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THEORY OF g-%,-MAPS

KHODABOCUS M. I. AND SOOKIA N. U. H.

ABSTRACT. Several specific types of generalized maps of a generalized topolog-
ical space have been defined and investigated for various purposes from time to
time in the literature of topological spaces. Our recent research in the field of
a new class of generalized maps of a generalized topological space is reported
herein as a starting point for more generalized classes.
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1. INTRODUCTION

The concepts’ of (To,Tx)-map m : To — Ty [1, 2], g-(To,Tx)-map 7y
Tao — Tx [9, 18], (Tg,0,Fg,n)map 7 : Tyo — Tyxn [3], and g- (Tg,0,Tg,n)-map
g+ Tg.0 = Tgn [21], called, respectively, ordinary and generalized maps (briefly,
T-map and g-T-map, respectively) between T-spaces T and Ty, and ordinary and
generalized maps (briefly, T;-map and g-T4-map, respectively) between Tg-spaces
Tg,0 and Ty 5 are all fundamental concepts that have been introduced and inves-
tigated by several mathematicians [12, 16, 17, 20, 21, 23, 29, 31, 33].

Other concepts called (T, Ts)-continuous and (Tq, Tx)-irresolute maps and
(%q, Tx)-homeomorphism (briefly, T-continuous and T-irresolute maps, and T-
homeomorphism, respectively) [6, 24, 32|, g- (Tq, Tx)-continuous and g- (T, Tx)-
irresolute maps and g- (¥q, Ts;)-homeomorphism (briefly, g-%-continuous and g-%-
irresolute maps, and g-T-homeomorphism, respectively) [6, 13, 14, 26], (T4, Tqg,n)-
continuous and (Tg o, Ty x)-irresolute maps, (T4 0, %4 5)-homeomorphism (briefly,
T4-continuous, Tg-irresolute maps, and Ty-homeomorphism, respectively) [14, 28]
and g- (T4,0,%y,x)-continuous and g- (T4 0, %y x)-irresolute maps, g- (T4.0,Tq5)-
homeomorphism (briefly, g-Ty-continuous and g-Tq-irresolute maps, and g-Tg-
homeomorphism, respectively) [11, 22, 34] are all derived concepts based on the
properties of T-map, g-T-map, Ty-map, and g-Ty-map. Having received extensive
studies, all these ordinary and generalized mappings are at this date well-known
important notions in ordinary and generalized topologies and their applications.

In this paper, we will show how further contributions can be added to the field
in a unified way.

INotes to the reader: The structures To = (2,7q) and Ty, = (3, Ty) are called ordinary
topological spaces (briefly, T-spaces), and the structures T4 o = (Q,’Tg,g) and Ty » = (Z,Tg,z)
are called generalized topological spaces (briefly, Tg-spaces). The maps m, 73 : T — Ty and
™, g Ty — Lg%, respectively, stand for ordinary and generalized maps between T-spaces
and Tg-spaces; the notations (Tq, Tx;)-map (briefly, T-map), g- (T, Tx)-map (briefly, g-T-map),
(‘Igyg,‘fig,g)—map (briefly, Tg-map), and g- (Tgyg,Tgyg)—map (briefly, g-Tg-map) emphasize their
characters.

the author(s). Distributed under a Creative Commons CC BY license.
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2 KHODABOCUS M. I. AND SOOKIA N. U. H.

2. THEORY

2.1. PRELIMINARIES. Our discussion starts by recalling some basic definitions and
notations of most essential concepts presented in the theory of g-T4-sets in a Tg-
space.

The set 4 stands for the universe of discourse, fixed within the framework of the
theory of g-Ty-maps and containing as elements all sets (A-sets: A € {Q,Z, T};
Ta, 0-Ta, Ta, g-Ta-sets; Tgn, §-Tg.n, Tgn, 9-Tg,a-sets) considered in this theory,

and 10 %' {v e N": v < n};index sets I3, I, I%, are defined similarly. Let A €

{€Q,2,7} C U be a given set and let P (A) o {Og,, CA: v eI} be the family
of all subsets Og4,1, Og2, ..., of A. Then every one-valued map of the type 74 :
P (A) — P (A) satisfying Tga (0) = 0, Tga (Og) € Oy, and Ty a (Uuelgo Og) =

Uoers Taa (Og,) is called a g-topology on A, and the structure Ty 4 e (A, Tg,n)

is called a T4 A-space, on which no separation axioms are assumed unless otherwise
mentioned [8, 7, 27]. The operator clga : P (A) — P (A) carrying each Ty a-set
Sy C Ty a into its closure clga (Sg) = Tga —intga (Tya \ Sg) C Ty a is called a
g-closure operator and the operator intg o : P (A) — P (A) carrying each Ty z-set
Sy C T4 into its interior intg p (Sg) = Tyga — clga (Tg,a \ Sg) C Tga is called a
g-interior operator; for clarity, we will use cly (+), inty (-), respectively, instead of
clg,a (), intg,a ().

Let T4 be a Ty a-space, let Cp : P (A) — P (A) denotes the absolute comple-
ment with respect to the underlying set A C 4, and let S5 C T4 A be any Ty a-set.
The classes

Ta.A = {Og CFga: Of € Ty},

def
(2.1) —Tgn = {/Cg C Tga: Ca (Kyq) € 7;71\},
respectively, denote the classes of all Ty r-open and 7y a-closed sets relative to the
g-topology Tg.a, and the classes

su def
CT;,)A [Ss] = {Og€Tga: Of C Sy},

(2.2) CM2 S {Kg € Tont Ky 28},

respectively, denote the classes of 73 a-open subsets and 7y a-closed supersets (com-
plements of the 74 r-open subsets) of the Ty a-set Sy C Ty o relative to the g-
topology Tg,a. To this end, the g-closure and the g-interior of a T4-set Sy C Ty in
a Tg,a-space [3] define themselves as

(2.3)  intgp (Sy) & U o, clgx (Sy) & N K.

OLECH | [Sq] Ko€CUE | 1S,]

Throughout this work, by clgointg (-), intgocly (+), and clgointgoclg (-), respec-
tively, are meant clg (intg (+)), intg (clg (+)), and clg (intg (clq (+))); other composition
operators are defined similarly. Also, the backslash T4\ Sy refers to the set-theoretic
difference Ty — Sy. The mapping op, : P (A) — P (A) is called a g-operation on
P (A) if the following statements hold:

VSg € P(A)\ {0}, 3(Og,Kqg) € Taa \ {0} x ~Tga \ {0} :
(24)  (opg (0) =0) V (mopy (0) =0), (Sg S opg (Og)) V (Sg 2 —~op, (Kq)),
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where —op, : P (A) = P (A) is called the "complementary g-operation” on P (A)
and, for all Ty-sets Sy, Sy, Sg.u € P (A) \ {(Z)}, the following axioms are satisfied:
AX. 1. (8 Cop, (Og)) V (Sg 2 —op, (Ky)),

AX. 11. (0pg (Sg) C opgoopg (Of)) V (m0pg (Sg) 2 ~opg o—op, (Ky)),
AX. 1L (S © Sgu = 0pg (Og) € 0pg (Ogu)) V (Sgu € Sgw
0Py (Kgu) 2 0Py (’Cgﬂ/»’

AX. 1v. (opg (UU:V’H Sg,(,) - UJ:V’H opg ((’)g,g)) \Y, (ﬁ OpP4 (Ua:u,u Sgﬁ) D
U v m0Pg (Kgo))

for some Ty a-open sets O, Oy, O, € Tga \ {0} and Tg a-closed sets Kq, Kq0,
Ko € Tga [4, 19]. The class L, [Q} =Ly [A] x Ly [Q], where

(25) Lo[A] € {0pg ., () = (0pgy () m0pg, () : () € 19 x 19}

in the 7y a-space Ty a, stands for the class of all possible g-operators and their
complementary g-operators in the 7y a-space Ty a. Its elements are defined as:

opg () € LYA]E {opgo (), opg1 (), 0P ()s 0pgs ()}

= {intg (), clgointy (-), intgocly (-), clgointgocly (1) };

T 0Pg () € E; [A] déf {ﬁOPg,o () y O0Pg.1 () y 7'O0Dg 2 () » 0Dg 3 ()}

(2.6) = {clg(-), intgoclg (-), clgointy (-), intgoclgointy (-)}.

A Ty a-set Sy a C Fgin a Ty a-space is called a g-Tg A-set if and only if there exist
a pair (Og,/Cq) € Tg.a X =Tg,a of Ty a-open and Ty a-closed sets, and a g-operator
op, () € L4 [A] such that the following statement holds:

(27) (3 [(€ € Sp) A ((Sa S 0pg (Og)) V (Sg 2 ~0pg (Ky)))] -

The g-FT4 a-set Sg C Tq.a is said to be of category v if and only if it belongs to the
following class of g-v-Ty a-sets:

g'V'S[SgyA] “ {Sg CTgac: (EOE’ICQaOpg,u ())

(2.8) [(Sg < ODPg.v (Og)) v (Sg 2 7 OPg.v (’Cg))] }

It is called a g-v-%4 p-open set if it satisfies the first property in g-v-S [“Sg, A] and a
g-v-%4 a-closed set if it satisfies the second property in g-v-S [‘Ig, A]. The classes of
g-v-Tg a-open and g-v-Ty a-closed sets, respectively, are defined by

g-0[Tgn] ' {8 CTen: (304,0py., () [Se € 0Dy, (Og)] },
(2.9) g-K [gg,l\] “ {59 C%gac: (E”Cgvopg,u ()) [Sg =2 70Dy, (’Cg)] }
From these classes, the following relation holds:
g-S[Tga] = Uuefg g-v-S[Tg.]

