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Abstract: Forecasting streamflow accurately is essential to achieve an efficient integrated water 

resources management strategy and provide consistent support to water decision-makers. We 

present a simple, low-cost and robust approach for forecasting monthly and yearly streamflows 

during the hydrological year in course, applicable to headwater catchments. It combines the use of 

regression analysis techniques, the two-parameter Gamma continuous cumulative probability 

distribution function and the Monte Carlo method. It is based on a probabilistic comparison of the 

progression of the current hydrological year with the historic observed series. The methodology has 

been successfully applied to two headwater reservoirs within the Guadalquivir River Basin in 

southern Spain. The root-mean-square error and correlation coefficient were used to measure the 

accuracy of the model and the results showed good levels of reliability. The outputs are the 

probabilistic monthly and yearly streamflows and 80% confidence interval. Further reductions in 

prediction errors may be achieved from increasing the number of observed years. These risk-based 

predictions are of great value, especially, before the intensive irrigation campaign starts (usually in 

April), when Water Authorities are to take responsible management decisions about the best 

allocation of the available water volume between the different water users and environmental 

needs.  

Keywords: Integrated water resources management; support to decision-making process, 

streamflow forecast; simple and low-cost forecasting model; Guadalquivir River Basin; Genil River; 

Canales reservoir; Quéntar reservoir.  

 

1. Introduction 

Nowadays, water authorities and decision-makers are facing considerable challenges to achieve 

a sustainable and integrated water resources management system, especially, in water-stressed areas. 

They are to take responsible management decisions about the optimum allocation of the available 

water volume from a wide range of possible sources (regulated or non-regulated rivers, groundwater 

resources, water re-use schemes, desalination plants, etc.) between, usually, multisectoral demanding 

water users (domestic and municipal, agriculture, industry, tourism, energy, etc.).  

These decisions are to consider not only the satisfaction of the water demands but the protection 

of this natural and finite resource, the environmental needs, the environmental impact, the 

compliance with the increasing water quality legal requirements, the social equity, the costs, and the 

promotion of economic growth. Additionally, the effects of the climate change on the spatial 

distribution and temporal climate variability coupled with the increasing population are altering the 

traditional approach to water resources planning, management and decision processes. 

To cope with this situation, a wide variety of conservation policies from supply augmentation 

(i.e. new infrastructure such as reservoirs, desalination plants, rainwater harvesting, grey and black 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 June 2018                   doi:10.20944/preprints201806.0164.v1

©  2018 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Water 2018, 10, 1038; doi:10.3390/w10081038

http://dx.doi.org/10.20944/preprints201806.0164.v1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3390/w10081038


 2 of 25 

 

water reuse schemes, water transfers, groundwater recharge) or demand reduction (i.e. water use 

efficiency, water restrictions, pricing policies, governance) at the basin scale can be adopted [1]. 

Therefore, advanced hydrological information and the provision of streamflow forecasts 

accurately is one of the key aspects to provide consistent support to decision-makers. Short-term 

forecasting such as hourly or daily forecasting is crucial for flood warning and sediment control. 

Medium-term forecasting based on monthly, seasonal or annual time scales is fundamental to decide 

on critical aspects of the current hydrological year such as the reservoir outflows planning, 

scheduling irrigation releases, allocating water to downstream users, drought mitigation and 

managing river treaties or implementing compact compliance. [2]. Long term forecasting is key for 

planning new strategic water infrastructure, such as reservoirs, water transfers between catchments, 

etc. and to inform the preparation of the River Basin Hydrological Plans. 

In Mediterranean countries (for example Spain), where the agriculture plays an important socio-

economic role, the critical decision point is just before the irrigation campaigns commence, usually 

in March-April. While the typical annual streamflow hydrograph peaks occur generally during the 

months of January-February-March (assuming there are no others hydrological processes such as 

snow melting or subterranean inflows), the peak agricultural water demands occur during the most 

water-stressed months (June, July and August). Therefore, supply infrastructure such as reservoirs 

provide a reliable source of water storage during the winter months and are the essential 

infrastructure to deal efficiently with the spatial and temporal climate irregularity distinctive of the 

Mediterranean area. 

At the seasonal level, a skillful streamflow forecast may allow more efficient water allocation 

and predictable trade-offs between flows for energy, irrigation, municipalities, environmental 

services, etc. Such forecasts often provide the ability to prepare for anticipated conditions and not 

simply react to existing conditions, potentially reducing climate-related risks and offering 

opportunities ([3], [4]).  

However, the level of accuracy achieved by the seasonal climate forecasts provided by the 

Spanish Meteorological Agency, AEMET (Agencia Estatal de Metereología) [5] for this year 2017-2018 

has not been as accurate as expected. For example, AEMET predicted in February 2018 for the south-

eastern quarter of Spain, that March-April-May would be much drier than average, however, March 

2018 has been the wettest month registered in historic records.  

The importance of achieving an adequate level of accuracy when predicting streamflows has 

been highlighted by many authors ([6], [7], [8], [9]). There is a wide variety of methods that have been 

used to build streamflow prediction models. Streamflow forecasting models fall into two general 

categories: process-driven and data-driven ([2], [9], [10]). Shalamu [2] and Yu X [10] provided a very 

detailed description and review of the different models, limitations and applications. Conceptual 

hydrologic models replicating observed historic data sets have been traditionally used for predicting 

the future. However, some of their shortcomings might come from the quality, accuracy and 

completeness of the input data, complexity due to the number of variables required and the difficulty 

to capture some hydrological phenomena such as the snow storage and melting processes, as well as 

the calibration and parameter optimization processes. Gragne [11] proposed to improve those 

difficulties by complementing conceptual models with simple error models and their results 

presented more accurate inflow forecasts into hydropower reservoirs several hours ahead. Data-

driven models use the support vector machine, genetic programming and seasonal autoregressive 

techniques, such as for example the work done by Wang ([12]) and applied to the Three Gorges 

Reservoir.  

This research work contributes towards the development of a novel, simple, low cost and robust 

methodology to forecast streamflows within the hydrological year in course. This is applicable to 

headwater systems and can provide support to strategic water management decisions. The 

methodology has been successfully applied to two headwater reservoirs located at the upper area of 

the Genil River (Guadalquivir River Basin) namely, Quéntar and Canales.  

