Theory of $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}\mathrm{Maps}$

KHODABOCUS M. I. AND SOOKIA N. U. H.

ABSTRACT. Several specific types of generalized maps of a generalized topological space have been defined and investigated for various purposes from time to time in the literature of topological spaces. Our recent research in the field of a new class of generalized maps of a generalized topological space is reported herein as a starting point for more generalized classes.

Key words and phrases. Generalized topological space, generalized sets, generalized maps, generalized continuous maps, generalized irresolute maps, generalized homeomorphism maps

1. Introduction

The concepts¹ of $(\mathfrak{T}_{\Omega},\mathfrak{T}_{\Sigma})$ -map $\pi:\mathfrak{T}_{\Omega}\to\mathfrak{T}_{\Sigma}$ [1, 2], \mathfrak{g} - $(\mathfrak{T}_{\Omega},\mathfrak{T}_{\Sigma})$ -map $\pi_{\mathfrak{g}}:\mathfrak{T}_{\Omega}\to\mathfrak{T}_{\Sigma}$ [9, 18], $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -map $\pi:\mathfrak{T}_{\mathfrak{g},\Omega}\to\mathfrak{T}_{\mathfrak{g},\Sigma}$ [3], and \mathfrak{g} - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -map $\pi_{\mathfrak{g}}:\mathfrak{T}_{\mathfrak{g},\Omega}\to\mathfrak{T}_{\mathfrak{g},\Sigma}$ [21], called, respectively, ordinary and generalized maps (briefly, \mathfrak{T} -map and \mathfrak{g} - \mathfrak{T} -map, respectively) between \mathcal{T} -spaces \mathfrak{T}_{Ω} and \mathfrak{T}_{Σ} , and ordinary and generalized maps (briefly, $\mathfrak{T}_{\mathfrak{g}}$ -map and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -map, respectively) between $\mathcal{T}_{\mathfrak{g}}$ -spaces $\mathfrak{T}_{\mathfrak{g},\Omega}$ and $\mathfrak{T}_{\mathfrak{g},\Sigma}$ are all fundamental concepts that have been introduced and investigated by several mathematicians [12, 16, 17, 20, 21, 23, 29, 31, 33].

Other concepts called $(\mathfrak{T}_{\Omega},\mathfrak{T}_{\Sigma})$ -continuous and $(\mathfrak{T}_{\Omega},\mathfrak{T}_{\Sigma})$ -irresolute maps and $(\mathfrak{T}_{\Omega},\mathfrak{T}_{\Sigma})$ -homeomorphism (briefly, \mathfrak{T} -continuous and \mathfrak{T} -irresolute maps, and \mathfrak{T} -homeomorphism, respectively) [6, 24, 32], \mathfrak{g} - $(\mathfrak{T}_{\Omega},\mathfrak{T}_{\Sigma})$ -continuous and \mathfrak{g} - $(\mathfrak{T}_{\Omega},\mathfrak{T}_{\Sigma})$ -irresolute maps and \mathfrak{g} - $(\mathfrak{T}_{\Omega},\mathfrak{T}_{\Sigma})$ -homeomorphism (briefly, \mathfrak{g} - \mathfrak{T} -continuous and \mathfrak{g} - \mathfrak{T} -irresolute maps, and \mathfrak{g} - \mathfrak{T} -homeomorphism, respectively) [6, 13, 14, 26], $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -continuous and $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -irresolute maps, $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -homeomorphism (briefly, $\mathfrak{T}_{\mathfrak{g}}$ -continuous, $\mathfrak{T}_{\mathfrak{g}}$ -irresolute maps, and $\mathfrak{T}_{\mathfrak{g}}$ -homeomorphism, respectively) [14, 28] and \mathfrak{g} - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -continuous and \mathfrak{g} - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -irresolute maps, \mathfrak{g} - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -homeomorphism (briefly, \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -continuous and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -irresolute maps, and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -irresolute maps,

In this paper, we will show how further contributions can be added to the field in a unified way.

¹Notes to the reader: The structures $\mathfrak{T}_{\Omega} = (\Omega, \mathcal{T}_{\Omega})$ and $\mathfrak{T}_{\Sigma} = (\Sigma, \mathcal{T}_{\Sigma})$ are called ordinary topological spaces (briefly, \mathcal{T} -spaces), and the structures $\mathfrak{T}_{\mathfrak{g},\Omega} = (\Omega, \mathcal{T}_{\mathfrak{g},\Omega})$ and $\mathfrak{T}_{\mathfrak{g},\Sigma} = (\Sigma, \mathcal{T}_{\mathfrak{g},\Sigma})$ are called generalized topological spaces (briefly, $\mathcal{T}_{\mathfrak{g}}$ -spaces). The maps π , $\pi_{\mathfrak{g}} : \mathfrak{T}_{\Omega} \to \mathfrak{T}_{\Sigma}$ and π , $\pi_{\mathfrak{g}} : \mathfrak{T}_{\mathfrak{g},\Omega} \to \mathfrak{T}_{\mathfrak{g},\Sigma}$, respectively, stand for ordinary and generalized maps between \mathcal{T} -spaces and $\mathcal{T}_{\mathfrak{g}}$ -spaces; the notations ($\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}$)-map (briefly, \mathfrak{T} -map), \mathfrak{g} -($\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}$)-map (briefly, \mathfrak{g} -\$\mathbf{T}-spaces), ($\mathfrak{T}_{\mathfrak{g},\Omega}, \mathfrak{T}_{\mathfrak{g},\Sigma}$)-map (briefly, \mathfrak{g} -\$\mathbf{T}-spaces) emphasize their characters.

2. Theory

2.1. PRELIMINARIES. Our discussion starts by recalling some basic definitions and notations of most essential concepts presented in the theory of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -sets in a $\mathcal{T}_{\mathfrak{g}}$ -space.

The set $\mathfrak U$ stands for the universe of discourse, fixed within the framework of the theory of $\mathfrak g$ - $\mathfrak T_{\mathfrak g}$ -maps and containing as elements all sets (Λ -sets: $\Lambda \in \{\Omega, \Sigma, \Upsilon\}$; $\mathcal T_{\Lambda}$, $\mathfrak g$ - $\mathcal T_{\Lambda}$, $\mathfrak T_{\Lambda}$, $\mathfrak g$ - $\mathfrak T_{\Lambda}$, $\mathfrak T_{\Lambda}$, $\mathfrak g$ - $\mathfrak T_{\Lambda}$, $\mathfrak T_{\Lambda}$, $\mathfrak g$ - $\mathfrak T_{\Lambda}$, $\mathfrak T_{\Lambda}$, $\mathfrak g$ - $\mathfrak T_{\Lambda}$, $\mathfrak T_{\Lambda}$, $\mathfrak g$ - $\mathfrak T_{\Lambda}$, $\mathfrak T_{\Lambda}$, $\mathfrak g$ - $\mathfrak T_{\Lambda}$, $\mathfrak T_{\Lambda}$, $\mathfrak g$ - $\mathfrak T_{\Lambda}$, $\mathfrak T_{\Lambda}$, $\mathfrak g$ - $\mathfrak T_{\Lambda}$, $\mathfrak T$

Let $\mathfrak{T}_{\mathfrak{g},\Lambda}$ be a $\mathcal{T}_{\mathfrak{g},\Lambda}$ -space, let $\mathfrak{C}_{\Lambda}:\mathcal{P}(\Lambda)\to\mathcal{P}(\Lambda)$ denotes the absolute complement with respect to the underlying set $\Lambda\subset\mathfrak{U}$, and let $\mathcal{S}_{\mathfrak{g}}\subset\mathfrak{T}_{\mathfrak{g},\Lambda}$ be any $\mathfrak{T}_{\mathfrak{g},\Lambda}$ -set. The classes

$$\mathcal{T}_{\mathfrak{g},\Lambda} \stackrel{\mathrm{def}}{=} \{ \mathcal{O}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g},\Lambda} : \mathcal{O}_{\mathfrak{g}} \in \mathcal{T}_{\mathfrak{g},\Lambda} \},
\neg \mathcal{T}_{\mathfrak{g},\Lambda} \stackrel{\mathrm{def}}{=} \{ \mathcal{K}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g},\Lambda} : \mathfrak{C}_{\Lambda} (\mathcal{K}_{\mathfrak{g}}) \in \mathcal{T}_{\mathfrak{g},\Lambda} \},
(2.1)$$

respectively, denote the classes of all $\mathcal{T}_{\mathfrak{g},\Lambda}$ -open and $\mathcal{T}_{\mathfrak{g},\Lambda}$ -closed sets relative to the \mathfrak{g} -topology $\mathcal{T}_{\mathfrak{g},\Lambda}$, and the classes

$$C^{\mathrm{sub}}_{\mathcal{T}_{\mathfrak{g},\Lambda}}\left[\mathcal{S}_{\mathfrak{g}}\right] \stackrel{\mathrm{def}}{=} \left\{\mathcal{O}_{\mathfrak{g}} \in \mathcal{T}_{\mathfrak{g},\Lambda} : \mathcal{O}_{\mathfrak{g}} \subseteq \mathcal{S}_{\mathfrak{g}}\right\},$$

$$C^{\mathrm{sup}}_{\neg \mathcal{T}_{\mathfrak{g},\Lambda}}\left[\mathcal{S}_{\mathfrak{g}}\right] \stackrel{\mathrm{def}}{=} \left\{\mathcal{K}_{\mathfrak{g}} \in \neg \mathcal{T}_{\mathfrak{g},\Lambda} : \mathcal{K}_{\mathfrak{g}} \supseteq \mathcal{S}_{\mathfrak{g}}\right\},$$

respectively, denote the classes of $\mathcal{T}_{\mathfrak{g},\Lambda}$ -open subsets and $\mathcal{T}_{\mathfrak{g},\Lambda}$ -closed supersets (complements of the $\mathcal{T}_{\mathfrak{g},\Lambda}$ -open subsets) of the $\mathfrak{T}_{\mathfrak{g},\Lambda}$ -set $\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g},\Lambda}$ relative to the \mathfrak{g} -topology $\mathcal{T}_{\mathfrak{g},\Lambda}$. To this end, the \mathfrak{g} -closure and the \mathfrak{g} -interior of a $\mathfrak{T}_{\mathfrak{g}}$ -set $\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ in a $\mathcal{T}_{\mathfrak{g},\Lambda}$ -space [3] define themselves as

$$(2.3) \quad \operatorname{int}_{\mathfrak{g},\Lambda}\left(\mathcal{S}_{\mathfrak{g}}\right) \stackrel{\mathrm{def}}{=} \bigcup_{\mathcal{O}_{\mathfrak{g}} \in \mathcal{C}^{\operatorname{sub}}_{\mathcal{T}_{\mathfrak{g},\Lambda}}[\mathcal{S}_{\mathfrak{g}}]} \mathcal{O}_{\mathfrak{g}}, \quad \operatorname{cl}_{\mathfrak{g},\Lambda}\left(\mathcal{S}_{\mathfrak{g}}\right) \stackrel{\mathrm{def}}{=} \bigcap_{\mathcal{K}_{\mathfrak{g}} \in \mathcal{C}^{\sup}_{\neg \mathcal{T}_{\mathfrak{g},\Lambda}}[\mathcal{S}_{\mathfrak{g}}]} \mathcal{K}_{\mathfrak{g}}.$$

Throughout this work, by $\operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}} (\cdot)$, $\operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}} (\cdot)$, and $\operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}} (\cdot)$, respectively, are meant $\operatorname{cl}_{\mathfrak{g}} (\operatorname{int}_{\mathfrak{g}} (\cdot))$, $\operatorname{int}_{\mathfrak{g}} (\operatorname{cl}_{\mathfrak{g}} (\cdot))$, and $\operatorname{cl}_{\mathfrak{g}} (\operatorname{int}_{\mathfrak{g}} (\operatorname{cl}_{\mathfrak{g}} (\cdot)))$; other composition operators are defined similarly. Also, the backslash $\mathfrak{T}_{\mathfrak{g}} \backslash \mathcal{S}_{\mathfrak{g}}$ refers to the set-theoretic difference $\mathfrak{T}_{\mathfrak{g}} - \mathcal{S}_{\mathfrak{g}}$. The mapping $\operatorname{op}_{\mathfrak{g}} : \mathcal{P} (\Lambda) \to \mathcal{P} (\Lambda)$ is called a \mathfrak{g} -operation on $\mathcal{P} (\Lambda)$ if the following statements hold:

$$\forall \mathcal{S}_{\mathfrak{g}} \in \mathcal{P}(\Lambda) \setminus \{\emptyset\}, \ \exists (\mathcal{O}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}}) \in \mathcal{T}_{\mathfrak{g}, \Lambda} \setminus \{\emptyset\} \times \neg \mathcal{T}_{\mathfrak{g}, \Lambda} \setminus \{\emptyset\} :$$

$$(\operatorname{op}_{\mathfrak{g}}(\emptyset) = \emptyset) \vee (\neg \operatorname{op}_{\mathfrak{g}}(\emptyset) = \emptyset), \ (\mathcal{S}_{\mathfrak{g}} \subseteq \operatorname{op}_{\mathfrak{g}}(\mathcal{O}_{\mathfrak{g}})) \vee (\mathcal{S}_{\mathfrak{g}} \supseteq \neg \operatorname{op}_{\mathfrak{g}}(\mathcal{K}_{\mathfrak{g}})),$$

where $\neg \operatorname{op}_{\mathfrak{g}} : \mathcal{P}(\Lambda) \to \mathcal{P}(\Lambda)$ is called the "complementary \mathfrak{g} -operation" on $\mathcal{P}(\Lambda)$ and, for all $\mathfrak{T}_{\mathfrak{g}}$ -sets $\mathcal{S}_{\mathfrak{g}}$, $\mathcal{S}_{\mathfrak{g},\nu}$, $\mathcal{S}_{\mathfrak{g},\mu} \in \mathcal{P}(\Lambda) \setminus \{\emptyset\}$, the following axioms are satisfied:

- Ax. I. $\left(\mathcal{S}_{\mathfrak{g}} \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}}\right)\right) \vee \left(\mathcal{S}_{\mathfrak{g}} \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}}\right)\right)$,
- $\bullet \ \mathrm{Ax. \ II. \ } \left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right) \subseteq \mathrm{op}_{\mathfrak{g}} \circ \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}}\right)\right) \vee \left(\neg \, \mathrm{op}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right) \supseteq \neg \, \mathrm{op}_{\mathfrak{g}} \circ \neg \, \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}}\right)\right),$
- Ax. III. $(\mathcal{S}_{\mathfrak{g},\nu} \subseteq \mathcal{S}_{\mathfrak{g},\mu} \to \operatorname{op}_{\mathfrak{g}}(\mathcal{O}_{\mathfrak{g},\nu}) \subseteq \operatorname{op}_{\mathfrak{g}}(\mathcal{O}_{\mathfrak{g},\mu})) \vee (\mathcal{S}_{\mathfrak{g},\mu} \subseteq \mathcal{S}_{\mathfrak{g},\nu} \leftarrow \operatorname{op}_{\mathfrak{g}}(\mathcal{K}_{\mathfrak{g},\mu}) \supseteq \operatorname{op}_{\mathfrak{g}}(\mathcal{K}_{\mathfrak{g},\nu})),$
- $\bullet \ \mathrm{Ax. \ Iv. \ } \left(\mathrm{op}_{\mathfrak{g}}\left(\bigcup_{\sigma=\nu,\mu}\mathcal{S}_{\mathfrak{g},\sigma}\right)\subseteq\bigcup_{\sigma=\nu,\mu}\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right)\vee\left(\neg\operatorname{op}_{\mathfrak{g}}\left(\bigcup_{\sigma=\nu,\mu}\mathcal{S}_{\mathfrak{g},\sigma}\right)\supseteq\left(-\operatorname{op}_{\mathfrak{g}}\left(\bigcup_{\sigma=\nu,\mu}\mathcal{S}_{\mathfrak{g},\sigma}\right)\right)=0$ $\bigcup_{\sigma=\nu,\mu} \neg \operatorname{op}_{\mathfrak{g}}(\mathcal{K}_{\mathfrak{g},\sigma}),$

for some $\mathcal{T}_{\mathfrak{g},\Lambda}$ -open sets $\mathcal{O}_{\mathfrak{g}}$, $\mathcal{O}_{\mathfrak{g},\nu}$, $\mathcal{O}_{\mathfrak{g},\mu} \in \mathcal{T}_{\mathfrak{g},\Lambda} \setminus \{\emptyset\}$ and $\mathcal{T}_{\mathfrak{g},\Lambda}$ -closed sets $\mathcal{K}_{\mathfrak{g}}$, $\mathcal{K}_{\mathfrak{g},\nu}$, $\mathcal{K}_{\mathfrak{g},\mu} \in \neg \mathcal{T}_{\mathfrak{g},\Lambda}$ [4, 19]. The class $\mathcal{L}_{\mathfrak{g}}[\Omega] = \mathcal{L}_{\mathfrak{g}}^{\kappa}[\Lambda] \times \mathcal{L}_{\mathfrak{g}}^{\kappa}[\Omega]$, where

$$(2.5) \quad \mathcal{L}_{\mathfrak{g}}[\Lambda] \stackrel{\text{def}}{=} \left\{ \mathbf{op}_{\mathfrak{q},\nu\mu} \left(\cdot \right) = \left(\mathrm{op}_{\mathfrak{q},\nu} \left(\cdot \right), \neg \mathrm{op}_{\mathfrak{q},\mu} \left(\cdot \right) \right) : \left(\nu, \mu \right) \in I_3^0 \times I_3^0 \right\}$$

in the $\mathcal{T}_{\mathfrak{g},\Lambda}$ -space $\mathfrak{T}_{\mathfrak{g},\Lambda}$, stands for the class of all possible \mathfrak{g} -operators and their complementary \mathfrak{g} -operators in the $\mathcal{T}_{\mathfrak{g},\Lambda}$ -space $\mathfrak{T}_{\mathfrak{g},\Lambda}$. Its elements are defined as:

$$\operatorname{op}_{\mathfrak{g}}(\cdot) \in \mathcal{L}^{\omega}_{\mathfrak{g}}[\Lambda] \stackrel{\operatorname{def}}{=} \left\{ \operatorname{op}_{\mathfrak{g},0}(\cdot), \operatorname{op}_{\mathfrak{g},1}(\cdot), \operatorname{op}_{\mathfrak{g},2}(\cdot), \operatorname{op}_{\mathfrak{g},3}(\cdot) \right\}$$

$$= \left\{ \operatorname{int}_{\mathfrak{g}}(\cdot), \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}}(\cdot), \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}}(\cdot), \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}}(\cdot) \right\};$$

$$\neg \operatorname{op}_{\mathfrak{g}}(\cdot) \in \mathcal{L}^{\kappa}_{\mathfrak{g}}[\Lambda] \stackrel{\operatorname{def}}{=} \left\{ \neg \operatorname{op}_{\mathfrak{g},0}(\cdot), \neg \operatorname{op}_{\mathfrak{g},1}(\cdot), \neg \operatorname{op}_{\mathfrak{g},2}(\cdot), \neg \operatorname{op}_{\mathfrak{g},3}(\cdot) \right\}$$

$$= \left\{ \operatorname{cl}_{\mathfrak{g}}(\cdot), \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}}(\cdot), \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}}(\cdot), \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}}(\cdot) \right\}.$$

A $\mathfrak{T}_{\mathfrak{g},\Lambda}$ -set $\mathcal{S}_{\mathfrak{g},\Lambda}\subset\mathfrak{T}_{\mathfrak{g}}$ in a $\mathcal{T}_{\mathfrak{g},\Lambda}$ -space is called a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g},\Lambda}$ -set if and only if there exist a pair $(\mathcal{O}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}}) \in \mathcal{T}_{\mathfrak{g},\Lambda} \times \neg \mathcal{T}_{\mathfrak{g},\Lambda}$ of $\mathcal{T}_{\mathfrak{g},\Lambda}$ -open and $\mathcal{T}_{\mathfrak{g},\Lambda}$ -closed sets, and a \mathfrak{g} -operator $\mathbf{op}_{\mathfrak{g}}(\cdot) \in \mathcal{L}_{\mathfrak{g}}[\Lambda]$ such that the following statement holds:

$$(2.7) \qquad (\exists \xi) \left[(\xi \in \mathcal{S}_{\mathfrak{g}}) \land \left(\left(\mathcal{S}_{\mathfrak{g}} \subseteq \mathrm{op}_{\mathfrak{g}} \left(\mathcal{O}_{\mathfrak{g}} \right) \right) \lor \left(\mathcal{S}_{\mathfrak{g}} \supseteq \neg \mathrm{op}_{\mathfrak{g}} \left(\mathcal{K}_{\mathfrak{g}} \right) \right) \right) \right].$$

The \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g},\Lambda}$ -set $\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g},\Lambda}$ is said to be of category ν if and only if it belongs to the following class of \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{g},\Lambda}$ -sets:

$$\mathfrak{g}\text{-}\nu\text{-}\mathrm{S}\big[\mathfrak{T}_{\mathfrak{g},\Lambda}\big] \stackrel{\mathrm{def}}{=} \big\{ \mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g},\Lambda} : \left(\exists \mathcal{O}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}}, \mathbf{op}_{\mathfrak{g},\nu}\left(\cdot\right)\right) \\ \big[\big(\mathcal{S}_{\mathfrak{g}} \subseteq \mathrm{op}_{\mathfrak{g},\nu}\left(\mathcal{O}_{\mathfrak{g}}\right) \big) \vee \big(\mathcal{S}_{\mathfrak{g}} \supseteq \neg \mathrm{op}_{\mathfrak{g},\nu}\left(\mathcal{K}_{\mathfrak{g}}\right) \big) \big] \big\}.$$

It is called a \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{g},\Lambda}$ -open set if it satisfies the first property in \mathfrak{g} - ν -S[$\mathfrak{T}_{\mathfrak{g},\Lambda}$] and a \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{g},\Lambda}$ -closed set if it satisfies the second property in \mathfrak{g} - ν -S[$\mathfrak{T}_{\mathfrak{g},\Lambda}$]. The classes of \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{g},\Lambda}$ -open and \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{g},\Lambda}$ -closed sets, respectively, are defined by

$$\mathfrak{g}\text{-}\nu\text{-}\mathrm{O}\big[\mathfrak{T}_{\mathfrak{g},\Lambda}\big] \quad \stackrel{\mathrm{def}}{=} \quad \big\{\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g},\Lambda}: \ \big(\exists \mathcal{O}_{\mathfrak{g}}, \mathbf{op}_{\mathfrak{g},\nu}\left(\cdot\right)\big) \, \big[\mathcal{S}_{\mathfrak{g}} \subseteq \mathrm{op}_{\mathfrak{g},\nu}\left(\mathcal{O}_{\mathfrak{g}}\right)\big]\big\},$$

$$(2.9) \ \mathfrak{g}\text{-}\nu\text{-}\mathrm{K}\big[\mathfrak{T}_{\mathfrak{g},\Lambda}\big] \ \stackrel{\mathrm{def}}{=} \ \big\{\mathcal{S}_{\mathfrak{g}}\subset\mathfrak{T}_{\mathfrak{g},\Lambda}: \ \big(\exists\mathcal{K}_{\mathfrak{g}},\mathbf{op}_{\mathfrak{g},\nu}\left(\cdot\right)\big) \, \big[\mathcal{S}_{\mathfrak{g}}\supseteq\neg\operatorname{op}_{\mathfrak{g},\nu}\left(\mathcal{K}_{\mathfrak{g}}\right)\big]\big\}.$$

From these classes, the following relation holds:

$$\mathfrak{g}\text{-S}\big[\mathfrak{T}_{\mathfrak{g},\Lambda}\big] = \bigcup_{\nu \in I_3^0} \mathfrak{g}\text{-}\nu\text{-S}\big[\mathfrak{T}_{\mathfrak{g},\Lambda}\big]
= \bigcup_{\nu \in I_3^0} \big(\mathfrak{g}\text{-}\nu\text{-O}\big[\mathfrak{T}_{\mathfrak{g}}\big] \cup \mathfrak{g}\text{-}\nu\text{-K}\big[\mathfrak{T}_{\mathfrak{g}}\big]\big)
= \big(\bigcup_{\nu \in I_3^0} \mathfrak{g}\text{-}\nu\text{-O}\big[\mathfrak{T}_{\mathfrak{g},\Lambda}\big]\big) \cup \big(\bigcup_{\nu \in I_3^0} \mathfrak{g}\text{-}\nu\text{-K}\big[\mathfrak{T}_{\mathfrak{g},\Lambda}\big]\big)
= \mathfrak{g}\text{-O}\big[\mathfrak{T}_{\mathfrak{g},\Lambda}\big] \cup \mathfrak{g}\text{-K}\big[\mathfrak{T}_{\mathfrak{g},\Lambda}\big].$$

By omitting the subscript \mathfrak{g} in almost all symbols of the above definitions, we obtain very similar definitions but in a \mathcal{T}_{Λ} -space.

