. A third sequence of calculations
shows that

$$
\begin{aligned}
\pi_{\mathfrak{g}, \alpha}^{-1}\left(\operatorname{op}_{\mathfrak{g}, \nu}\left(\mathcal{O}_{\mathfrak{g}, \sigma_{\mu}}\right)\right) & =\mathcal{O}_{\mathfrak{g}, \omega_{\mu}} \subseteq \operatorname{op}_{\mathfrak{g}, \nu}\left(\mathcal{O}_{\mathfrak{g}, \omega_{\mu}}\right), \\
\pi_{\mathfrak{g}, \alpha}^{-1}\left(\neg \mathrm{op}_{\mathfrak{g}, \nu}\left(\mathcal{K}_{\mathfrak{g}, \sigma_{\mu}}\right)\right) & =\mathcal{K}_{\mathfrak{g}, \omega_{\mu}} \supseteq \neg \mathrm{op}_{\mathfrak{g}, \nu}\left(\mathcal{K}_{\mathfrak{g}, \omega_{\mu}}\right) \quad \forall(\nu, \mu) \in\{0,2\} \times I_{4}^{*} ; \\
\pi_{\mathfrak{g}, \alpha}^{-1}\left(\operatorname{op}_{\mathfrak{g}, \nu}\left(\mathcal{O}_{\mathfrak{g}, \sigma_{5-\mu}}\right)\right) & =\mathcal{K}_{\mathfrak{g}, \omega_{\mu}} \supseteq \neg \mathrm{op}_{\mathfrak{g}, \nu}\left(\mathcal{K}_{\mathfrak{g}, \omega_{\mu}}\right), \\
\pi_{\mathfrak{g}, \alpha}^{-1}\left(\neg \mathrm{op}_{\mathfrak{g}, \nu}\left(\mathcal{K}_{\mathfrak{g}, \sigma_{5-\mu}}\right)\right) & =\mathcal{O}_{\mathfrak{g}, \omega_{\mu}} \subseteq \operatorname{op}_{\mathfrak{g}, \nu}\left(\mathcal{O}_{\mathfrak{g}, \omega_{\mu}}\right) \quad \forall(\nu, \mu) \in\{1,3\} \times I_{4}^{*} ; \\
\pi_{\mathfrak{g}, \beta}^{-1}\left(\operatorname{op}_{\mathfrak{g}, \nu}\left(\mathcal{O}_{\mathfrak{g}, v_{\mu}}\right)\right) & =\mathcal{O}_{\mathfrak{g}, \sigma_{\mu}} \subseteq \operatorname{op}_{\mathfrak{g}, \nu}\left(\mathcal{O}_{\mathfrak{g}, \sigma_{\mu}}\right), \\
\pi_{\mathfrak{g}, \beta}^{-1}\left(\neg \mathrm{op}_{\mathfrak{g}, \nu}\left(\mathcal{K}_{\mathfrak{g}, v_{\mu}}\right)\right) & =\mathcal{K}_{\mathfrak{g}, \sigma_{\mu}} \supseteq \neg \mathrm{op}_{\mathfrak{g}, \nu}\left(\mathcal{K}_{\mathfrak{g}, \sigma_{\mu}}\right) \quad \forall(\nu, \mu) \in\{0,2\} \times I_{4}^{*} ; \\
\pi_{\mathfrak{g}, \beta}^{-1}\left(\operatorname{op}_{\mathfrak{g}, \nu}\left(\mathcal{O}_{\mathfrak{g}, v_{5-\mu}}\right)\right) & =\mathcal{K}_{\mathfrak{g}, \sigma_{\mu}} \supseteq \neg \mathrm{op}_{\mathfrak{g}, \nu}\left(\mathcal{K}_{\mathfrak{g}, \sigma_{\mu}}\right), \\
\pi_{\mathfrak{g}, \beta}^{-1}\left(\neg \mathrm{op}_{\mathfrak{g}, \nu}\left(\mathcal{K}_{\mathfrak{g}, v_{5-\mu}}\right)\right) & =\mathcal{O}_{\mathfrak{g}, \sigma_{\mu}} \subseteq \mathrm{op}_{\mathfrak{g}, \nu}\left(\mathcal{O}_{\mathfrak{g}, \sigma_{\mu}}\right) \quad \forall(\nu, \mu) \in\{1,3\} \times I_{4}^{*} .
\end{aligned}
$$