The model was first put into operation in October 2016 and the forecasts achieved satisfactory 

results with a relative error varying from 5% (Canales) up to 20% (Quéntar). These risk-based 
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forecasts are useful not only to water reservoir operators and authorities but all the Stakeholders 

involved in the planning, management and decision-making processes. The model has also the option 

to incorporate seasonal climate predictions and climate change effects. 

This paper is organised as follows: Section 2 states the aim and model performance objectives, 

Section 3 describes the methodology, Section 4 presents the results for two cases of study including 

the description, findings, model performance tests using reliability metrics and discussion, Section 5 

presents the discussion on the predictive results obtained and Section 6 provides the concluding 

remarks. 

2. Aim and objectives  

The aim of this work was to develop a simple and low cost statistical model (data-driven model) 

to forecast monthly and annual streamflows during the current hydrologic year. The model was 

created to achieve the following objectives: 

• To minimise the cost, the model is to use free hydrological data sources available in the public 

domain. Where possible, data should be downloaded in an easy, free and quick manner from a 

reliable official online resource; 

• To simplify the model structure, the number of hydrological variables is to be minimised (i.e. 

the selection of important hydrological variables as the predictors is key); 

• The running time of the model to obtain the results is to be minimum (instantaneous if possible); 

• To ensure future performance, operability and flexibility of the model, new observed data from 

gauging stations is to be easily and regularly integrated and updated in the model (where 

possible, this should be an automatic process); 

• The results obtained from the model should be sufficiently consistent and robust to support 

strategic and management decisions associated with annual or quarterly water cycles. The 

model results are to delimit the solution within the 80% confidence interval; 

• The model is to be flexible and allows the integration of seasonal climate predictions, climate 

change effects or any other variation that might be needed in the future to improve the model; 

• The model presents an intuitive, clear and easy-to-use interface with the final user (who does 

not necessarily need to be a programmer or specialist on this field of research); 

• The model allows the variation or integration with other type of hydrological models 

(conceptual or distributed models) in the future if needed. 

2. Materials and Methods  

2.1. Introduction 

The proposed methodology is to predict the monthly and annual streamflows during the 

ongoing hydrological year. It combines the use of: i) regression analysis techniques between relevant 

hydrological variables, ii) the two-parameter Gamma continuous and cumulative probability 

distribution function, and iii) the Monte Carlo simulation. It is based on a probabilistic comparison 

of the progression of the current hydrological year (in terms of the cumulative monthly rainfall or 

cumulative monthly streamflow) with the historical data series.  

Figure 1 below shows the flowchart of this methodology (described in detail in the following 

Sections and applied to two cases of study detailed in Section 3): 
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Figure 1. Flowchart of the methodology 

3.2 Application and Limitations 

The total annual streamflow was chosen as the prediction target (instead of the precipitation) to 

avoid the need of creating an additional model to transform the precipitation into streamflow.  

However, it is important to note that if there are rapid and significant land use changes within 

the catchment of study, these might alter the observed hydrological cycle within the basin and might 

generate misleading streamflow forecasts. For example, a recent and rapid increase in impermeable 

area would generate more volume of surface water flows and quick streamflow peaks than the 

historic observed catchment response. In this situation, the precipitation as the prediction target 

(instead of the streamflow) might be more appropriate and an additional model to transform the 

precipitation into streamflow contribution might be required. 

The proposed methodology does not take into account the contributing inflows from upstream 

systems (for example, regulated outflow releases from other reservoirs upstream). Therefore this 

methodology is applicable to headwater systems located at the upper catchment areas. 

There is no limitation in catchment size however those catchments with considerable climatic 

irregularity or very rare seasonal sporadic rainfall events are difficult to predict and should be 
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carefully studied prior to progressing the modelling works (since this methodology is based on a 

statistical treatment of the known past to predict the future).  

It is recommended to apply the methodology when there is good quality input data and at least, 

30 years of observed data (although 40 years would be desirable to increase the forecasts accuracy). 

The minimum number of observed years should be greater in those catchments with greater standard 

deviation. 

3.3 Model Time step  

A monthly time step has been considered adequate for this work since the results are to support 

strategic and management decisions associated with annual or quarterly cycles. Therefore, the 

predictions from the model might not be applicable to other reservoir operations (for example, 

hydropower plants or flood forecasting) with lower time scale data requirements (hours, days). 

It is also important to understand the phenomena that will be picked up within the selected time 

step (snow storage and melting processes, subterranean inflows, etc.) although the distribution or 

time of the year may vary.  

3.4 Data sources and treatment  

The aim was to use free hydrological data sources available in the public domain. The data 

should ideally be downloaded in an easy, free and fast manner from a reliable official online resource.  

To carry out the analysis and methodology proposed in this paper, the data requirements are 

the monthly and yearly observed data sets of precipitation and streamflow. From this information, 

the cumulative precipitation and streamflow monthly time series are calculated as the sum of the 

monthly data from the start of the hydrological year (i.e. in Spain from October up to the month of 

study). 

For example, the cumulative monthly rainfall up to the 1st April will be the result of adding the 

monthly precipitation of October, November, December, January, February and March (i.e. six 

months of cumulative rainfall from the 1st October).  

Based on the above, the cumulative precipitation and streamflow monthly time series for the 

first 3, 4, 5, 6, 7 and 8 observed months are obtained (which will be used for the regression analysis). 

To achieve sufficiently good correlation coefficient values, we recommend starting the regression 

analysis using the cumulative values corresponding with the three first months of the hydrological 

year (i.e., October, November and December). Hence, the model is able to provide monthly and 

yearly streamflow forecasts from the 1st January. 

3.5 Simple regression analysis and best fit predictor  

Regression analysis is a well-known statistical technique used to study the relationship between 

a dependent variable (target or prediction) and a number of independent variables (or predictors). 

This technique has been traditionally used for forecasting and establishing relationships among 

different input variables. 

For the proposed methodology, we use simple (linear and potential) regression analysis 

techniques. The analysis is based on the assumption that the hydrological cycle for a specific basin is 

in balance at the end of the hydrological year. Therefore, a greater correlation between the total 

annual streamflow (target or prediction) and the cumulative time sets is expected as the number of 

observed months increases.  