A \mathfrak{T}_{Λ} -set $\mathcal{S} \subset \mathfrak{T}_{\Lambda}$ in a \mathcal{T}_{Λ} -space is called a \mathfrak{g} - \mathfrak{T}_{Λ} -set if and only if there exists a pair $(\mathcal{O}, \mathcal{K}) \in \mathcal{T}_{\Lambda} \times \neg \mathcal{T}_{\Lambda}$ of \mathcal{T}_{Λ} -open and \mathcal{T}_{Λ} -closed sets, and an operator $\mathbf{op}(\cdot) \in \mathcal{L}[\Lambda]$ such that the following statement holds:

$$(2.11) \qquad (\exists \xi) \left[(\xi \in \mathcal{S}) \land \left((\mathcal{S} \subseteq \text{op}(\mathcal{O})) \lor (\mathcal{S} \supseteq \neg \text{op}(\mathcal{K})) \right) \right].$$

The \mathfrak{g} - \mathfrak{T}_{Λ} -set $\mathcal{S} \subset \mathfrak{T}_{\Lambda}$ is said to be of category ν if and only if it belongs to the following class of \mathfrak{g} - ν - \mathcal{T}_{Λ} -sets:

$$\mathfrak{g}\text{-}\nu\text{-}\mathrm{S}\big[\mathfrak{T}_{\Lambda}\big] \stackrel{\mathrm{def}}{=} \big\{ \mathcal{S} \subset \mathfrak{T}_{\Lambda} : \ (\exists \mathcal{O}, \mathcal{K}, \mathbf{op}_{\nu}\left(\cdot\right)) \\ \big[(\mathcal{S} \subseteq \mathrm{op}_{\nu}\left(\mathcal{O}\right)) \vee (\mathcal{S} \supseteq \neg \mathrm{op}_{\nu}\left(\mathcal{K}\right)) \big] \big\}.$$

It is called a \mathfrak{g} - ν - \mathfrak{T}_{Λ} -open set if it satisfies the first property in \mathfrak{g} - ν - \mathfrak{T}_{Λ} and a \mathfrak{g} - ν - \mathfrak{T}_{Λ} -closed set if it satisfies the second property in \mathfrak{g} - ν -S[\mathfrak{T}_{Λ}]. The classes of \mathfrak{g} - ν - \mathfrak{T}_{Λ} -open and \mathfrak{g} - ν - \mathfrak{T}_{Λ} -closed sets, respectively, are defined by

$$\mathfrak{g}\text{-}\nu\text{-}\mathrm{O}\big[\mathfrak{T}_{\Lambda}\big] \stackrel{\mathrm{def}}{=} \left\{\mathcal{S}\subset\mathfrak{T}_{\Lambda}:\; (\exists\mathcal{O},\mathbf{op}_{\nu}\left(\cdot\right))\left[\mathcal{S}\subseteq\mathrm{op}_{\nu}\left(\mathcal{O}\right)\right]\right\},$$

$$(2.13) \qquad \mathfrak{g}\text{-}\nu\text{-}\mathrm{K}\big[\mathfrak{T}_{\Lambda}\big] \stackrel{\mathrm{def}}{=} \left\{\mathcal{S}\subset\mathfrak{T}_{\Lambda}:\; (\exists\mathcal{K},\mathbf{op}_{\nu}\left(\cdot\right))\left[\mathcal{S}\supseteq\neg\mathrm{op}_{\nu}\left(\mathcal{K}\right)\right]\right\}.$$

As in the previous definitions, from these classes, the following relation holds:

$$\mathfrak{g}\text{-S}\big[\mathfrak{T}_{\Lambda}\big] = \bigcup_{\nu \in I_{3}^{0}} \mathfrak{g}\text{-}\nu\text{-S}\big[\mathfrak{T}_{\Lambda}\big]
= \bigcup_{\nu \in I_{3}^{0}} (\mathfrak{g}\text{-}\nu\text{-O}\big[\mathfrak{T}_{\Lambda}\big] \cup \mathfrak{g}\text{-}\nu\text{-K}\big[\mathfrak{T}_{\Lambda}\big])
= (\bigcup_{\nu \in I_{3}^{0}} \mathfrak{g}\text{-}\nu\text{-O}\big[\mathfrak{T}_{\Lambda}\big]) \cup (\bigcup_{\nu \in I_{3}^{0}} \mathfrak{g}\text{-}\nu\text{-K}\big[\mathfrak{T}_{\Lambda}\big])
= \mathfrak{g}\text{-O}\big[\mathfrak{T}_{\Lambda}\big] \cup \mathfrak{g}\text{-K}\big[\mathfrak{T}_{\Lambda}\big].$$

The classes $O[\mathfrak{T}_{\mathfrak{g},\Lambda}]$ and $K[\mathfrak{T}_{\mathfrak{g},\Lambda}]$ denote the families of $\mathfrak{T}_{\mathfrak{g},\Lambda}$ -open and $\mathfrak{T}_{\mathfrak{g},\Lambda}$ -closed sets, respectively, in $\mathfrak{T}_{\mathfrak{g},\Lambda}$, with $S[\mathfrak{T}_{\mathfrak{g},\Lambda}] = O[\mathfrak{T}_{\mathfrak{g},\Lambda}] \cup K[\mathfrak{T}_{\mathfrak{g},\Lambda}]$; the classes $O[\mathfrak{T}_{\Lambda}]$ and $K[\mathfrak{T}_{\Lambda}]$ denote the families of \mathfrak{T} -open and \mathfrak{T}_{Λ} -closed sets, respectively, in \mathfrak{T}_{Λ} , with $S[\mathfrak{T}_{\Lambda}] = O[\mathfrak{T}_{\Lambda}] \cup K[\mathfrak{T}_{\Lambda}]$. (Whenever we feel that the subscript $\Lambda \in \{\Omega, \Sigma, \Upsilon\}$ is understood from the context, it will be omitted for clarity.) We are now in a position to present a carefully chosen set of terms used in the theory of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -maps between $\mathcal{T}_{\mathfrak{g}}$ -spaces.

A $(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma})$ -map and a $(\mathfrak{T}_{\mathfrak{g},\Omega}, \mathfrak{T}_{\mathfrak{g},\Sigma})$ -map, respectively, are mappings in the usual sense between \mathcal{T} -spaces and $\mathcal{T}_{\mathfrak{g}}$ -spaces.

DEFINITION 2.1 $((\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}), (\mathfrak{T}_{\mathfrak{g},\Omega}, \mathfrak{T}_{\mathfrak{g},\Sigma})$ -Maps). Let $\mathfrak{T}_{\Omega} = (\Omega, \mathcal{T}_{\Omega})$ and $\mathfrak{T}_{\Sigma} = (\Sigma, \mathcal{T}_{\Sigma})$ be \mathcal{T} -spaces and, let $\mathfrak{T}_{\mathfrak{g},\Omega} = (\Omega, \mathcal{T}_{\mathfrak{g},\Omega})$ and $\mathfrak{T}_{\mathfrak{g},\Sigma} = (\Sigma, \mathcal{T}_{\mathfrak{g},\Sigma})$ be $\mathcal{T}_{\mathfrak{g}}$ -spaces. Then, a map:

- I. $\pi: \mathfrak{T}_{\Omega} \to \mathfrak{T}_{\Sigma}$ is called a $(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma})$ -map from \mathfrak{T}_{Ω} into \mathfrak{T}_{Σ} . II. $\pi: \mathfrak{T}_{\mathfrak{g},\Omega} \to \mathfrak{T}_{\mathfrak{g},\Sigma}$ is called a $(\mathfrak{T}_{\mathfrak{g},\Omega}, \mathfrak{T}_{\mathfrak{g},\Sigma})$ -map from $\mathfrak{T}_{\mathfrak{g},\Omega}$ into $\mathfrak{T}_{\mathfrak{g},\Sigma}$.

A \mathfrak{g} - $(\mathfrak{T}_{\Omega},\mathfrak{T}_{\Sigma})$ -map is a generalization of a $(\mathfrak{T}_{\Omega},\mathfrak{T}_{\Sigma})$ -map and, hence, is a distinguished mapping between \mathcal{T} -spaces which does not exhibit mapping properties in the usual sense but does exhibit mapping properties in the generalized sense.

DEFINITION 2.2 (\mathfrak{g} - ν -(\mathfrak{T}_{Ω} , \mathfrak{T}_{Σ})-Map). Let $\mathfrak{T}_{\Omega} = (\Omega, \mathcal{T}_{\Omega})$ and $\mathfrak{T}_{\Sigma} = (\Sigma, \mathcal{T}_{\Sigma})$ be \mathcal{T} spaces, and let $\mathbf{op}(\cdot) \in \mathcal{L}[\Sigma]$. Then, a map $\pi_{\mathfrak{g}} : \mathfrak{T}_{\Omega} \to \mathfrak{T}_{\Sigma}$ is called a \mathfrak{g} - $(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma})$ map if and only if, for every pair $(\mathcal{O}_{\omega}, \mathcal{K}_{\omega}) \in \mathcal{T}_{\Omega} \times \neg \mathcal{T}_{\Omega}$ of \mathcal{T}_{Ω} -open and \mathcal{T}_{Ω} -closed sets in \mathfrak{T}_{Ω} there corresponds a pair $(\mathcal{O}_{\sigma}, \mathcal{K}_{\sigma}) \in \mathcal{T}_{\Sigma} \times \neg \mathcal{T}_{\Sigma}$ of \mathcal{T}_{Σ} -open and \mathcal{T}_{Σ} -closed sets in \mathfrak{T}_{Σ} such that the following statement holds:

$$\left[\pi_{\mathfrak{g}}\left(\mathcal{O}_{\omega}\right)\subseteq\operatorname{op}\left(\mathcal{O}_{\sigma}\right)\right]\vee\left[\pi_{\mathfrak{g}}\left(\mathcal{K}_{\omega}\right)\supseteq\neg\operatorname{op}\left(\mathcal{K}_{\sigma}\right)\right].$$

A \mathfrak{g} - $(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma})$ -map is said to be of category ν if and only if it belongs to the following class of \mathfrak{g} - ν - $(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma})$ -maps:

(2.16)
$$\mathfrak{g}\text{-}\nu\text{-}\mathrm{M}\left[\mathfrak{T}_{\Omega};\mathfrak{T}_{\Sigma}\right] \stackrel{\mathrm{def}}{=} \left\{ \pi_{\mathfrak{g}} : \left(\forall \mathcal{O}_{\omega}, \mathcal{K}_{\omega}\right) \left(\exists \mathcal{O}_{\sigma}, \mathcal{K}_{\sigma}, \mathbf{op}_{\nu}\left(\cdot\right)\right) \right. \\ \left. \left[\left(\pi_{\mathfrak{g}}\left(\mathcal{O}_{\omega}\right) \subseteq \mathrm{op}_{\nu}\left(\mathcal{O}_{\sigma}\right)\right) \vee \left(\pi_{\mathfrak{g}}\left(\mathcal{K}_{\omega}\right) \supseteq \neg \mathrm{op}_{\nu}\left(\mathcal{K}_{\sigma}\right)\right)\right] \right\}.$$

It is called a \mathfrak{g} - ν - ($\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}$)-open map if it satisfies the first property in \mathfrak{g} - ν -M [$\mathfrak{T}_{\Omega}; \mathfrak{T}_{\Sigma}$] and a \mathfrak{g} - ν - ($\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}$)-closed map if it satisfies the second property in \mathfrak{g} - ν -M [$\mathfrak{T}_{\Omega}; \mathfrak{T}_{\Sigma}$]. The classes of \mathfrak{g} - ν - ($\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}$)-open and \mathfrak{g} - ν - ($\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma}$)-closed maps, respectively, are defined by

$$\mathfrak{g}\text{-}\nu\text{-}\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\Omega};\mathfrak{T}_{\Sigma}\right]\stackrel{\mathrm{def}}{=}\big\{\pi_{\mathfrak{g}}:\big(\forall\mathcal{O}_{\omega}\big)\big(\exists\mathcal{O}_{\sigma},\mathbf{op}_{\nu}\left(\cdot\right)\big)\big[\pi_{\mathfrak{g}}\left(\mathcal{O}_{\omega}\right)\subseteq\mathrm{op}_{\nu}\left(\mathcal{O}_{\sigma}\right)\big]\big\},$$

$$(2.17) \quad \mathfrak{g}\text{-}\nu\text{-}\mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\Omega};\mathfrak{T}_{\Sigma}\right] \stackrel{\mathrm{def}}{=} \left\{\pi_{\mathfrak{g}}: \left(\forall \mathcal{K}_{\omega}\right) \left(\exists \mathcal{K}_{\sigma}, \mathbf{op}_{\nu}\left(\cdot\right)\right) \left[\pi_{\mathfrak{g}}\left(\mathcal{K}_{\omega}\right) \supseteq \mathrm{op}_{\nu}\left(\mathcal{K}_{\sigma}\right)\right]\right\}.$$

From the class \mathfrak{g} - ν -M $[\mathfrak{T}_{\Omega}; \mathfrak{T}_{\Sigma}]$, consisting of the classes \mathfrak{g} - ν -M_O $[\mathfrak{T}_{\Omega}; \mathfrak{T}_{\Sigma}]$ and \mathfrak{g} - ν -M_K $[\mathfrak{T}_{\Omega}; \mathfrak{T}_{\Sigma}]$, respectively, of \mathfrak{g} - ν - $(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma})$ -open and \mathfrak{g} - ν - $(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma})$ -closed maps, where $\nu \in I_3^0$, there results in the following definition.

DEFINITION 2.3. Let $\mathfrak{T}_{\Omega} = (\Omega, \mathcal{T}_{\Omega})$ and $\mathfrak{T}_{\Sigma} = (\Sigma, \mathcal{T}_{\Sigma})$ be \mathcal{T} -spaces. If, for each $\nu \in I_3^0$, \mathfrak{g} - ν - $M_O[\mathfrak{T}_{\Omega}; \mathfrak{T}_{\Sigma}]$ and \mathfrak{g} - ν - $M_K[\mathfrak{T}_{\Omega}; \mathfrak{T}_{\Sigma}]$, respectively, denote the classes of \mathfrak{g} - ν - $(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma})$ -open and \mathfrak{g} - ν - $(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma})$ -closed maps, then

$$\mathfrak{g}\text{-M}\left[\mathfrak{T}_{\Omega};\mathfrak{T}_{\Sigma}\right] = \bigcup_{\nu \in I_{3}^{0}} \mathfrak{g}\text{-}\nu\text{-M}\left[\mathfrak{T}_{\Omega};\mathfrak{T}_{\Sigma}\right] \\
= \bigcup_{\nu \in I_{3}^{0}} \left(\mathfrak{g}\text{-}\nu\text{-M}_{\mathcal{O}}\left[\mathfrak{T}_{\Omega};\mathfrak{T}_{\Sigma}\right] \cup \mathfrak{g}\text{-}\nu\text{-M}_{\mathcal{K}}\left[\mathfrak{T}_{\Omega};\mathfrak{T}_{\Sigma}\right]\right) \\
= \left(\bigcup_{\nu \in I_{3}^{0}} \mathfrak{g}\text{-}\nu\text{-M}_{\mathcal{O}}\left[\mathfrak{T}_{\Omega};\mathfrak{T}_{\Sigma}\right]\right) \cup \left(\bigcup_{\nu \in I_{3}^{0}} \mathfrak{g}\text{-}\nu\text{-M}_{\mathcal{K}}\left[\mathfrak{T}_{\Omega};\mathfrak{T}_{\Sigma}\right]\right) \\
= \mathfrak{g}\text{-M}_{\mathcal{O}}\left[\mathfrak{T}_{\Omega};\mathfrak{T}_{\Sigma}\right] \cup \mathfrak{g}\text{-M}_{\mathcal{K}}\left[\mathfrak{T}_{\Omega};\mathfrak{T}_{\Sigma}\right].$$

As above, the \mathfrak{g} - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -map is a generalization of the $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -map and, thus, is a distinguished mapping between $\mathcal{T}_{\mathfrak{g}}$ -spaces which does not exhibit mapping properties in the usual sense but does exhibit mapping properties in the generalized sense

DEFINITION 2.4 (\mathfrak{g} - ν - ($\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma}$)-Map). Let $\mathfrak{T}_{\mathfrak{g},\Omega}=(\Omega,\mathcal{T}_{\mathfrak{g},\Omega})$ and $\mathfrak{T}_{\mathfrak{g},\Sigma}=(\Sigma,\mathcal{T}_{\mathfrak{g},\Sigma})$ be $\mathcal{T}_{\mathfrak{g}}$ -spaces, and let $\mathbf{op}_{\mathfrak{g}}(\cdot)\in\mathcal{L}_{\mathfrak{g}}[\Sigma]$. Then, a map $\pi_{\mathfrak{g}}:\mathfrak{T}_{\mathfrak{g},\Omega}\to\mathfrak{T}_{\mathfrak{g},\Sigma}$ is called a \mathfrak{g} - ($\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma}$)-map if and only if, for every pair ($\mathcal{O}_{\mathfrak{g},\omega},\mathcal{K}_{\mathfrak{g},\omega}$) $\in \mathcal{T}_{\mathfrak{g},\Omega}\times\neg\mathcal{T}_{\mathfrak{g},\Omega}$ of $\mathcal{T}_{\mathfrak{g},\Omega}$ -open and $\mathcal{T}_{\mathfrak{g},\Omega}$ -closed sets in $\mathfrak{T}_{\mathfrak{g},\Omega}$ there corresponds a pair ($\mathcal{O}_{\mathfrak{g},\sigma},\mathcal{K}_{\mathfrak{g},\sigma}$) $\in \mathcal{T}_{\mathfrak{g},\Sigma}\times\neg\mathcal{T}_{\mathfrak{g},\Sigma}$ of $\mathcal{T}_{\mathfrak{g},\Sigma}$ -open and \mathcal{T}_{Σ} -closed sets in $\mathfrak{T}_{\mathfrak{g},\Sigma}$ such that the following statement holds:

$$(2.19) \qquad \left[\pi_{\mathfrak{g}} \left(\mathcal{O}_{\mathfrak{g}, \omega} \right) \subseteq \operatorname{op}_{\mathfrak{g}} \left(\mathcal{O}_{\mathfrak{g}, \sigma} \right) \right] \vee \left[\pi_{\mathfrak{g}} \left(\mathcal{K}_{\mathfrak{g}, \omega} \right) \supseteq \neg \operatorname{op}_{\mathfrak{g}} \left(\mathcal{K}_{\mathfrak{g}, \sigma} \right) \right].$$

A \mathfrak{g} - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -map is said to be of category ν if and only if it belongs to the following class of \mathfrak{g} - ν - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -maps:

$$\mathfrak{g}^{-\nu-\mathrm{M}}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] \stackrel{\mathrm{def}}{=} \left\{ \pi_{\mathfrak{g}} : \left(\forall \mathcal{O}_{\mathfrak{g},\omega}, \mathcal{K}_{\mathfrak{g},\omega} \right) \left(\exists \mathcal{O}_{\mathfrak{g},\sigma}, \mathcal{K}_{\mathfrak{g},\sigma}, \mathbf{op}_{\mathfrak{g},\nu} \left(\cdot \right) \right) \right. \\
\left. \left[\left(\pi_{\mathfrak{g}} \left(\mathcal{O}_{\mathfrak{g},\omega} \right) \subseteq \mathrm{op}_{\mathfrak{g},\nu} \left(\mathcal{O}_{\mathfrak{g},\sigma} \right) \right) \vee \left(\pi_{\mathfrak{g}} \left(\mathcal{K}_{\mathfrak{g},\omega} \right) \supseteq \neg \mathrm{op}_{\mathfrak{g},\nu} \left(\mathcal{K}_{\mathfrak{g},\sigma} \right) \right) \right] \right\}.$$

It is called a \mathfrak{g} - ν - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -open map if it satisfies the first property in the class \mathfrak{g} - ν -M [$\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}$] and a \mathfrak{g} - ν - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -closed map if it satisfies the second property in \mathfrak{g} - ν -M [$\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}$]. The classes of \mathfrak{g} - ν - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -open maps and \mathfrak{g} - ν - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -closed maps, respectively, are defined by

$$\mathfrak{g}\text{-}\nu\text{-}\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] \stackrel{\mathrm{def}}{=} \left\{ \pi_{\mathfrak{g}} : \left(\forall \mathcal{O}_{\mathfrak{g},\omega}\right) \left(\exists \mathcal{O}_{\mathfrak{g},\sigma}, \mathbf{op}_{\mathfrak{g},\nu}\left(\cdot\right)\right) \right. \\
\left. \left[\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right) \subseteq \mathrm{op}_{\mathfrak{g},\nu}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right] \right\}, \\
\mathfrak{g}\text{-}\nu\text{-}\mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] \stackrel{\mathrm{def}}{=} \left\{ \pi_{\mathfrak{g}} : \left(\forall \mathcal{K}_{\omega}\right) \left(\exists \mathcal{K}_{\mathfrak{g},\sigma}, \mathbf{op}_{\mathfrak{g},\nu}\left(\cdot\right)\right) \right. \\
\left. \left[\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right) \supseteq \mathrm{op}_{\mathfrak{g},\nu}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right] \right\}.$$

$$(2.21)$$

From the class \mathfrak{g} - ν -M $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$, consisting of the classes \mathfrak{g} - ν -M_O $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$ and \mathfrak{g} - ν -M_K $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$ of \mathfrak{g} - ν - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -open and \mathfrak{g} - ν - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -closed maps, where $\nu \in I_3^0$, respectively, there results in the following definition.