= Uer (g-v-O[%y] U g-v-K[Ty])
= (Uuelg g-v-O[Tga]) U (Uuelg g-v-K[Tya])
(2.10) = g-0[Tga] Ug-K[Tgal.
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By omitting the subscript g in almost all symbols of the above definitions, we obtain
very similar definitions but in a Tj-space.

A Tph-set S C Ty in a Ty-space is called a g-Tp-set if and only if there exists a pair
(0,K) € Ta x =Ty of Ta-open and Ty-closed sets, and an operator op () € L[A]
such that the following statement holds:

(2.11) (F) [ €S A ((SCop(0)) V(S 2-op (k)]

The g-Tr-set S C T, is said to be of category v if and only if it belongs to the
following class of g-v-Ty-sets:

gv-S[Ta] € {Sc T (30,K,0p, ()
(2.12) [(S Cop, (0) V(S 2 -op, (K)]}

It is called a g-v-T-open set if it satisfies the first property in g—u—S[‘IA} and a
g-v-Tp-closed set if it satisfies the second property in g—V—S[‘IA}. The classes of
g-v-Tpr-open and g-v-T-closed sets, respectively, are defined by

gv-0[Ta] = {ScTy: (30,0p, () [S Cop, ()]},

(213) gvK[T)] ¥ {ScTh: (3K,0p, () [S 2 —op, (K)]}.
As in the previous definitions, from these classes, the following relation holds:
o-S[Ta] = Uerov-S[Ta]
= UVEIg (g—l/—o [TA:I U g—V—K I:SA} )
(Uuefg g-v-0 [(IA]) U (UVEI:? g-r-K [‘IA])
(2.14) = ¢-O[TAJ UeK[T,].
The classes O [T4 4] and K [Ty 4] denote the families of Ty y-open and Ty A-closed
sets, respectively, in Ty, with S[T ] = O[Tyl UK [Tga]; the classes O [Th]
and K [%,] denote the families of T-open and ¥-closed sets, respectively, in Ty,
with S[Ta] = O [TA] UK [T4]. (Whenever we feel that the subscript A € {€Q,%, T}
is understood from the context, it will be omitted for clarity.) We are now in a
position to present a carefully chosen set of terms used in the theory of g-Ty-maps
between 7T4-spaces.

A (T, Ts)-map and a (T o, Ty »)-map, respectively, are mappings in the usual
sense between 7T-spaces and Tg-spaces.

DEFINITION 2.1 ((%q, Tx), (Tg,0,%g,x)-Maps). Let Tq = (2, 7o) and Ts, = (3, Ts)
be T-spaces and, let T4 o = (2, Ty.0) and Ty 5 = (2, Tq,5) be Tg-spaces. Then, a
map:

o I. m: % — Ty is called a (Tq, Tx)-map from T, into Ty.
o 1. m: Ty 0 — Ty x is called a (T4 0, %, 5)-map from Ty o into Ty 5.

A g- (%, Tx)-map is a generalization of a (T, Ty)-map and, hence, is a distin-
guished mapping between T-spaces which does not exhibit mapping properties in
the usual sense but does exhibit mapping properties in the generalized sense.

DEFINITION 2.2 (g-v- (Tq,%Tx)-Map). Let T = (2,7q) and Tx = (X, 7x) be T-
spaces, and let op (-) € E[Z]. Then, a map 7y : T — Ty is called a g- (T, Tx)-
map if and only if, for every pair (O, K,) € Ta x =Tq of Ta-open and To-closed
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sets in Tq there corresponds a pair (O,,K,) € Ts; X =Ty, of Ty-open and Tx-closed
sets in Ty, such that the following statement holds:

(2.15) (74 (Ou) € op (O5)] V [mg (Ku) 2 —0p (Ko)].
A g- (T, Tx)-map is said to be of category v if and only if it belongs to the following
class of g-v- (T, Ts)-maps:

g-v-M [To; T] € g (YO, Ku) (304, Kq,0p, (+))

(2.16) [(ﬂ'g (O,) Cop, (Oa)) Vv (ﬂ'g (Kw) 2 —op, (ICU))] }

It is called a g-v- (T, Tx)-open map if it satisfies the first property in g-v-M [Tq; Tx]
and a g-v- (T, Tx)-closed map if it satisfies the second property in g-v-M [Tq; Tx].
The classes of g-v- (T, Tx)-open and g-v- (Tq, Ty )-closed maps, respectively, are
defined by

g-v-Mg [Tq; Ts] dﬁf {wg ( )(EIOmop,, ()) [wg (O,) Cop, (Og)] },

def
(2.17)  g-v-Mg [Ta; Ts] = {7y : (VKu) (IKs,0p, (1)) [7g (Kw) 2 0p, (Ko)] }-
From the class g-v-M [Zq; Tx], consisting of the classes g-v-Mg [Tq; Tx] and
g-v-Mg [Tq; Tx], respectively, of g-v- (Tq, Ts)-open and g-v- (g, Ts)-closed maps,
where v € Ig , there results in the following definition.
DEFINITION 2.3. Let T = (Q,7q) and Ty, = (X, Tx) be T-spaces. If, for each

v e 1, g-v-Mg [Tq;Ts] and g-v-Mg [Tq; Ts|, respectively, denote the classes of
-v- (T, Tx)-open and g-v- (Tq, Ty)-closed maps, then

gM[To;Tx] = Uyery g--M[To; T
= Uyery (6-v-Mo [Ta; Ts] U g-v-My [To; Tx))

= (Userg 8v-Mo [T Ts]) U (U, epg 9-v-Mk [To; Tx))
(2.18) = g-Mg [‘IQ; Ez] Ug-Mg [SQ; Sz} .

As above, the g- (T4,0, T4,x)-map is a generalization of the (T o, Ty »)-map and,
thus, is a distinguished mapping between 7T4-spaces which does not exhibit mapping
properties in the usual sense but does exhibit mapping properties in the generalized
sense.

DEFINITION 2.4 (g-v- (T4.0,%4,x)-Map). Let Tg 0 = (2, Tg0) and Ty x = (X, Tgx)
be Tg-spaces, and let op, () € L, [Z] Then, a map 7y : Ty 0 — Ty x is called a
g- (Tg,0, Tg,x)-map if and only if, for every pair (Og,o, g w) € Tg,0 X 7 Tg,0 of Tg.0-
open and 7Ty o-closed sets in Ty o there corresponds a pair (Oy,,,Ky,0) € Ty s X
—Tg,x of Tgx-open and Tx-closed sets in Ty 5 such that the following statement
holds:

(2.19) [7"9 (Og,w) C opg (0970)] \ [7"9 (Kg,w) 2 0Py (’Cg,o)]-

A g-(Ty.0,%,x)-map is said to be of category v if and only if it belongs to the
following class of g-v- (4,0, Tq4,x)-maps:

g-v-M[Ty0;F def {7"9 (VOWJ, Kg,w) (EIOW,, Kgo Op, . ())
(2.20) [(mq (Og,w) Copg, (Og0)) V (g (Kgw) 2 70Dy, (Kg0))] )
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It is called a g-v- (%40, %y x)-open map if it satisfies the first property in the
class g-v-M [T4.0; %y ] and a g-v- (Ty.0, T4 5)-closed map if it satisfies the sec-
ond property in g-v-M [T, ;T4 n]. The classes of g-v- (T4 0, %4 x)-open maps and
g-v- (Tg,0, Ty, 5 )-closed maps, respectively, are defined by

g-v-Mg [Tg.0; Ton] 2 {g : (VOg.0) (304,004, ()
[75 (Og) € 0Py, (Og0)] ),
g-v-My [Tg.0:Tas] € {7g : (VKL) (3Kgos0py, ()
(2.21) (75 (Kgw) 2 0Py, (Kgo)] }-

From the class g-v-M [T4.0; T4 5], consisting of the classes g-v-Mg [T4.0; % 5]
and g-v-My [Tg.0; Tg 5] of g-v- (T 0, Tg,x)-open and g-v- (T4 0, Ty 5)-closed maps,
where v € Ig , respectively, there results in the following definition.

DEFINITION 2.5. Let T30 = (2, Tg,0) and Ty = (X, 7Tg,xn) be Tg-spaces. If, for

each v € I, g-v-Mg [T4.0;Tg,5] and g-v-Mg [Tq.0;T4,5], respectively, denote the
classes of g-v- (T4,0, T4 5n)-open and g-v- (4.0, Ty 5)-closed maps, then

M [Tg0; T n] = Uyefg g-v-M [T 0; g 5]
= Uuelg (E‘V‘Mo [Tg.0; Fg,m] U g-v-Myg [Tg0; TQ,E])

= (Uuezg g-v-Mo [Tg.0: Tgx]) U (Uuelg g-v-Mg [Tg.0; Tgx])
(2.22) = g-MO [‘IQ; ‘3972} U g'MK [TQ,Q; ‘Ig’g] .

DEFINITION 2.6 (g-v- (%4,0,Tg,n)-Continuous). Let Tgo = (2, 7g0) and Ty =
(3, Tg,x) be Tg-spaces, and let op, (-) € Lg[©]. Then, a map 74 : Tgo — Tg.x
is said to be g- (T4,0, Ty, x)-continuous if and only if, for every pair (Og »,Ky,0) €
Tgx X =Ty s of Tgx-open and Tx-closed sets in Ty s there corresponds a pair
(Ogw, Kgw) € Tga x = Tg.0 of Ty a-open and Ty o-closed sets in Ty o such that the
following statement holds:

(2.23) [7‘(‘;1 (Og,0) € 0pg (Og,w)] V [ﬂ'g_l (Kg,0) 2 ~0p, (Kg,w)}.