We seek to predict the total annual streamflow (thereinafter referred to as, A annual) from relevant 

hydrological descriptors. The variables that we have selected as best predictors are the cumulative 

monthly precipitation (thereinafter referred to as, P cum) and the cumulative monthly streamflow 

(thereinafter referred to as, A cum). 

We therefore used the regression analysis (linear and potential models) to investigate the 

relationship (type and strength) between the total annual streamflow (dependent variable or 

prediction) with, on the one hand, the cumulative monthly rainfall (independent variable or 
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predictor) and, on the other hand, the cumulative monthly streamflow (independent variable or 

predictor). 

Subsequently, the results from the linear and potential models using both, the Pcum and Acum to 

predict A annual were compared using the R-squared values for each regression type and strength 

achieved. The results for the two cases of study are presented below. 

It is important to note that the best fit regression model and best fit predictor does not necessarily 

need to be same for all the observed months of study. It might vary depending on the predominant 

hydrological process at each specific time or season of the year (snow storage and melting processes, 

subterranean inflows, seasonal extreme and sporadic rainfall events). In this situation, a combined 

regression model should be used to achieve the best correlation and predictive results.  

In a nutshell, from the previous regression analysis, we identify the best fit regression model 

(linear or potential model) and best fit hydrological predictor (cumulative rainfall or cumulative 

streamflow) for each month of study. The expected total annual streamflow (based on the best fit 

regression model and predictor for each month) will be used an intermediary output as shown in 

Figure 1 above.  

3.6 Two-parameter Gamma cumulative probability distribution function  

The next step is fitting the historic observed annual streamflow data series to a two-parameters 

Gamma (, ) cumulative probability distribution function.  

There is an extensive literature describing the properties, parameters estimation and 

applications of the two-parameters Gamma (, ) distribution function [13]. This distribution has 

shown to fit well to rainfall and streamflow data sets and has been widely applied to hydrological 

data-driven models, such as described in the studies of Buishand [14], Stephenson [15], Wang and 

Nathan [16], Chen [17], Chowdhury [18]. 

The Gamma distribution is a continuous probability distribution with two parameters  and , 

known as the shape and scale parameters. This distribution is used to model exponentially 

distributed random variables. A random variable, X, is said to have the two parameter Gamma 

continuous probability density function if its distribution is given by: 

  

 

𝑓𝑋(𝑥) =
1

𝛽𝛼 𝛤(𝛼)
𝑥𝛼−1𝑒

−
𝑥

𝛽,      x≥0, >0 and >0 

0,      x<0 

(1) 

𝛤(𝛼) = ∫ 𝑥𝛼−1𝑒−𝑥𝑑𝑥
∞

0

 
(2) 

Where: 

• x: total annual streamflow  

• Γ: Gamma function. 

• α: shape parameter  

• β: scale parameter  

 

The cumulative Gamma distribution is given by:  

𝐹𝑋(𝑥) =
1

 𝛤(𝛼)
∫

𝑥𝛼−1𝑒
−

𝑥
𝛽

𝛽𝛼 

𝑥

0
, x≥0, >0 and >0 (3) 

For a random variable following a two-parameters Gamma distribution, the mean and variance 

are given the following functions: 

𝐸(𝑥) = 𝛼𝛽 (4) 
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𝑉𝑎𝑟(𝑥) = 𝛼𝛽2 (5) 

Where: 

• E(x) = Mean of the distribution function 

• Var (x) = Variance of the distribution function 

From the above equations and the observed annual streamflow series, we estimate the mean and 

variance of the observed series and the parameters  and , as follows: 

= Var (x) / Mean (x) (6) 

α = Mean (x) /  (7) 

This distribution provides the non-exceedance (or maximum) probability that the total annual 

streamflow will take a value less than or equal to a determined value as well as the maximum total 

annual streamflow value associated to a specific probability. 

It is important to check how well the Gamma distribution fits with the observed data series of 

total annual streamflows for each case of study. As shown for the two cases of study, the Gamma 

distribution was found to provide the best fit to the total annual cumulative streamflow distribution.  

3.7 Conditioned Two-parameter Gamma cumulative probability distribution function (using the output from 

the regression models) 

The next step is to determine the influence of the estimated total annual streamflow (‘Aannual’, 

intermediary output from the previously obtained regression models) on the Gamma cumulative 

distribution function (fitted to the historic observed data) in order to obtain the Conditioned Gamma 

distribution function. 

We impose the mean value of the new Conditioned Gamma distribution to be equal to the result 

obtained from the regression model (‘ Aannual ’ or expected total annual streamflow). The scale 

parameter  is kept the same as per the already obtained Gamma cumulative distribution function 

fitted to the observed historic total annual streamflow data sets. However, the shape parameter α will 

be re-calculated to obtain the Conditioned Gamma distribution applying Equation (8) above, this is; 

We then estimate the Conditioned Gamma cumulative probability distribution function using 

(3) above and the two-parameters (cond, ). 

It is important to highlight that while the Gamma cumulative distribution is derived from the 

observed and complete hydrological year series (from October to September, both inclusive) and it is 

a fixed curve, the Conditioned Gamma distribution uses the prediction (expected total annual 

streamflow) given by the regression models (based on the progression of the current ongoing 

hydrological year and different for each month of study). Therefore, the Conditioned Gamma 

distribution curve will vary month to month depending on the output from the regression models. 

If the Conditioned Gamma distribution falls to the right of the Gamma distribution means that 

the prediction is a wetter hydrological year than the observed mean hydrological year, while this will 

be a drier year if the conditioned Gamma distribution falls to the left of the Gamma distribution. If 

the Conditioned Gamma falls close to the observed Gamma Distribution means that the ongoing 

hydrological year is similar to the mean observed hydrological year. 