DEFINITION 2.5. Let $\mathfrak{T}_{\mathfrak{g},\Omega} = (\Omega, \mathcal{T}_{\mathfrak{g},\Omega})$ and $\mathfrak{T}_{\mathfrak{g},\Sigma} = (\Sigma, \mathcal{T}_{\mathfrak{g},\Sigma})$ be $\mathcal{T}_{\mathfrak{g}}$ -spaces. If, for each $\nu \in I_3^0$, \mathfrak{g} - ν -M_O $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$ and \mathfrak{g} - ν -M_K $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$, respectively, denote the classes of \mathfrak{g} - ν - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -open and \mathfrak{g} - ν - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -closed maps, then

$$\mathfrak{g}\text{-M}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] = \bigcup_{\nu \in I_3^0} \mathfrak{g}\text{-}\nu\text{-M}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] \\
= \bigcup_{\nu \in I_3^0} \left(\mathfrak{g}\text{-}\nu\text{-M}_{\mathcal{O}}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] \cup \mathfrak{g}\text{-}\nu\text{-M}_{\mathcal{K}}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]\right) \\
= \left(\bigcup_{\nu \in I_3^0} \mathfrak{g}\text{-}\nu\text{-M}_{\mathcal{O}}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]\right) \cup \left(\bigcup_{\nu \in I_3^0} \mathfrak{g}\text{-}\nu\text{-M}_{\mathcal{K}}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]\right) \\
= \mathfrak{g}\text{-M}_{\mathcal{O}}\left[\mathfrak{T}_{\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] \cup \mathfrak{g}\text{-M}_{\mathcal{K}}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right].$$

DEFINITION 2.6 $(\mathfrak{g}\text{-}\nu\text{-}(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})\text{-Continuous})$. Let $\mathfrak{T}_{\mathfrak{g},\Omega}=(\Omega,\mathcal{T}_{\mathfrak{g},\Omega})$ and $\mathfrak{T}_{\mathfrak{g},\Sigma}=(\Sigma,\mathcal{T}_{\mathfrak{g},\Sigma})$ be $\mathcal{T}_{\mathfrak{g}}$ -spaces, and let $\operatorname{op}_{\mathfrak{g}}(\cdot)\in\mathcal{L}_{\mathfrak{g}}[\Omega]$. Then, a map $\pi_{\mathfrak{g}}:\mathfrak{T}_{\mathfrak{g},\Omega}\to\mathfrak{T}_{\mathfrak{g},\Sigma}$ is said to be $\mathfrak{g}\text{-}(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})\text{-continuous}$ if and only if, for every pair $(\mathcal{O}_{\mathfrak{g},\sigma},\mathcal{K}_{\mathfrak{g},\sigma})\in\mathcal{T}_{\mathfrak{g},\Sigma}\times\neg\mathcal{T}_{\mathfrak{g},\Sigma}$ of $\mathcal{T}_{\mathfrak{g},\Sigma}$ -open and \mathcal{T}_{Σ} -closed sets in $\mathfrak{T}_{\mathfrak{g},\Sigma}$ there corresponds a pair $(\mathcal{O}_{\mathfrak{g},\omega},\mathcal{K}_{\mathfrak{g},\omega})\in\mathcal{T}_{\mathfrak{g},\Omega}\times\neg\mathcal{T}_{\mathfrak{g},\Omega}$ of $\mathcal{T}_{\mathfrak{g},\Omega}$ -open and $\mathcal{T}_{\mathfrak{g},\Omega}$ -closed sets in $\mathfrak{T}_{\mathfrak{g},\Omega}$ such that the following statement holds:

$$(2.23) \qquad \left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right) \subseteq \operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right] \vee \left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right) \supseteq \neg \operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right].$$

A \mathfrak{g} - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -continuous map is said to be of category ν if and only if it belongs to the following class of \mathfrak{g} - ν - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -continuous maps:

$$\mathfrak{g}\text{-}\nu\text{-}\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] \stackrel{\mathrm{def}}{=} \left\{ \pi_{\mathfrak{g}} : \left(\forall \mathcal{O}_{\mathfrak{g},\sigma}, \mathcal{K}_{\mathfrak{g},\sigma} \right) \left(\exists \mathcal{O}_{\mathfrak{g},\omega}, \mathcal{K}_{\mathfrak{g},\omega}, \mathbf{op}_{\mathfrak{g},\nu} \left(\cdot \right) \right) \right. \\ \left. \left[\left(\pi_{\mathfrak{g}}^{-1} \left(\mathcal{O}_{\mathfrak{g},\sigma} \right) \subseteq \mathrm{op}_{\mathfrak{g},\nu} \left(\mathcal{O}_{\mathfrak{g},\omega} \right) \right) \vee \left(\pi_{\mathfrak{g}}^{-1} \left(\mathcal{K}_{\mathfrak{g},\sigma} \right) \supseteq \neg \mathrm{op}_{\mathfrak{g},\nu} \left(\mathcal{K}_{\mathfrak{g},\omega} \right) \right) \right] \right\}.$$

DEFINITION 2.7. Let $\mathfrak{T}_{\mathfrak{g},\Omega} = (\Omega, \mathcal{T}_{\mathfrak{g},\Omega})$ and $\mathfrak{T}_{\mathfrak{g},\Sigma} = (\Sigma, \mathcal{T}_{\mathfrak{g},\Sigma})$ be $\mathcal{T}_{\mathfrak{g}}$ -spaces. If, for each $\nu \in I_3^0$, \mathfrak{g} - ν -C $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$ denotes the class of \mathfrak{g} - ν - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -continuous maps, then

(2.25)
$$\mathfrak{g}\text{-}\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] = \bigcup_{\nu \in I_3^0} \mathfrak{g}\text{-}\nu\text{-}\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right].$$

DEFINITION 2.8 $(\mathfrak{g}\text{-}\nu\text{-}(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})\text{-Irresolute})$. Let $\mathfrak{T}_{\mathfrak{g},\Omega}=(\Omega,\mathcal{T}_{\mathfrak{g},\Omega})$ and $\mathfrak{T}_{\mathfrak{g},\Sigma}=(\Sigma,\mathcal{T}_{\mathfrak{g},\Sigma})$ be $\mathcal{T}_{\mathfrak{g}}$ -spaces, and let $\operatorname{op}_{\mathfrak{g}}(\cdot)\in\mathcal{L}_{\mathfrak{g}}[\Omega]$. Then, a map $\pi_{\mathfrak{g}}:\mathfrak{T}_{\mathfrak{g},\Omega}\to\mathfrak{T}_{\mathfrak{g},\Sigma}$ is said to be $\mathfrak{g}\text{-}(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -irresolute if and only if, for every pair $(\mathcal{O}_{\mathfrak{g},\sigma},\mathcal{K}_{\mathfrak{g},\sigma})\in\mathcal{T}_{\mathfrak{g},\Sigma}\times\neg\mathcal{T}_{\mathfrak{g},\Sigma}$ of $\mathcal{T}_{\mathfrak{g},\Sigma}$ -open and \mathcal{T}_{Σ} -closed sets in $\mathfrak{T}_{\mathfrak{g},\Sigma}$ there corresponds a pair

 $(\mathcal{O}_{\mathfrak{g},\omega},\mathcal{K}_{\mathfrak{g},\omega}) \in \mathcal{T}_{\mathfrak{g},\Omega} \times \neg \mathcal{T}_{\mathfrak{g},\Omega}$ of $\mathcal{T}_{\mathfrak{g},\Omega}$ -open and $\mathcal{T}_{\mathfrak{g},\Omega}$ -closed sets in $\mathfrak{T}_{\mathfrak{g},\Omega}$ such that the following statement holds:

$$\left[\pi_{\mathfrak{g}}^{-1}\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right] \vee \left[\pi_{\mathfrak{g}}^{-1}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right].$$
(2.26)

A \mathfrak{g} - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -irresolute map is said to be of category ν if and only if it belongs to the following class of \mathfrak{g} - ν - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -irresolute maps:

$$\mathfrak{g}\text{-}\nu\text{-}\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] \stackrel{\mathrm{def}}{=} \left\{ \pi_{\mathfrak{g}} : \left(\forall \mathcal{O}_{\mathfrak{g},\sigma}, \mathcal{K}_{\mathfrak{g},\sigma} \right) \left(\exists \mathcal{O}_{\mathfrak{g},\omega}, \mathcal{K}_{\mathfrak{g},\omega}, \mathbf{op}_{\mathfrak{g},\nu} \left(\cdot \right) \right) \\ \left[\left(\pi_{\mathfrak{g}}^{-1} \left(\operatorname{op}_{\mathfrak{g},\nu} \left(\mathcal{O}_{\mathfrak{g},\sigma} \right) \right) \subseteq \operatorname{op}_{\mathfrak{g},\nu} \left(\mathcal{O}_{\mathfrak{g},\omega} \right) \right) \vee \left(\pi_{\mathfrak{g}}^{-1} \left(\neg \operatorname{op}_{\mathfrak{g},\nu} \left(\mathcal{K}_{\mathfrak{g},\sigma} \right) \right) \supseteq \right. \\ \left. \neg \operatorname{op}_{\mathfrak{g},\nu} \left(\mathcal{K}_{\mathfrak{g},\omega} \right) \right) \right] \right\}.$$

DEFINITION 2.9. Let $\mathfrak{T}_{\mathfrak{g},\Omega} = (\Omega, \mathcal{T}_{\mathfrak{g},\Omega})$ and $\mathfrak{T}_{\mathfrak{g},\Sigma} = (\Sigma, \mathcal{T}_{\mathfrak{g},\Sigma})$ be $\mathcal{T}_{\mathfrak{g}}$ -spaces. If, for each $\nu \in I_3^0$, \mathfrak{g} - ν -I $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$ denotes the class of \mathfrak{g} - ν - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -irresolute maps, then

(2.28)
$$\mathfrak{g}\text{-I}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] = \bigcup_{\nu \in I_0^0} \mathfrak{g}\text{-}\nu\text{-I}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right].$$

DEFINITION 2.10. Let $\mathfrak{T}_{\mathfrak{g},\Omega} = (\Omega, \mathcal{T}_{\mathfrak{g},\Omega})$ and $\mathfrak{T}_{\mathfrak{g},\Sigma} = (\Sigma, \mathcal{T}_{\mathfrak{g},\Sigma})$ be $\mathcal{T}_{\mathfrak{g}}$ -spaces and, let $\mathfrak{T}_{\Omega} = (\Omega, \mathcal{T}_{\Omega})$ and $\mathfrak{T}_{\Sigma} = (\Sigma, \mathcal{T}_{\Sigma})$ be \mathcal{T} -spaces.

- I. The classes $M_O\left[\mathfrak{T}_\Omega;\mathfrak{T}_\Sigma\right]$ and $M_K\left[\mathfrak{T}_\Omega;\mathfrak{T}_\Sigma\right]$ denote the families of \mathfrak{T} -open and \mathfrak{T} -closed maps, respectively, from \mathfrak{T}_Ω into \mathfrak{T}_Σ , with $M\left[\mathfrak{T}_\Omega;\mathfrak{T}_\Sigma\right] = M_O\left[\mathfrak{T}_\Omega;\mathfrak{T}_\Sigma\right] \cup M_K\left[\mathfrak{T}_\Omega;\mathfrak{T}_\Sigma\right]$.
- II. The classes $M_O\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$ and $M_K\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$ denote the families of $\mathfrak{T}_{\mathfrak{g}}$ -open and $\mathfrak{T}_{\mathfrak{g}}$ -closed maps, respectively, from $\mathfrak{T}_{\mathfrak{g},\Omega}$ into $\mathfrak{T}_{\mathfrak{g},\Sigma}$, with $M\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]=M_O\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]\cup M_K\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$.

The following sections present the main results of the theory of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -maps.

2.2. MAIN RESULTS. The purpose of the following lines is to explore properties and characterizations of \mathfrak{g} - $(\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma})$ -maps $\pi_{\mathfrak{g}}:\mathfrak{T}_{\mathfrak{g},\Omega}\to\mathfrak{T}_{\mathfrak{g},\Sigma}$ belonging to the class \mathfrak{g} -M $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$.

THEOREM 2.11. If $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g},\Omega} \to \mathfrak{T}_{\mathfrak{g},\Sigma}$ is a $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -open or a $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -closed map, then

(2.29)
$$\pi_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] \cup \mathfrak{g}\text{-}\mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right].$$

PROOF. Let $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g},\Omega} \to \mathfrak{T}_{\mathfrak{g},\Sigma}$ be a $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -map. Then, for every $(\mathcal{O}_{\mathfrak{g},\omega},\mathcal{K}_{\mathfrak{g},\omega}) \in \mathcal{T}_{\mathfrak{g},\Omega} \times \neg \mathcal{T}_{\mathfrak{g},\Omega}$ there exists $(\mathcal{O}_{\mathfrak{g}},\mathcal{K}_{\mathfrak{g},\sigma}) \in \mathcal{T}_{\mathfrak{g},\Sigma} \times \neg \mathcal{T}_{\mathfrak{g},\Sigma}$ such that

$$\left[\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\subseteq\mathcal{O}_{\mathfrak{g},\sigma}\right]\vee\left[\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\supseteq\mathcal{K}_{\mathfrak{g},\sigma}\right].$$

But, $\mathcal{O}_{\mathfrak{g},\sigma} \subseteq \mathrm{op}_{\mathfrak{g}}(\mathcal{O}_{\mathfrak{g},\sigma})$ and $\mathcal{K}_{\mathfrak{g},\sigma} \supseteq \neg \mathrm{op}_{\mathfrak{g}}(\mathcal{K}_{\mathfrak{g},\sigma})$. Consequently,

$$\left[\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\subseteq\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right]\vee\left[\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\supseteq\neg\operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right].$$

Hence,
$$\pi_{\mathfrak{g}} \in \mathfrak{g}\text{-M}_{\mathcal{O}}\left[\mathfrak{T}_{\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] \cup \mathfrak{g}\text{-M}_{\mathcal{K}}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right].$$
 Q.E.D

The converse of Thm. 2.11 is clearly false, because the statement " $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g},\Omega} \to \mathfrak{T}_{\mathfrak{g},\Sigma}$ is a $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -map and $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g},\Omega} \to \mathfrak{T}_{\mathfrak{g},\Sigma}$ is not a \mathfrak{g} - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -map" is untrue. The following theorem states that, the image of a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -set in a $\mathcal{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g},\Omega}$ is a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -set in a $\mathcal{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g},\Sigma}$ if and only if the map $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g},\Omega} \to \mathfrak{T}_{\mathfrak{g},\Sigma}$ is a \mathfrak{g} - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -map.

Theorem 2.12. A necessary and sufficient condition for $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g},\Omega} \to \mathfrak{T}_{\mathfrak{g},\Sigma}$ to be a \mathfrak{g} - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -map is that, for every $(\mathcal{O}_{\mathfrak{g},\omega},\mathcal{K}_{\mathfrak{g},\omega}) \in \mathcal{T}_{\mathfrak{g},\Omega} \times \neg \mathcal{T}_{\mathfrak{g},\Omega}$,

$$\left[\pi_{\mathfrak{g}}\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right)\subseteq\mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right)\right]\vee\left[\pi_{\mathfrak{g}}\left(\neg\,\mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right)\supseteq$$

$$(2.30) \neg \operatorname{op}_{\mathfrak{g}} (\pi_{\mathfrak{g}} (\mathcal{K}_{\mathfrak{g},\omega}))].$$

PROOF. Necessity. Let $\pi_{\mathfrak{g}} \in \mathfrak{g}\text{-M} [\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$. Then for $(\mathcal{O}_{\mathfrak{g},\omega},\mathcal{K}_{\mathfrak{g},\omega}) \in \mathcal{T}_{\mathfrak{g},\Omega} \times \neg \mathcal{T}_{\mathfrak{g},\Omega}$ there corresponds $(\mathcal{O}_{\mathfrak{g}},\mathcal{K}_{\mathfrak{g},\sigma}) \in \mathcal{T}_{\mathfrak{g},\Sigma} \times \neg \mathcal{T}_{\mathfrak{g},\Sigma}$ such that

$$\left[\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\subseteq\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right]\vee\left[\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\supseteq\neg\operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right].$$

Because $\left[\mathcal{O}_{\mathfrak{g},\omega}\subseteq\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right]\vee\left[\mathcal{K}_{\mathfrak{g},\omega}\supseteq\neg\operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right]$, it consequently follows that,

$$\left[\pi_{\mathfrak{g}}\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right)\subseteq\mathrm{op}_{\mathfrak{g}}\circ\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right]\vee\left[\pi_{\mathfrak{g}}\left(\neg\,\mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right)\right]$$

$$\supseteq \neg \operatorname{op}_{\mathfrak{g}} \circ \neg \operatorname{op}_{\mathfrak{g}} (\mathcal{K}_{\mathfrak{g}, \sigma}) \big].$$

But, since

 $\operatorname{op}_{\mathfrak{g}} \circ \operatorname{op}_{\mathfrak{g}} \left(\mathcal{O}_{\mathfrak{g}, \sigma} \right) \subseteq \operatorname{op}_{\mathfrak{g}} \left(\pi_{\mathfrak{g}} \left(\mathcal{O}_{\mathfrak{g}, \omega} \right) \right), \ \neg \operatorname{op}_{\mathfrak{g}} \circ \neg \operatorname{op}_{\mathfrak{g}} \left(\mathcal{K}_{\mathfrak{g}, \sigma} \right) \supseteq \neg \operatorname{op}_{\mathfrak{g}} \left(\pi_{\mathfrak{g}} \left(\mathcal{K}_{\mathfrak{g}, \omega} \right) \right),$ the proof at once follows.

Sufficiency. For every $(\mathcal{O}_{\mathfrak{g},\omega},\mathcal{K}_{\mathfrak{g},\omega}) \in \mathcal{T}_{\mathfrak{g},\Omega} \times \neg \mathcal{T}_{\mathfrak{g},\Omega}$, let

$$\left[\pi_{\mathfrak{g}}\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right)\subseteq\mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right)\right]\vee\left[\pi_{\mathfrak{g}}\left(\neg\,\mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right)\supseteq\right.\\\left.\neg\,\mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right)\right].$$

Then,

$$\begin{split} & \left[\pi_{\mathfrak{g}} \left(\mathcal{O}_{\mathfrak{g}, \omega} \right) \subseteq \pi_{\mathfrak{g}} \left(\operatorname{op}_{\mathfrak{g}} \left(\mathcal{O}_{\mathfrak{g}, \omega} \right) \right) \subseteq \operatorname{op}_{\mathfrak{g}} \left(\pi_{\mathfrak{g}} \left(\mathcal{O}_{\mathfrak{g}, \omega} \right) \right) \subseteq \operatorname{op}_{\mathfrak{g}} \left(\mathcal{O}_{\mathfrak{g}, \sigma} \right) \right] \\ & \vee \left[\pi_{\mathfrak{g}} \left(\mathcal{K}_{\mathfrak{g}, \omega} \right) \supseteq \pi_{\mathfrak{g}} \left(\neg \operatorname{op}_{\mathfrak{g}} \left(\mathcal{K}_{\mathfrak{g}, \omega} \right) \right) \supseteq \neg \operatorname{op}_{\mathfrak{g}} \left(\pi_{\mathfrak{g}} \left(\mathcal{K}_{\mathfrak{g}, \omega} \right) \right) \supseteq \neg \operatorname{op}_{\mathfrak{g}} \left(\mathcal{O}_{\mathfrak{g}, \sigma} \right) \right], \end{split}$$

because, $\mathcal{O}_{\mathfrak{g},\omega} \subseteq \operatorname{op}_{\mathfrak{g}}(\mathcal{O}_{\mathfrak{g},\omega})$, $\mathcal{K}_{\mathfrak{g},\omega} \supseteq \neg \operatorname{op}_{\mathfrak{g}}(\mathcal{K}_{\mathfrak{g},\omega})$, $\pi_{\mathfrak{g}}(\mathcal{O}_{\mathfrak{g},\omega}) \subseteq \operatorname{op}_{\mathfrak{g}}(\mathcal{O}_{\mathfrak{g},\sigma})$, and $\pi_{\mathfrak{g}}(\mathcal{K}_{\mathfrak{g},\omega}) \supseteq \neg \operatorname{op}_{\mathfrak{g}}(\mathcal{K}_{\mathfrak{g},\sigma})$. Therefore,

$$\left[\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\subseteq\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right]\vee\left[\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\supseteq\neg\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right].$$

Thus, $\pi_{\mathfrak{g}} \in \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$, which completes the proof. Q.E.D.

Theorem 2.13. If $\pi_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$ and $\pi_{\mathfrak{g},\beta} \in \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Upsilon}\right]$, then $\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Upsilon}\right]$.

PROOF. Let $\pi_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$ and $\pi_{\mathfrak{g},\beta} \in \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Upsilon}\right]$. Then, for every $(\mathcal{O}_{\mathfrak{g},\omega},\mathcal{K}_{\mathfrak{g},\omega}) \in \mathcal{T}_{\mathfrak{g},\Omega} \times \neg \mathcal{T}_{\mathfrak{g},\Omega}$ there exists $(\mathcal{O}_{\mathfrak{g},\sigma},\mathcal{K}_{\mathfrak{g},\sigma}) \in \mathcal{T}_{\mathfrak{g},\Sigma} \times \neg \mathcal{T}_{\mathfrak{g},\Sigma}$ and, for every $(\mathcal{O}_{\mathfrak{g},\sigma},\mathcal{K}_{\mathfrak{g},\sigma}) \in \mathcal{T}_{\mathfrak{g},\Sigma} \times \neg \mathcal{T}_{\mathfrak{g},\Sigma}$ there exists $(\mathcal{O}_{\mathfrak{g},\upsilon},\mathcal{K}_{\mathfrak{g},\upsilon}) \in \mathcal{T}_{\mathfrak{g},\Upsilon} \times \neg \mathcal{T}_{\mathfrak{g},\Upsilon}$ such that

$$\left[\pi_{\mathfrak{g},\alpha}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\subseteq\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right]\vee\left[\pi_{\mathfrak{g},\alpha}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\supseteq\neg\operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right],$$

$$\left[\pi_{\mathfrak{g},\beta}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\subseteq\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\upsilon}\right)\right]\vee\left[\pi_{\mathfrak{g},\beta}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\supseteq\neg\operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\upsilon}\right)\right].$$

From the first line, aided with the second, the logical statement preceding \vee becomes

$$\pi_{\mathfrak{g},\alpha}\left(\mathcal{O}_{\mathfrak{g},\omega}\right) \subseteq \operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)$$

$$\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha} \left(\mathcal{O}_{\mathfrak{g},\omega} \right) \subseteq \pi_{\mathfrak{g},\beta} \left(\operatorname{op}_{\mathfrak{g}} \left(\mathcal{O}_{\mathfrak{g},\sigma} \right) \right) \subseteq \operatorname{op}_{\mathfrak{g}} \left(\pi_{\mathfrak{g},\beta} \left(\mathcal{O}_{\mathfrak{g},\sigma} \right) \right) \subseteq \operatorname{op}_{\mathfrak{g}} \left(\mathcal{O}_{\mathfrak{g},\upsilon} \right),$$

and, that following \vee becomes

$$\pi_{\mathfrak{a},\alpha}\left(\mathcal{K}_{\mathfrak{a},\omega}\right) \supseteq \neg \operatorname{op}_{\mathfrak{a}}\left(\mathcal{K}_{\mathfrak{a},\sigma}\right)$$

$$\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha} \left(\mathcal{K}_{\mathfrak{g},\omega} \right) \quad \supseteq \quad \pi_{\mathfrak{g},\beta} \left(\neg \operatorname{op}_{\mathfrak{g}} \left(\mathcal{K}_{\mathfrak{g},\sigma} \right) \right) \supseteq \neg \operatorname{op}_{\mathfrak{g}} \left(\pi_{\mathfrak{g},\beta} \left(\mathcal{K}_{\mathfrak{g},\sigma} \right) \right) \supseteq \neg \operatorname{op}_{\mathfrak{g}} \left(\mathcal{K}_{\mathfrak{g},v} \right).$$

Thus, $\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Upsilon}\right]$, which proves the theorem. Q.E.D.