A g- (T4,0,Ty,5n)-continuous map is said to be of category v if and only if it belongs

to the following class of g-v- (T4 0, T4 5)-continuous maps:
g-v-C [Ig ;% def {Wg : (VOQ cn’Cg o) (309 ws Kg, waopgu('))
(2.24) [(Wg_l (Og,o) C opg,, ) ( Ky, s) 2 T 0DPg (Icg,w))] }

DEFINITION 2.7. Let T30 = (Q,EA’)) and Tys = (X,7Tyxn) be Tg-spaces. If,
for each v € IY, g-v-C [T4.0; T4.5] denotes the class of g-v- (Ty 0, Ty x)-continuous
maps, then

(2:25) 8-ClTg0; Tz = Uyejg g-v-C[Tg.0; Tz
DEFINITION 2.8 (g-v- (Tg4,0, T 5)-Irresolute). Let Ty o = (2,75,0) and Tyx =
(2, Tg2) be Tg-spaces, and let op, (-) € Ly []. Then, a map 7y : Tgo — Ty

is said to be g- (T4,0, T4 x)-irresolute if and only if, for every pair (Og,,,Kq,) €
Tax X Ty of Tgs-open and Ts-closed sets in Ty there corresponds a pair
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(Og,u: Kgw) € Tg,0 X = Tg,0 of Tga-open and Ty o-closed sets in Ty o such that the
following statement holds:

(75" (0P (Og,0)) € 0pg (Og)] V [ (m0pg (Kgo)) 2 20Dy (Kgw)]-
(2.26)
A g- (%40, 5)-irresolute map is said to be of category v if and only if it belongs
to the following class of g-v- (T4 0, Tq,x)-irresolute maps:

g1 [Tg.0:Fas] = a1 (VOg0,Ko) (30g .0, Ko 0P, (1))

)
[(Wg_l (Opg,u (OQ,U)) C opg,, (Og,w)) N (Wg_l (_‘ OPg,v (Kg,a)) 2

(2.27) —opg, (Kgw))]}-

DEFINITION 2.9. Let Ty 0 = (2, 75,0) and Ty = (X, 7Tg,n) be Tg-spaces. If, for
each v € I, g-v-1[Ty 0; Ty 5] denotes the class of g-v- (T4 0, Ty n)-irresolute maps,
then

(2.28) g-1[Tg0;Fg 5] = Uyejg g-v-1[Tg0:Fg5]
DEFINITION 2.10. Let T30 = (2, Tg,0) and Ty 5 = (X, Ty,x) be Tg-spaces and, let
Ta =(9,7q) and Ts, = (X, T) be T-spaces.
e I. The classes Mg [Tq;Tx] and Mk [To;Tx] denote the families of -
open and T-closed maps, respectively, from Tg, into Ty, with M [Tq; Tx] =
Mo [Tq; Tx] UMk [Ta: Ts).
e 1I. The classes Mg [T4,0;T4,n] and Mk [T4.0; %, 5] denote the families

of T4-open and Ty-closed maps, respectively, from T4 o into Ty x, with
M[Tg,0;Tgx] = Mo [Tg,0; Tg,5] U Mk [Tg,0; Ty x]-

The following sections present the main results of the theory of g-T4-maps.

2.2. MAIN REsuLTS. The purpose of the following lines is to explore properties
and characterizations of g- (T4.0; %y x)-maps 7y : Tgo — T4 belonging to the
class g-M [T 0; Tg.5]-

THEOREM 2.11. Ifmy: Tg0 = Ty 5 is a (Tg.0, Ty x)-open or a (Tg.0, Ty x)-closed
map, then
(2.29) Ty € g-Mg [QQ; ggvg] U g-Mg [fg@; {3:972] .
PROOF. Let g : Ty o0 — Ty x bea (Tg,0, Ty x)-map. Then, for every (Og o, Ky.u) €
Ta.0 X Ty there exists (Oy,,Kg,s) € Ty, 5 X 7Ty x such that

[779 (Ogw) € 0970] v [Wg (Kgw) 2 K&w]-
But, Oy, C opy (Og,») and Ky, 2 m0p, (Kg ). Consequently,

[7"9 (Ogw) C ODg (Og,a)] \ [7"9 (Kgw) 2 T 0Dg (’Cg,a)]-
Hence, mg € g-Mg [Tq; T 2] U g-Mg [Tg4.0; Tq.5]- Q.E.D.

The converse of THM. 2.11 is clearly false, because the statement "7y : €5 o —
Tyx is a (Tg0,%Fgn)-map and 7y : Tyo — Ty 5 is not a g- (Tg,0,Te,n)-map” is
untrue. The following theorem states that, the image of a g-Ty-set in a Tg-space
Tg,0 is a g-T4-set in a Tg-space Ty x if and only if the map 7y : Tgo — Ty x is a
g- (Tg,0,Fy,x)-map.
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THEOREM 2.12. A necessary and sufficient condition for mq : Tg.0 — Ty x to be a
g- (4,0, %y, n)-map is that, for every (Og.w,Kqw) € Tg.0 X 7 Tg.0,
[WQ (Opg (OQM)) € opg (g (Og,w))] N [779 (_‘ 0Py (’Cg,w)) 2
(2.30) —0pg (g (Kgw))]-

PROOF. Necessity. Let my € g-M [Ty 0; Ty x]. Then for (Og, Kgw) € Tg.0 X Ty
there corresponds (O, Ky,») € Tg,x X =Ty,x such that

[7"9 (Ogw) C ODg (Og,a)] \ [7"9 (Kgw) 2 T 0Dg (’Cg,a)]-
Because [Og., C opg (Ogw)| V [Kgw 2 —0pg (Kg.w)], it consequently follows that,
[ (0P (Og.)) € 0Pg 0 0Py (Og.0)] V [g(—0pg (Kyg.))
D —op, 0 op, (Kg.0)]-
But, since

OPg4 © 0Py (Ogvg) C ODPyg (71—9 (OQ,UJ)) y 10Pg 010Dy (ICEJ) 2 70Dy (ﬂ-g (ICE#U)) )
the proof at once follows.
Sufficiency. For every (Og.,Kqw) € Tg,0 X = Tg,0, let

g (opg (Ogw)) C opg (g (Og))] V [mg (= ODPg (Kgw)) 2
—0pg (g (Kg.w))]-
Then,
[WQ (Ogw) C g (Opg (Og,w)) C op, (7g (Ogw)) € ODPg (Og,o)]
V[Wg (Kgw) 2 mg (ﬁ OpPq (Icg,w)) =2 0P, (7g (Kgw)) 2 0Dy (Og,a>]=

because, Og,, C op, (Ogw); Kgw 2 —0p,y (Kgw), Tg (Ogw) C opPg (Og,0), and
Ty (Kgw) 2 m0pg (Kg,0). Therefore,

[Wg (Ogw) € OPg (Og,a)] v [Wg (Kgw) 2 0Py (Og,a)]~
Thus, 74 € g-M [T 0; Ty,x], which completes the proof. Q.E.D.

THEOREM 2.13. If my o € g-M [T4.0;Fgn] and mg 3 € g-M [Ty 503 % 1], then mg 50
Taa € 8-M[Tg0; T v].

PROOF. Let mg o € g-M[T5.0: Ty 5] and mg 3 € g-M [Ty 5; %, v]. Then, for every
(Ogw, Kgw) € Tga X = Tg.0 there exists (Og,0,Kg,0) € Tgx X =Tg,x and, for every
(04,6, Kq,0) € Tg,z X =Ty 5 there exists (Og.v,Kq,v) € Ty, x X =7Tg,v such that

[”g,a (Ogw) C opyg (0970)} v [Wg,a (Kgw) 2 mopg (’Cg,o)]v
[”gﬂ (Og,0) 0Py (Og,v)] v [Wg,ﬁ (Kgo) 2 70Dy (Kg,v)]'

From the first line, aided with the second, the logical statement preceding V becomes
Tga (Ogw) C OPg (Og,0)

Tg,8° Tga (Ogw) S Tgp (Opg (Og,a)) C opy (Wg,ﬂ (Og,a)) C opy (Og,v)v
and, that following V becomes

Tga (Kgw) 2 0Py (Kg,0)

Tg,6 0 Tga (Kgw) 2 mgp (ﬁ ODg (’Cg,a)) =2 10pg (779,5 (Kg,o)) 2 0Py (’Cg,v)-
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Thus, 743 0 Tg,a € g-M [Tg,0; Tg,v], which proves the theorem. Q.E.D.