From the properties of $\mathfrak{g}-\nu-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right], \mathfrak{g}-\nu-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$, and $\mathfrak{g}-\nu-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$, where $\nu \in I_{3}^{0}$, we have $\pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\nu-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right], \pi_{\mathfrak{g}, \beta} \in \mathfrak{g}-\nu-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$, and $\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\nu-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$ only for every $\nu \in\{0,2\} ;$ none of these membership relations holds for any $\nu \in\{1,3\}$, as is easily seen by inspection. On the other hand, by virtue of the definitions of the $\mathfrak{g}-\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-map $\pi_{\mathfrak{g}, \alpha}: \mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Sigma}$ and the $\mathfrak{g}-\left(\mathfrak{T}_{\Sigma}, \mathfrak{T}_{\Upsilon}\right)$-map $\pi_{\mathfrak{g}, \beta}: \mathfrak{T}_{\mathfrak{g}, \Sigma} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Upsilon}$, it is clear that the membership relations $\pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{B}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right], \pi_{\mathfrak{g}, \beta} \in \mathfrak{g}-\mathrm{B}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$, and $\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}-\mathrm{B}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$ hold.

Having discussed $\pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}$-C $\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right], \pi_{\mathfrak{g}, \beta} \in \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \mathfrak{\Upsilon}}\right]$, and $\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha} \in$ \mathfrak{g}-C $\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$, to discuss the \mathfrak{g} - $\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-homeomorphism map $\pi_{\mathfrak{g}, \alpha}: \mathfrak{T}_{\mathfrak{g}, \Omega} \cong \mathfrak{T}_{\mathfrak{g}, \Sigma}$ and the \mathfrak{g} - $\left(\mathfrak{T}_{\Sigma}, \mathfrak{T}_{\Upsilon}\right)$-homeomorphism map $\pi_{\mathfrak{g}, \beta}: \mathfrak{T}_{\mathfrak{g}, \Sigma} \cong \mathfrak{T}_{\mathfrak{g}, \Upsilon}$ we must first discuss the relations $\pi_{\mathfrak{g}, \alpha}^{-1} \in \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Omega}\right]$ and $\pi_{\mathfrak{g}, \beta}^{-1} \in \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Upsilon} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$. A fourth sequence of calculations shows that

$$
\begin{aligned}
\left(\pi_{\mathfrak{g}, \alpha}^{-1}\right)^{-1}\left(\mathcal{O}_{\mathfrak{g}, \omega_{\mu}}\right) & =\mathcal{O}_{\mathfrak{g}, \sigma_{\mu}} \subseteq \mathrm{op}_{\mathfrak{g}, \nu}\left(\mathcal{O}_{\mathfrak{g}, \sigma_{\mu}}\right), \\
\left(\pi_{\mathfrak{g}, \alpha}^{-1}\right)^{-1}\left(\mathcal{K}_{\mathfrak{g}, \omega_{\mu}}\right) & =\mathcal{K}_{\mathfrak{g}, \sigma_{\mu}} \supseteq \neg \mathrm{op}_{\mathfrak{g}, \nu}\left(\mathcal{K}_{\mathfrak{g}, \sigma_{\mu}}\right) \quad \forall(\nu, \mu) \in I_{3}^{0} \times I_{4}^{*} ; \\
\left(\pi_{\mathfrak{g}, \beta}^{-1}\right)^{-1}\left(\mathcal{O}_{\mathfrak{g}, \sigma_{\mu}}\right) & =\mathcal{O}_{\mathfrak{g}, v_{\mu}} \subseteq \operatorname{op}_{\mathfrak{g}, \nu}\left(\mathcal{O}_{\mathfrak{g}, v_{\mu}}\right), \\
\left(\pi_{\mathfrak{g}, \beta}^{-1}\right)^{-1}\left(\mathcal{K}_{\mathfrak{g}, \sigma_{\mu}}\right) & =\mathcal{K}_{\mathfrak{g}, v_{\mu}} \supseteq \neg \mathrm{op}_{\mathfrak{g}, \nu}\left(\mathcal{K}_{\mathfrak{g}, v_{\mu}}\right) \quad \forall(\nu, \mu) \in I_{3}^{0} \times I_{4}^{*} .
\end{aligned}
$$