THEOREM 2.14. Let $\pi_{\mathfrak{g},\alpha}:\mathfrak{T}_{\mathfrak{g},\Omega}\to\mathfrak{T}_{\mathfrak{g},\Sigma}$ be a $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -map and let $\pi_{\mathfrak{g},\beta}:\mathfrak{T}_{\mathfrak{g},\Sigma}\to\mathfrak{T}_{\mathfrak{g},\Upsilon}$ be a $(\mathfrak{T}_{\mathfrak{g},\Sigma},\mathfrak{T}_{\mathfrak{g},\Upsilon})$ -map. Then:

- I. $\pi_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] \text{ implies } \pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Upsilon}\right].$
- II. $\pi_{\mathfrak{g},\beta} \in \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Upsilon}\right] \text{ implies } \pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Upsilon}\right].$

PROOF. I. Let $\pi_{\mathfrak{g},\alpha}$ be a $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -map and $\pi_{\mathfrak{g},\beta}$ a $(\mathfrak{T}_{\mathfrak{g},\Sigma},\mathfrak{T}_{\mathfrak{g},\Upsilon})$ -map. Then, for every $(\mathcal{O}_{\mathfrak{g},\omega},\mathcal{K}_{\mathfrak{g},\omega}) \in \mathcal{T}_{\mathfrak{g},\Omega} \times \neg \mathcal{T}_{\mathfrak{g},\Omega}$, there exists $(\mathcal{O}_{\mathfrak{g},\sigma},\mathcal{K}_{\mathfrak{g},\sigma}) \in \mathcal{T}_{\mathfrak{g},\Sigma} \times \neg \mathcal{T}_{\mathfrak{g},\Sigma}$ and, for every $(\mathcal{O}_{\mathfrak{g},\sigma},\mathcal{K}_{\mathfrak{g},\sigma}) \in \mathcal{T}_{\mathfrak{g},\Sigma} \times \neg \mathcal{T}_{\mathfrak{g},\Sigma}$, there exists $(\mathcal{O}_{\mathfrak{g},\upsilon},\mathcal{K}_{\mathfrak{g},\upsilon}) \in \mathcal{T}_{\mathfrak{g},\Upsilon} \times \neg \mathcal{T}_{\mathfrak{g},\Upsilon}$ such that

$$\begin{split} & \left[\pi_{\mathfrak{g},\alpha} \left(\mathcal{O}_{\mathfrak{g},\omega} \right) \subseteq \mathcal{O}_{\mathfrak{g},\sigma} \right] \vee \left[\pi_{\mathfrak{g},\alpha} \left(\mathcal{K}_{\mathfrak{g},\omega} \right) \supseteq \mathcal{K}_{\mathfrak{g},\sigma} \right], \\ & \left[\pi_{\mathfrak{g},\beta} \left(\mathcal{O}_{\mathfrak{g},\sigma} \right) \subseteq \mathcal{O}_{\mathfrak{g},\upsilon} \right] \vee \left[\pi_{\mathfrak{g},\beta} \left(\mathcal{K}_{\mathfrak{g},\sigma} \right) \supseteq \mathcal{K}_{\mathfrak{g},\upsilon} \right]. \end{split}$$

The logical statements expressing the relations $\pi_{\mathfrak{g},\alpha} \in \mathfrak{g}$ -M $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$ and $\pi_{\mathfrak{g},\alpha} \in \mathfrak{g}$ -M $[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$ are, respectively,

$$\left[\pi_{\mathfrak{g},\alpha}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\subseteq\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right]\quad\vee\quad\left[\pi_{\mathfrak{g},\alpha}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\supseteq\neg\operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right],$$

$$\left[\pi_{\mathfrak{g},\beta}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\subseteq\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\upsilon}\right)\right]\quad\vee\quad\left[\pi_{\mathfrak{g},\beta}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\supseteq\neg\operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\upsilon}\right)\right].$$

Therefore, if only the relation $\pi_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$ holds, then

$$\left[\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha}\left(\mathcal{O}_{\mathfrak{g},\omega}\right) \subseteq \pi_{\mathfrak{g},\beta}\left(\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right)\right] \vee \left[\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right]$$

$$\supseteq \pi_{\mathfrak{g},\beta}(\neg \operatorname{op}_{\mathfrak{g}}(\mathcal{K}_{\mathfrak{g},\sigma}))]$$

$$\Rightarrow \qquad \left[\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha}\left(\mathcal{O}_{\mathfrak{g},\omega}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g},\beta}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right)\right] \vee \left[\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right]$$

$$\supseteq \neg \operatorname{op}_{\mathfrak{g}}(\pi_{\mathfrak{g},\beta}(\mathcal{K}_{\mathfrak{g},\sigma}))]$$

$$\Rightarrow \qquad \left[\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha}\left(\mathcal{O}_{\mathfrak{g},\omega}\right) \subseteq \operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\upsilon}\right)\right] \vee \left[\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha}\left(\mathcal{K}_{\mathfrak{g},\omega}\right) \supseteq \neg \operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\upsilon}\right)\right],$$

and, hence, $\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Upsilon}\right]$.

II. If only the relation $\pi_{\mathfrak{g},\beta} \in \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Upsilon}\right]$ holds, then

$$\left[\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha}\left(\mathcal{O}_{\mathfrak{g},\omega}\right) \subseteq \pi_{\mathfrak{g},\beta}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right] \vee \left[\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha}\left(\mathcal{K}_{\mathfrak{g},\omega}\right) \supseteq \pi_{\mathfrak{g},\beta}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right]$$

$$\Rightarrow \left[\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha}\left(\mathcal{O}_{\mathfrak{g},\omega}\right) \subseteq \operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\upsilon}\right)\right] \vee \left[\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha}\left(\mathcal{K}_{\mathfrak{g},\omega}\right) \supseteq \neg \operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\upsilon}\right)\right],$$
 and, hence, $\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Upsilon}\right].$ Q.E.

PROPOSITION 2.15. Let $\pi_{\mathfrak{g},\alpha} \in \mathfrak{g}$ -M $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$ and $\pi_{\mathfrak{g},\beta} \in \mathfrak{g}$ -M $[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Omega}]$, satis-

FROPOSITION 2.13. Let $\pi_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-M}[\mathfrak{L}_{\mathfrak{g},\Omega};\mathfrak{L}_{\mathfrak{g},\Sigma}]$ and $\pi_{\mathfrak{g},\beta} \in \mathfrak{g}\text{-M}[\mathfrak{L}_{\mathfrak{g},\Sigma};\mathfrak{L}_{\mathfrak{g},\Omega}]$, satisfying

$$\left[\pi_{\mathfrak{g},\beta}\circ\pi_{\mathfrak{g},\alpha}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\subseteq\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right]\vee\left[\pi_{\mathfrak{g},\beta}\circ\pi_{\mathfrak{g},\alpha}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\supseteq\neg\operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right],$$

$$(2.31) \quad \left[\pi_{\mathfrak{g},\alpha} \circ \pi_{\mathfrak{g},\beta} \left(\mathcal{O}_{\mathfrak{g},\sigma}\right) \subseteq \mathrm{op}_{\mathfrak{g}} \left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right] \vee \left[\pi_{\mathfrak{g},\alpha} \circ \pi_{\mathfrak{g},\beta} \left(\mathcal{K}_{\mathfrak{g},\sigma}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}} \left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right],$$

respectively. Then, there exist inverse maps $\pi_{\mathfrak{g},\alpha}^{-1} \in \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$ and $\pi_{\mathfrak{g},\beta}^{-1} \in \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Omega}\right]$ such that $\pi_{\mathfrak{g},\beta} = \pi_{\mathfrak{g},\alpha}^{-1}$ and $\pi_{\mathfrak{g},\alpha} = \pi_{\mathfrak{g},\beta}^{-1}$.

PROOF. It is clear that, $\mathcal{O}_{\mathfrak{g},\mu} \subseteq \mathrm{op}_{\mathfrak{g}}(\mathcal{O}_{\mathfrak{g},\mu})$ or $\mathcal{K}_{\mathfrak{g},\mu} \supseteq \mathrm{op}_{\mathfrak{g}}(\mathcal{K}_{\mathfrak{g},\mu})$ for every $\mu \in \{\omega,\sigma\}$. But, $\pi_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-M}[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$ or $\pi_{\mathfrak{g},\beta} \in \mathfrak{g}\text{-M}[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Omega}]$ satisfy

$$\left[\pi_{\mathfrak{g},\beta}\circ\pi_{\mathfrak{g},\alpha}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\subseteq\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right]\vee\left[\pi_{\mathfrak{g},\beta}\circ\pi_{\mathfrak{g},\alpha}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\supseteq\neg\operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right],$$

$$\left[\pi_{\mathfrak{g},\alpha}\circ\pi_{\mathfrak{g},\beta}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\subseteq\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right]\vee\left[\pi_{\mathfrak{g},\alpha}\circ\pi_{\mathfrak{g},\beta}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\supseteq\neg\operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right].$$

9

Hence, there exist $\pi_{\mathfrak{g},\alpha}^{-1} \in \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$ and $\pi_{\mathfrak{g},\beta}^{-1} \in \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Omega}\right]$ such that $\pi_{\mathfrak{g},\beta} = \pi_{\mathfrak{g},\alpha}^{-1}$ and $\pi_{\mathfrak{g},\alpha} = \pi_{\mathfrak{g},\beta}^{-1}$. This proves the proposition.

Theorem 2.16. Let $\pi_{\mathfrak{g}} \in \mathfrak{g}\text{-M}\,[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$. Given any $\mathfrak{T}_{\mathfrak{g},\Sigma}\text{-set}\,\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g},\Sigma}$ and any pair $(\mathcal{O}_{\mathfrak{g},\omega},\mathcal{K}_{\mathfrak{g},\omega}) \in \mathcal{T}_{\mathfrak{g},\Omega} \times \neg \mathcal{T}_{\mathfrak{g},\Omega}$ of $\mathcal{T}_{\mathfrak{g},\Omega}\text{-open}$ and $\mathcal{T}_{\mathfrak{g},\Omega}\text{-closed}$ sets satisfying

$$\left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{S}_{\mathfrak{g}}\right)\subseteq\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right]\vee\left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{S}_{\mathfrak{g}}\right)\supseteq\neg\operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right],$$

then:

- I. $\pi_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{M}_{\mathrm{K}}[\mathfrak{T}_{\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$ implies the existence of a $\mathcal{T}_{\mathfrak{g},\Sigma}$ -open set $\mathcal{O}_{\mathfrak{g},\sigma} \supseteq \mathcal{S}_{\mathfrak{g}}$
- such that $\pi_{\mathfrak{g}}^{-1}(\mathcal{O}_{\mathfrak{g},\sigma}) \subseteq \operatorname{op}_{\mathfrak{g}}(\mathcal{O}_{\mathfrak{g},\omega}).$ II. $\pi_{\mathfrak{g}} \in \mathfrak{g}\text{-M}_{O}[\mathfrak{T}_{\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$ implies the existence of a $\mathcal{T}_{\mathfrak{g},\Sigma}$ -closed set $\mathcal{K}_{\mathfrak{g},\sigma} \supseteq \mathcal{S}_{\mathfrak{g}}$ such that $\pi_{\mathfrak{g}}^{-1}(\mathcal{K}_{\mathfrak{g},\sigma}) \supseteq \neg \operatorname{op}_{\mathfrak{g}}(\mathcal{K}_{\mathfrak{g},\omega}).$

PROOF. I. Let $\mathcal{O}_{\mathfrak{g},\sigma} = \Sigma - \pi_{\mathfrak{g}} (\Omega - \operatorname{op}_{\mathfrak{g}} (\mathcal{O}_{\mathfrak{g},\omega}))$. Then, since $\pi_{\mathfrak{g}}^{-1} (\mathcal{S}_{\mathfrak{g}}) \subseteq \operatorname{op}_{\mathfrak{g}} (\mathcal{O}_{\mathfrak{g},\omega})$ and $\pi_{\mathfrak{g}} \in \mathfrak{g}\text{-M}_{K}[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$, there exists a $\mathcal{T}_{\mathfrak{g},\Sigma}$ -open set $\mathcal{O}_{\mathfrak{g},\sigma} \in \mathcal{T}_{\mathfrak{g},\Sigma}$ such that $\mathcal{O}_{\mathfrak{g},\sigma} \supseteq \mathcal{S}_{\mathfrak{g}}$. But, since

$$\begin{array}{lcl} \pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right) & = & \Omega - \pi_{\mathfrak{g}}^{-1} \circ \pi_{\mathfrak{g}}\left(\Omega - \operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right) \\ & \subseteq & \Omega - \left(\Omega - \operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right) = \operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right), \end{array}$$

the proof of I. follows.

II. Let $\mathcal{K}_{\mathfrak{g},\sigma} = \Sigma - \pi_{\mathfrak{g}} (\Omega - \neg \operatorname{op}_{\mathfrak{g}} (\mathcal{K}_{\mathfrak{g},\omega}))$. Then, because $\pi_{\mathfrak{g}}^{-1} (\mathcal{S}_{\mathfrak{g}}) \supseteq \neg \operatorname{op}_{\mathfrak{g}} (\mathcal{K}_{\mathfrak{g},\omega})$ and $\pi_{\mathfrak{g}} \in \mathfrak{g}\text{-M}_{\mathcal{O}}[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$, there exists a $\mathcal{T}_{\mathfrak{g},\Sigma}$ -closed $\mathcal{K}_{\mathfrak{g},\sigma} \in \neg \mathcal{T}_{\mathfrak{g},\Sigma}$ such that $\mathcal{K}_{\mathfrak{g},\sigma} \supseteq \mathcal{S}_{\mathfrak{g}}$. But, since

$$\begin{array}{lcl} \pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right) & = & \Omega - \pi_{\mathfrak{g}}^{-1} \circ \pi_{\mathfrak{g}}\left(\Omega - \neg \operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right) \\ & \supseteq & \Omega - \left(\Omega - \neg \operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right) = \neg \operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right), \end{array}$$

the proof of II. follows.

Q.E.D.

We next investigate further properties and give characterizations of those elements which belong to the class \mathfrak{g} -C $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$.

Theorem 2.17. If $\pi_{\mathfrak{g}}:\mathfrak{T}_{\mathfrak{g},\Omega}\to\mathfrak{T}_{\mathfrak{g},\Sigma}$ is a $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -continuous map, then $\pi_{\mathfrak{g}}\in$ $\mathfrak{g}\text{-}\mathrm{C}\left[\mathfrak{T}_{\mathfrak{q},\Omega};\mathfrak{T}_{\mathfrak{q},\Sigma}\right].$

PROOF. If $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g},\Omega} \to \mathfrak{T}_{\mathfrak{g},\Sigma}$ is a $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -continuous map, then, for every $(\mathcal{O}_{\mathfrak{g},\sigma},\mathcal{K}_{\mathfrak{g},\sigma}) \in \mathcal{T}_{\mathfrak{g},\Sigma} \times \neg \mathcal{T}_{\mathfrak{g},\Sigma}$, there exists $(\mathcal{O}_{\mathfrak{g},\omega},\mathcal{K}_{\mathfrak{g},\omega}) \in \mathcal{T}_{\mathfrak{g},\Omega} \times \neg \mathcal{T}_{\mathfrak{g},\Omega}$ such that

$$\left[\pi_{\mathfrak{q}}^{-1}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\subseteq\mathcal{O}_{\mathfrak{g},\omega}\right]\vee\left[\pi_{\mathfrak{q}}^{-1}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\supseteq\mathcal{K}_{\mathfrak{g},\omega}\right].$$

But, for every $(\mathcal{O}_{\mathfrak{g},\omega},\mathcal{K}_{\mathfrak{g},\omega}) \in \mathcal{T}_{\mathfrak{g},\Omega} \times \neg \mathcal{T}_{\mathfrak{g},\Omega}$,

$$\left[\mathcal{O}_{\mathfrak{g},\omega}\subseteq\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right]\vee\left[\mathcal{K}_{\mathfrak{g},\omega}\supseteq\neg\operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right],$$

and, consequently,

$$\left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\subseteq\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right]\vee\left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\supseteq\neg\operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right].$$

Hence,
$$\pi_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right].$$
 Q.E.D.

Theorem 2.18. If $\pi_{\mathfrak{g}}:\mathfrak{T}_{\mathfrak{g},\Omega}\to\mathfrak{T}_{\mathfrak{g},\Sigma}$ is a $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -map satisfying, for every $(\mathcal{O}_{\mathfrak{g},\sigma},\mathcal{K}_{\mathfrak{g},\sigma}) \in \mathcal{T}_{\mathfrak{g},\Sigma} \times \neg \mathcal{T}_{\mathfrak{g},\Sigma},$

$$\left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\subseteq \operatorname{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right)\right]\vee\left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\supseteq\neg\operatorname{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right)\right],$$

then $\pi_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$.

PROOF. For every $(\mathcal{O}_{\mathfrak{g},\sigma},\mathcal{K}_{\mathfrak{g},\sigma}) \in \mathcal{T}_{\mathfrak{g},\Sigma} \times \neg \mathcal{T}_{\mathfrak{g},\Sigma}$, it is evident that

$$\begin{split} & \left[\mathcal{O}_{\mathfrak{g},\sigma} \subseteq \operatorname{op}_{\mathfrak{g}} \left(\mathcal{O}_{\mathfrak{g},\sigma} \right) \right] \vee \left[\mathcal{K}_{\mathfrak{g},\sigma} \supseteq \neg \operatorname{op}_{\mathfrak{g}} \left(\mathcal{K}_{\mathfrak{g},\sigma} \right) \right] \\ \Rightarrow & \left[\pi_{\mathfrak{g}}^{-1} \left(\mathcal{O}_{\mathfrak{g},\sigma} \right) \subseteq \pi_{\mathfrak{g}}^{-1} \left(\operatorname{op}_{\mathfrak{g}} \left(\mathcal{O}_{\mathfrak{g},\sigma} \right) \right) \right] \vee \left[\pi_{\mathfrak{g}}^{-1} \left(\mathcal{K}_{\mathfrak{g},\sigma} \right) \supseteq \pi_{\mathfrak{g}}^{-1} \left(\neg \operatorname{op}_{\mathfrak{g}} \left(\mathcal{K}_{\mathfrak{g},\sigma} \right) \right) \right] \\ \Rightarrow & \left[\pi_{\mathfrak{g}}^{-1} \left(\mathcal{O}_{\mathfrak{g},\sigma} \right) \subseteq \operatorname{op}_{\mathfrak{g}} \left(\pi_{\mathfrak{g}}^{-1} \left(\mathcal{C}_{\mathfrak{g},\sigma} \right) \right) \right] \vee \left[\pi_{\mathfrak{g}}^{-1} \left(\mathcal{K}_{\mathfrak{g},\sigma} \right) \supseteq \neg \operatorname{op}_{\mathfrak{g}} \left(\pi_{\mathfrak{g}}^{-1} \left(\mathcal{K}_{\mathfrak{g},\sigma} \right) \right) \right]. \end{split}$$

Hence, there exists $(\mathcal{O}_{\mathfrak{g},\omega},\mathcal{K}_{\mathfrak{g},\omega}) \in \mathcal{T}_{\mathfrak{g},\Omega} \times \neg \mathcal{T}_{\mathfrak{g},\Omega}$ such that $\pi_{\mathfrak{g}}^{-1}(\mathcal{O}_{\mathfrak{g},\sigma}) \subseteq \mathcal{O}_{\mathfrak{g},\omega}$ and $\pi_{\mathfrak{g}}^{-1}(\mathcal{K}_{\mathfrak{g},\sigma}) \supseteq \mathcal{K}_{\mathfrak{g},\omega}$. Consequently, $\pi_{\mathfrak{g}} \in \mathfrak{g}\text{-C}[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$, which completes the proof.

DEFINITION 2.19 (($\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}$)-Bijective Map). A ($\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma}$)-map $\pi_{\mathfrak{g}}:\mathfrak{T}_{\mathfrak{g},\Omega}\to\mathfrak{T}_{\mathfrak{g},\Sigma}$ is said to be bijective if and only if it belongs the following class:

$$(2.33) \ \mathfrak{g}\text{-B}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] \stackrel{\mathrm{def}}{=} \big\{\pi_{\mathfrak{g}}: \ (\forall \zeta \in \mathfrak{T}_{\mathfrak{g},\Sigma}) \, (\exists ! \xi \in \mathfrak{T}_{\mathfrak{g},\Omega}) \, \big[\pi_{\mathfrak{g}}\left(\xi\right) = \zeta\big] \big\}.$$

THEOREM 2.20. If $\pi_{\mathfrak{g}} \in \mathfrak{g}\text{-B}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$, then

$$(2.34) \pi_{\mathfrak{g}} \in \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] \Leftrightarrow \pi_{\mathfrak{q}}^{-1} \in \mathfrak{g}\text{-C}\left[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Omega}\right].$$

PROOF. Necessity. Let $\pi_{\mathfrak{g}}^{-1} \in \mathfrak{g}\text{-}\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Omega}\right]$. Then

$$\left[\left(\pi_{\mathfrak{g}}^{-1}\right)^{-1}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\subseteq\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right]\vee\left[\left(\pi_{\mathfrak{g}}^{-1}\right)^{-1}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\supseteq\neg\operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right].$$

But $\pi_{\mathfrak{g}} \in \mathfrak{g}$ -B $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$ implies $(\pi_{\mathfrak{g}}^{-1})^{-1}(\mathcal{S}_{\mathfrak{g}}) = \pi_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}})$ for every $\mathcal{S}_{\mathfrak{g}} \in \mathcal{T}_{\mathfrak{g},\Omega} \cup$

$$\left[\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\subseteq\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right]\vee\left[\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\supseteq\neg\operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right].$$

Hence, $\pi_{\mathfrak{g}} \in \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$. Sufficiency. Let $\pi_{\mathfrak{g}} \in \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$. Then,

$$\left[\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\subseteq\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right]\vee\left[\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\supseteq\neg\operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right].$$

But $\pi_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right) = \left(\pi_{\mathfrak{g}}^{-1}\right)^{-1}\left(\mathcal{S}_{\mathfrak{g}}\right)$ for every $\mathcal{S}_{\mathfrak{g}} \in \mathcal{T}_{\mathfrak{g},\Omega} \cup \neg \mathcal{T}_{\mathfrak{g},\Omega}$, since $\pi_{\mathfrak{g}} \in \mathfrak{g}$ -B $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$.

$$\left[\left(\pi_{\mathfrak{g}}^{-1}\right)^{-1}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\subseteq\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right]\vee\left[\left(\pi_{\mathfrak{g}}^{-1}\right)^{-1}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\supseteq\neg\operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right].$$

Thus,
$$\pi_{\mathfrak{g}}^{-1} \in \mathfrak{g}\text{-}\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Omega}\right]$$
. Q.E.D.