The Conditioned Gamma distribution function (α cond, β) allow us to assign a probability to each 

year of the historical series based on their total annual streamflow. In doing so, we obtain greater 

probabilities for those years whose annual streamflow is similar to the estimated annual streamflow 

(‘ 𝐴𝑎𝑛𝑛𝑢𝑎𝑙 ’) and lower probabilities for those years whose annual streamflow differs from the 

estimated annual streamflow. For each year of the historical series we will therefore have its 

probability (p) given by: 

α (Conditioned Gamma)= Mean (Conditioned Gamma) /  = 

= Expected total annual streamflow (from the regression analysis) /  

(8) 
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𝑃(𝑥) =
1

𝛽𝛼𝑐𝑜𝑛𝑑  𝛤(𝛼𝑐𝑜𝑛𝑑)
𝑥𝛼𝑐𝑜𝑛𝑑−1𝑒

−
𝑥
𝛽 

(9) 

Where: 

• x = the observed annual streamflow of the historic records (hm3)  

• α cond = the shape parameter of the conditioned Gamma (-).  

• β = the scale parameter of the Gamma distribution (the same as per the non-conditioned Gamma 

distribution) (-). 

3.8. Monte Carlo method  

The Monte Carlo Method is a numerical statistical method that allows the replication of random 

behavior of real non-dynamic systems through the generation of random numbers to which an event 

is assigned to based on their probability distribution.  

The model generates 10,000 random input numbers in the interval [0,1]. Each of these random 

numbers is assigned to one year of the observed historical series of streamflows according to the 

cumulative probability obtained from the Conditioned Gamma distribution function (which best 

represent the intermediary output from the regression model).  

This simulation will allow us to obtain 10,000 years and their monthly distribution according to 

their probability of success (which correspond to the observed years of the historical series).  

The statistical analysis of the aforementioned series of streamflows will allow us to obtain the 

values of the expected monthly streamflows distribution (based on the average value of the 10,000 

simulations) as well as the 80% confidence interval (10th and 90th percentiles of the 10,000 simulations, 

i.e., 80% of the values simulations will be found within these intervals). 

3.9. Model Running Time, Test and Validation  

The running time of the model is minimum, no longer than one minute. To verify that the model 

performed as expected and to measure its predictive accuracy and identify potential limitations, the 

root-mean-square error and correlation coefficient were used to measure the accuracy of the model 

and the results showed good levels of reliability. The results are shown and discussed in detail below 

for the case study. 

4. Application to Canales and Quéntar Reservoirs (Upper Guadalquivir River Basin, Spain) 

4.1 Study Area Description 

The Guadalquivir River is the main river in southern Spain that serves water to a total 

population of over four million people and over eight hundred thousand hectares for irrigation. This 

system is formed by an interconnected system of currently operating 64 dams [19]. Although there 

are alternative water resources from aquifers, springs and water re-use schemes, nowadays reservoirs 

are the essential infrastructure to deal efficiently with the spatial and temporal climate irregularity 

distinctive of this catchment area.  

The Guadalquivir River has a total contributing catchment area of 57,527 km2 and delimited by 

Sierra Morena to the north, the Betic mountain to the south and the Atlantic Ocean. The altitude at 

the mountainous borders varies between 1,000mAOD and 3,480mAOD, which contrasts with the low 

altitude of the Guadalquivir river valley. The climate is Mediterranean defined by the warm 

temperatures (16.8ºC annual average) and by the irregularity of the precipitations (550 l / m² annual 

average). The rains frequently are torrential and occur after long periods of drought and high 

temperatures, with a marked susceptibility to erosion [19]. Figure 2 below shows the location of the 

Guadalquivir River Basin in Spain and the area of study. 
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Figure 2: Location of the Guadalquivir River Basin [1] in Spain and area of study 

The Guadalquivir River Basin Authority (RBA) is responsible for the elaboration of the 

Guadalquivir River Basin Hydrological Plan, as well as the administration and control of the 

hydraulic public domain [19]. The RBA has vast knowledge and experience managing water 

resources in this area, especially during drought and water scarcity periods when critical decisions 

and actions are to be taken. Last year, the RBA published the Draft version of the Guadalquivir River 

Basin Special Drought Management Plan (2017). This document establishes the general management 

principles and course of action for different drought and water scarcity threshold scenarios and each 

sub-catchment area within the basin [20].  

The methodology has been applied to two headwater reservoirs of study, namely, Quéntar, and 

Canales. These are located at the upper area of the Genil River within Granada administrative area 

and to the south-east of the Guadalquivir River Basin (refer to Figure 3 below). 

 

Figure 3. Location of Quéntar and Canales reservoirs and snow storage areas within the basin 
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Canales reservoir is located at the upstream area of the Genil River (close to Sierra Nevada), in 

the town of Güejar Sierra with a total contributing catchment area of 176.5km2. The dam was built in 

1989 with a total capacity of 70 hm³ and the average streamflow is 80.42 hm3 / year. This catchment 

area is affected by snow storage and melting processes in Sierra Nevada. 

Quéntar reservoir is located on the Aguas Blancas River (tributary of the Genil River) with a 

total contributing catchment area of 101.2km2. This dam was built in 1975 with a total volume capacity 

of 13.5 hm3. The average streamflow is 28.84 hm3 / year. This catchment area is affected by 

subterranean inflows due to the aquifer and lithology present. 

These two reservoirs form the main infrastructure which serve water mainly for urban and 

irrigation purposes. The urban water users are formed by Granada city and fourteen towns of its 

metropolitan area with up to 300,000 inhabitants. The Vega Alta del Río Genil traditional irrigations 

cover over 4,000 hectares and are fed by an extensive irrigation channel system which diverts water 

from the Genil River (at the downstream area of the Canales and Quéntar reservoirs).  

This system is supplemented by a network of currently operating thirteen underground water 

wells located in the upper area of the Vega de Granada aquifer (south-east of the city of Granada, on 

both banks of the Monachil River and the A-395 motorway). These were built by the Guadalquivir 

RBA after the serious social, economic and environmental consequences suffered during and after 

the 1992-1995 drought (in which the Canales and Quéntar reservoirs were exhausted).  

The objective of these works was to supplement the existing surface water resources (provided 

by the Canales-Quéntar reservoirs system) with the extraction of groundwater to serve the urban 

water supply of Granada and metropolitan area. To guarantee its correct management, operation and 

maintenance, the Guadalquivir RBA delivered this infrastructure in 1995 to Emasagra (Local Water 

and Sewage Company) who, since then, is responsible for its management. The Guadalquivir RBA is 

responsible for the supervision, reservoir management and compliance of the water allocation.  