THEOREM 2.14. Let g o : Tg0 = Tz be a (Tg,0,%yx)-map and let mgp: Ty 5 —
Tax be a (T, Tqgv)-map. Then:

o I Tga € 9-M[Tg0;%, x| implies mg 30750 € ¢-M[Tg 03 Tgv]-

o II. Ty € g-M [Ty 5; Ty v] implies mg 30Ty o € -M[Tg.0; Ty 1]

PROOF. 1. Let mg o be a (Tg,0,%yx)-map and 7y 3 a (T4 5, Ty v)-map. Then, for
every (Ogw,Kgw) € Tga X =Ty, there exists (Og,0,Kg,0) € Tgx X = 7Tgx and,
for every (Og.0, Kg,0) € Tg,x X =Ty 5, there exists (Og v, Kg0) € Tgxr X =Ty such
that

[Wg,a (Ogw) C Og,o] v [Wg,u (Kgw) 2 ’Cg,a]v
[779,[3 (Og,0) € Og,v] v [Wgﬁ (Kgo) 2 Kg,v]

The logical statements expressing the relations 7y € g-M [T4,0; %y x] and 75 €
g-M [T, 5; Ty 7] are, respectively,

[Tga (Ogw) C0pg(Og0)] vV [Tga (Kgw) 2 700y (Kgo)],
(9.8 (Og.0) C 0Pg(Ogv)] V' [ma5(Kgo) 2 =0y (Kgw)]-
Therefore, if only the relation 7y o € g-M [T 0; T4 5] holds, then
[Wgﬁ 0 Tg,a (Ogw) C g5 (Opg (09,0))} v [779,/3 0 Tga (Kgw)
2 7g.5(m0pg (Kg.0))]
= [M4.6 0 Tga (Ogw) € 0Py (14,8(Og,0))] V [Mg,5 0 Tga (Kg )
2 —0pg (7a,6(Kao))]

= [7"376 0 Tga (Ogw) C ODyg (Og,v))] v [Wgﬁ 0 Tga (Kgw) 2 0Py (Kg,v)]v

and, hence, my 307y o € g-M[Tg.0; %y 1]
11. If only the relation 7y 3 € g-M [T 5; T4 v| holds, then

[Wgﬁ 0 Tga (Ogw) C 7y, (0970)] v [7"97/3 0 Tg0 (Kgw) 2 74,8 (’Cg,o)]
= [7"376 0 Tg,a (Ogw) C 0Py (Og,v))] v [Wgﬁ 0 Tg.a (Kgw) 2 —0p, (Kg,v)]v
and, hence, mg 307y o € g-M [Tg.0; %y 1] Q.E.D.
PROPOSITION 2.15. Let mg o € g-M [T4.0: Ty 5] and mg 5 € g-M [Ty 5; Tg.0], satis-
fying
[779,5 0mga (Ogw) C ODPg (Og,w)} v [Wg,ﬁ O Tg,a (’Cg,w) 2 0P, (’Cg,w)]a

(2.31) [779,04 omg5(0g0) C OpPq (Og’a)] \ [Wg,a oy (Kgo) 2 0Py (’Cg,a)}y

respectively. Then, there exist inverse maps W;a € g-M[%y0; %y 5] and 77;; €

1 —1

-M [T 5 Tg,0] such that 75 =75 o and mg0 =7, 4

PrOOF. It is clear that, Oy, C opy(Og,) or Kg, 2 opy (Kg,) for every p €
{w,o}. But, mg.0 € g-M[Tg.0;Tgx] or mg 5 € g-M [T 5; Tg 0] satisfy

[779,/3 0mga (Ogw) C 0Py (Og,w)} v [779,/3 0 mga (Kgw) 2 0Py (’Cg,w)]v

[Tg.0© 7g.8 (Og.0) € 0Py (Og.0)] V [Tg.a © g5 (Kg.o) 2 m0pg (Kgo)]-
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Hence, there exist 7,/ € g-M[T4.0;%, 5] and 77;113 € g-M [Ty n;T4.0] such that

L and Tga = 71';}3. This proves the proposition. Q.E.D.

Tg,p = Ty,

THEOREM 2.16. Let mg € g-M [Ty 0; %y x]. Given any Ty s-set Sg C Ty s and any
pair (Og.w, Kg.w) € Tga X = Tga of Tga-open and Ty o-closed sets satisfying
(2.32) [7;1 (Sg) C opy (ng)] \ [71';1 (Sg) =2 T0pg (me)]v
then:
o 1. my € g-My [Tq; Ty 5] implies the existence of a Ty x-open set Oy » O Sy
such that m;' (Og.5) € 0pg (Og )
o II. my € g-Mg [Tq; Ty, 5] implies the existence of a Ty x-closed set g » O Sy
such that 75" (Kg.6) 2 mopg (Kgw)-
PROOF. 1. Let Oy = ¥ — 7y (2 — op, (Og.,)). Then, since Ty (Sg) € opg (Og )
and 7y € g-Mg [T4,0;%g,x], there exists a Ty x-open set Oy, € Ty 5 such that
04,0 2 Sy. But, since

7rg_1 (Og0) = Q- 7rg_1 oMy (Q — opg (Ogyw))

- Q- (Q - Opg (Og,w)) = Opg (Og,w) ’
the proof of 1. follows.
1. Let Kg o = ¥ =7y (2 ——0p, (Kg.w)). Then, because 7, (Sq) 2 ~op, (Kg.w)
and Ty € g-Mg [Tg.0; %, n], there exists a Ty xn-closed Ky, € =Ty 5 such that
Kg,o 2 Sg. But, since

%—1 (Kg,0)

Q—mytomg (2 — —opg (Kgw))
Q— (2= —op, (Kgw)) = —0pg (Kgw),

the proof of 11. follows. Q.E.D.

U

We next investigate further properties and give characterizations of those ele-
ments which belong to the class g-C [T ;%4 5]

THEOREM 2.17. If gy : Tg0 — Ty is a (Ty.0,%,,5)-continuous map, then my €
8-C[Tg.0:Fgn]-

PrOOF. If 7y : Tyo — Tyxn is a (Tg,0,%y,x)-continuous map, then, for every
(Og,0:Kg,0) € Tz X =Ty, there exists (Og w, Kgw) € Tg.a X =Ty, such that

(75" (Og,0) € Ogu] V [75" (Kgo) 2 Kg]-
But, for every (O, Kgw) € Tg,0 X 7 Tg.0,

[Og’w g Opg (Og’w)] \ [’Cg’w :—) ﬁOpg (Icguw):l7
and, consequently,

[%71 (Og,0) C ODPyg (Ogyw)] v [%71 (Kg,o) 2 0Py (Kg,w)]

Hence, 7y € g-C [T4.0; T4 5] Q.E.D.
THEOREM 2.18. If gy : Tyo — Tgwn is a (T4,0,%4x)-map satisfying, for every
(0.0, Kg.0) € Ton X T3,

[75 " (Og.0) S 0pg (75" (Og.0))] V [ (Kgo) 2 =0pg (5" (Ky.0))],
then g € g-C[Tq,0; %5
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ProOF. For every (Og,5,Kq,5) € Ty, 5 X =Tg 5, it is evident that

[09,0 C opg (Og,a)] v [’Cg,o’ = 0Py (’Cg,o)]
= [7 " (Og.0) S 75 (0P (Og0))] V [m5 " (Kg.o) 2 75" (m0pg (Kg.o))]
= [Wg_l (Og.0) S 0pg (Wg_l (09,0))] v [Wg_l (Kg,0) 2 m0pg (7Tg_1 (’Cg,a))]~

Hence, there exists (Ogw, Kgw) € Tga X ~Tgq such that 7' (Og5) C Oy, and

Tyt (Kgo) 2 Kgw. Consequently, my € g-C [T 0; Tg,x], which completes the proof.
Q.E.D.

DEFINITION 2.19 ((¥g4.0; %4 x)-Bijective Map). A (T4.0,%yx)-map 75 : Ty —
Tg,x is said to be bijective if and only if it belongs the following class:

ef
(2.33) g-B[Tg0;Tgs] =

{mg: (¥¢ € Tyx) (€ € Tg) [mg (6) = (]}
THEOREM 2.20. If 7y € g-B [Ty 0; %4 5], then
(2.34) Ty € F-M[Tg0:Tgn] & 7' € g-ClTyn;Tq0l.

PROOF. Necessity. Let 779_1 € g-C[%Ty5;%g,0]. Then

(73 )™ (Ogi) C 0pg (O 0)] V [(73 ") (Kg) 2 —0py (Kgo)]-

But 7y € g-B[T40; %] implies (77;1)_1 (Sg) = 7y (Sq) for every S; € Tga U
—Tg,0. Consequently,

[Wg (Ogw) € ODg (Og,o)] v [Wg (Kgw) 2 7 0DPg (’Cg,o)]~

Hence, g € g-M [T 0;Fg 5]
Sufficiency. Let mg € g-M [T4 ;% x]. Then,

[7"9 (Ogw) C ODg (OQ,O)] \ [7"9 (Kgw) 2 T 0Dg (’Cg,o)]-

But 7y (Sg) = (7‘('9_1)_1 (Sg) for every Sy € TgaU~Tg.q, since 1y € g-B [T 0; Tg 5.

Consequently,
[(Wg_l)il (Ogw) € OPg (Og,d)] \ [(%_1)71 (Kgw) 2 0Dy (’Cg,a)]-
Thus, 7, ' € g-C [T 5; Tg.0- Q.E.D.

THEOREM 2.21. If mg o € 9-C[Ty0; %y 5] and my 3 € g-C [Ty 5;Tg,v], then mg 50
Tg,a € g-C [Sg’Q;Tg"r].

PROOF. Let mg € g-C[T50; %] and mg3 € g-C[Tyx;Tgv]. Then 7 €
g-M [T 5;Tg,0] and W;é € g-C T4 v; Ty,n], implying

(M0 (Og,0) S opg (Ogw)] V. [mgea (Kgo) 2 ~opg (Kgw)],
[W;}a (Og,0) € OPg (Og,a)] v [W;é (Kgw) 2 T 0Pg (’Cg,a)]»
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respectively. Combining both logical statements, there follows that
[T (Og.0) € 0Dg (Og0)] V [y s (Kg.0) 2 ~0pg (Kg.o)]

= ryhongh (On.) € mghomy (Op)] ¥ g 075 (Ko
= [Tge 0 g5 (Og.) € 0y (750 (Og.0))]

= [W;}x © W;}a (Og,v) C opg (Og,w)] \ [77;,31 © 779_,}3 (’Cg,v) 2 T0pg (Kg,w)]-

Since 7 L o 7‘(';23 (Sg) = (Tgp0mga) ' (Sy) for every Sy € Tyxr U =Ty, there

g,

follows that mg 3 0 g« € g-C [T4,0; Ty, v], which was to be proved. Q.E.D.