Theorem 2.21. If $\pi_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-}\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$ and $\pi_{\mathfrak{g},\beta} \in \mathfrak{g}\text{-}\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Upsilon}\right]$, then $\pi_{\mathfrak{g},\beta} \circ$ $\pi_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-}\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Upsilon}\right].$

PROOF. Let $\pi_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-}\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$ and $\pi_{\mathfrak{g},\beta} \in \mathfrak{g}\text{-}\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Upsilon}\right]$. Then $\pi_{\mathfrak{g},\alpha}^{-1} \in \mathfrak{g}\text{-}\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Omega}\right]$ and $\pi_{\mathfrak{g},\beta}^{-1} \in \mathfrak{g}\text{-}\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g},\Upsilon};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$, implying

$$\left[\pi_{\mathfrak{g},\alpha}^{-1}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\subseteq\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right]\quad\vee\quad\left[\pi_{\mathfrak{g},\alpha}^{-1}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\supseteq\neg\operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right],$$

$$\left[\pi_{\mathfrak{g},\beta}^{-1}\left(\mathcal{O}_{\mathfrak{g},\upsilon}\right)\subseteq\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right]\quad\vee\quad\left[\pi_{\mathfrak{g},\beta}^{-1}\left(\mathcal{K}_{\mathfrak{g},\upsilon}\right)\supseteq\neg\operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right],$$

respectively. Combining both logical statements, there follows that

$$\left[\pi_{\mathfrak{g},\beta}^{-1} \left(\mathcal{O}_{\mathfrak{g},\upsilon} \right) \subseteq \operatorname{op}_{\mathfrak{g}} \left(\mathcal{O}_{\mathfrak{g},\sigma} \right) \right] \vee \left[\pi_{\mathfrak{g},\beta}^{-1} \left(\mathcal{K}_{\mathfrak{g},\upsilon} \right) \supseteq \neg \operatorname{op}_{\mathfrak{g}} \left(\mathcal{K}_{\mathfrak{g},\sigma} \right) \right]$$

$$\Rightarrow \left[\pi_{\mathfrak{g},\alpha}^{-1} \circ \pi_{\mathfrak{g},\beta}^{-1} \left(\mathcal{O}_{\mathfrak{g},\upsilon} \right) \subseteq \pi_{\mathfrak{g},\alpha}^{-1} \left(\operatorname{op}_{\mathfrak{g}} \left(\mathcal{O}_{\mathfrak{g},\sigma} \right) \right) \right] \vee \left[\pi_{\mathfrak{g},\alpha}^{-1} \circ \pi_{\mathfrak{g},\beta}^{-1} \left(\mathcal{K}_{\mathfrak{g},\upsilon} \right) \right]$$

$$\Rightarrow \left[\pi_{\mathfrak{g},\alpha}^{-1} \circ \pi_{\mathfrak{g},\beta}^{-1} \left(\mathcal{O}_{\mathfrak{g},\upsilon} \right) \subseteq \operatorname{op}_{\mathfrak{g}} \left(\pi_{\mathfrak{g},\alpha}^{-1} \left(\mathcal{O}_{\mathfrak{g},\sigma} \right) \right) \right] \vee \left[\pi_{\mathfrak{g},\alpha}^{-1} \circ \pi_{\mathfrak{g},\beta}^{-1} \left(\mathcal{K}_{\mathfrak{g},\upsilon} \right) \right]$$

$$\supseteq \neg \operatorname{op}_{\mathfrak{g}} \left(\pi_{\mathfrak{g},\alpha}^{-1} \left(\mathcal{K}_{\mathfrak{g},\sigma} \right) \right) \right]$$

$$\Rightarrow \qquad \left[\pi_{\mathfrak{g},\alpha}^{-1} \circ \pi_{\mathfrak{g},\beta}^{-1}\left(\mathcal{O}_{\mathfrak{g},\upsilon}\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right] \vee \left[\pi_{\mathfrak{g},\alpha}^{-1} \circ \pi_{\mathfrak{g},\beta}^{-1}\left(\mathcal{K}_{\mathfrak{g},\upsilon}\right) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right].$$

Since $\pi_{\mathfrak{g},\alpha}^{-1} \circ \pi_{\mathfrak{g},\beta}^{-1}(\mathcal{S}_{\mathfrak{g}}) = (\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha})^{-1}(\mathcal{S}_{\mathfrak{g}})$ for every $\mathcal{S}_{\mathfrak{g}} \in \mathcal{T}_{\mathfrak{g},\Upsilon} \cup \neg \mathcal{T}_{\mathfrak{g},\Upsilon}$, there follows that $\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-C}[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$, which was to be proved. Q.E.D.

THEOREM 2.22. Let $\pi_{\mathfrak{g},\alpha}: \mathfrak{T}_{\mathfrak{g},\Omega} \to \mathfrak{T}_{\mathfrak{g},\Sigma}$ be a $(\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma})$ -map and, let the collection $\{\langle \mathcal{O}_{\mathfrak{g},\alpha} \rangle_{\alpha \in I_n^*} : \Omega \subseteq \operatorname{op}_{\mathfrak{g}}(\bigcup_{\alpha \in I_n^*} \mathcal{O}_{\mathfrak{g},\alpha})\}$ and the collection $\{\langle \mathcal{K}_{\mathfrak{g},\alpha} \rangle_{\alpha \in I_n^*} : \Omega \subseteq \operatorname{op}_{\mathfrak{g}}(\bigcup_{\alpha \in I_n^*} \mathcal{K}_{\mathfrak{g},\alpha})\}$, respectively, be \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -closed coverings of Ω , where $\langle \mathcal{O}_{\mathfrak{g},\alpha} \rangle_{\alpha \in I_n^*}$ and $\langle \mathcal{K}_{\mathfrak{g},\alpha} \rangle_{\alpha \in I_n^*}$, respectively, denote sequences of $\mathcal{T}_{\mathfrak{g}}$ -open sets and $\mathcal{T}_{\mathfrak{g}}$ -closed sets. If, for every $\alpha \in I_n^*$, $\pi_{\mathfrak{g}} \circ \iota_{\mathfrak{g},\alpha} \in \mathfrak{g}$ - $\mathbb{C}[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$, where $\iota_{\mathfrak{g},\alpha}: \mathcal{O}_{\mathfrak{g},\alpha} \hookrightarrow \mathfrak{T}_{\mathfrak{g},\Omega}$ or $\iota_{\mathfrak{g},\alpha}: \mathcal{O}_{\mathfrak{g},\alpha} \hookrightarrow \mathfrak{T}_{\mathfrak{g},\Omega}$, then $\pi_{\mathfrak{g}} \in \mathfrak{g}$ - $\mathbb{C}[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$.

PROOF. For every $\alpha \in I_n^*$, let $\pi_{\mathfrak{g}} \circ \iota_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-C}[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$. Then, for every pair $(\mathcal{O}_{\mathfrak{g},\sigma(\alpha)},\mathcal{K}_{\mathfrak{g},\sigma(\alpha)}) \in \mathcal{T}_{\mathfrak{g},\Sigma} \times \neg \mathcal{T}_{\mathfrak{g},\Sigma}$, there exists $(\mathcal{O}_{\mathfrak{g},\omega(\alpha)},\mathcal{K}_{\mathfrak{g},\omega(\alpha)}) \in \mathcal{T}_{\mathfrak{g},\Omega} \times \neg \mathcal{T}_{\mathfrak{g},\Omega}$ such that

$$[(\pi_{\mathfrak{g}} \circ \iota_{\mathfrak{g},\alpha})^{-1} (\mathcal{O}_{\mathfrak{g},\sigma(\alpha)}) \subseteq \operatorname{op}_{\mathfrak{g}} (\mathcal{O}_{\mathfrak{g},\omega(\alpha)})] \vee [(\pi_{\mathfrak{g}} \circ \iota_{\mathfrak{g},\alpha})^{-1} (\mathcal{K}_{\mathfrak{g},\sigma(\alpha)})$$

$$\supseteq \neg \operatorname{op}_{\mathfrak{g}} (\mathcal{K}_{\mathfrak{g},\omega(\alpha)})]$$

$$\Rightarrow [\bigcup_{\alpha \in I_{n}^{*}} (\pi_{\mathfrak{g}} \circ \iota_{\mathfrak{g},\alpha})^{-1} (\mathcal{O}_{\mathfrak{g},\sigma(\alpha)}) \subseteq \bigcup_{\alpha \in I_{n}^{*}} \operatorname{op}_{\mathfrak{g}} (\mathcal{O}_{\mathfrak{g},\omega(\alpha)})]$$

$$\vee [\bigcup_{\alpha \in I_{n}^{*}} (\pi_{\mathfrak{g}} \circ \iota_{\mathfrak{g},\alpha})^{-1} (\mathcal{K}_{\mathfrak{g},\sigma(\alpha)}) \supseteq \bigcup_{\alpha \in I_{n}^{*}} \neg \operatorname{op}_{\mathfrak{g}} (\mathcal{K}_{\mathfrak{g},\omega(\alpha)})]$$

$$\Rightarrow [\bigcup_{\alpha \in I_{n}^{*}} (\pi_{\mathfrak{g}} \circ \iota_{\mathfrak{g},\alpha})^{-1} (\mathcal{O}_{\mathfrak{g},\sigma(\alpha)}) \subseteq \operatorname{op}_{\mathfrak{g}} (\bigcup_{\alpha \in I_{n}^{*}} \mathcal{O}_{\mathfrak{g},\omega(\alpha)})]$$

$$\vee [\bigcup_{\alpha \in I_{n}^{*}} (\pi_{\mathfrak{g}} \circ \iota_{\mathfrak{g},\alpha})^{-1} (\mathcal{K}_{\mathfrak{g},\sigma(\alpha)}) \supseteq \neg \operatorname{op}_{\mathfrak{g}} (\bigcup_{\alpha \in I_{n}^{*}} \mathcal{K}_{\mathfrak{g},\omega(\alpha)})].$$

Since the following relations hold

$$\begin{array}{lcl} \pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g},\sigma(\alpha)}\right) & = & \bigcup_{\alpha \in I_{n}^{*}}\left(\pi_{\mathfrak{g}} \circ \iota_{\mathfrak{g},\alpha}\right)^{-1}\left(\mathcal{O}_{\mathfrak{g},\sigma(\alpha)}\right), \\ \pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g},\sigma(\alpha)}\right) & = & \bigcup_{\alpha \in I_{n}^{*}}\left(\pi_{\mathfrak{g}} \circ \iota_{\mathfrak{g},\alpha}\right)^{-1}\left(\mathcal{K}_{\mathfrak{g},\sigma(\alpha)}\right), \end{array}$$

the proof of the theorem follows.

Q.E.D.

Henceforth, we investigate some properties and give some characterizations of \mathfrak{g} - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -irresolute maps.

THEOREM 2.23. A $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -map $\pi_{\mathfrak{g}}:\mathfrak{T}_{\mathfrak{g},\Omega}\to\mathfrak{T}_{\mathfrak{g},\Sigma}$ is a \mathfrak{g} - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -irresolute map if and only if, for every $(\mathcal{O}_{\mathfrak{g},\sigma},\mathcal{K}_{\mathfrak{g},\sigma})\in\mathcal{T}_{\mathfrak{g},\Sigma}\times\neg\mathcal{T}_{\mathfrak{g},\Sigma}$,

$$\left[\pi_{\mathfrak{g}}^{-1}\left(\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right) \subseteq \operatorname{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right)\right] \vee \left[\pi_{\mathfrak{g}}^{-1}\left(\neg \operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right) \supseteq \left(2.35\right) \qquad \qquad \neg \operatorname{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right)\right].$$

PROOF. Necessity. Let $\pi_{\mathfrak{g}} \in \mathfrak{g}\text{-I}[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$. Then, there exists $(\mathcal{O}_{\mathfrak{g},\omega},\mathcal{K}_{\mathfrak{g},\omega}) \in \mathcal{T}_{\mathfrak{g},\Omega} \times \neg \mathcal{T}_{\mathfrak{g},\Omega}$ such that, for every $(\mathcal{O}_{\mathfrak{g},\sigma},\mathcal{K}_{\mathfrak{g},\sigma}) \in \mathcal{T}_{\mathfrak{g},\Sigma} \times \neg \mathcal{T}_{\mathfrak{g},\Sigma}$,

$$\left[\pi_{\mathfrak{g}}^{-1}\left(\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right)\subseteq\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right]\vee\left[\pi_{\mathfrak{g}}^{-1}\left(\neg\operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right)\supseteq\neg\operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right].$$

But since $\pi_{\mathfrak{g}}^{-1}(\operatorname{op}_{\mathfrak{g}}(\mathcal{O}_{\mathfrak{g},\sigma})) \subseteq \pi_{\mathfrak{g}}^{-1}(\mathcal{O}_{\mathfrak{g},\sigma})$ and $\pi_{\mathfrak{g}}^{-1}(\neg \operatorname{op}_{\mathfrak{g}}(\mathcal{K}_{\mathfrak{g},\sigma})) \supseteq \pi_{\mathfrak{g}}^{-1}(\mathcal{K}_{\mathfrak{g},\sigma})$, it follows that

$$\begin{split} \left[\pi_{\mathfrak{g}}^{-1}\!\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right) &\subseteq \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right)\right] \vee \left[\pi_{\mathfrak{g}}^{-1}\!\left(\neg \, \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right)\right] & \\ \neg \, \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right)\right]. \end{split}$$

Sufficiency. Let $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g},\Omega} \to \mathfrak{T}_{\mathfrak{g},\Sigma}$ be a $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -map satisfying, for every $(\mathcal{O}_{\mathfrak{g},\sigma},\mathcal{K}_{\mathfrak{g},\sigma}) \in \mathcal{T}_{\mathfrak{g},\Sigma} \times \neg \mathcal{T}_{\mathfrak{g},\Sigma}$,

$$\begin{split} \left[\pi_{\mathfrak{g}}^{-1}\!\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right) &\subseteq \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right)\right] \vee \left[\pi_{\mathfrak{g}}^{-1}\!\left(\neg \, \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right)\right] & \\ \neg \, \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right)\right]. \end{split}$$

But, $\pi_{\mathfrak{g}}^{-1}\left(\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right) \subseteq \pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)$ and $\pi_{\mathfrak{g}}^{-1}\left(\neg\operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right) \supseteq \pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)$. Therefore, there exists $(\mathcal{O}_{\mathfrak{g},\omega},\mathcal{K}_{\mathfrak{g},\omega}) \in \mathcal{T}_{\mathfrak{g},\Omega} \times \neg \mathcal{T}_{\mathfrak{g},\Omega}$ such that $\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right) \subseteq \operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)$ and $\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right) \supseteq \neg\operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)$. Consequently,

$$\left[\pi_{\mathfrak{g}}^{-1}\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right)\subseteq\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right]\vee\left[\pi_{\mathfrak{g}}^{-1}\left(\neg\,\mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right)\supseteq\neg\,\mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right].$$

Thus, $\pi_{\mathfrak{g}} \in \mathfrak{g}\text{-I}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$, which completes the proof. Q.E.D.

Theorem 2.24. A \mathfrak{g} - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -map $\pi_{\mathfrak{g}}:\mathfrak{T}_{\mathfrak{g},\Omega}\to\mathfrak{T}_{\mathfrak{g},\Sigma}$ is a \mathfrak{g} - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -irresolute map if and only if, for every $(\mathcal{O}_{\mathfrak{g},\omega},\mathcal{K}_{\mathfrak{g}})\in\mathcal{T}_{\mathfrak{g},\Omega}\times\neg\mathcal{T}_{\mathfrak{g},\Omega}$,

$$\left[\pi_{\mathfrak{g}}\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right) \supseteq \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right)\right] \vee \left[\pi_{\mathfrak{g}}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right) \subseteq \\ \neg \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right)\right].$$

PROOF. Necessity. Let $\pi_{\mathfrak{g}} \in \mathfrak{g}\text{-I}[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$. Then, there exists $(\mathcal{O}_{\mathfrak{g},\omega},\mathcal{K}_{\mathfrak{g},\omega}) \in \mathcal{T}_{\mathfrak{g},\Omega} \times \neg \mathcal{T}_{\mathfrak{g},\Omega}$ such that, for every $(\mathcal{O}_{\mathfrak{g},\sigma},\mathcal{K}_{\mathfrak{g},\sigma}) \in \mathcal{T}_{\mathfrak{g},\Sigma} \times \neg \mathcal{T}_{\mathfrak{g},\Sigma}$,

$$\left[\pi_{\mathfrak{g}}^{-1}\left(\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right) \subseteq \operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right] \vee \left[\pi_{\mathfrak{g}}^{-1}\left(\neg \operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right) \supseteq \neg \operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right] \\
\left[\pi_{\mathfrak{g}}\left(\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right) \supseteq \operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right] \vee \left[\pi_{\mathfrak{g}}\left(\neg \operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right) \subseteq \neg \operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right].$$

But since $\operatorname{op}_{\mathfrak{g}}(\mathcal{O}_{\mathfrak{g},\sigma}) \supseteq \pi_{\mathfrak{g}}(\operatorname{op}_{\mathfrak{g}}(\mathcal{O}_{\mathfrak{g},\omega}))$ and $\neg \operatorname{op}_{\mathfrak{g}}(\mathcal{K}_{\mathfrak{g},\sigma}) \subseteq \pi_{\mathfrak{g}}(\neg \operatorname{op}_{\mathfrak{g}}(\mathcal{K}_{\mathfrak{g},\omega}))$, it follows that

$$\left[\pi_{\mathfrak{g}}\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right) \supseteq \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right)\right] \vee \left[\pi_{\mathfrak{g}}\left(\neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right) \subseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right)\right].$$

Sufficiency. Let $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g},\Omega} \to \mathfrak{T}_{\mathfrak{g},\Sigma}$ be a \mathfrak{g} - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -map satisfying, for every $(\mathcal{O}_{\mathfrak{g},\omega},\mathcal{K}_{\mathfrak{g},\omega}) \in \mathcal{T}_{\mathfrak{g},\Omega} \times \neg \mathcal{T}_{\mathfrak{g},\Omega}$,

$$\begin{split} \left[\pi_{\mathfrak{g}}\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right) &\supseteq \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right)\right] \vee \left[\pi_{\mathfrak{g}}\left(\neg \, \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right) \subseteq \\ &\neg \, \mathrm{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right)\right]. \end{split}$$

Then,

$$\left[\pi_{\mathfrak{g}}^{-1}\left(\operatorname{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right)\right) \subseteq \operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right] \vee \left[\pi_{\mathfrak{g}}^{-1}\left(\neg \operatorname{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right)\right) \supseteq \neg \operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right].$$

But, $\pi_{\mathfrak{g}} \in \mathfrak{g}$ -M $[\mathfrak{T}_{\mathfrak{g},\Omega}; \mathfrak{T}_{\mathfrak{g},\Sigma}]$ equivalently implies the existence of $(\mathcal{O}_{\mathfrak{g},\sigma}, \mathcal{K}_{\mathfrak{g},\sigma}) \in \mathcal{T}_{\mathfrak{g},\Sigma} \times \neg \mathcal{T}_{\mathfrak{g},\Sigma}$ such that, for every $(\mathcal{O}_{\mathfrak{g},\omega}, \mathcal{K}_{\mathfrak{g},\omega}) \in \mathcal{T}_{\mathfrak{g},\Omega} \times \neg \mathcal{T}_{\mathfrak{g},\Omega}$, $\operatorname{op}_{\mathfrak{g}}(\pi_{\mathfrak{g}}(\mathcal{O}_{\mathfrak{g},\omega})) \subseteq \operatorname{op}_{\mathfrak{g}}(\mathcal{O}_{\mathfrak{g},\sigma})$ or $\neg \operatorname{op}_{\mathfrak{g}}(\pi_{\mathfrak{g}}(\mathcal{K}_{\mathfrak{g},\omega})) \supseteq \neg \operatorname{op}_{\mathfrak{g}}(\mathcal{K}_{\mathfrak{g},\sigma})$. Consequently,

$$\left[\pi_{\mathfrak{g}}^{-1}\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right)\subseteq\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right]\vee\left[\pi_{\mathfrak{g}}^{-1}\left(\neg\,\mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right)\supseteq\neg\,\mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right].$$

Thus, $\pi_{\mathfrak{g}} \in \mathfrak{g}\text{-I}[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$, which completes the proof. Q.E.D.

THEOREM 2.25. Let $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g},\Omega} \to \mathfrak{T}_{\mathfrak{g},\Sigma}$ be a $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -map. Then,

$$(2.37)\ \pi_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] \cap \mathfrak{g}\text{-}\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] \ \Rightarrow \ \pi_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right].$$

PROOF. Let $\pi_{\mathfrak{g}} \in \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] \cap \mathfrak{g}\text{-C}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$. Then, there exists a pair $(\mathcal{O}_{\mathfrak{g},\omega},\mathcal{K}_{\mathfrak{g},\omega}) \in \mathcal{T}_{\mathfrak{g},\Omega} \times \neg \mathcal{T}_{\mathfrak{g},\Omega}$ such that, for every $(\mathcal{O}_{\mathfrak{g},\sigma},\mathcal{K}_{\mathfrak{g},\sigma}) \in \mathcal{T}_{\mathfrak{g},\Sigma} \times \neg \mathcal{T}_{\mathfrak{g},\Sigma}$,

$$\left[\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\subseteq\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right]\vee\left[\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\supseteq\neg\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right],$$

and there exists $(\mathcal{O}_{\mathfrak{g},\sigma},\mathcal{K}_{\mathfrak{g},\sigma}) \in \mathcal{T}_{\mathfrak{g},\Sigma} \times \neg \mathcal{T}_{\mathfrak{g},\Sigma}$ such that, for every $(\mathcal{O}_{\mathfrak{g},\omega},\mathcal{K}_{\mathfrak{g},\omega}) \in \mathcal{T}_{\mathfrak{g},\Omega} \times \neg \mathcal{T}_{\mathfrak{g},\Omega}$,

$$\left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\subseteq\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right]\vee\left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\supseteq\neg\operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right].$$

From the first statement, there follows that

$$\left[\mathcal{O}_{\mathfrak{g},\omega} \subseteq \pi_{\mathfrak{g}}^{-1}\left(\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right)\right] \vee \left[\mathcal{K}_{\mathfrak{g},\omega} \supseteq \pi_{\mathfrak{g}}^{-1}\left(\neg \operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right)\right].$$

But,

$$\begin{split} \left[\pi_{\mathfrak{g}}^{-1}\!\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right) &\subseteq \mathrm{op}_{\mathfrak{g}}\!\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right)\right] \vee \left[\pi_{\mathfrak{g}}^{-1}\!\left(\neg \, \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right)\right] & \\ & \neg \, \mathrm{op}_{\mathfrak{g}}\!\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right)\right]; \end{split}$$

and, from the second statement, there follows that

$$\left[\operatorname{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right)\subseteq\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right]\vee\left[\neg\operatorname{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right)\supseteq\neg\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right).$$

From these last two logical statements, it consequently follows that

$$\left[\pi_{\mathfrak{g}}^{-1}\left(\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right) \subseteq \operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right] \vee \left[\pi_{\mathfrak{g}}^{-1}\left(\neg \operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right) \supseteq \neg \operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right],$$
 and, hence, $\pi_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$, which completes the proof. Q.E.D

Theorem 2.26. If $\mathfrak{g}\text{-}\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$ and $\mathfrak{g}\text{-}\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$, respectively, denote the classes of $\mathfrak{g}\text{-}(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -continuous and $\mathfrak{g}\text{-}(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -irresolute maps, then

(2.38)
$$\mathfrak{g}\text{-}\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] \supseteq \mathfrak{g}\text{-}\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right].$$

PROOF. Let $\pi_{\mathfrak{g}} \in \mathfrak{g}\text{-I}[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$. Then, there exists $(\mathcal{O}_{\mathfrak{g},\sigma},\mathcal{K}_{\mathfrak{g},\sigma}) \in \mathcal{T}_{\mathfrak{g},\Sigma} \times \neg \mathcal{T}_{\mathfrak{g},\Sigma}$ such that, for every $(\mathcal{O}_{\mathfrak{g},\omega},\mathcal{K}_{\mathfrak{g},\omega}) \in \mathcal{T}_{\mathfrak{g},\Omega} \times \neg \mathcal{T}_{\mathfrak{g},\Omega}$,

$$\left[\pi_{\mathfrak{g}}^{-1}\left(\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right)\subseteq\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right]\vee\left[\pi_{\mathfrak{g}}^{-1}\left(\neg\operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right)\supseteq\neg\operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right].$$

But, $\pi_{\mathfrak{g}} \in \mathfrak{g}\text{-I}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$ is equivalent to

$$\begin{split} \left[\pi_{\mathfrak{g}}^{-1}\!\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right) &\subseteq \mathrm{op}_{\mathfrak{g}}\!\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right)\right] \vee \left[\pi_{\mathfrak{g}}^{-1}\!\left(\neg \, \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right) &\supseteq \\ &\neg \, \mathrm{op}_{\mathfrak{g}}\!\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right)\right], \end{split}$$

and, $\operatorname{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right)\subseteq \operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)$ and $\neg \operatorname{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right)\supseteq \neg \operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)$. Consequently, $\pi_{\mathfrak{g}}\in \mathfrak{g}\text{-I}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$ implies

$$\left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\subseteq\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right]\vee\left[\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\supseteq\neg\operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right],$$

and, hence, $\pi_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$, which completes the proof. Q.E.D.

THEOREM 2.27. If $\pi_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-I}[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$ and $\pi_{\mathfrak{g},\beta} \in \mathfrak{g}\text{-I}[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$, then $\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-I}[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$.