In years with average precipitation and snow, the system water demands can be satisfied. 

However, in years with below-normal precipitation, typically, require a higher underground water 

volume extraction and/or reduction in per right allocation. During prolonged periods of drought and 

water scarcity issue, the urban water supply has theoretically priority over the agricultural demand. 

Strategic decisions made by the Guadalquivir RBA on the controlled released outflows from the 

Quéntar-Canales reservoirs system are critical to ensure the most resource-efficient and sustainable 

allocation of the available water resources. These decisions are especially relevant before the intensive 

irrigation campaign starts (usually in April), when the Water Authorities are to take responsible 

management decisions about the best allocation of the available water volume between the different 

water users and environmental needs for the rest of the hydrological year. However, despite their 

vital importance, decisions made by the RBA are mainly based on current water storage in reservoirs 

and not on reservoir inflow predictive models.  

4.2 Data sources and treatment 

For the Guadalquivir River Basin, the information has been downloaded from a freely available 

official data-sharing online portal known as ‘Automatic Hydrological Information System (SAIH)’. 

This is a public service provided and maintained by the Guadalquivir River Basin Authority [21].  

Information such as, streamflow, outflow, rainfall, reservoir level, temperature, etc. is available 

for up to 57 reservoirs, 52 non-regulated rivers, 20 canals, 10 hydro power plants as well as rain, snow 

and temperatures gauging stations across the basin. The available temporal data sets vary depending 

on the specific sub-catchment area, but usually these are available from 1989. The time step available 

is: hour, day and month. 

For this particular case of study, the monthly observed data series of precipitation and 

streamflow for Canales reservoir (observed data from October 1988 to present) and Quéntar 

reservoirs (observed data from October 1977 to present) were downloaded and used. 

From this information, the cumulative precipitation and streamflow monthly time series for the 

first 3, 4, 5, 6, 7 and 8 observed months were calculated (which will be used for the regression analysis) 

for each reservoir of study. 
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4.3. Regression analysis, correlation and selection of the best fit estimator and regression model 

Using the historic data sets freely available in the public domain (as previously described) and 

for each reservoir of study (i.e., Canales and Quéntar), a complete statistical study of the correlation 

between the total annual streamflow (dependent variable or prediction target) with the cumulative 

monthly rainfall (independent variable or predictor) was carried out and the cumulative monthly 

streamflow. In all cases, as a minimum, we started using the cumulative data of the three first months 

of the hydrological year (i.e., October, November and December). 

For simplicity and avoid repetition, the application of the methodology will be detailed for 

Quéntar reservoir. For Canales, only the results will be presented. 

 

a) Quéntar reservoir 

 

Figure 4 below shows the linear and potential regression models obtained for the first 3,4,5,6,7 

and 8 observed months using the cumulative monthly reservoir inflow (as the predictor) for Quéntar 

reservoir. The same process was also carried out using the cumulative precipitation.  
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Figure 4: Quéntar reservoir: Linear and Potential regression models for the first 3, 4 ,5, 6, 

7and 8 months using the monthly cumulative reservoir inflow values. 
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Subsequently, the results for the linear and potential models using both, the Pcum and Acum were 

compared using the R-squared values for each regression type and strength achieved. Table 1 below 

shows the results obtained for Quéntar reservoir. 

Table 1. Quéntar reservoir: R-squared values for each regression type and strength achieved. 

Observed 

Months 

LINEAR 

R-squared 

POTENTIAL 

R-squared 

P cum A cum P cum A cum 

3 0.3370 0.3801 0.4100 0.5442 

4 0.4675 0.5772 0.5653 0.7594 

5 0.6428 0.8069 0.6717 0.8909 

6 0.7187 0.9190 0.7341 0.9483 

7 0.6767 0.9567 0.6724 0.9710 

8 0.6479 0.9844 0.6539 0.9894 

 

It can be appreciated from Figure 4 and Table 1 above how the correlation value (R2) increases 

with the number of observed months and the potential regression model presents a stronger 

correlation value.  

Based on the above, the potential regression model (using the cumulative reservoir inflow as the 

best fit predictor) is the best fit model for Quéntar reservoir. Therefore, this model will have the 

following equation (a, b from the potential regression analysis as shown in Figure 4 above): 

𝐴𝑎𝑛𝑛𝑢𝑎𝑙 = 𝑎 𝐴𝑐𝑢𝑚.
𝑏 (10) 

where: 

• Aannual = Annual reservoir inflow (Hm3) 

• Acum. = Cumulative monthly reservoir inflow since beginning of the hydrological year (Hm3) 

• a = Potential regression model coefficient (-) 

• b = Potential regression model coefficient (-) 

 

Figures 5 below show the correlation found for the first 6 months of the hydrological year (i.e. 

1st March) with observed data for Quéntar reservoir using the potential regression models. 

 
 

Figure 5. Quéntar reservoir: Potential regression model (observed data Oct-1977 Sept-2017). Total 

Annual Streamflow (hm3, axis-y) and first 6 months cumulative monthly streamflow of the 

hydrological year (hm3, axis-x) 

For the Quéntar reservoir the underground aquifer inflows present in this basin become the most 

important hydrological process (while the snow storage and melting processes are not relevant in 

comparison with Canales reservoir), which implies a significant role of the base flow in the total 
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contribution to the reservoir. This is thought to be the reason why the strongest correlation is found 

between the cumulative streamflow and the annual streamflow. 

 

B) Canales reservoir 

A similar process was carried out for Canales reservoir and it was found a stronger relationship 

between the cumulative rainfall and the annual streamflow than using the cumulative streamflow.  

This fact is considered to be due to the influence of snow storage and melting processes 

distinctive of this basin. Usually the hydrograph of this catchment area has two peaks within the 

hydrological year, the first is given in January-February due to the rainfall, while the second one is 

given around April-May which is due to the snow melting processes.  