THEOREM 2.22. Let my o : Tg0 = Ty be a (Tg0:Tg5n)-map and, let the col-
lection {<09’O‘>a61* 1 C op, (UaeI;Ogya)} and the collection {<IC9’O‘>0461;‘L :
2 C —op, (Uae[*/&g,a)}, respectively, be g-Tg-open and g-Ty-closed coverings of
2, where <Og’“>;€h’i
sets and Tq-closed sets. If, for every a € I}, mg 019 € g-C [Ty 0; Ty 5], where
tga t Oga = Tga 0rtga: Oga — Tga, then mg € g-C [Ty 0; %y 5]

and <’C9=U‘>ael,§’ respectively, denote sequences of Tg-open

PROOF. For every o € I}, let mg 0 150 € g-C[Ty0;%g5n]. Then, for every pair
(Og.o@): Kgo(@) € Tas x =Tyx, there exists (Oguw(a) Kgwia)) € Taa x "Tgo
such that

(T 0 15.0) ™" (Ogo(e)) € 0Pg (Cgaute)] V [(75 0 15.0) ™ (Kga(a))
2 ~opg (Kg )]
= [User: (M0 t5.0) " (Ogo@) S Uner: oPg (Og ()]
V[Uaef; (mg 0 Lgaa)_l (Kgo(a)) 2 Uaer: 7 0pg (Kow)]
= [Uael,; (Mg 2 tg.0) " (Ogo(a) € OPg (UaeI; Og )]
\/[UaeI;; (Mg 0 tga) (Ko@) 2 _'Opg(Uael;;ICg,W(a))]'

Since the following relations hold
_ -1
Ty '(Ogota) = Uael; (g0 tg,a) " (Ogo(a)) -
- -1
Ty ' Kgo) = UaEI; (g0 tg.0)" (Kgo(a)) s
the proof of the theorem follows. Q.E.D.

Henceforth, we investigate some properties and give some characterizations of
g- (4,0, Tg,n)-irresolute maps.

THEOREM 2.23. A (T4,0,%Tgn)-map 1y : Tga — Tg.x 05 a g- (Tg.0, Ty x)-irresolute
map if and only if, for every (Og,o,Kg.0) € Ty 5o X =Ty 5,

[ng(Opg (Og,0)) € OPy (ﬂgl (0g,0))] v [ng(ﬁ OPy (Kg0)) 2
(2.35) ~opg (g (Kg.0))]-


http://dx.doi.org/10.20944/preprints201806.0169.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2018 d0i:10.20944/preprints201806.0169.v1

THEORY OF g-T4-MAPS 13
PROOF. Necessity. Let mq € g-1[Tg0;%Tgx]. Then, there exists (Og, Kgw) €
Tg.0 % =Tg,0 such that, for every (Og.,Kg.0) € Tgx X 7 Tg 5,
[W_l(opg (O )) - ODPyg (Og,w)] \ [77'9_1(ﬁ ODyg (’Cg,a)) ) 70Dy (K:g,w)]-

But since 7 (opg (Ogyg)) - 7r;1 (Oq,») and ﬂgl(—' opy (ICB,J)) D w;l (Kg,0)s it
follows that

(15 ! (0pg (Og,0)) C 0pg (75" (Og,0))] V [15 " (m0pg (Kg,0)) 2

—opy (71';1 (ICE,U))].

Sufficiency. Let my : Tyo — Ty x be a (T4, %y xn)-map satisfying, for every
(Og,0:Kg0) € Tz X =Ty,

(75" (0P (Og.0)) S 0pg (5" (Og.0))] V [m5 " (7 0Dy (Kg.o)) 2
—opg (1! (Kg,0))]-
But, ng(opg ((’)g,g)) - 77;1 (Og,0) and 7Tg_1(ﬂ op, (ICgJ)) D ng (Kg,6). There-

fore, there exists (Og.u,Kq.w) € Tgo X ~Tga such that 7, (Og,) € opg (Og.w)
and ;! (Kq,0) 2 =0py (Kg.). Consequently,

[779_1 (opg (0970)) C opy (Og,wﬂ N [Wg_l (ﬁ 0Dy (’Cg,o)) 2 0P, (’Cg,w)]
Thus, 74 € g-1[%g.0; Ty x|, which completes the proof. Q.E.D.

THEOREM 2.24. A g-(%430,%Fgx)-map mg @ Tygao — Tgxn is a g-(Tg,0,Tg5)-
irresolute map if and only if, for every (Og.u,Kq,) € Tg.0 X = Tg,0,

[WE (opg (Og,w)) :—) Opg (ﬂ-g (ng)ﬂ \ [Wg (_‘ Opg (Icg,w)) g
(2.36) 0Py (g (ICEM))]'

PROOF. Necessity. Let mg € ¢-1[Tg.0;%gx]. Then, there exists (Ogu,Kgw) €
Tg.0 X =Tg.0 such that, for every (O, G,IC c,) € Tgx X 7Ty,

g9,
(75 (0pg (Og.0)) € 0pg (Ogw)] V [75 ' (m0pg (Kg.0)) 2 —0pg (Kgw)]
= [mg(0pg (Ogw)) 2 0pg (Og.0)] V [mg(m0pg (Kgw)) € —0pg (Kgo)]-

But since op, (Og,5) 2 4 (opg (Og,w)) and —op, (Kg0) C Wg(ﬂ Op, (ICM,)), it
follows that

[ﬂ—g (opg (Og,w)) :—) Opg (Wg (ng)ﬂ \ [Wg (_' Opg (Icg,w)) g

0Py (Wg (Kg,w))] .

Sufficiency. Let mq : Tg.0 — Tg.n be a g- (T4.0, Ty,x)-map satisfying, for every
(Og.w,Kgw) € Tga x ~Tgq,

[779 (Opg (ng)) 2 0pg (g (Og,w))} v [779 (_‘ 0Py (’Cg,w)) -

0Dy (7g (ICQM))] .
Then,

[71';1 (Opg (Wg (Og,w))) - ODPyg (Og,w)] \ [7Tg_1 (_‘ ODPyg (Wg (’Cg,w))) 2
0Dy (ICQW)].
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But, 7y € g-M [T 0; T4 5] equivalently implies the existence of (Og o, Kg,5) € Tg,x X
—Tg.x such that, for every (Og w, Kg.u) € Tg0 X Tg.0, 0Py (7 (Og.w)) € 0pg (Og.0)
or mopg (mg (Kgw)) 2 mopg (Ky,»). Consequently,

[779_1 (Opg (Og,0)) € OPg (Ogw)] v [779_1 (- OPg (Kgr)) 2 OPg (Kgw)]-
Thus, 74 € g-1[%Tg.0; Ty x|, which completes the proof. Q.E.D.
THEOREM 2.25. Let mg : Ty 0 — Ty be a (Ty.0,%q5)-map. Then,
(2.37) g € g-M [T5.0; T 2] Ng-ClT0:FTgx] = 19 € 0-1[Tg.0:Fg5] -
PROOF. Let my € g-M [T 0;%y 5] N g-C[Tg0;%,x]. Then, there exists a pair
(Og,u: Kgw) € Tg,0 X = Tg,q such that, for every (Oy 5, Ky,0) € Tgx X 7 Tg.5,

[7"9 (Ogw) C ODg (Og,a)] \ [779 (Kgw) 2 0Py (Og,o)]a

and there exists (Og.,Kg,0) € Tgx X —Tg,5 such that, for every (O ., Kqw) €
Toa x ~Tg0,

[Wg_l (Og,0) C ODPy (Og,w)] v [Wg_l (Kg,o) 2 T 0Dg (’Cg,w)]
From the first statement, there follows that
[0 € 75" (0Pg (Og.0))] V [Kaw 2 75t (7 0pg (Kayo))]-
But,
(73" (P4 (Og.0)) € 0Py (g (Og.0))] V [ (m0pg (Kgyo)) 2
~opg (g " (Ke.o)) i
and, from the second statement, there follows that
[Opg (7;1 (0910)) C opy (Og,w)] v [_' OPyg (”;1 (’Cg,a)) 2 =0pg (Ogw) -
From these last two logical statements, it consequently follows that
[779_1 (Opg (0970)) C opg (OEM)] v [779_1 (_‘ OPg (KEW)) 2 70Dy (ngw)]v
and, hence, 7y € g-1[Tg 0; Ty x|, which completes the proof. Q.E.D.