PROOF. Let $\pi_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-I}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$ and $\pi_{\mathfrak{g},\beta} \in \mathfrak{g}\text{-I}\left[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Upsilon}\right]$. Then, for every $(\mathcal{O}_{\mathfrak{g},\upsilon},\mathcal{K}_{\mathfrak{g},\upsilon}) \in \mathcal{T}_{\mathfrak{g},\Upsilon} \times \neg \mathcal{T}_{\mathfrak{g},\Upsilon}$ there exists $(\mathcal{O}_{\mathfrak{g},\sigma},\mathcal{K}_{\mathfrak{g},\sigma}) \in \mathcal{T}_{\mathfrak{g},\Sigma} \times \neg \mathcal{T}_{\mathfrak{g},\Sigma}$ and for every $(\mathcal{O}_{\mathfrak{g},\sigma},\mathcal{K}_{\mathfrak{g},\sigma}) \in \mathcal{T}_{\mathfrak{g},\Sigma} \times \neg \mathcal{T}_{\mathfrak{g},\Sigma}$ there exists $(\mathcal{O}_{\mathfrak{g},\omega},\mathcal{K}_{\mathfrak{g},\omega}) \in \mathcal{T}_{\mathfrak{g},\Omega} \times \neg \mathcal{T}_{\mathfrak{g},\Omega}$ such that

$$\left[\pi_{\mathfrak{g},\beta}^{-1}\!\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\upsilon}\right)\right)\subseteq\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right]\quad\vee\quad\left[\pi_{\mathfrak{g},\beta}^{-1}\!\left(\neg\,\mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\upsilon}\right)\right)\supseteq\neg\,\mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right],$$

$$\left[\pi_{\mathfrak{g},\alpha}^{-1}\!\left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right)\subseteq\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right]\quad\vee\quad\left[\pi_{\mathfrak{g},\alpha}^{-1}\!\left(\neg\,\mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right)\supseteq\neg\,\mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right],$$

respectively. Consequently,

$$\begin{split} \left[\pi_{\mathfrak{g},\alpha}^{-1} \circ \pi_{\mathfrak{g},\beta}^{-1} \left(\operatorname{op}_{\mathfrak{g}} \left(\mathcal{O}_{\mathfrak{g},\upsilon} \right) \right) &\subseteq \pi_{\mathfrak{g},\alpha}^{-1} \left(\operatorname{op}_{\mathfrak{g}} \left(\mathcal{O}_{\mathfrak{g},\sigma} \right) \right) \right] \\ & \vee \left[\pi_{\mathfrak{g},\alpha}^{-1} \circ \pi_{\mathfrak{g},\beta}^{-1} \left(\neg \operatorname{op}_{\mathfrak{g}} \left(\mathcal{K}_{\mathfrak{g},\upsilon} \right) \right) &\supseteq \pi_{\mathfrak{g},\alpha}^{-1} \left(\neg \operatorname{op}_{\mathfrak{g}} \left(\mathcal{K}_{\mathfrak{g},\sigma} \right) \right) \right] \end{split}$$

$$\Rightarrow \qquad \left[\pi_{\mathfrak{g},\alpha}^{-1} \circ \pi_{\mathfrak{g},\beta}^{-1} \left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\upsilon}\right)\right) \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right]$$

$$\vee \left[\pi_{\mathfrak{g},\alpha}^{-1} \circ \pi_{\mathfrak{g},\beta}^{-1} \left(\neg \operatorname{op}_{\mathfrak{g}} \left(\mathcal{K}_{\mathfrak{g},v} \right) \right) \supseteq \neg \operatorname{op}_{\mathfrak{g}} \left(\mathcal{K}_{\mathfrak{g},\omega} \right) \right].$$

But
$$\pi_{\mathfrak{g},\alpha}^{-1} \circ \pi_{\mathfrak{g},\beta}^{-1} = (\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha})^{-1}$$
. Hence, $\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-I}[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$. Q.E.D.

We generalize the notion of $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -homeomorphism in a natural way and then investigate some properties and give some characterizations of such generalization on this basis.

DEFINITION 2.28. Two $\mathcal{T}_{\mathfrak{g}}$ -spaces $\mathfrak{T}_{\mathfrak{g},\Omega}=(\Omega,\mathcal{T}_{\mathfrak{g},\Omega})$ and $\mathfrak{T}_{\mathfrak{g},\Sigma}=(\Sigma,\mathcal{T}_{\mathfrak{g},\Sigma})$ are called " \mathfrak{g} - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -homeomorphic," written $\mathfrak{T}_{\mathfrak{g},\Omega}\cong\mathfrak{T}_{\mathfrak{g},\Sigma}$, if and only if

$$(\exists \pi_{\mathfrak{g}} \in \mathfrak{g}\text{-B} [\mathfrak{T}_{\mathfrak{g},\Omega}; \mathfrak{T}_{\mathfrak{g},\Sigma}]) [(\pi_{\mathfrak{g}} \in \mathfrak{g}\text{-C} [\mathfrak{T}_{\mathfrak{g},\Omega}; \mathfrak{T}_{\mathfrak{g},\Sigma}]) \wedge (\pi_{\mathfrak{g}}^{-1} \in \mathfrak{g}\text{-C} [\mathfrak{T}_{\mathfrak{g},\Sigma}; \mathfrak{T}_{\mathfrak{g},\Omega}])].$$

$$(2.39)$$

The map $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g},\Omega} \to \mathfrak{T}_{\mathfrak{g},\Sigma}$ is called a " \mathfrak{g} - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -homeomorphism," written $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g},\Omega} \cong \mathfrak{T}_{\mathfrak{g},\Sigma}$, and belongs to the following class:

(2.40)
$$\mathfrak{g}\text{-Hom}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] \stackrel{\mathrm{def}}{=} \left\{\pi_{\mathfrak{g}}: \ \pi_{\mathfrak{g}}:\mathfrak{T}_{\mathfrak{g},\Omega} \cong \mathfrak{T}_{\mathfrak{g},\Sigma}\right\}.$$

Theorem 2.29. If $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g},\Omega} \to \mathfrak{T}_{\mathfrak{g},\Sigma}$ is a $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -homeomorphism, then it is a \mathfrak{g} - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -homeomorphism: $\pi_{\mathfrak{g}} \in \mathfrak{g}$ -Hom $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$

PROOF. Let $\pi_{\mathfrak{g}}: \mathfrak{T}_{\mathfrak{g},\Omega} \to \mathfrak{T}_{\mathfrak{g},\Sigma}$ be a $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -homeomorphism. Then, for every $(\mathcal{O}_{\mathfrak{g},\sigma},\mathcal{K}_{\mathfrak{g},\sigma}) \in \mathcal{T}_{\mathfrak{g},\Sigma} \times \neg \mathcal{T}_{\mathfrak{g},\Sigma}$ there exists $(\mathcal{O}_{\mathfrak{g},\omega},\mathcal{K}_{\mathfrak{g},\omega}) \in \mathcal{T}_{\mathfrak{g},\Omega} \times \neg \mathcal{T}_{\mathfrak{g},\Omega}$ and for every $(\mathcal{O}_{\mathfrak{g},\omega},\mathcal{K}_{\mathfrak{g},\omega}) \in \mathcal{T}_{\mathfrak{g},\Omega} \times \neg \mathcal{T}_{\mathfrak{g},\Omega}$ there exists $(\mathcal{O}_{\mathfrak{g},\sigma},\mathcal{K}_{\mathfrak{g},\sigma}) \in \mathcal{T}_{\mathfrak{g},\Sigma} \times \neg \mathcal{T}_{\mathfrak{g},\Sigma}$ such that

$$\begin{split} & \left[\pi_{\mathfrak{g}}^{-1} \left(\mathcal{O}_{\mathfrak{g}, \sigma} \right) \subseteq \mathcal{O}_{\mathfrak{g}, \omega} \right] \vee \left[\pi_{\mathfrak{g}}^{-1} \left(\mathcal{K}_{\mathfrak{g}, \sigma} \right) \supseteq \mathcal{K}_{\mathfrak{g}, \omega} \right], \\ & \left[\pi_{\mathfrak{g}} \left(\mathcal{O}_{\mathfrak{g}, \omega} \right) \subseteq \mathcal{O}_{\mathfrak{g}, \sigma} \right] \vee \left[\pi_{\mathfrak{g}} \left(\mathcal{K}_{\mathfrak{g}, \omega} \right) \supseteq \mathcal{K}_{\mathfrak{g}, \sigma} \right], \end{split}$$

respectively. But, $\left[\mathcal{O}_{\mathfrak{g},\nu} \subseteq \operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\nu}\right)\right] \vee \left[\mathcal{K}_{\mathfrak{g},\nu} \supseteq \neg \operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\nu}\right)\right]$ for every $\nu \in \left\{\omega,\sigma\right\}$. Consequently,

$$\begin{split} & \left[\pi_{\mathfrak{g}}^{-1} \left(\mathcal{O}_{\mathfrak{g}, \sigma} \right) \subseteq \operatorname{op}_{\mathfrak{g}} \left(\mathcal{O}_{\mathfrak{g}, \omega} \right) \right] \vee \left[\pi_{\mathfrak{g}}^{-1} \left(\mathcal{K}_{\mathfrak{g}, \sigma} \right) \supseteq \neg \operatorname{op}_{\mathfrak{g}} \left(\mathcal{K}_{\mathfrak{g}, \omega} \right) \right], \\ & \left[\pi_{\mathfrak{g}} \left(\mathcal{O}_{\mathfrak{g}, \omega} \right) \subseteq \operatorname{op}_{\mathfrak{g}} \left(\mathcal{O}_{\mathfrak{g}, \sigma} \right) \right] \vee \left[\pi_{\mathfrak{g}} \left(\mathcal{K}_{\mathfrak{g}, \omega} \right) \supseteq \neg \operatorname{op}_{\mathfrak{g}} \left(\mathcal{K}_{\mathfrak{g}, \sigma} \right) \right]. \end{split}$$

Therefore, $\pi_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$ and $\pi_{\mathfrak{g}}^{-1} \in \mathfrak{g}\text{-}\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Omega}\right]$; thus, it follows that $\pi_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{Hom}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$. Q.E.D.

THEOREM 2.30. If $\pi_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-Hom}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$ and $\pi_{\mathfrak{g},\beta} \in \mathfrak{g}\text{-Hom}\left[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Upsilon}\right]$, then $\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-Hom}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Upsilon}\right]$.

PROOF. Let $\pi_{\mathfrak{g},\alpha} \in \mathfrak{g}$ -Hom $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$ and $\pi_{\mathfrak{g},\beta} \in \mathfrak{g}$ -Hom $[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$. Then, there exists exactly one $\xi \in \mathfrak{T}_{\mathfrak{g},\Omega}$ such that, for all $\zeta \in \mathfrak{T}_{\mathfrak{g},\Sigma}$, $\pi_{\mathfrak{g},\alpha}(\xi) = \zeta$ and, there exists exactly one $\zeta \in \mathfrak{T}_{\mathfrak{g},\Sigma}$ such that, for all $\eta \in \mathfrak{T}_{\mathfrak{g},\Upsilon}$, $\pi_{\mathfrak{g},\beta}(\zeta) = \eta$. Therefore there exists exactly one $\xi \in \mathfrak{T}_{\mathfrak{g},\Omega}$ such that, for all $\eta \in \mathfrak{T}_{\mathfrak{g},\Upsilon}$, $\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha}(\xi) = \eta$; hence, $\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha} \in \mathfrak{g}$ -B $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$. On the one hand, $\pi_{\mathfrak{g},\alpha} \in \mathfrak{g}$ -C $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$ and $\pi_{\mathfrak{g},\beta} \in \mathfrak{g}$ -C $[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$ implies $\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha} \in \mathfrak{g}$ -C $[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$ and, on the other hand, $\pi_{\mathfrak{g},\alpha}^{-1} \in \mathfrak{g}$ -C $[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Omega}]$ and $\pi_{\mathfrak{g},\beta}^{-1} \in \mathfrak{g}$ -C $[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Sigma}]$ implies $\pi_{\mathfrak{g},\alpha}^{-1} \circ \pi_{\mathfrak{g},\beta}^{-1} \in \mathfrak{g}$ -C $[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Omega}]$. But, $\pi_{\mathfrak{g},\alpha}^{-1} \circ \pi_{\mathfrak{g},\beta}^{-1} = (\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha})^{-1}$. Hence, $\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha} \in \mathfrak{g}$ -Hom $[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Sigma}]$, which proves the theorem.

THEOREM 2.31. If $\pi_{\mathfrak{g}} \in \mathfrak{g}$ -Hom $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$, then, for every $(\mathcal{O}_{\mathfrak{g},\sigma},\mathcal{K}_{\mathfrak{g},\sigma}) \in \mathcal{T}_{\mathfrak{g},\Sigma} \times \neg \mathcal{T}_{\mathfrak{g},\Sigma}$,

$$\left[\pi_{\mathfrak{g}}^{-1}\left(\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right) = \operatorname{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right)\right] \vee \left[\pi_{\mathfrak{g}}^{-1}\left(\neg \operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right) = \neg \operatorname{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right)\right].$$
(2.41)

PROOF. Let $\pi_{\mathfrak{g}} \in \mathfrak{g}\text{-Hom}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$. Then, $\pi_{\mathfrak{g}} \in \mathfrak{g}\text{-B}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$ and $\left(\pi_{\mathfrak{g}} \in \mathfrak{g}\text{-C}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]\right) \wedge \left(\pi_{\mathfrak{g}}^{-1} \in \mathfrak{g}\text{-C}\left[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Omega}\right]\right)$.

Consequently,

$$\begin{split} \pi_{\mathfrak{g}} &\in \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] \cap \mathfrak{g}\text{-C}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] \quad \Rightarrow \quad \pi_{\mathfrak{g}} \in \mathfrak{g}\text{-I}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right], \\ \pi_{\mathfrak{g}}^{-1} &\in \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Omega}\right] \cap \mathfrak{g}\text{-C}\left[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Omega}\right] \quad \Rightarrow \quad \pi_{\mathfrak{g}}^{-1} \in \mathfrak{g}\text{-I}\left[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Omega}\right]. \end{split}$$

But, $\pi_{\mathfrak{g}} \in \mathfrak{g}\text{-I}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$ and $\pi_{\mathfrak{g}}^{-1} \in \mathfrak{g}\text{-I}\left[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Omega}\right]$ are equivalent to

$$\begin{split} \left[\pi_{\mathfrak{g}}^{-1}\left(\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right) &\subseteq \operatorname{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right)\right] \vee \left[\pi_{\mathfrak{g}}^{-1}\left(\neg \operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right) &\supseteq \\ &\neg \operatorname{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right)\right], \\ \left[\pi_{\mathfrak{g}}^{-1}\left(\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right) &\supseteq \operatorname{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right)\right] \vee \left[\pi_{\mathfrak{g}}^{-1}\left(\neg \operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right)\right] &\subseteq \\ &\neg \operatorname{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}^{-1}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right)\right], \end{split}$$

respectively. Hence, equality holds.

Q.E.D.

COROLLARY 2.32. If $\pi_{\mathfrak{g}} \in \mathfrak{g}$ -Hom $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$, then, for every $(\mathcal{O}_{\mathfrak{g},\omega},\mathcal{K}_{\mathfrak{g},\omega}) \in \mathcal{T}_{\mathfrak{g},\Omega} \times \neg \mathcal{T}_{\mathfrak{g},\Omega}$,

$$\left[\pi_{\mathfrak{g}}\left(\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right) = \operatorname{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right)\right)\right] \vee \left[\pi_{\mathfrak{g}}\left(\neg \operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right) = \neg \operatorname{op}_{\mathfrak{g}}\left(\pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right)\right)\right].$$

THEOREM 2.33. A \mathfrak{g} - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -homeomorphism is an equivalence relation between $\mathcal{T}_{\mathfrak{g}}$ -spaces.

PROOF. Reflexivity. The identity map $\mathrm{id}_{\mathfrak{g}}:\mathfrak{T}_{\mathfrak{g},\Omega}\to\mathfrak{T}_{\mathfrak{g},\Omega}$ is a bicontinuous bijection. Therefore, it is a \mathfrak{g} - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -homeomorphism $\mathrm{id}_{\mathfrak{g}}:\mathfrak{T}_{\mathfrak{g},\Omega}\cong\mathfrak{T}_{\mathfrak{g},\Omega}$ and, hence, $\mathrm{id}_{\mathfrak{g}}(\cdot)\in\mathfrak{g}$ -Hom $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Omega}]$.

Symmetry. Let $\pi_{\mathfrak{g}} \in \mathfrak{g}\text{-Hom}\,[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$. Then, the map $\pi_{\mathfrak{g}}^{-1}:T_{\mathfrak{g},\Sigma} \to \mathfrak{T}_{\mathfrak{g},\Omega}$ is a \mathfrak{g} - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -homeomorphism $\pi_{\mathfrak{g}}^{-1}:\mathfrak{T}_{\mathfrak{g},\Sigma} \cong \mathfrak{T}_{\mathfrak{g},\Omega}$ and, thus, it follows that $\pi_{\mathfrak{g}}^{-1} \in \mathfrak{g}\text{-Hom}\,[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Omega}]$.

Transitivity. The proof follows from $\pi_{\mathfrak{g},\alpha} \in \mathfrak{g}$ -Hom $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$ and $\pi_{\mathfrak{g},\beta} \in \mathfrak{g}$ -Hom $[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$ imply $\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha} \in \mathfrak{g}$ -Hom $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$. Q.E.D.

3. Discussion

3.1. Categorical Classifications. Having adopted a categorical approach in the classifications of $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}$ -maps between any two of such $\mathcal{T}_{\mathfrak{g}}$ -spaces $\mathfrak{T}_{\mathfrak{g},\Omega}$, $\mathfrak{T}_{\mathfrak{g},\Sigma}$, and $\mathfrak{T}_{\mathfrak{g},\Upsilon}$, the twofold purposes of the following developments are to establish the various relationships between the classes of $(\mathfrak{T}_{\mathfrak{g},\Lambda},\mathfrak{T}_{\mathfrak{g},\Theta})$ -maps and $\mathfrak{g}\text{-}(\mathfrak{T}_{\Lambda},\mathfrak{T}_{\Theta})$ -maps, the classes of $(\mathfrak{T}_{\mathfrak{g},\Lambda},\mathfrak{T}_{\mathfrak{g},\Theta})$ -continuous maps and $\mathfrak{g}\text{-}(\mathfrak{T}_{\Lambda},\mathfrak{T}_{\Theta})$ -continuous maps, the classes of $(\mathfrak{T}_{\mathfrak{g},\Lambda},\mathfrak{T}_{\mathfrak{g},\Theta})$ -irresolute maps and $\mathfrak{g}\text{-}(\mathfrak{T}_{\Lambda},\mathfrak{T}_{\Theta})$ -irresolute maps, and the classes of $(\mathfrak{T}_{\mathfrak{g},\Lambda},\mathfrak{T}_{\mathfrak{g},\Theta})$ -homeomorphism maps and $\mathfrak{g}\text{-}(\mathfrak{T}_{\Lambda},\mathfrak{T}_{\Theta})$ -homeomorphism maps, where $\mathfrak{T}_{\Lambda},\mathfrak{T}_{\mathfrak{g},\Theta}$ and to illustrate them through specific diagrams called, map, categorical map, continuous map, irresolute map, homeomorphism map, and continuous-irresolute map diagrams.

We have seen that, $M[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}] \subseteq \mathfrak{g}\text{-}M[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$. But,

$$M\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] \ = \ M_O\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] \cup M_K\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right],$$

 $\mathfrak{g}\text{-}\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] \ = \ \mathfrak{g}\text{-}\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] \cup \mathfrak{g}\text{-}\mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right].$

Consequently,

$$\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right],\;\mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]\;\subseteq\;\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right],$$

 $\mathfrak{g}\text{-}\mathrm{M}_{\mathrm{O}}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right],\ \mathfrak{g}\text{-}\mathrm{M}_{\mathrm{K}}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]\ \subseteq\ \mathfrak{g}\text{-}\mathrm{M}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right],$

which, in turn, imply

$$\begin{split} & M_{\mathrm{O}}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] \subseteq \mathfrak{g}\text{-}M_{\mathrm{O}}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] \quad \subseteq \quad \mathfrak{g}\text{-}M\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right], \\ & M_{\mathrm{K}}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] \subseteq \mathfrak{g}\text{-}M_{\mathrm{K}}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] \quad \subseteq \quad \mathfrak{g}\text{-}M\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right], \end{split}$$

respectively. In Fig. 1, we present the relations between the class M $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}] = M_O[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}] \cup M_K[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$ of $(\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma})$ -open and $(\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma})$ -closed maps and, also, the class \mathfrak{g} -M $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}] = \mathfrak{g}$ -M $_O[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}] \cup \mathfrak{g}$ -M $_K[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$ of \mathfrak{g} - $(\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma})$ -open and \mathfrak{g} - $(\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma})$ -closed maps. The diagram in Fig. 1 shall be termed a map diagram.

Figure 1. Relationships: Map diagram.

For every $\nu \in I_3^0$, it is plain that, $\mathfrak{g}\text{-}\nu\text{-M}\left[\mathfrak{T}\Omega;\mathfrak{T}_{\Sigma}\right] \subseteq \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\Omega};\mathfrak{T}_{\Sigma}\right]$ and, also, $\mathfrak{g}\text{-}\nu\text{-M}\left[\mathfrak{T}_{\Omega};\mathfrak{T}_{\Sigma}\right] \subseteq \mathfrak{g}\text{-}\nu\text{-M}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] \subseteq \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\Sigma}\right] \subseteq \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\Omega};\mathfrak{T}_{\Sigma}\right] \subseteq \mathfrak{g}$

 \mathfrak{g} -2-M $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}] \subseteq \mathfrak{g}$ -3-M $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$ and also, the relation \mathfrak{g} -0-M $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}] \subseteq \mathfrak{g}$ -1-M $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}] \subseteq \mathfrak{g}$ -3-M $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$ holds. In fact, for every $\mathfrak{T}_{\mathfrak{g}}$ -set $\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$, the following relations hold:

$$\operatorname{int}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right) \hspace{2mm} \subseteq \hspace{2mm} \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right) \subseteq \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right) \supseteq \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right),$$

$$\operatorname{cl}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right) \ \supseteq \ \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right) \supseteq \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right) \subseteq \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right).$$

Consequently, for every $(\mathcal{O}_{\mathfrak{g},\omega},\mathcal{K}_{\mathfrak{g},\omega}) \in \mathcal{T}_{\mathfrak{g},\Omega} \times \neg \mathcal{T}_{\mathfrak{g},\Omega}$ there exists $(\mathcal{O}_{\mathfrak{g},\sigma},\mathcal{K}_{\mathfrak{g},\sigma}) \in \mathcal{T}_{\mathfrak{g},\Sigma} \times \neg \mathcal{T}_{\mathfrak{g},\Sigma}$ such that

$$\begin{split} \pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right) &\subseteq & \operatorname{op}_{\mathfrak{g},0}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right) \\ &\subseteq & \operatorname{op}_{\mathfrak{g},1}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right) \subseteq \operatorname{op}_{\mathfrak{g},3}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right) \supseteq \operatorname{op}_{\mathfrak{g},2}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right) \supseteq \pi_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\omega}\right), \\ \pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right) &\supseteq & \neg \operatorname{op}_{\mathfrak{g},0}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right) \\ &\supseteq & \neg \operatorname{op}_{\mathfrak{g},1}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right) \supseteq \neg \operatorname{op}_{\mathfrak{g},3}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right) \subseteq \neg \operatorname{op}_{\mathfrak{g},2}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right) \subseteq \pi_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\omega}\right). \end{split}$$

In Fig. 2, we present the relationships between the class \mathfrak{g} -M[$\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}$] = $\bigcup_{\nu \in I_3^0} \mathfrak{g}$ - ν -M[$\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}$] of \mathfrak{g} -($\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma}$)-maps of categories 0, 1, 2 and 3, and the class \mathfrak{g} -M[$\mathfrak{T}_{\Omega};\mathfrak{T}_{\Sigma}$] = $\bigcup_{\nu \in I_3^0} \mathfrak{g}$ - ν -M[$\mathfrak{T}_{\Omega};\mathfrak{T}_{\Sigma}$] of \mathfrak{g} -($\mathfrak{T}_{\Omega},\mathfrak{T}_{\Sigma}$)-maps of categories 0, 1, 2 and 3. These characteristics may be indicated, as in Fig. 2, by what we shall term a categorical map diagram.