It was found that the potential regression model (using the cumulative precipitation as the best 

fit predictor) is the best fit model for Canales reservoir. Therefore, this model will have the following 

equation: 

𝐴𝑎𝑛𝑛𝑢𝑎𝑙 = 𝑎 𝑃𝑐𝑢𝑚.
𝑏 (11) 

 

Where: 

• Aannual = Annual streamflow (hm3) 

• Acum. = Cumulative monthly streamflow since October of the hydrological year (hm3) 

• Pcum. = Cumulative monthly precipitation since October of the hydrological year (mm) 

• a = Potential regression model coefficient (-) 

• b = Potential regression model coefficient (-) 

 

The correlation analysis was carried out for the first 3, 4, 5, 6, 7 and 8 months of the hydrological 

year with observed values for each reservoir. Logically and as expected, a greater correlation 

coefficient was found as the number of observed months increases. 

Figures 6 below show the correlation found for the first 6 months of the hydrological year (i.e. 

1st March) with observed data for Canales reservoir using the potential regression models.  

 

 

Figure 6. Canales reservoir: Potential regression model (observed data 

Oct-1988 Sept-2017). Total Annual Streamflow (hm3, axis-y) and first 6 months cumulative 

monthly precipitation of the hydrological year (mm, axis-x) 

 

The expected annual streamflow (‘Aannual ’) can therefore be estimated from the previously 

obtained potential regression models which are based on complete hydrological years (from October 

to September, both inclusive) of observed precipitation and streamflow data. This is, if we are to make 

a prediction during the ongoing hydrological year, the regression models should contain all the 

historic records up to September last year. It is important to note that this first estimate of the expected 

annual streamflow is not the final output model but will feed the next phase.  
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4.4. Two-parameter Gamma cumulative probability distribution function (observed data) and Conditioned 

Gamma cumulative probability distribution function (using the output from the regression models) 

Figures 7 and 8 below show the 2-parameter Gamma distribution for each reservoir of study. It 

was found that the Gamma distribution fits very well with the observed series of annual streamflows 

for the two reservoirs of study. We obtained a correlation coefficient (R) of 0.99 and 0.98 for Quéntar 

and Canales, respectively, between the observed annual streamflow series and those given by the 

distribution function.  

The conditioned Gamma distribution function will allow us to assign a probability to each year 

of the historical series based on their annual streamflow. In doing this, we obtain greater probabilities 

for those years whose annual streamflow is similar to the estimated annual streamflow (‘𝐴𝑎𝑛𝑛𝑢𝑎𝑙’) 

and lower probabilities for those years whose annual streamflow differs from the the estimated 

annual streamflow.  

 

 
Figure 7: Quéntar reservoir: 2-parameter Gamma cumulative distribution function (observed data 

Oct-1977 Sept-2016). Conditioned Gamma distribution – 1st April 2017  

 

As example, Table 2 below shows the allocation of probabilities for Quéntar reservoir used to 

generate Figure 7 above: 

Table 2. Quéntar reservoir: assignation of probabilities 

GAMMA CUMULATIVE DISTRIBUTION FUNCTION 

 

Number of years 40 E17:E56 

Mean 20.75  

Variance 177.91  
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Beta 8.57 Beta 8.57 

 

Initial 

Year 

Final 

Year 

Order 

number 

Annual Res. 

Inflow 

Observed cum 

probability 

P 

(Gamma) 

P (Gamma 

Conditioned) 

1994 1995 1 5.2300 0.0250 0.0649 0.0015 

2007 2008 2 5.7000 0.0500 0.0771 0.0021 

2006 2007 3 5.9600 0.0750 0.0841 0.0025 

2004 2005 4 7.0000 0.1000 0.1145 0.0046 

1993 1994 5 7.0300 0.1250 0.1154 0.0047 

1999 2000 6 8.2500 0.1500 0.1547 0.0085 

2005 2006 7 8.9600 0.1750 0.1789 0.0115 

1992 1993 8 9.1800 0.2000 0.1866 0.0125 

1991 1992 9 10.3600 0.2250 0.2287 0.0191 

2016 2017 10 10.6758 0.2500 0.2401 0.0212 

1998 1999 11 10.7500 0.2750 0.2428 0.0217 

1982 1983 12 11.3500 0.3000 0.2648 0.0262 

2011 2012 13 11.4100 0.3250 0.2670 0.0266 

2015 2016 14 12.7935 0.3500 0.3179 0.0389 

2001 2002 15 13.0700 0.3750 0.3281 0.0417 

1989 1990 16 13.1500 0.4000 0.3310 0.0426 

1990 1991 17 14.0000 0.4250 0.3621 0.0520 

1980 1981 18 14.8000 0.4500 0.3909 0.0619 

1988 1989 19 14.9700 0.4750 0.3970 0.0641 

2014 2015 20 15.3688 0.5000 0.4112 0.0695 

1987 1988 21 16.4500 0.5250 0.4489 0.0852 

2008 2009 22 19.6200 0.5500 0.5518 0.1402 

2003 2004 23 20.6000 0.5750 0.5810 0.1597 

1981 1982 24 20.7100 0.6000 0.5842 0.1619 

1986 1987 25 21.6500 0.6250 0.6108 0.1816 

1995 1996 26 23.6100 0.6500 0.6623 0.2249 

2002 2003 27 24.0800 0.6750 0.6738 0.2357 

1983 1984 28 24.5000 0.7000 0.6839 0.2454 

2013 2014 29 24.8300 0.7250 0.6916 0.2532 

1985 1986 30 28.8000 0.7500 0.7731 0.3491 

1984 1985 31 29.0900 0.7750 0.7783 0.3563 

2000 2001 32 29.5200 0.8000 0.7858 0.3668 

1996 1997 33 29.7100 0.8250 0.7890 0.3715 

1979 1980 34 31.7300 0.8500 0.8209 0.4209 

2010 2011 35 32.8600 0.8750 0.8368 0.4482 

1997 1998 36 36.4000 0.9000 0.8789 0.5308 

1977 1978 37 42.0000 0.9250 0.9257 0.6478 
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Initial 

Year 

Final 

Year 

Order 

number 

Annual Res. 