THEOREM 2.26. If g-C[T,0;%y x| and g-1[%4.0;%y 5], respectively, denote the
classes of g- (g0, Ty,n)-continuous and g- (4.0, Ty 5)-irresolute maps, then
(2.38) g-C[Tg.0; %3] 2 0-1[T50: Ty 5] -

PROOF. Let my € g-I1[%40;%yx]. Then, there exists (Og,0,Kg,0) € Tgx X 7 Tgx
such that, for every (Og.w,Kqw) € Tg.0 X 7 Tg.0,

[ﬂ-g_l (Opg (Og,a>) - ODPy (Og,w)] V [779_1 (ﬁ ODPyg (K:g,cr)) 2~ ODyg (K:g,w)]-
But, my € g-1[%4.0; % 5] is equivalent to
[7g ' (0P (Og.0)) € 0Py (g ' (Og.0))] V [ ' (m0pg (Kgyo)) 2

and, opy (151 (Og,5)) € 0py (Og.w) and —op,(my ! (Kg.s)) 2 —0pg (Kg). Conse-
quently, g € g-1[T; 0; Ty x| implies

[”;1 (Og,0) € ODPyg (Og,w)] v [W;1 (Kg,o) 2 0Py (’Cg,w)}v
and, hence, 7y € g-C [T4.0; Ty ], which completes the proof. Q.E.D.
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THEOREM 2.27. If my o € 9-1[Tg0;F, 5] and g € g-1[Tg5;Tq 1], then mg 0
Tga € 0-1[Tg.0: Tg 1]

PROOF. Let g0 € g-1[T5.0;%yx] and 73 € g-1[%y5;Fg,v]. Then, for every
(Og,0,Kg0) € Tgx X =Tg,x there exists (Og,0,Kg,0) € Tgx X =Tg,5 and for every
(Og,0,Kg,0) € Tgxo X = Tg 5 there exists (O, Kgw) € Tg,a X 7Tg,0 such that

[W;é (0P (Og,0)) € 0pg (Og0)] Vv =0pg (Kg,w)) 2 0pg (Kg,0)],

[W;;}l (Opg (Ogﬂ)) < opg (Ogaw)] Vv T 0Py ) 2 —op, (Ky, )]7

respectively. Consequently,
[k 0y k(0D (Og.0)) € 73k (0 (Og.0)]
V[mga 0 mg 5(m0pg (Kgw)) 2 g0 (00 (Kgo))]
= [myhom;}(opg (Og)) C opy (Og)]
V[rgh omy k(2 0pg (Kgw)) 2 ~0pg (Kguw)]-

_ _ -1
But 7,7}, o 7Tg7;§ = (mgp0mga) . Hence, mygomga € g-1[%g.0;Fg 1) Q.E.D.

—1
T,

—1

(e}

7T

g,

We generalize the notion of (T4 0, %y x)-homeomorphism in a natural way and
then investigate some properties and give some characterizations of such general-
ization on this basis.

DEFINITION 2.28. Two Tg-spaces Tg.o = (2, Tg,0) and Ty 5 = (X, Ty,x) are called
"g- (4,0, Tg,5)-homeomorphic,” written Ty o = Ty, if and only if

(37‘('9 S g—B [‘:97(2; ‘Ig,z;]) [(71'9 S g—C [TQ’Q; ‘Ig’g]) N (71';1 S g-C [gg,g; ‘ZQ’Q])].
(2.39)
The map 7y : Tg0 — Ty x is called a "g- (T4 0, Ty n)-homeomorphism,” written
Ty : Tg,0 = %45, and belongs to the following class:

dcf

(2.40) g-Hom [Sg ;% {7Tg B P PR o= Tg’z}.
THEOREM 2.29. Ifmy: Ty — ‘3:972 is o (Tg,0,%y,x)-homeomorphism, then it is a
g- (Tq,0, Ty, 5)-homeomorphism: g € g-Hom [T o; Ty 5]

PROOF. Let my : Ty.0 — Ty» be a (Ty.0, Ty x)-homeomorphism. Then, for every
(Og,0,Kg,0) € Tgx X = Tgx there exists (Ogw,Kg.w) € Tgo X 7740 and for every
(Ogw, Kgw) € Tga X =Tg,0 there exists (Og,5,Kg,0) € Ty, X =Tg,x such that

(75" (Og.0) € Ogu] V13" (Kgo) 2 Kg],
[779 (Ogw) C Og,o] v [7"9 (Kgw) 2 Kg,a]:

respectively. But, [(99’,, C opg ((’)g,y)] Vv [ICg,l, D —opg (ng,l,)] for every v € {w, 0}.
Consequently,

[ (Og,0) S 0Py (Ogw)] V 15" (Kgo) 2 —0pg (Kgw)],

[779 (Ogw) C Oopy (Og,o)] v [7"9 (Kgw) 2 T0Pg (ng,U)].

Therefore, 7y € g-C[%T4,0;%,,x] and 71';1 € g-C [Ty 5n; Ty,0l; thus, it follows that
g € g-Hom [T 0; Ty 5] Q.E.D.
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THEOREM 2.30. If 1o € g-Hom [T4.0; %y 5] and my 3 € g-Hom [Ty 55T, ], then
g8 © Moo € g-Hom [Tg 0;Tq x].

PROOF. Let 7y, € g-Hom [T, ;T4 ] and 7y 3 € g-Hom [Ty 5; Ty v]. Then, there
exists exactly one £ € Ty o such that, for all { € Ty 5, 7.« (§) = ¢ and, there exists
exactly one ( € T, 5 such that, for all n € Ty v, 7mg,3(¢) = 1. Therefore there
exists exactly one £ € Ty o such that, for all n € Ty v, 75,8 0 Tg.o (§) = 1; hence,
Tg,8 © Tg,a € -B[Tg,0; %y r]. On the one hand, 7y, € g-C[Ty.0; Ty ] and 7y 5 €
9-C[Ty,x; Ty, v] implies mg g0y o € 9-C[Tg,0; Tq,v] and, on the other hand, 7/, €
9-C[Ty0; Tg0) and 7, 5 € 0-C[T1; Tyx] implies 75y o7, 5 € ¢-C[Tq1; Tq.0)-
But, W;a o 71';7; = (mg,30 Wg,a)fl. Hence, 7y 3 0 mg,o € g-Hom [Ty o; Ty v], which
proves the theorem. Q.E.D.

THEOREM 2.31. If my € g-Hom [T, ;T 5], then, for every (Og.o,Kg0) € Tgx X
_‘7-9,2;

[ng (0pg (Og.0)) = 0pg (75" (Og0))] V [Tgl (mopg (Kg.0))
(2.41) = —op, (7rg_1 (Kg.0))]-
PROOF. Let 7y € g-Hom [Ty 0; Ty x| Then, 7y € g-B [T4.0; Ty »] and
(7Tg € g-C [Sg,g;fg’g]) A (7Tg_1 € g-C [Tg’z;fg,g]).
Consequently,
g € 0-M[Tg0; Ty x| Ng-ClT50:;%Fyx] = 79 €01[Tg0:%x],
mo € M[Tyn; Tpal Ne-ClTym;Teal = 7' €0 1[Tem; Taal.

But, 74 € g-1[%4 0; Ty n] and ;' € g-1[Ty 5; Tq.0] are equivalent to

(5" (0Pg (On.)) S 0Py (75" (On))] V [mg (- 0Py (Kgo)) 2
—opg (5" (Kg.0))].
[ (0P (Oa.0)) 2 0P (75" (Og.0)) ] V [ ' (—0py (Ko0)) <
~op (5t (Kgo)) ],
respectively. Hence, equality holds. Q.E.D.

COROLLARY 2.32. Ifmy € g-Hom [Ty 0; Ty 5|, then, for every (Og ., Kgw) € Tg0 X
_‘7—9,97

[779 (Opg (OEW)) = 0Py (779 (ng))] Vv [WE (ﬁ OPg (ICQM))
(2.42) = —0p, (7rg (’ng))]'

THEOREM 2.33. A g-(Ty.0,%,.5)-homeomorphism is an equivalence relation be-
tween Tq-spaces.

PRrROOF. Reflexivity. The identity map idg : T50 — %40 is a bicontinuous bi-
jection. Therefore, it is a g- (4.0, Tq x)-homeomorphism idg : Ty 0 = Ty o and,
hence, idy (-) € g-Hom [T 0; Tg.0l.

Symmetry. Let my € g-Hom [T4.0; %y x]. Then, the map 7rg’1 Ty = Tg0
is a g- (Tg,0, Tg,n)-homeomorphism 7! : Ty 5 = Ty o and, thus, it follows that
71';1 € g-Hom [T, 5: %4 o
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Transitivity. The proof follows from 7y, € g-Hom[Tg0;Tyx] and 7y 5 €
g-Hom [Ty 5; Ty v| imply 74 5 0 mg,o € g-Hom [T 0; Tg v). Q.E.D.

3. DISCUSSION

3.1. CATEGORICAL CLASSIFICATIONS. Having adopted a categorical approach in
the classifications of g-Tg-maps between any two of such Tg-spaces Ty, Tq5,
and Ty v, the twofold purposes of the following developments are to establish
the various relationships between the classes of (T4 a,%4,0)-maps and g- (Ta,Te)-
maps, the classes of (T4 4, T4 e)-continuous maps and g- (Ta, Te)-continuous maps,
the classes of (Ty A, T4 e)-irresolute maps and g- (T, Te)-irresolute maps, and
the classes of (T4 4, Ty e)-homeomorphism maps and g- (T, Te)-homeomorphism
maps, where A, © € {Q, X, T}, and to illustrate them through specific diagrams
called, map, categorical map, continuous map, irresolute map, homeomorphism map,
and continuous-irresolute map diagrams.
We have seen that, M [T 0; Ty 5] € g-M [T4.0; T4 ). But,

M [Sg,gﬁ SQ,E] = Mo [SQ,KN (Zg,E] U Mg [Tg,ﬂ; ng,E] ,
g-M[Tg,0; Ty 5] 9-Mo [Tg,0:Tgn] U g-Mk [Tg0:Tg 5] -

Consequently,

Mo [Tg,0;Tgn], Mk [T,0;Tg5] M[Tg,0;Tgx]
g-Mo [Tg.0:Tgm], 0-Mk [Tg0:Tgn] © o-M[Tg0;Tgx],
which, in turn, imply
Mo [T4,0;Fg,n] € 8-Mo [Tg0;Fgn] C© o-M[Tg0; % 5],
Mk [Tg,0:Fg,n] € -Mk [Tg0:Fgn] C© o-M[Tg0: % 5],