From these, it clearly follows that the relations $\pi_{\mathfrak{g}, \alpha}^{-1} \in \mathfrak{g}$-C $\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \Omega}\right], \pi_{\mathfrak{g}, \beta}^{-1} \in$ \mathfrak{g}-C $\left[\mathfrak{T}_{\mathfrak{g}, \Upsilon} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$, and $\left(\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha}\right)^{-1} \in \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Upsilon} ; \mathfrak{T}_{\mathfrak{g}, \Omega}\right]$ hold. Hence, it follows that $\pi_{\mathfrak{g}, \alpha} \in \mathfrak{g}$-Hom $\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Sigma}\right]$, $\pi_{\mathfrak{g}, \beta} \in \mathfrak{g}$-Hom $\left[\mathfrak{T}_{\mathfrak{g}, \Sigma} ; \mathfrak{T}_{\mathfrak{g}, \mathfrak{r}}\right]$, and, also, $\pi_{\mathfrak{g}, \beta} \circ \pi_{\mathfrak{g}, \alpha} \in$ $\mathfrak{g}-\operatorname{Hom}\left[\mathfrak{T}_{\mathfrak{g}, \Omega} ; \mathfrak{T}_{\mathfrak{g}, \Upsilon}\right]$.

The discussions carried out in the preceding sections can be easily verified from this nice application. The next section provides concluding remarks and future directions of the theory of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-sets discussed in the preceding sections.
3.3. Concluding Remarks. In this chapter, we developed a new theory, called Theory of $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$-Maps that is founded upon the theory of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-sets. In its own rights, the proposed theory has several advantages. The very first advantage is that the theory holds equally well when $\left(\Lambda, \mathcal{T}_{\mathfrak{g}, \Lambda}\right)=\left(\Lambda, \mathcal{T}_{\Lambda}\right)$, where $\Lambda \in\{\Omega, \Sigma, \Upsilon\}$, and other features adapted on this ground, in which case it might be called Theory of $\mathfrak{g}-\mathfrak{T}$-Maps.

Hence, between any two such $\mathcal{T}_{\mathfrak{g}}$-spaces $\mathfrak{T}_{\mathfrak{g}, \Omega}=\left(\Omega, \mathcal{T}_{\mathfrak{g}, \Omega}\right)$ and $\mathfrak{T}_{\mathfrak{g}, \Sigma}=\left(\Sigma, \mathcal{T}_{\mathfrak{g}, \Sigma}\right)$ the theoretical framework categorises such pairs of concepts as $\mathfrak{g}-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-open and \mathfrak{g} - $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-closed maps, \mathfrak{g} - $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-semi-open and \mathfrak{g} - $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-semiclosed maps, $\mathfrak{g}-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-preopen, $\mathfrak{g}-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-preclosed maps, and, finally, \mathfrak{g} - $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-semi-preopen and \mathfrak{g} - $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-semi-preclosed maps as \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-maps of categories $0,1,2$, and 3 , respectively, and theorises the concepts in a unified way; between any two such \mathcal{T}-spaces $\mathfrak{T}_{\Omega}=\left(\Omega, \mathcal{T}_{\Omega}\right)$ and $\mathfrak{T}_{\Sigma}=\left(\Sigma, \mathcal{T}_{\Sigma}\right)$ the theoretical framework categorises such pairs of concepts as \mathfrak{g} - $\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-open and \mathfrak{g} - $\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-closed maps, \mathfrak{g} - $\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-semi-open and \mathfrak{g} - $\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-semi-closed maps, $\mathfrak{g}-\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-preopen, $\mathfrak{g}-\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-preclosed maps, and \mathfrak{g} - $\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-semi-preopen and \mathfrak{g} - $\left(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-semi-preclosed maps as \mathfrak{g} - \mathfrak{T}-maps of categories $0,1,2$, and 3 , respectively, and theorises the concepts in a unified way.

It is an interesting topic for future research to develop the theory of $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$-maps of mixed categories. More precisely, for some pair $(\nu, \mu) \in I_{3}^{0} \times I_{3}^{0}$ such that $\nu \neq \mu$, to develop the theory of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-open maps based on the elements of the class $\left\{\mathcal{O}_{\mathfrak{g}}=\mathcal{O}_{\mathfrak{g}, \nu} \cup \mathcal{O}_{\mathfrak{g}, \mu}:\left(\mathcal{O}_{\mathfrak{g}, \nu}, \mathcal{O}_{\mathfrak{g}, \mu}\right) \in \mathfrak{g}-\nu-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right] \times \mathfrak{g}-\mu-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right]\right\}$ and the theory of $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}{ }^{-}$ closed maps based on the elements of the class $\left\{\mathcal{K}_{\mathfrak{g}}=\mathcal{K}_{\mathfrak{g}, \nu} \cup \mathcal{K}_{\mathfrak{g}, \mu}:\left(\mathcal{K}_{\mathfrak{g}, \nu}, \mathcal{K}_{\mathfrak{g}, \mu}\right) \in\right.$ $\left.\mathfrak{g}-\nu-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}}\right] \times \mathfrak{g}-\mu-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}}\right]\right\}$, as [25] developed the theory of weakly b-open functions. Such two theories are what we thought would certainly be worth considering, and the discussion of this paper ends here.