Inflow 

Observed cum 

probability 

P 

(Gamma) 

P (Gamma 

Conditioned) 

2012 2013 38 50.0500 0.9500 0.9642 0.7794 

2009 2010 39 55.4000 0.9750 0.9783 0.8432 

1978 1979 40 58.5700 1.0000 0.9840 0.8732 

 

 
 

Figure 8: Canales reservoir: 2-parameter Gamma cumulative distribution function (observed data Oct 1988- 

Sept 2016). Conditioned Gamma distribution – 1st April 2017 

 

It can be seen from Figure 7 and 8 that the prediction given by the model on 1st April 2017 for Canales and 

Quéntar was for a drier year than the mean historic hydrological year, which is what happened last year. This is 

explained in further detail in Section 4.7 below. 

4.5. Assigning probabilities and Application of Monte carlo method  

Table 3 below shows the first 20 Monte Carlo simulations for Quéntar reservoir as well as the 

results: 

Table 3. Quéntar reservoir: assignation of probabilities (1st April 2017) 

MONTE CARLO SIMULATION 

 

Month Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual 

Mean Year 0.92 0.89 1.17 1.44 1.75 2.00 1.52 1.38 0.79 0.57 0.63 0.68 13.75 

10% Percentile 0.25 0.37 0.59 0.53 0.45 0.56 0.40 0.33 0.34 0.27 0.20 0.22 5.23 

90% Percentile 1.45 1.54 1.61 2.47 4.58 5.36 2.89 3.01 1.28 1.06 1.27 1.55 28.80 

Median 0.92 0.60 0.84 0.83 0.81 0.91 1.18 1.05 0.71 0.54 0.35 0.45 10.36 

 

Simulation 

no. 

Random 

no. 
Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual 

1 0.0084 0.92 0.37 0.59 0.53 0.45 0.57 0.40 0.33 0.38 0.27 0.20 0.22 5.23 
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Simulation 

no. 

Random 

no. 
Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual 

2 0.1618 0.92 0.37 0.59 0.53 0.45 0.57 0.40 0.33 0.38 0.27 0.20 0.22 5.23 

3 0.7141 1.45 1.26 1.61 1.82 1.73 1.43 1.77 1.38 1.15 0.95 0.88 1.02 16.45 

4 0.6652 1.61 1.87 1.57 1.41 0.98 0.96 1.18 1.05 0.57 1.09 1.30 1.21 14.80 

5 0.2876 0.27 0.34 0.50 0.84 0.50 0.47 1.04 0.90 0.34 0.19 0.15 0.16 5.70 

6 0.7279 1.45 1.26 1.61 1.82 1.73 1.43 1.77 1.38 1.15 0.95 0.88 1.02 16.45 

7 0.6409 1.02 1.13 1.17 1.14 1.00 2.84 1.66 1.09 0.85 0.65 0.62 0.83 14.00 

8 0.3292 1.05 1.05 0.95 0.73 0.61 0.85 0.55 0.35 0.25 0.18 0.19 0.24 7.00 

9 0.2741 0.27 0.34 0.50 0.84 0.50 0.47 1.04 0.90 0.34 0.19 0.15 0.16 5.70 

10 0.2904 0.27 0.34 0.50 0.84 0.50 0.47 1.04 0.90 0.34 0.19 0.15 0.16 5.70 

11 0.1247 0.92 0.37 0.59 0.53 0.45 0.57 0.40 0.33 0.38 0.27 0.20 0.22 5.23 

12 0.5994 0.71 0.75 0.74 0.83 1.64 1.46 1.81 1.62 0.92 0.77 0.77 0.78 12.79 

13 0.3368 1.05 1.05 0.95 0.73 0.61 0.85 0.55 0.35 0.25 0.18 0.19 0.24 7.00 

14 0.2088 0.92 0.37 0.59 0.53 0.45 0.57 0.40 0.33 0.38 0.27 0.20 0.22 5.23 

15 0.1045 0.92 0.37 0.59 0.53 0.45 0.57 0.40 0.33 0.38 0.27 0.20 0.22 5.23 

16 0.4328 0.34 0.44 0.78 0.87 0.97 1.64 1.31 0.98 0.26 0.58 0.35 0.44 8.96 

17 0.2316 0.92 0.37 0.59 0.53 0.45 0.57 0.40 0.33 0.38 0.27 0.20 0.22 5.23 

18 0.6523 1.02 1.13 1.17 1.14 1.00 2.84 1.66 1.09 0.85 0.65 0.62 0.83 14.00 

19 0.6638 1.61 1.87 1.57 1.41 0.98 0.96 1.18 1.05 0.57 1.09 1.30 1.21 14.80 

20 0.8186 1.08 1.54 1.62 1.48 1.35 1.63 2.89 4.39 1.97 1.05 0.82 0.78 20.60 

4.6. Model validation  

To verify that the model performed as expected, measure its predictive accuracy and identify 

potential limitations, a set of different tests and metrics were applied, as described below. 

For each year of the observed historic series, the model was used to predict the monthly, yearly 

and quarterly streamflows using the first 3,4,5,6,7 and 8 months of observed data of that particular 

hydrological year of study. The year that is being tested is extracted from the historic records, using 

the remaining years as the model feeding data. This process was carried out for every year of the 

observed historic series.  

Subsequently, to measure the accuracy of the model (predictions and observed data) the root-

mean-square error and correlation coefficient were used and the results are listed below in Table 4 

and 5 for Canales and Quéntar, respectively: 

Table 4. Canales reservoir: Performance test results. RMSE and correlation coefficient values for the 

monthly, yearly and quarterly series. 

Forecast  

Month 

Observed  

Months 

Monthly Series Yearly Series Quarterly Series 

RHO RMSE RHO RMSE RHO RMSE 

January 3 0.6516 3.3787 0.7846 24.7164 0.8137 8.0667 

February 4 0.6927 3.1913 0.8214 23.2191 0.8420 7.4709 

March 5 0.7339 2.9995 0.8589 21.3909 0.8682 6.8814 

April 6 0.7535 2.9051 0.8920 19.4181 0.8902 6.3542 

May 7 0.7655 2.8491 0.9112 18.7671 0.8994 6.1439 

June 8 0.7735 2.8067 0.9177 18.2983 0.9043 5.9919 

Table 5 Quéntar reservoir: Performance test results. RMSE and correlation coefficient values for the 

monthly, yearly and quarterly series. 
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Forecast Month Observed Months 
Monthly Series Yearly Series Quarterly Series 

RHO RMSE RHO RMSE RHO RMSE 

January 3 0.4023 2.0166 0.4449 11.8933 0.4404 5.2403 

February 4 0.4965 1.8322 0.5934 10.0198 0.5562 4.5808 

March 5 0.6015 1.6332 0.7558 7.7868 0.7006 3.7373 

April 6 0.7120 1.4046 0.9270 4.6128 0.8388 2.8072 

May 7 0.7420 1.3414 0.9698 3.2196 0.8725 2.5197 

June 8 0.7480 1.3347 0.9832 2.4568 0.8746 2.5003 

 
It can be observed that, as expected, the correlation coefficient increases and the RMSE decreases 

as the number of observed months increases. It should also be noted that the model performs better 

forecasting annual and quarterly streamflows than in monthly streamflows, which highlights the 

difficulty of predicting the monthly distribution and the variability in the behavior of streamflows.  