N

N

respectively. In F1G. 1, we present the relations between the class M [T4 0; Ty 5] =
Mo [fgﬂ; gg;] UMk [‘Ig,Q; 5972] of (Tgﬂ; ‘Ig,g)—open and (5979; ‘Ig,g)—closed maps
and, also, the class g¢-M[T;0;%3 5] = g-Mg [Tg.0;Fgx] U g-Mi [Tg.0;Fg,5] of
g- (Tg,0; Ty, x)-open and g- (T4.0; Ty x)-closed maps. The diagram in FI1G. 1 shall
be termed a map diagram.

g-M[Ty0; Ty ] @ 0-Mo[Tg0; Ty 5] <€— Mo [T40:T, 5]

g-Mg [Tg.0; Ty x] < Mk [T50; T4 5] = M[T50; Ty 5]
Ficure 1. Relationships: Map diagram.
For every v € IJ, it is plain that, g-v-M [TQ;Tx] C g-M [Tq;Tx] and, also,

g-v-M[T; Ts] C g-v-M [Ty 0; %y 5] € g-M[Ty0; Ty x]. Further, g-2-M [To; Tx| C
g-3-M [Tq; Tx]; likewise, g-0-M [Tq; %] C g-1-M[Tq;Ts] C ¢-3-M[Zq; Ts] and
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g-2-M [T4.0; Ty 2] € 9-3-M [T4.0; T4 n] and also, the relation g-0-M [T4.0; T4 5] C
g-1-M [T4.0; Ty 5] € 9-3-M [T4.0; Ty »] holds. In fact, for every Ty-set Sy C Ty, the
following relations hold:
intg (Sg) C clgointy (Sy) C clgointgocly (Sy) D intgocly (Sy),
S

D 5) 2 intgoclyointy (Sg) C clyointy (Sy) .

cly (§g) 2 intgocly

Consequently, for every (Ogu,Kgw) € Tgo X ~Tg,o there exists (Og4,Kq,5) €
Tg.x x 774 x such that

g (Ogw) S 0Pgo(Ogo)

g Opg,l (OQ,U) g Opg,3 (OQ,U) 2 Opg,2 (OQ,U) 2 Ty (Og,w) ’
Ty (Kgw) 2 T0Pg0 (Kg,0)
2 T0Pg; (Kg,o) 2 T0Pg 3 (Kg,0) € T 0DPg 2 (Kg,o) C g (Kgw) -

In Fic. 2, we present the relationships between the class g-M [(3919;3972} =
Uuelg g-v-M [‘Zg,g;‘zgyg} of g- (Tg.0,%y,x)-maps of categories 0, 1, 2 and 3, and
the class g-M[Tq; Tx| = Uuelg g-v-M[Zq; Tx] of g- (Tq, Tx)-maps of categories 0,
1, 2 and 3. These characteristics may be indicated, as in F1G. 2, by what we shall
term a categorical map diagram.

g-0-M [T; Ty > g-0-M[Tg0;Tg 5]
\\ /l
\\ //
A Vi
Y \\ ’ Y
g-1-M [To; Tx] N, >, g-1-M[Tg.0; Ty 5]
~ < \ / Pae
N &\ i _-
g-M[To; Ty = g-M [T 0; Ty 5]
_- - 4 \ S o
Y _- /’ \ R |
g-3-M [Tq; Tx] 7 > g-3-M [Tg,0: Tg,5]
A ,/ '\ A
) \
’ \
7 \
7 \
0-2-M [T; Ty > g 2M [T 0T 5]

FI1GURE 2. Relationships: Categorical Map diagram.

Now, suppose we are given mg o : Tgo0 = g5 and 754 1 Tg 5 = T3 y. Then,
by virtue of previous theorems, mg 3 0 g0 € g-Hom [Ty ;%4 v]. Also, mgq €
Hom [T4.0; Ty 5], mg,8 € Hom [T, 55T v], and 7y g 0wy« € Hom [T 0; Ty v imply
Tg,a € g-Hom [T 0; T 5], mg,3 € g-Hom [Ty 5; Ty v], and the relation 7y 30 mg o €
g-Hom [T, o; Ty ], respectively. These features may be indicated, as in F1a. 3, by
what we shall term a homeomorphism map diagram.

Next, suppose we are given 7y : Tg0 = Tgx and mg.a : Tgx = Ty y. 1y o €
g-C[Tg.0:Fg,n] and 1y 5 € g-C [Ty 5; Tg,v] then, by virtue of previous theorems,
Tg,80Tg,a € 8-C[Tg.0; Tg,v]. Moreover, 75 o € C [T 0;%g 5], 79,8 € C[Tgn; Ty, v,
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Tg,6 0 Tga € g-Hom [Tg 05 Tg ]

!

| > (1, Tg,7)

(Qv,TQ,Q)

Tg,8 0 Tga € Hom [Ty .05 Ty 1] >
)

% (B Tx)” &
FiGURE 3. Relationships: Homeomorphism map diagram.

and 7y 5 0 Tg.o € C [Ty .0;%Tg,v], respectively, imply 740 € g-C[Tg,0; %y 5], 79,8 €
9-C [Ty 5; %y v], and mg gomg o € g-C [Tg.0; Ty, v]. These features may be indicated,
as in F1G. 4, by what we shall term a continuous map diagram.

74,5 © Tga € 8-C[Tg0; Ty 7]

!

| > (TaET)

(Q’,Tgﬂ)

s

7,6 ° Tga € C[Tg0; % 7]

(277;,2) Sa

FIGURE 4. Relationships: Continuous map diagram.

Finally, suppose we are given 7y, : Tg0 — Tgx and mga @ Tyn — Tgr.
If mgo € g1[%5,0;%n] and my8 € g-1[Tg5; Ty, r] then, by virtue of previous
theorems, 7y 5 0 Tga € g-1[Tg0; T r]. On the other hand, g € I[Tg0; T, 5],
g3 € 1Ty 5Ty x|, and mg 3 0 mg 0 € 1[Tg0; %y v], respectively, imply mg €
0-1[Tg0:Fg 5], e € 01Ty Ty x], and mg 3 0 mg0 € g-1[Tg0;Fg,v]. These
features may be indicated, as in F1G. 5, by what we shall term a irresolute map
diagram.

Let us end this discussion section with a concise summary of the principal im-
plications of the findings regardless of categorical classifications. We have the
relations g-C [T4.0;Tg ] 2 g-1[%Fg,0;F,,x] and g-C [Ty ;% 5], 0-1[Tg,0;F,x] C
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74,80 Tga € 8-1[Tg,0; Tg 7]

)

(2, Tg,0) | > (Y, Tg,r)

7,5 ° Tga € L[Tg.0;Tg 7]

F1GURE 5. Relationships: Irresolute map diagram.

g-M [Tg.0; Ty x]; the relation g-C[Tq;Tx] O g-1[Tq;Tx] and, also, g-C[Tq;Tx],
g-1[T0; %] € g-M[Tq;Ts]; M [Tq;Ts] € g-M[T0;F,x]. Consequently, it
follows that g-M [Ty 0;%4 5] is related with g-C[Tg0;%, x| and g-1[Tg0;%,s];
g-M [To; Tx] is related with g-C[Tq;Tx] and g-1[Ta; Tx]; ¢-M [Ty 0; Ty x| is re-
lated with g-M [Tq; T5;]. These relations may be indicated, as in F1a. 6, by what
we shall term a continuity-irresolute map diagram.

QC[ gQa EQ7$E7E]
A\ /‘
gQa

(3:97(3:2
g-C[Tq; Tx| <€ -1[T0; Ty

FIGURE 6. Relationships: Continuous-Irresolute map diagram.

As in the papers of [5, 10, 15, 29, 30], among others, the manner we have po-
sitioned the arrows is solely to stress that, in general, none of the implications in
FiGs 1, 2 and 1 is reversible.

At this stage, a nice application is worth considering, and is presented in the
following section.

3.2. A NICE APPLICATION. By focusing on important concepts from the viewpoint
of the theory of g-T4-maps, we shall now present a nice application based upon five-
point sets. Let @ = {& : ve [}, S ={( : vel},and YT = {n, : vel}
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denote the underlying sets, and consider the Tg-spaces T30 = (Qaﬁ;,ﬂ% Tys =
(2’7—9,2)’ and ‘Ig,’f = (T77—g7’r), where

T (@) = {0,{&}.{& &}, {&. &6}
= {OQMI,OQWW(9970,3,(997‘,,4},
“To () = {9{6,&,6.8),{&,6.6} {646} )
(3.1) = {ICQ,W17ICQ7‘U2’IC97W3"ngw4}’
To(2) = {0,{¢}.{¢G G} {G G G}
= {09,01709,027 09,03,09704}’
T (E) = {Z,{¢: 6661 {666 {66
(3.2) = {Kgo1:Kg.00:Kg,o5:Kgoon }»
To(Y) = {0, {ms}, {nems}, {ns.masms )}
= {040,005, Og.05, Og., }+
“To(0) = {X, {n,m2.na,ms5}, {m,m2. s} {m.me}}
(3.3) = {Kgu1: Kgvar Kayog: Kgovg |

respectively, stand for the classes of Tg-open and 7y-closed sets relative to the
Ta-spaces Ty, Tgx, and Tgy. For any Ty € {Tg0,Tgs. Tgr}, since condi-
tions T4 (0) = 0, T4(O4.) C Oy, for every v € I, and E(UVEIZ Oq) =
Uuelg Tg (Og,) are satisfied, it is evident that, for every A € {Q,E,T}, the
one-valued map Ty : P(A) — P (A) is a g-topology. Furthermore, for any T €
{TQ,TE,TT}, it is easily checked that, Oy , € g—V—O[S] for every (v, u) € I x Ij.
Hence, the Tg-open sets forming the g-topology Ty : P (A) — P (A) of the Tg4-
space Ty = (A, Ty) are g-T-open sets relative to the T-space T = (A, 7T), where
Ae {27}, Te{Ta,Ts, Tr}, and T € {0, Tx, Ty }.