FIGURE 2. Relationships: Categorical Map diagram.

Now, suppose we are given $\pi_{\mathfrak{g},\alpha}:\mathfrak{T}_{\mathfrak{g},\Omega}\cong\mathfrak{T}_{\mathfrak{g},\Sigma}$ and $\pi_{\mathfrak{g},\alpha}:\mathfrak{T}_{\mathfrak{g},\Sigma}\cong\mathfrak{T}_{\mathfrak{g},\Upsilon}$. Then, by virtue of previous theorems, $\pi_{\mathfrak{g},\beta}\circ\pi_{\mathfrak{g},\alpha}\in\mathfrak{g}$ -Hom $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$. Also, $\pi_{\mathfrak{g},\alpha}\in\mathfrak{H}$ Hom $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$, $\pi_{\mathfrak{g},\beta}\in\mathfrak{H}$ Hom $[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$, and $\pi_{\mathfrak{g},\beta}\circ\pi_{\mathfrak{g},\alpha}\in\mathfrak{H}$ Hom $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$, $\pi_{\mathfrak{g},\beta}\in\mathfrak{g}$ -Hom $[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$, and the relation $\pi_{\mathfrak{g},\beta}\circ\pi_{\mathfrak{g},\alpha}\in\mathfrak{g}$ -Hom $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$, respectively. These features may be indicated, as in Fig. 3, by what we shall term a homeomorphism map diagram.

Next, suppose we are given $\pi_{\mathfrak{g},\alpha}:\mathfrak{T}_{\mathfrak{g},\Omega}\to\mathfrak{T}_{\mathfrak{g},\Sigma}$ and $\pi_{\mathfrak{g},\alpha}:\mathfrak{T}_{\mathfrak{g},\Sigma}\to\mathfrak{T}_{\mathfrak{g},\Upsilon}$. If $\pi_{\mathfrak{g},\alpha}\in\mathfrak{g}$ -C $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$ and $\pi_{\mathfrak{g},\beta}\in\mathfrak{g}$ -C $[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$ then, by virtue of previous theorems, $\pi_{\mathfrak{g},\beta}\circ\pi_{\mathfrak{g},\alpha}\in\mathfrak{g}$ -C $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$. Moreover, $\pi_{\mathfrak{g},\alpha}\in C$ $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$, $\pi_{\mathfrak{g},\beta}\in C$ $[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$.

FIGURE 3. Relationships: Homeomorphism map diagram.

and $\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha} \in C[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$, respectively, imply $\pi_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-}C[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$, $\pi_{\mathfrak{g},\beta} \in \mathfrak{g}\text{-}C[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$, and $\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-}C[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$. These features may be indicated, as in Fig. 4, by what we shall term a *continuous map diagram*.

FIGURE 4. Relationships: Continuous map diagram.

Finally, suppose we are given $\pi_{\mathfrak{g},\alpha}:\mathfrak{T}_{\mathfrak{g},\Omega}\to\mathfrak{T}_{\mathfrak{g},\Sigma}$ and $\pi_{\mathfrak{g},\alpha}:\mathfrak{T}_{\mathfrak{g},\Sigma}\to\mathfrak{T}_{\mathfrak{g},\Upsilon}$. If $\pi_{\mathfrak{g},\alpha}\in\mathfrak{g}\text{-I}[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$ and $\pi_{\mathfrak{g},\beta}\in\mathfrak{g}\text{-I}[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$ then, by virtue of previous theorems, $\pi_{\mathfrak{g},\beta}\circ\pi_{\mathfrak{g},\alpha}\in\mathfrak{g}\text{-I}[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$. On the other hand, $\pi_{\mathfrak{g},\alpha}\in I[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$, $\pi_{\mathfrak{g},\beta}\in I[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$, and $\pi_{\mathfrak{g},\beta}\circ\pi_{\mathfrak{g},\alpha}\in I[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$, respectively, imply $\pi_{\mathfrak{g},\alpha}\in\mathfrak{g}\text{-I}[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$, $\pi_{\mathfrak{g},\beta}\in\mathfrak{g}\text{-I}[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$, and $\pi_{\mathfrak{g},\beta}\circ\pi_{\mathfrak{g},\alpha}\in\mathfrak{g}\text{-I}[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$. These features may be indicated, as in Fig. 5, by what we shall term a *irresolute map diagram*.

Let us end this discussion section with a concise summary of the principal implications of the findings regardless of categorical classifications. We have the relations \mathfrak{g} -C $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}] \supseteq \mathfrak{g}$ -I $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$ and \mathfrak{g} -C $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$, \mathfrak{g} -I $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}] \subseteq$

Figure 5. Relationships: Irresolute map diagram.

 $\begin{array}{l} \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]; \text{ the relation } \mathfrak{g}\text{-C}\left[\mathfrak{T}_{\Omega};\mathfrak{T}_{\Sigma}\right] \supseteq \mathfrak{g}\text{-I}\left[\mathfrak{T}_{\Omega};\mathfrak{T}_{\Sigma}\right] \text{ and, also, } \mathfrak{g}\text{-C}\left[\mathfrak{T}_{\Omega};\mathfrak{T}_{\Sigma}\right], \\ \mathfrak{g}\text{-I}\left[\mathfrak{T}_{\Omega};\mathfrak{T}_{\Sigma}\right] \subseteq \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\Omega};\mathfrak{T}_{\Sigma}\right]; \ \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\Omega};\mathfrak{T}_{\Sigma}\right] \subseteq \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]. \end{array} \\ \text{Consequently, it follows that } \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] \text{ is related with } \mathfrak{g}\text{-C}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right] \text{ and } \mathfrak{g}\text{-I}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]; \\ \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\Omega};\mathfrak{T}_{\Sigma}\right] \text{ is related with } \mathfrak{g}\text{-C}\left[\mathfrak{T}_{\Omega};\mathfrak{T}_{\Sigma}\right] \text{ and } \mathfrak{g}\text{-I}\left[\mathfrak{T}_{\Omega};\mathfrak{T}_{\Sigma}\right]; \\ \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\Omega};\mathfrak{T}_{\Sigma}\right] \text{ is related with } \mathfrak{g}\text{-M}\left[\mathfrak{T}_{\Omega};\mathfrak{T}_{\Sigma}\right]. \end{array} \\ \text{These relations may be indicated, as in Fig. 6, by what we shall term a continuity-irresolute map diagram.}$

FIGURE 6. Relationships: Continuous-Irresolute map diagram.

As in the papers of [5, 10, 15, 29, 30], among others, the manner we have positioned the arrows is solely to stress that, in general, none of the implications in Figs 1, 2 and 1 is reversible.

At this stage, a nice application is worth considering, and is presented in the following section.

3.2. A NICE APPLICATION. By focusing on important concepts from the viewpoint of the theory of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -maps, we shall now present a nice application based upon fivepoint sets. Let $\Omega = \left\{ \xi_{\nu} : \ \nu \in I_{5}^{*} \right\}$, $\Sigma = \left\{ \zeta_{\nu} : \ \nu \in I_{5}^{*} \right\}$, and $\Upsilon = \left\{ \eta_{\nu} : \ \nu \in I_{5}^{*} \right\}$

denote the underlying sets, and consider the $\mathcal{T}_{\mathfrak{g}}$ -spaces $\mathfrak{T}_{\mathfrak{g},\Omega} = (\Omega, \mathcal{T}_{\mathfrak{g},\Omega}), \, \mathfrak{T}_{\mathfrak{g},\Sigma} = (\Sigma, \mathcal{T}_{\mathfrak{g},\Sigma}), \, \text{and} \, \mathfrak{T}_{\mathfrak{g},\Upsilon} = (\Upsilon, \mathcal{T}_{\mathfrak{g},\Upsilon}), \, \text{where}$

$$\mathcal{T}_{\mathfrak{g}}(\Omega) = \{\emptyset, \{\xi_{1}\}, \{\xi_{2}, \xi_{3}\}, \{\xi_{1}, \xi_{2}, \xi_{3}\}\} \\
= \{\mathcal{O}_{\mathfrak{g}, \omega_{1}}, \mathcal{O}_{\mathfrak{g}, \omega_{2}}, \mathcal{O}_{\mathfrak{g}, \omega_{3}}, \mathcal{O}_{\mathfrak{g}, \omega_{4}}\}, \\
\neg \mathcal{T}_{\mathfrak{g}}(\Omega) = \{\Omega, \{\xi_{2}, \xi_{3}, \xi_{4}, \xi_{5}\}, \{\xi_{1}, \xi_{4}, \xi_{5}\}, \{\xi_{4}, \xi_{5}\}\} \\
= \{\mathcal{K}_{\mathfrak{g}, \omega_{1}}, \mathcal{K}_{\mathfrak{g}, \omega_{2}}, \mathcal{K}_{\mathfrak{g}, \omega_{3}}, \mathcal{K}_{\mathfrak{g}, \omega_{4}}\}, \\
\mathcal{T}_{\mathfrak{g}}(\Sigma) = \{\emptyset, \{\zeta_{2}\}, \{\zeta_{3}, \zeta_{4}\}, \{\zeta_{2}, \zeta_{3}, \zeta_{4}\}\} \\
= \{\mathcal{O}_{\mathfrak{g}, \sigma_{1}}, \mathcal{O}_{\mathfrak{g}, \sigma_{2}}, \mathcal{O}_{\mathfrak{g}, \sigma_{3}}, \mathcal{O}_{\mathfrak{g}, \sigma_{4}}\}, \\
\neg \mathcal{T}_{\mathfrak{g}}(\Sigma) = \{\Sigma, \{\zeta_{1}, \zeta_{3}, \zeta_{4}, \zeta_{5}\}, \{\zeta_{1}, \zeta_{2}, \zeta_{5}\}, \{\zeta_{1}, \zeta_{5}\}\} \\
= \{\mathcal{K}_{\mathfrak{g}, \sigma_{1}}, \mathcal{K}_{\mathfrak{g}, \sigma_{2}}, \mathcal{K}_{\mathfrak{g}, \sigma_{3}}, \mathcal{K}_{\mathfrak{g}, \sigma_{4}}\}, \\
\mathcal{T}_{\mathfrak{g}}(\Upsilon) = \{\emptyset, \{\eta_{3}\}, \{\eta_{4}, \eta_{5}\}, \{\eta_{3}, \eta_{4}, \eta_{5}\}\} \\
= \{\mathcal{O}_{\mathfrak{g}, v_{1}}, \mathcal{O}_{\mathfrak{g}, v_{2}}, \mathcal{O}_{\mathfrak{g}, v_{3}}, \mathcal{O}_{\mathfrak{g}, v_{4}}\}, \\
\neg \mathcal{T}_{\mathfrak{g}}(\Upsilon) = \{\Upsilon, \{\eta_{1}, \eta_{2}, \eta_{4}, \eta_{5}\}, \{\eta_{1}, \eta_{2}, \eta_{3}\}, \{\eta_{1}, \eta_{2}\}\} \\
= \{\mathcal{K}_{\mathfrak{g}, v_{1}}, \mathcal{K}_{\mathfrak{g}, v_{2}}, \mathcal{K}_{\mathfrak{g}, v_{3}}, \mathcal{K}_{\mathfrak{g}, v_{4}}\}, \\
(3.3)$$

respectively, stand for the classes of $\mathcal{T}_{\mathfrak{g}}$ -open and $\mathcal{T}_{\mathfrak{g}}$ -closed sets relative to the $\mathcal{T}_{\mathfrak{g}}$ -spaces $\mathfrak{T}_{\mathfrak{g},\Omega}$, $\mathfrak{T}_{\mathfrak{g},\Sigma}$, and $\mathfrak{T}_{\mathfrak{g},\Upsilon}$. For any $\mathcal{T}_{\mathfrak{g}} \in \{\mathcal{T}_{\mathfrak{g},\Omega},\mathcal{T}_{\mathfrak{g},\Sigma},\mathcal{T}_{\mathfrak{g},\Upsilon}\}$, since conditions $\mathcal{T}_{\mathfrak{g}}(\emptyset) = \emptyset$, $\mathcal{T}_{\mathfrak{g}}(\mathcal{O}_{\mathfrak{g},\nu}) \subseteq \mathcal{O}_{\mathfrak{g},\nu}$ for every $\nu \in I_4^*$, and $\mathcal{T}_{\mathfrak{g}}(\bigcup_{\nu \in I_4^*} \mathcal{O}_{\mathfrak{g},\nu}) = \bigcup_{\nu \in I_4^*} \mathcal{T}_{\mathfrak{g}}(\mathcal{O}_{\mathfrak{g},\nu})$ are satisfied, it is evident that, for every $\Lambda \in \{\Omega,\Sigma,\Upsilon\}$, the one-valued map $\mathcal{T}_{\mathfrak{g}}: \mathcal{P}(\Lambda) \to \mathcal{P}(\Lambda)$ is a \mathfrak{g} -topology. Furthermore, for any $\mathfrak{T} \in \{\mathfrak{T}_{\Omega},\mathfrak{T}_{\Sigma},\mathfrak{T}_{\Upsilon}\}$, it is easily checked that, $\mathcal{O}_{\mathfrak{g},\mu} \in \mathfrak{g}$ - ν -O[\mathfrak{T}] for every $(\nu,\mu) \in I_3^0 \times I_4^*$. Hence, the $\mathcal{T}_{\mathfrak{g}}$ -open sets forming the \mathfrak{g} -topology $\mathcal{T}_{\mathfrak{g}}: \mathcal{P}(\Lambda) \to \mathcal{P}(\Lambda)$ of the $\mathcal{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Lambda,\mathcal{T}_{\mathfrak{g}})$ are \mathfrak{g} - \mathfrak{T} -open sets relative to the \mathcal{T} -space $\mathfrak{T} = (\Lambda,\mathcal{T})$, where $\Lambda \in \{\Omega,\Sigma,\Upsilon\}$, $\mathcal{T} \in \{\mathcal{T}_{\Omega},\mathcal{T}_{\Sigma},\mathcal{T}_{\Upsilon}\}$, and $\mathfrak{T} \in \{\mathfrak{T}_{\Omega},\mathfrak{T}_{\Sigma},\mathfrak{T}_{\Upsilon}\}$.

After calculations, the classes \mathfrak{g} - ν -O[$\mathfrak{T}_{\mathfrak{g},\Lambda}$] and \mathfrak{g} - ν -K[$\mathfrak{T}_{\mathfrak{g},\Lambda}$], respectively, of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g},\Lambda}$ -open and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g},\Lambda}$ -closed sets of categories $\nu \in \{0,2\}$, where $\Lambda \in \{\Omega,\Sigma,\Upsilon\}$, then take the following forms:

$$\mathfrak{g}\text{-}\nu\text{-}O[\mathfrak{T}_{\mathfrak{g},\Omega}] = \mathcal{T}_{\mathfrak{g},\Omega} \cup \{\{\xi_{2}\}, \{\xi_{3}\}, \{\xi_{1}, \xi_{2}\}, \{\xi_{1}, \xi_{3}\}\};
\mathfrak{g}\text{-}\nu\text{-}K[\mathfrak{T}_{\mathfrak{g},\Omega}] = \neg \mathcal{T}_{\mathfrak{g},\Omega} \cup \{\{\xi_{3}, \xi_{4}, \xi_{5}\}, \{\xi_{1}, \xi_{2}, \xi_{4}, \xi_{5}\},
\{\xi_{1}, \xi_{3}, \xi_{4}, \xi_{5}\}, \{\xi_{2}, \xi_{4}, \xi_{5}\}\} \, \forall \nu \in \{0, 2\};
\mathfrak{g}\text{-}\nu\text{-}O[\mathfrak{T}_{\mathfrak{g},\Sigma}] = \mathcal{T}_{\mathfrak{g},\Sigma} \cup \{\{\zeta_{3}\}, \{\zeta_{4}\}, \{\zeta_{2}, \zeta_{3}\}, \{\zeta_{2}, \zeta_{4}\}\};
\mathfrak{g}\text{-}\nu\text{-}K[\mathfrak{T}_{\mathfrak{g},\Sigma}] = \neg \mathcal{T}_{\mathfrak{g},\Sigma} \cup \{\{\zeta_{1}, \zeta_{4}, \zeta_{5}\}, \{\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{5}\},
\{\zeta_{1}, \zeta_{2}, \zeta_{4}, \zeta_{5}\}, \{\zeta_{1}, \zeta_{3}, \zeta_{5}\}\} \, \forall \nu \in \{0, 2\};
\mathfrak{g}\text{-}\nu\text{-}O[\mathfrak{T}_{\mathfrak{g},\Upsilon}] = \mathcal{T}_{\mathfrak{g},\Upsilon} \cup \{\{\eta_{4}\}, \{\eta_{5}\}, \{\eta_{3}, \eta_{4}\}, \{\eta_{3}, \eta_{5}\}\};
\mathfrak{g}\text{-}\nu\text{-}K[\mathfrak{T}_{\mathfrak{g},\Upsilon}] = \neg \mathcal{T}_{\mathfrak{g},\Upsilon} \cup \{\{\eta_{1}, \eta_{2}, \eta_{5}\}, \{\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}\}, \\
\{\eta_{1}, \eta_{2}, \eta_{3}, \eta_{5}\}, \{\eta_{1}, \eta_{2}, \eta_{4}\}\} \, \forall \nu \in \{0, 2\}.$$
(3.6)

22

On the other hand, those of categories $\nu \in \{1,3\}$ take the following forms:

$$\begin{array}{rcl} \mathfrak{g}\text{-}\nu\text{-}\mathrm{O}\big[\mathfrak{T}_{\mathfrak{g},\Lambda}\big] & = & \mathcal{T}_{\mathfrak{g},\Lambda} \cup \big\{\mathcal{O}_{\mathfrak{g}}: \; \mathcal{O}_{\mathfrak{g}} \in \mathcal{P}\left(\Lambda\right) \setminus \mathcal{T}_{\mathfrak{g},\Lambda}\big\}; \\ \\ (3.7) & \mathfrak{g}\text{-}\nu\text{-}\mathrm{K}\big[\mathfrak{T}_{\mathfrak{g},\Lambda}\big] & = & \neg \mathcal{T}_{\mathfrak{g},\Lambda} \cup \big\{\mathcal{K}_{\mathfrak{g}}: \; \mathcal{K}_{\mathfrak{g}} \in \mathcal{P}\left(\Lambda\right) \setminus \neg \mathcal{T}_{\mathfrak{g},\Lambda}\big\} & \forall \nu \in \big\{1,3\big\}, \end{array}$$

where $\Lambda \in \{\Omega, \Sigma, \Upsilon\}$. We choose to consider the \mathfrak{g} - $(\mathfrak{T}_{\Omega}, \mathfrak{T}_{\Sigma})$ -map $\pi_{\mathfrak{g}, \alpha} : \mathfrak{T}_{\mathfrak{g}, \Omega} \to \mathfrak{T}_{\mathfrak{g}, \Sigma}$ and the \mathfrak{g} - $(\mathfrak{T}_{\Sigma}, \mathfrak{T}_{\Upsilon})$ -map $\pi_{\mathfrak{g}, \beta} : \mathfrak{T}_{\mathfrak{g}, \Sigma} \to \mathfrak{T}_{\mathfrak{g}, \Upsilon}$ defined, respectively, by

$$\pi_{\mathfrak{g},\alpha}\left(\xi_{1}\right) = \zeta_{2}, \ \pi_{\mathfrak{g},\alpha}\left(\xi_{2}\right) = \zeta_{3}, \ \pi_{\mathfrak{g},\alpha}\left(\xi_{3}\right) = \zeta_{4}, \ \pi_{\mathfrak{g},\alpha}\left(\xi_{4}\right) = \zeta_{1}, \ \pi_{\mathfrak{g},\alpha}\left(\xi_{5}\right) = \zeta_{5};$$

$$\pi_{\mathfrak{g},\beta}\left(\zeta_{1}\right) = \eta_{1}, \ \pi_{\mathfrak{g},\beta}\left(\zeta_{2}\right) = \eta_{3}, \ \pi_{\mathfrak{g},\beta}\left(\zeta_{3}\right) = \eta_{4}, \ \pi_{\mathfrak{g},\beta}\left(\zeta_{4}\right) = \eta_{5}, \ \pi_{\mathfrak{g},\beta}\left(\zeta_{5}\right) = \eta_{2}.$$

Finally, we set the relations $\pi_{\mathfrak{g},\alpha}\left(\mathcal{O}_{\mathfrak{g},\omega_1}\right)=\mathcal{O}_{\mathfrak{g},\sigma_1}$ and $\pi_{\mathfrak{g},\beta}\left(\mathcal{O}_{\mathfrak{g},\sigma_1}\right)=\mathcal{O}_{\mathfrak{g},\upsilon_1}$ so that $\pi_{\mathfrak{g},\beta}\circ\pi_{\mathfrak{g},\alpha}\left(\mathcal{O}_{\mathfrak{g},\omega_1}\right)=\mathcal{O}_{\mathfrak{g},\upsilon_1}$. As for the composite \mathfrak{g} - $(\mathfrak{T}_{\Omega},\mathfrak{T}_{\Upsilon})$ -map $\pi_{\mathfrak{g},\beta}\circ\pi_{\mathfrak{g},\alpha}:\mathfrak{T}_{\mathfrak{g},\Omega}\to\mathfrak{T}_{\mathfrak{g},\Upsilon}$, a simple calculation shows that

$$\begin{split} \pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha} \left(\xi_1 \right) &= \eta_3, \ \pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha} \left(\xi_2 \right) = \eta_4, \ \pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha} \left(\xi_3 \right) = \eta_5, \\ \pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha} \left(\xi_4 \right) &= \eta_1, \ \pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha} \left(\xi_5 \right) = \eta_2. \end{split}$$