References

1. R. Arens and J. Dugundji, Topologies for Function Spaces, pacific j. math., vol. 1 (1), pp. 37-46, 1951.
2. A. V. Arhangel'skiui, Mappings and Spaces, russian math. surveys, vol. 21 (4), pp. 115-162, 1966.
3. S. Bayhan, A. Kanibir, and I. L. Reilly, On Functions between Generalized Topological Spaces, appl. gen. topol., vol. 14 (2), pp. 195-203, 2013.
4. C. Boonpok, On Generalized Continuous Maps in Čech Closure Spaces, general mathematics, vol. 19 (3), pp. 3-10, 2011.
5. M. Caldas, S. Jafari, and R. K. Saraf, Semi- θ-Open Sets and New Classes of Maps, bulletin of the iranian mathematical society, vol. 31 (2), pp. 37-52, 2005.
6. S. G. Crossley and S. K. Hildebrand, Semi-Topological Properties, fund. math., vol. 74 (3), pp. 233-254, 1972.
7. Á. Császár, Generalized Open Sets in Generalized Topologies, acta math. hungar., vol. 106 (1-2), pp. 53-66, 2005.
8. \qquad , Remarks on Quasi-Topologies, acta math. hungar., vol. 119 (1-2), pp. 197-200, 2008.
9. M. C. Cueva, Semi-Generalized Maps in Topological Spaces, portugaliae mathematica, vol. 52 (4), pp. 399-407, 1995.
10. J. Dontchev, On Some Separation Axioms Associated with the α-Topology, mem. fac. sci. kochi univ. ser. a, math., vol. 18, pp. 31-35, 1997.
11. G. L. Garg and D. Sivaraj, Generalized Continuous Functions Defined by Generalized Open Sets on Generalized Topological Spaces, soochow journal of mathematics, vol. 14 (1), pp. 51-55, 1988.
12. X. Ge, J. Gong, and I. Reilly, Some Characterizations of Mappings on Generalized Topological Spaces, new zealand j. math., vol. 46, pp. 73-81, 2016.
13. S. Jafari and T. Noiri, Contra- α-Continuous Functions between Topological Spaces, iranian int. j. sci., vol. 2 (2), pp. 153-167, 2001.
14. S. Jafari and N. Rajesh, Weak and Strong Form of g -irresolute functions, filomat, vol. 21 (2), pp. 199-209, 2007.
15. Y. B. Jun, S. W. Jeong, H. J. Lee, and J. W. Lee, Applications of Pre-Open Sets, applied general topology, universidad politécnica de valencia, vol. 9 (2), pp. 213-228, 2008.
16. K. Kannan, N. Nagaveni, and S. Saranya, On $\hat{\beta}_{\mathrm{g}}$-Continuous and $\hat{\beta}_{\mathrm{g}}$-Irresolute Maps in Topological Spaces, procedia computer science, vol. 47, pp. 368-373, 2015.
17. E. Korczak-Kubiak and R. J. Pawlak, On Semi-Open Sets and Mutual Correspondence Between Properties of Functions Considered with Respect to Different Topological Structures, tatra mountains mathematical publications, vol. 65 (1), pp. 119-134, 2016.
18. N. Levine, A Decomposition of Continuity in Topological Spaces, amer. math. monthly, vol. 68, pp. 44-46, 1961.
19. A. S. Mashhour, I. A. Hasanein, and S. N. E. Deeb, α-Continuous and α-Open Mappings, acta. math. hungar., vol. 41 (3-4), pp. 213-218, 1983.
20. R. Messaoud and A. Missaoui, Properties of the Contra Semi-Continuity Functions and $\sigma-\zeta_{\mu^{-}}$ Sets in Generalized Topological Spaces, math. appl., vol. 4, pp. 123-128, 2015.
21. W. K. Min, Remarks on Separation Axioms on Generalized Topological Spaces, journal of the chungcheong mathematical society, vol. 23 (2), pp. 293-298, 2010.
22. \qquad On g- α-Irresolute Functions, acta. math. hungar., vol. 130 (4), pp. 382-389, 2011.
23. P. Montagantirud and W. Thaikua, Continuities on Generalised Topological Spaces via Hereditary Classes, bulletin of the australian mathematical society, vol. 97 (2), pp. 320-330, 2018.
24. G. H. Moore, The Evolution of the Concept of Homeomorphism, historia mathematica, vol. 34 (3), pp. 333-343, 2007.
25. T. Noiri, A. Al-Omari, and M. S. M. Noorani, Weakly b-Open Functions, mathematica balkanica, vol. 23 (1-2), pp. 1-13, 2009.
26. T. Noiri and V. Popa, A Generalization of Some Forms of g-Irresolute Functions, eur. j. pure appl. math., vol. 2 (4), pp. 473-493, 2009.
27. V. Pavlović and A. S. Cvetković, On Generalized Topologies arising from Mappings, vesnik, vol. 38 (3), pp. 553-565, 2012.
28. P. L. Powar and K. Rajak, Some New Concepts of Continuity in Generalized Topological Space, international journal of computer applications, vol. 38 (5), pp. 975-8887, 2012.
29. M. L. Thivagar, I. L. Reilly, M. A. Dasan, and V. Ramesh, Generalized Open Sets in Grill N-Topology, appl. gen. topol., vol. 18 (2), pp. 289-299, 2017.
30. B. K. Tyagi and Harsh V. S. Chauhan, On Generalized Closed Sets in a Generalized Topological Spaces, cubo a mathematical journal, vol. 18 (01), pp. 27-45, 2016.
31. F. M. V. Valenzuela and H. M. Rara, μ-rgb-Sets in a Generalized Topological Space, international journal of mathematical analysis, vol. 8 (36), pp. 1791-1797, 2014.
32. S. Willard, General Topology, addison-wesley publishing company, reading, massachusetts, vol. 18, pp. 31-35, 1970.
33. A. H. Zakari, gm-Continuity on Generalized Topology and Minimal Structures Spaces, journal of the association of arab universities for basic and applied sciences, vol. 20, pp. 78-83, 2018.
34. I. Zvina, Introduction to Generalized Topological Spaces, applied general topology, vol. 12 (1), pp. 49-66, 2011.