Given that the model has been developed to support management decisions associated with 

annual or quarterly cycles, we consider that the model is fit for purpose and the results obtained are 

satisfactory. 

Figures 9 and 10 show the total annual streamflow observed and forecasts, as well as the 80% 

confidence interval. 

 

Figure 9. Canales reservoir: Observed annual streamflows and predictions using the model with the first six 

months of observed data of the hydrological year and 80% confidence interval (hm3)  
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Figure 10. Quéntar reservoir: Observed annual streamflows and predictions using the model with the first six 

months of observed data of the hydrological year and 80% confidence interval (hm3)  

4.7 Model Outputs 

The typical model outputs are presented in Figure 11 and Figure 12 below, where the only inputs 

are the monthly rainfall and streamflow columns (coloured in dark grey): 

 

Figure 11. Example of Typical Model Outputs Results 
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Figure 12. Example of Typical Model Outputs Results 

4.7. First Operational Year: Results obtained hydrological year 2016-2017  

The model was first put into operation in October 2016 and as an example, Figures 11 and 12 

present a comparative analysis of the annual and monthly streamflow estimations made in each 

month of that hydrological year for Canales and Quéntar reservoirs and the real observed values. 
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Figure 12. Canales reservoir: Predictions of annual and monthly cumulative streamflow (hm3) and observed 

annual and monthly cumulative streamflow (hm3)  

 

 

Figure 13. Quéntar reservoir: Predictions of annual and monthly cumulative streamflow (hm3) and observed 

annual and monthly cumulative streamflow (hm3) 

 

It is observed that for Canales reservoir, the accuracy of the prediction output achieved in March 

2017 (for the 2016/2017 total annual streamflow) was very good, approximately 92%. The forecast 
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value was 41.52 hm3 while the observed value was 38.34 hm3 (compared with the observed historical 

mean annual streamflow of 80.42 hm3). The prediction results improved, logically, as the number of 

observed months increases. 

For Quéntar reservoir, the accuracy of the prediction given in March 2017 (for the 2016/2017 total 

annual streamflow) was slightly lower than for Canales reservoir, an accuracy of 82% was achieve 

which is good. The total annual streamflow forecast was 12.65 hm3 while the observed value was 

10.68 hm3 (compared with the observed historical mean annual streamflow of 28.81 hm3).  

We investigated in more detail whether the Quéntar model could be improved. A more detailed 

evaluation of the behavior and influence of the interannual underground flow in the total annual 

contribution to the reservoir was carried out. It was found that there is relatively small correlation 

between the annual streamflow with the previous years. It was also assessed whether the median 

might be a better estimator instead of the mean value. It was found that, although for the hydrological 

year 2016-2017 the median was better predictor, in general for a typical wet, normal and dry year, the 

mean value was the most reliable and accurate predictor. We studied as well the influence of the 

number of observed years in the results. We concluded that, for this particular, in order to reduce the 

mean relative error below 12%, the minimum number of observed years should be 40 years. 

The model allows the inclusion of the seasonal predictions, for example, those provided by the 

AEMET in Spain. The seasonal probability prediction values estimated for the next quarter of the 

ongoing year assigned to each tertile (wet, normal and dry) are applied to the model outputs by 

multiplying the seasonal predictions to the model outputs (higher, central and lower estimations). 

Equally, the model allows the integration of the climate change effects by weighing with a higher 

score to recent years of the historic data sets. 

5. Conclusions and future research directions 

The protection of the water resource as a vital element to ensure the satisfaction of the present 

and future human and environmental needs is fundamental. Climate change effects, population 

growth and increasingly demanding water users are threating the achievement of an integrated water 

resources management approach.  

One of the key steps in achieving an environmentally sustainable and economically rational 

water resources management approach, apart from applying different supply increase and demand 

reduction strategies, is through improving the knowledge and experience on the management and 

decision-making processes. And these are to be supported by reliable and accurate streamflow 

forecasts models. 

This research work contributes towards the development of a novel, simple, low cost and robust 

methodology to forecasting monthly and annual streamflows within the hydrological year in course. 

The methodology represents a practical tool, applicable to headwater systems.  

In particular, the approach has been successfully applied to two headwater reservoirs located at 

the upper area of the Genil River (Guadalquivir River Basin) namely, Quéntar and Canales. From the 

regression analysis, it was shown that the best descriptor for forecasting the total annual streamflow 

is the cumulative monthly streamflow for Quéntar reservoir (due to the influence of the subterranean 

flows) and the cumulative monthly rainfall for Canales reservoir (due to the influence of the snow 

storage and melting processes). It is important to highlight that the best fit regression model and best 

fit predictor will vary depending on the predominant hydrological process at each specific basin and 

season of the year (snow storage and melting processes, subterranean inflows, seasonal extreme and 

sporadic rainfall events). In this situation, a combined regression model should be used to achieve 

the best correlation and predictive results.  

The model has also the option to incorporate seasonal climate predictions and climate change 

effects. We can conclude that the annual and monthly streamflow forecasts model created, although 

simple and of low cost, provides satisfactory forecast results within the current hydrological year, 

with a relatively small error margin.  

This model can therefore help on the early detection of critical events such as droughts and water 

scarcity situations as well as provide support to strategic water management decisions and promote 
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improved resource and cost efficiency when deciding the optimum controlled released outflows time 

and water allocation, avoiding or minimising the social, economic and environmental consequences 

of the inappropriate decision.  
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