At this stage, we have all the basic ingredients to discuss any class of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -maps between any two of such $\mathcal{T}_{\mathfrak{g}}$ -spaces $\mathfrak{T}_{\mathfrak{g},\Omega}$, $\mathfrak{T}_{\mathfrak{g},\Sigma}$, and $\mathfrak{T}_{\mathfrak{g},\Upsilon}$. We choose to discuss some elements of the classes \mathfrak{g} -M $[\mathfrak{T}_{\mathfrak{g},\Lambda};\mathfrak{T}_{\mathfrak{g},\Theta}]$, \mathfrak{g} -C $[\mathfrak{T}_{\mathfrak{g},\Lambda};\mathfrak{T}_{\mathfrak{g},\Theta}]$, \mathfrak{g} -I $[\mathfrak{T}_{\mathfrak{g},\Lambda};\mathfrak{T}_{\mathfrak{g},\Theta}]$, and \mathfrak{g} -Hom $[\mathfrak{T}_{\mathfrak{g},\Lambda};\mathfrak{T}_{\mathfrak{g},\Theta}]$ of $(\mathfrak{T}_{\mathfrak{g},\Lambda},\mathfrak{T}_{\mathfrak{g},\Theta})$ -maps, $(\mathfrak{T}_{\mathfrak{g},\Lambda},\mathfrak{T}_{\mathfrak{g},\Theta})$ -continuous, $(\mathfrak{T}_{\mathfrak{g},\Lambda},\mathfrak{T}_{\mathfrak{g},\Theta})$ -irresolute, and $(\mathfrak{T}_{\mathfrak{g},\Lambda},\mathfrak{T}_{\mathfrak{g},\Theta})$ -homeomorphism maps, respectively, where Λ , $\Theta \in \{\Omega,\Sigma,\Upsilon\}$. A first sequence of calculations shows that

$$\pi_{\mathfrak{g},\alpha}\left(\mathcal{O}_{\mathfrak{g},\omega_{\mu}}\right) = \mathcal{O}_{\mathfrak{g},\sigma_{\mu}} \subseteq \operatorname{op}_{\mathfrak{g},\nu}\left(\mathcal{O}_{\mathfrak{g},\sigma_{\mu}}\right),
\pi_{\mathfrak{g},\alpha}\left(\mathcal{K}_{\mathfrak{g},\omega_{\mu}}\right) = \mathcal{K}_{\mathfrak{g},\sigma_{\mu}} \supseteq \neg \operatorname{op}_{\mathfrak{g},\nu}\left(\mathcal{K}_{\mathfrak{g},\sigma_{\mu}}\right) \quad \forall (\nu,\mu) \in I_{3}^{0} \times I_{4}^{*};
\pi_{\mathfrak{g},\beta}\left(\mathcal{O}_{\mathfrak{g},\sigma_{\mu}}\right) = \mathcal{O}_{\mathfrak{g},\nu_{\mu}} \subseteq \operatorname{op}_{\mathfrak{g},\nu}\left(\mathcal{O}_{\mathfrak{g},\nu_{\mu}}\right),
\pi_{\mathfrak{g},\beta}\left(\mathcal{K}_{\mathfrak{g},\sigma_{\mu}}\right) = \mathcal{K}_{\mathfrak{g},\nu_{\mu}} \supseteq \neg \operatorname{op}_{\mathfrak{g},\nu}\left(\mathcal{K}_{\mathfrak{g},\nu_{\mu}}\right) \quad \forall (\nu,\mu) \in I_{3}^{0} \times I_{4}^{*}.$$

Hence, we conclude that, $\pi_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-M}[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$, $\pi_{\mathfrak{g},\beta} \in \mathfrak{g}\text{-M}[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$, and $\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-M}[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$. On the other hand, a second sequence of calculations shows that

$$\begin{split} \pi_{\mathfrak{g},\alpha}^{-1}\left(\mathcal{O}_{\mathfrak{g},\sigma_{\mu}}\right) &= \mathcal{O}_{\mathfrak{g},\omega_{\mu}} \subseteq \mathrm{op}_{\mathfrak{g},\nu}\left(\mathcal{O}_{\mathfrak{g},\omega_{\mu}}\right), \\ \pi_{\mathfrak{g},\alpha}^{-1}\left(\mathcal{K}_{\mathfrak{g},\sigma_{\mu}}\right) &= \mathcal{K}_{\mathfrak{g},\omega_{\mu}} \supseteq \neg \mathrm{op}_{\mathfrak{g},\nu}\left(\mathcal{K}_{\mathfrak{g},\omega_{\mu}}\right) \quad \forall \left(\nu,\mu\right) \in I_{3}^{0} \times I_{4}^{*}; \\ \pi_{\mathfrak{g},\beta}^{-1}\left(\mathcal{O}_{\mathfrak{g},\upsilon_{\mu}}\right) &= \mathcal{O}_{\mathfrak{g},\sigma_{\mu}} \subseteq \mathrm{op}_{\mathfrak{g},\nu}\left(\mathcal{O}_{\mathfrak{g},\sigma_{\mu}}\right), \\ \pi_{\mathfrak{g},\beta}^{-1}\left(\mathcal{K}_{\mathfrak{g},\upsilon_{\mu}}\right) &= \mathcal{K}_{\mathfrak{g},\sigma_{\mu}} \supseteq \neg \mathrm{op}_{\mathfrak{g},\nu}\left(\mathcal{K}_{\mathfrak{g},\sigma_{\mu}}\right) \quad \forall \left(\nu,\mu\right) \in I_{3}^{0} \times I_{4}^{*}. \end{split}$$

From the above expressions, it then follows that, $\pi_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-}\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$, $\pi_{\mathfrak{g},\beta} \in \mathfrak{g}\text{-}\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Upsilon}\right]$, and $\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-}\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Upsilon}\right]$. A third sequence of calculations

shows that

$$\begin{split} \pi_{\mathfrak{g},\alpha}^{-1}\left(\mathrm{op}_{\mathfrak{g},\nu}\left(\mathcal{O}_{\mathfrak{g},\sigma_{\mu}}\right)\right) &=& \mathcal{O}_{\mathfrak{g},\omega_{\mu}}\subseteq\mathrm{op}_{\mathfrak{g},\nu}\left(\mathcal{O}_{\mathfrak{g},\omega_{\mu}}\right),\\ \pi_{\mathfrak{g},\alpha}^{-1}\left(\neg\,\mathrm{op}_{\mathfrak{g},\nu}\left(\mathcal{K}_{\mathfrak{g},\sigma_{\mu}}\right)\right) &=& \mathcal{K}_{\mathfrak{g},\omega_{\mu}}\subseteq\neg\,\mathrm{op}_{\mathfrak{g},\nu}\left(\mathcal{K}_{\mathfrak{g},\omega_{\mu}}\right) \quad\forall\,(\nu,\mu)\in\left\{0,2\right\}\times I_{4}^{*};\\ \pi_{\mathfrak{g},\alpha}^{-1}\left(\mathrm{op}_{\mathfrak{g},\nu}\left(\mathcal{O}_{\mathfrak{g},\sigma_{5-\mu}}\right)\right) &=& \mathcal{K}_{\mathfrak{g},\omega_{\mu}}\supseteq\neg\,\mathrm{op}_{\mathfrak{g},\nu}\left(\mathcal{K}_{\mathfrak{g},\omega_{\mu}}\right),\\ \pi_{\mathfrak{g},\alpha}^{-1}\left(\neg\,\mathrm{op}_{\mathfrak{g},\nu}\left(\mathcal{K}_{\mathfrak{g},\sigma_{5-\mu}}\right)\right) &=& \mathcal{O}_{\mathfrak{g},\omega_{\mu}}\subseteq\mathrm{op}_{\mathfrak{g},\nu}\left(\mathcal{O}_{\mathfrak{g},\omega_{\mu}}\right) \quad\forall\,(\nu,\mu)\in\left\{1,3\right\}\times I_{4}^{*};\\ \pi_{\mathfrak{g},\beta}^{-1}\left(\mathrm{op}_{\mathfrak{g},\nu}\left(\mathcal{O}_{\mathfrak{g},\nu_{\mu}}\right)\right) &=& \mathcal{O}_{\mathfrak{g},\sigma_{\mu}}\subseteq\mathrm{op}_{\mathfrak{g},\nu}\left(\mathcal{O}_{\mathfrak{g},\sigma_{\mu}}\right),\\ \pi_{\mathfrak{g},\beta}^{-1}\left(\mathrm{op}_{\mathfrak{g},\nu}\left(\mathcal{K}_{\mathfrak{g},\nu_{\mu}}\right)\right) &=& \mathcal{K}_{\mathfrak{g},\sigma_{\mu}}\supseteq\neg\,\mathrm{op}_{\mathfrak{g},\nu}\left(\mathcal{K}_{\mathfrak{g},\sigma_{\mu}}\right) \quad\forall\,(\nu,\mu)\in\left\{0,2\right\}\times I_{4}^{*};\\ \pi_{\mathfrak{g},\beta}^{-1}\left(\mathrm{op}_{\mathfrak{g},\nu}\left(\mathcal{O}_{\mathfrak{g},\nu_{5-\mu}}\right)\right) &=& \mathcal{K}_{\mathfrak{g},\sigma_{\mu}}\supseteq\neg\,\mathrm{op}_{\mathfrak{g},\nu}\left(\mathcal{K}_{\mathfrak{g},\sigma_{\mu}}\right),\\ \pi_{\mathfrak{g},\beta}^{-1}\left(\neg\,\mathrm{op}_{\mathfrak{g},\nu}\left(\mathcal{K}_{\mathfrak{g},\nu_{5-\mu}}\right)\right) &=& \mathcal{K}_{\mathfrak{g},\sigma_{\mu}}\subseteq\,\mathrm{op}_{\mathfrak{g},\nu}\left(\mathcal{K}_{\mathfrak{g},\sigma_{\mu}}\right),\\ \pi_{\mathfrak{g},\beta}^{-1}\left(\neg\,\mathrm{op}_{\mathfrak{g},\nu}\left(\mathcal{K}_{\mathfrak{g},\nu_{5-\mu}}\right)\right) &=& \mathcal{O}_{\mathfrak{g},\sigma_{\mu}}\subseteq\,\mathrm{op}_{\mathfrak{g},\nu}\left(\mathcal{O}_{\mathfrak{g},\sigma_{\mu}}\right) \quad\forall\,(\nu,\mu)\in\left\{1,3\right\}\times I_{4}^{*}. \end{split}$$

From the properties of \mathfrak{g} - ν -I $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$, \mathfrak{g} - ν -I $[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$, and \mathfrak{g} - ν -I $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$, where $\nu \in I_3^0$, we have $\pi_{\mathfrak{g},\alpha} \in \mathfrak{g}$ - ν -I $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$, $\pi_{\mathfrak{g},\beta} \in \mathfrak{g}$ - ν -I $[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$, and $\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha} \in \mathfrak{g}$ - ν -I $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$ only for every $\nu \in \{0,2\}$; none of these membership relations holds for any $\nu \in \{1,3\}$, as is easily seen by inspection. On the other hand, by virtue of the definitions of the \mathfrak{g} - $(\mathfrak{T}_{\Omega},\mathfrak{T}_{\Sigma})$ -map $\pi_{\mathfrak{g},\alpha}:\mathfrak{T}_{\mathfrak{g},\Sigma}\to\mathfrak{T}_{\mathfrak{g},\Sigma}$ and the \mathfrak{g} - $(\mathfrak{T}_{\Sigma},\mathfrak{T}_{\Upsilon})$ -map $\pi_{\mathfrak{g},\beta}:\mathfrak{T}_{\mathfrak{g},\Sigma}\to\mathfrak{T}_{\mathfrak{g},\Upsilon}$, it is clear that the membership relations $\pi_{\mathfrak{g},\alpha}\in\mathfrak{g}$ -B $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}]$, $\pi_{\mathfrak{g},\beta}\in\mathfrak{g}$ -B $[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$, and $\pi_{\mathfrak{g},\beta}\circ\pi_{\mathfrak{g},\alpha}\in\mathfrak{g}$ -B $[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Upsilon}]$ hold.

Having discussed $\pi_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-}\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$, $\pi_{\mathfrak{g},\beta} \in \mathfrak{g}\text{-}\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Upsilon}\right]$, and $\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-}\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g},\Omega};\mathfrak{T}_{\mathfrak{g},\Upsilon}\right]$, to discuss the $\mathfrak{g}\text{-}\left(\mathfrak{T}_{\Omega},\mathfrak{T}_{\Sigma}\right)$ -homeomorphism map $\pi_{\mathfrak{g},\beta}:\mathfrak{T}_{\mathfrak{g},\Sigma}\cong\mathfrak{T}_{\mathfrak{g},\Sigma}\cong\mathfrak{T}_{\mathfrak{g},\Sigma}$ and the $\mathfrak{g}\text{-}\left(\mathfrak{T}_{\Sigma},\mathfrak{T}_{\Upsilon}\right)$ -homeomorphism map $\pi_{\mathfrak{g},\beta}:\mathfrak{T}_{\mathfrak{g},\Sigma}\cong\mathfrak{T}_{\mathfrak{g},\Sigma}\cong\mathfrak{T}_{\mathfrak{g},\Sigma}$ we must first discuss the relations $\pi_{\mathfrak{g},\alpha}^{-1}\in\mathfrak{g}\text{-}\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Omega}\right]$ and $\pi_{\mathfrak{g},\beta}^{-1}\in\mathfrak{g}\text{-}\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g},\Upsilon};\mathfrak{T}_{\mathfrak{g},\Sigma}\right]$. A fourth sequence of calculations shows that

From these, it clearly follows that the relations $\pi_{\mathfrak{g},\alpha}^{-1} \in \mathfrak{g}\text{-C}[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Omega}], \ \pi_{\mathfrak{g},\beta}^{-1} \in \mathfrak{g}\text{-C}[\mathfrak{T}_{\mathfrak{g},\Upsilon};\mathfrak{T}_{\mathfrak{g},\Sigma}], \text{ and } (\pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha})^{-1} \in \mathfrak{g}\text{-C}[\mathfrak{T}_{\mathfrak{g},\Upsilon};\mathfrak{T}_{\mathfrak{g},\Omega}] \text{ hold. Hence, it follows that } \pi_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-Hom}[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Sigma}], \ \pi_{\mathfrak{g},\beta} \in \mathfrak{g}\text{-Hom}[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Upsilon}], \text{ and, also, } \pi_{\mathfrak{g},\beta} \circ \pi_{\mathfrak{g},\alpha} \in \mathfrak{g}\text{-Hom}[\mathfrak{T}_{\mathfrak{g},\Sigma};\mathfrak{T}_{\mathfrak{g},\Upsilon}].$

The discussions carried out in the preceding sections can be easily verified from this nice application. The next section provides concluding remarks and future directions of the theory of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -sets discussed in the preceding sections.

3.3. Concluding Remarks. In this chapter, we developed a new theory, called Theory of $\mathfrak{g-T_g-Maps}$ that is founded upon the theory of $\mathfrak{g-T_g-sets}$. In its own rights, the proposed theory has several advantages. The very first advantage is that the theory holds equally well when $(\Lambda, \mathcal{T_{g,\Lambda}}) = (\Lambda, \mathcal{T_{\Lambda}})$, where $\Lambda \in \{\Omega, \Sigma, \Upsilon\}$, and other features adapted on this ground, in which case it might be called Theory of $\mathfrak{g-T-Maps}$.

23

Hence, between any two such $\mathcal{T}_{\mathfrak{g}}$ -spaces $\mathfrak{T}_{\mathfrak{g},\Omega}=(\Omega,\mathcal{T}_{\mathfrak{g},\Omega})$ and $\mathfrak{T}_{\mathfrak{g},\Sigma}=(\Sigma,\mathcal{T}_{\mathfrak{g},\Sigma})$ the theoretical framework categorises such pairs of concepts as \mathfrak{g} - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -open and \mathfrak{g} - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -closed maps, \mathfrak{g} - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -semi-open and \mathfrak{g} - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -semi-closed maps, \mathfrak{g} - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -preopen, \mathfrak{g} - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -preclosed maps, and, finally, \mathfrak{g} - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -semi-preopen and \mathfrak{g} - $(\mathfrak{T}_{\mathfrak{g},\Omega},\mathfrak{T}_{\mathfrak{g},\Sigma})$ -semi-preclosed maps as \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -maps of categories 0, 1, 2, and 3, respectively, and theorises the concepts in a unified way; between any two such \mathcal{T} -spaces $\mathfrak{T}_{\Omega}=(\Omega,\mathcal{T}_{\Omega})$ and $\mathfrak{T}_{\Sigma}=(\Sigma,\mathcal{T}_{\Sigma})$ the theoretical framework categorises such pairs of concepts as \mathfrak{g} - $(\mathfrak{T}_{\Omega},\mathfrak{T}_{\Sigma})$ -open and \mathfrak{g} - $(\mathfrak{T}_{\Omega},\mathfrak{T}_{\Sigma})$ -closed maps, \mathfrak{g} - $(\mathfrak{T}_{\Omega},\mathfrak{T}_{\Sigma})$ -semi-open and \mathfrak{g} - $(\mathfrak{T}_{\Omega},\mathfrak{T}_{\Sigma})$ -semi-closed maps, \mathfrak{g} - $(\mathfrak{T}_{\Omega},\mathfrak{T}_{\Sigma})$ -preclosed maps, and \mathfrak{g} - $(\mathfrak{T}_{\Omega},\mathfrak{T}_{\Sigma})$ -semi-preopen and \mathfrak{g} - $(\mathfrak{T}_{\Omega},\mathfrak{T}_{\Sigma})$ -semi-preclosed maps as \mathfrak{g} - \mathfrak{T} -maps of categories 0, 1, 2, and 3, respectively, and theorises the concepts in a unified way.

It is an interesting topic for future research to develop the theory of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -maps of mixed categories. More precisely, for some pair $(\nu,\mu)\in I_3^0\times I_3^0$ such that $\nu\neq\mu$, to develop the theory of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open maps based on the elements of the class $\left\{\mathcal{O}_{\mathfrak{g}}=\mathcal{O}_{\mathfrak{g},\nu}\cup\mathcal{O}_{\mathfrak{g},\mu}: (\mathcal{O}_{\mathfrak{g},\nu},\mathcal{O}_{\mathfrak{g},\mu})\in\mathfrak{g}$ - ν -O $\left[\mathfrak{T}_{\mathfrak{g}}\right]\times\mathfrak{g}$ - μ -O $\left[\mathfrak{T}_{\mathfrak{g}}\right]\right\}$ and the theory of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -closed maps based on the elements of the class $\left\{\mathcal{K}_{\mathfrak{g}}=\mathcal{K}_{\mathfrak{g},\nu}\cup\mathcal{K}_{\mathfrak{g},\mu}: (\mathcal{K}_{\mathfrak{g},\nu},\mathcal{K}_{\mathfrak{g},\mu})\in\mathfrak{g}$ - ν -K $\left[\mathfrak{T}_{\mathfrak{g}}\right]\times\mathfrak{g}$ - μ -K $\left[\mathfrak{T}_{\mathfrak{g}}\right]\right\}$, as [25] developed the theory of weakly b-open functions. Such two theories are what we thought would certainly be worth considering, and the discussion of this paper ends here.

References

- 1. R. Arens and J. Dugundji, Topologies for Function Spaces, pacific j. math., vol. 1 (1), pp. 37–46, 1951.
- A. V. Arhangel'skii, Mappings and Spaces, russian math. surveys, vol. 21 (4), pp. 115–162, 1966.
- S. Bayhan, A. Kanibir, and I. L. Reilly, On Functions between Generalized Topological Spaces, appl. gen. topol., vol. 14 (2), pp. 195–203, 2013.
- 4. C. Boonpok, On Generalized Continuous Maps in Čech Closure Spaces, general mathematics, vol. 19 (3), pp. 3–10, 2011.
- M. Caldas, S. Jafari, and R. K. Saraf, Semi-θ-Open Sets and New Classes of Maps, bulletin of the iranian mathematical society, vol. 31 (2), pp. 37–52, 2005.
- S. G. Crossley and S. K. Hildebrand, Semi-Topological Properties, fund. math., vol. 74 (3), pp. 233–254, 1972.
- 7. Á. Császár, Generalized Open Sets in Generalized Topologies, acta math. hungar., vol. 106
- 8. ______, Remarks on Quasi-Topologies, acta math. hungar., vol. 119 (1-2), pp. 197–200, 2008.
- M. C. Cueva, Semi-Generalized Maps in Topological Spaces, portugaliae mathematica, vol. 52 (4), pp. 399–407, 1995.
- 10. J. Dontchev, On Some Separation Axioms Associated with the α -Topology, mem. fac. sci. kochi univ. ser. a, math., vol. 18, pp. 31–35, 1997.
- 11. G. L. Garg and D. Sivaraj, Generalized Continuous Functions Defined by Generalized Open Sets on Generalized Topological Spaces, soochow journal of mathematics, vol. 14 (1), pp. 51–55, 1988.
- 12. X. Ge, J. Gong, and I. Reilly, Some Characterizations of Mappings on Generalized Topological Spaces, new zealand j. math., vol. 46, pp. 73–81, 2016.
- 13. S. Jafari and T. Noiri, Contra- α -Continuous Functions between Topological Spaces, *iranian int. j. sci.*, vol. 2 (2), pp. 153–167, 2001.
- S. Jafari and N. Rajesh, Weak and Strong Form of g̃-irresolute functions, filomat, vol. 21 (2), pp. 199–209, 2007.
- Y. B. Jun, S. W. Jeong, H. J. Lee, and J. W. Lee, Applications of Pre-Open Sets, applied general topology, universidad politécnica de valencia, vol. 9 (2), pp. 213–228, 2008.

- 16. K. Kannan, N. Nagaveni, and S. Saranya, On $\hat{\beta}_g$ -Continuous and $\hat{\beta}_g$ -Irresolute Maps in Topological Spaces, procedia computer science, vol. 47, pp. 368–373, 2015.
- 17. E. Korczak-Kubiak and R. J. Pawlak, On Semi-Open Sets and Mutual Correspondence Between Properties of Functions Considered with Respect to Different Topological Structures, tatra mountains mathematical publications, vol. 65 (1), pp. 119–134, 2016.
- N. Levine, A Decomposition of Continuity in Topological Spaces, amer. math. monthly, vol. 68, pp. 44–46, 1961.
- 19. A. S. Mashhour, I. A. Hasanein, and S. N. E. Deeb, α -Continuous and α -Open Mappings, acta. math. hungar., vol. 41 (3-4), pp. 213–218, 1983.
- 20. R. Messaoud and A. Missaoui, Properties of the Contra Semi-Continuity Functions and σ - ζ_{μ} -Sets in Generalized Topological Spaces, math.~appl., vol. 4, pp. 123–128, 2015.
- W. K. Min, Remarks on Separation Axioms on Generalized Topological Spaces, journal of the chungcheong mathematical society, vol. 23 (2), pp. 293–298, 2010.
- 22. _____, On g-α-Irresolute Functions, acta. math. hungar., vol. 130 (4), pp. 382–389, 2011.
- P. Montagantirud and W. Thaikua, Continuities on Generalised Topological Spaces via Hereditary Classes, bulletin of the australian mathematical society, vol. 97 (2), pp. 320–330, 2018.
- 24. G. H. Moore, The Evolution of the Concept of Homeomorphism, historia mathematica, vol. 34 (3), pp. 333–343, 2007.
- T. Noiri, A. Al-Omari, and M. S. M. Noorani, Weakly b-Open Functions, mathematica balkanica, vol. 23 (1-2), pp. 1–13, 2009.
- T. Noiri and V. Popa, A Generalization of Some Forms of g-Irresolute Functions, eur. j. pure appl. math., vol. 2 (4), pp. 473–493, 2009.
- V. Pavlović and A. S. Cvetković, On Generalized Topologies arising from Mappings, vesnik, vol. 38 (3), pp. 553–565, 2012.
- P. L. Powar and K. Rajak, Some New Concepts of Continuity in Generalized Topological Space, international journal of computer applications, vol. 38 (5), pp. 975–8887, 2012.
- M. L. Thivagar, I. L. Reilly, M. A. Dasan, and V. Ramesh, Generalized Open Sets in Grill N-Topology, appl. gen. topol., vol. 18 (2), pp. 289–299, 2017.
- B. K. Tyagi and Harsh V. S. Chauhan, On Generalized Closed Sets in a Generalized Topological Spaces, cubo a mathematical journal, vol. 18 (01), pp. 27–45, 2016.
- F. M. V. Valenzuela and H. M. Rara, μ-rgb-Sets in a Generalized Topological Space, international journal of mathematical analysis, vol. 8 (36), pp. 1791–1797, 2014.
- S. Willard, General Topology, addison-wesley publishing company, reading, massachusetts, vol. 18, pp. 31–35, 1970.
- A. H. Zakari, gm-Continuity on Generalized Topology and Minimal Structures Spaces, journal
 of the association of arab universities for basic and applied sciences, vol. 20, pp. 78–83, 2018.
- I. Zvina, Introduction to Generalized Topological Spaces, applied general topology, vol. 12 (1), pp. 49–66, 2011.

DR. MOHAMMAD IRSHAD KHODABOCUS

Current address: Department of Mathematics, Faculty of Science, University of Mauritius $E\text{-}mail\ address$: ikhodabo@gmail.com

DR. NOOR-UL-HACQ SOOKIA

Current address: Department of Mathematics, Faculty of Science, University of Mauritius $E\text{-}mail\ address$: sookian@uom.ac.mu