After calculations, the classes g—u—O[‘Ig,A] and g-v-K [Sg,/\]v respectively, of
g-%g,a-open and g-T; A-closed sets of categories v € {0, 2}, where A € {Q, X, T},
then take the following forms:

g-v-0[Ty.0] TaoU{{&}. {&) {6, &), {461
gv-K[Teo] = —TooU{{& 6.6}, {6,6.6,65},

(3.4) {€1,65,64,65}, {€2,64,65}} Ww € {0,2};
g--0[Tys] = TanU{{G}, {G}, {C ¢} {¢G G}
gv-K[Ts] = TosU{{G, G &6} {G, 66,6

(35) {417427C43C5},{<17C33C5}} Vv e {072}7
g_V_O [Sg,'r] = 7—9’T U {{774}7 {775}7 {7737774}7 {7737775}}7
gv-K[Ter] = “TorU{{n,m,ns} {n,n2 03},

(36) {771’77277737775}) {77177727774}} NS {072}
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On the other hand, those of categories v € {1, 3} take the following forms:

g-v-0 [‘IQ’A}
(3.7) g v-K[Tga)

ToaU{Og: Og € P(M)\ Ty };
ﬁ'Tg’A @] {/Cg : ICg S P(A)\ﬁ'rg,/\} Yv € {1,3},

where A € {QZ,T}. We choose to consider the g- (Tq,Tx)-map mgq : Tg0 —
Tg,» and the g- (T, Ty)-map 7y 5 : Tgx — T4 v defined, respectively, by

Tga (1) = G2 Tga (§2) =G Tga (§3) = Gy Tga (§a) = G5 Tga (€5) = G5
7o (C) = M, Tap(C) = n3, g8 (Cs) =M, o8 (Ca) =15, T (C5) = M2
Finally, we set the relations mg o (Ogw,) = Og,0y and 7y 5 (Og.0,) = Og.0, so that

g8 © Tg.a (Oguw) = Ogo,. As for the composite g- (Tq,Ty)-map 7y 3 0 Tg.q :
T30 — Ty 1, a simple calculation shows that

Tg.80Tga (§1) = m3, g0 Mga(§2) =1, Tgp0mga (§3) =15,
Tg,80Tga (§4) = M, Tgp0mga (&) =ne.
At this stage, we have all the basic ingredients to discuss any class of g-Tg-maps
between any two of such Tg-spaces Ty, Tyx, and Tyr. We choose to dis-
cuss some elements of the classes g-M [Ty a;%g.0], 9-C [Tg.a;%g,0): 0-1[%Tg,0;Fg.0],
and g-Hom [Ty ;T4 0] of (Tga,Tge)-maps, (Tga,Tg,e)-continuous, (Tya,%Tg0)-

irresolute, and (%4 4,%T40)-homeomorphism maps, respectively, where A, © €
{Q, 3, T}. A first sequence of calculations shows that

9,0 g Opgﬁl’ (091‘7#) ’
0,0, = T0Pg . (’Cg,ou) Y (v, p) € Ig x I}

9,V < OpB,V (Ogﬂ’u) ’
9,0, 2 _'Opg,z/ (Kg,v“) V(V’ ,u) € Ig X IZ

m?i
;E
I
S G a o

Hence, we conclude that, 7y, € g-M[T50;Tg 5], mg8 € g-M [T 5;Tg,v], and
Tg,8°Tg,a € -M[Tg.0; Ty v]. On the other hand, a second sequence of calculations

shows that
77;,(11 (Osvvu) = Ogu, Sopg, (Og,wu) ]
Tr;}l (’Cgvgu) = ]Cgv‘*’u 2 _‘OpQJ/ (ICQ#’-’/L) V(V’ /”L) € Ig X IZ’
71'_’; (Og,vu) = OQ,UH g opQW (Og,au) ’
T b (Kaw,) = Kgou 2700, (Kgo,) V(v,p)€ly xIj.

From the above expressions, it then follows that, 7y, € g-C[Tg0; T, 5], mg,8 €
9-C[Ty5; Tg,v], and mg gomg o € g-C[Tg,0;Fg,x]. A third sequence of calculations
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shows that

) O € 0Py (Ogs,) »

) Kgw, 2 70pg, (Kgw,) V(v e {0,2} x I};
) Kgw, 20Dy, (Kgw,)

) = Oguw, Sopg, (Oguw,) V(vp) e {1,3} x I};
) @)

) K

) K

ﬂ-;}a’ (Opg7l/ (Og,vu

N
o

pgv’/ (097‘7#) ’

Tr;/li (_\ Opgal’ (’Cg,v“ 9,0u 2 _'Opg,l/ (ICQVU;L) V(l/, ,u‘) € {0, 2} X lev

W;é (OpgyV (Og,vg),u

7T;}3 (—| 0Dy (ICM,SW ) = Oy, Sopg, (097%) YV (v, 1) € {1,3} x Iy

From the properties of g-v-1[Tg0;%g 5], g-v-1[%y5; Ty x], and g-v-1[T50; T4 v,
where v € I9, we have 7y, € g-v-1[T50;Fg5], Tgs € gv-1[Tg5;Tg ), and
Tg,8 0 Tga € g-0-1[Tg 05 Tg,x] only for every v € {0,2}; none of these membership
relations holds for any v € {17 3}, as is easily seen by inspection. On the other
hand, by virtue of the definitions of the g- (T, Ts)-map mya : Tgo — Tgx and
the g- (s, Ty)-map Tg,8 1 Lgx — %41, it is clear that the membership relations
Tg,a € g—B [3979;37972], Tg,8 € g—B [‘sg,g;‘zg’y], and Tg,B 0 Tga € g—B [Tg@;ig,r]
hold.

Having discussed mg o € g-C [T4,0;%Tg5], mg,8 € 6-C[Tg,5; Ty, 1), and mg gomg o €
g-C [T4.0; Tg,v], to discuss the g- (Tq, Ty )-homeomorphism map g4 : Tg0 = Ty 5
and the g- (T, Ty )-homeomorphism map 7y 5 : Ty » = Ty v we must first discuss
the relations 7}, € g-C [Ty x; Tg,0] and w;g € g-C[Tg1; Tg,n]. A fourth sequence
of calculations shows that

)
)
)
o (70Pg. (Koos,)
)
)
)
)

(Tea) " (05,) = Oga, Copg, (O4,)
(m52) ™ (Kowy) = Kaop 2 =00y, (Kaw,) V(1) € 19 x I;
(m5h) " (Og) = Ogu,, S 0pg (Og,)
(7%;%)71 (Kgo,) = Kgu, 2700y, (Kgw,) V(vp) €l xIj.
From these, it clearly follows that the relations my, € ¢-C[Tq5;Tg0l, 7,5 €

g-C[Tgr;Texl, and (mgp0mga) = € 0-C[Tqr; Taa] hold. Hence, it follows
that mg o € g-Hom [T, ;% 5], g5 € g-Hom [Ty 5; Ty v], and, also, 7y 3 0 754 €
g—HOHl [TE,Q; ‘Ig,T]~

The discussions carried out in the preceding sections can be easily verified from
this nice application. The next section provides concluding remarks and future
directions of the theory of g-Ty-sets discussed in the preceding sections.

3.3. CONCLUDING REMARKS. In this chapter, we developed a new theory, called
Theory of g-T4-Maps that is founded upon the theory of g-Ty-sets. In its own
rights, the proposed theory has several advantages. The very first advantage is
that the theory holds equally well when (A, 7ga) = (A, 7a), where A € {Q, 3, T},
and other features adapted on this ground, in which case it might be called Theory
of g-T-Maps.
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Hence, between any two such Tg-spaces Tyo = (2,75,0) and Ty 5 = (X, Ty.xn)
the theoretical framework categorises such pairs of concepts as g- (T4,0, T4,x)-open
and g- (Ty,0,%q,n)-closed maps, g- (T4.0, %, 5)-semi-open and g- (T4 0, Ty x)-semi-
closed maps, g- (T4.0,%q,5)-preopen, g- (Tq0, Ty n)-preclosed maps, and, finally,
g- (Tg,0, Ty, n)-semi-preopen and g- (T4 o, Ty 5 )-semi-preclosed maps as g-Tg-maps
of categories 0, 1, 2, and 3, respectively, and theorises the concepts in a uni-
fied way; between any two such T-spaces To = (©,7q) and Ty = (2, Tx) the
theoretical framework categorises such pairs of concepts as g- (Tq, Ty )-open and
g- (Tq, Tx)-closed maps, g- (T, Tx)-semi-open and g- (T, Tx;)-semi-closed maps,
g- (Tq, Tx)-preopen, g- (Tq, Ts)-preclosed maps, and g- (T, Ts;)-semi-preopen and
g- (Tq, Tx)-semi-preclosed maps as g-T-maps of categories 0, 1, 2, and 3, respec-
tively, and theorises the concepts in a unified way.

It is an interesting topic for future research to develop the theory of g-T g -maps
of mixed categories. More precisely, for some pair (v,u) € I x I{ such that
v # 1, to develop the theory of g-T4-open maps based on the elements of the class
{0y = 04,,UO0q,.: (Og,,,04,,) € g-v-0[Ty] x g-1-O[T4] } and the theory of g-T4-
closed maps based on the elements of the class {Kgq = Kg, UK (Kgu, Kgp) €
g-v-K [fg] x g-pu-K [Tg] }, as [25] developed the theory of weakly b-open functions.
Such two theories are what we thought would certainly be worth considering, and
the discussion of this paper ends here.
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