Dr.Mohammad Irshad KHODABOCUS
Current address: Department of Mathematics, Faculty of Science, University of Mauritius
E-mail address: ikhodabo@gmail.com
Dr. Noor-Ul-HacQ SOOKIA
Current address: Department of Mathematics, Faculty of Science, University of Mauritius
E-mail address: sookian@uom.ac.mu

[^0]: ${ }^{1}$ Notes to the reader: The structures $\mathfrak{T}_{\Omega}=\left(\Omega, \mathcal{T}_{\Omega}\right)$ and $\mathfrak{T}_{\Sigma}=\left(\Sigma, \mathcal{T}_{\Sigma}\right)$ are called ordinary topological spaces (briefly, \mathcal{T}-spaces), and the structures $\mathfrak{T}_{\mathfrak{g}, \Omega}=\left(\Omega, \mathcal{T}_{\mathfrak{g}, \Omega}\right)$ and $\mathfrak{T}_{\mathfrak{g}, \Sigma}=\left(\Sigma, \mathcal{T}_{\mathfrak{g}, \Sigma}\right)$ are called generalized topological spaces (briefly, $\mathcal{T}_{\mathfrak{g}}$-spaces). The maps $\pi, \pi_{\mathfrak{g}}: \mathfrak{T}_{\Omega} \rightarrow \mathfrak{T}_{\Sigma}$ and $\pi, \pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g}, \Omega} \rightarrow \mathfrak{T}_{\mathfrak{g}, \Sigma}$, respectively, stand for ordinary and generalized maps between \mathcal{T}-spaces and $\mathcal{T}_{\mathfrak{g}}$-spaces; the notations ($\left.\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}\right)$-map (briefly, \mathfrak{T}-map), \mathfrak{g} - ($\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}$)-map (briefly, \mathfrak{g} - \mathfrak{T}-map), $\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-map (briefly, $\mathfrak{T}_{\mathfrak{g}}$-map), and $\mathfrak{g}-\left(\mathfrak{T}_{\mathfrak{g}, \Omega}, \mathfrak{T}_{\mathfrak{g}, \Sigma}\right)$-map (briefly, \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-map) emphasize their characters.

