

1 *Review*2

Dietary Protein and Muscle in Aging People: The Potential 3 Role of the Gut Microbiome

4
5 **Mary Ni Lochlainn** ^{1,2,*}, **Ruth C. E. Bowyer** ¹ and **Claire J. Steves** ^{1,2}6 ¹ The Department of Twin Research, Kings College London, 3-4th Floor South Wing Block D, St Thomas'
7 Hospital, Westminster Bridge Road, SE1 7EH8 ² Clinical Age Research Unit, Kings College Hospital Foundation Trust, London, UK9 * Correspondence: marynilochlainn@gmail.com

10

11 **Abstract:** Muscle mass, strength and physical function are known to decline with age. This is associated with
12 the development of geriatric syndromes including sarcopenia and frailty. These conditions are associated with
13 disability, falls, longer hospital stay, higher readmission rates, institutionalisation, osteoporosis, and death.
14 Moreover, they are associated with reduced quality of life, as well as substantial costs to health services around
15 the world. Dietary protein is essential for skeletal muscle function. Older adults have shown evidence of
16 anabolic resistance, where greater amounts of protein are required to stimulate muscle protein synthesis and
17 therefore require higher daily amounts of dietary protein. Research shows that resistance exercise has the most
18 beneficial effect on preserving skeletal muscle. A synergistic effect has been noted when this is combined with
19 dietary protein, yet studies in this area lack consistency. This is due, in part, to the variation that exists within
20 dietary protein, in terms of dose, quality, source, amino acid composition and timing. Research has targeted
21 participants that are replete in dietary protein with negative results. Inconsistent measures of muscle mass,
22 muscle function, physical activity and diet are used. This review attempts to summarise these issues, as well
23 as introduce the possible role of the gut microbiome and its metabolome in this area.24 **Keywords:** protein; skeletal muscle; sarcopenia, gut microbiome, metabolome, diet, supplementation

25

26

1. Introduction

27 Skeletal muscle has several important functions beyond locomotion, including insulin-stimulated glucose
28 uptake, regulation of extracellular potassium, influence on bone density via mechanical force on bones, and
29 whole-body protein metabolism (1). Age associated loss of muscle mass starts as early as age thirty, and is a
30 gradual process (1). Typically there is a greater loss of type II fibres; those which are useful for short bursts of
31 speed and power, and the main ones involved in preventing a fall (1). Older people also lose more skeletal
32 muscle with bedrest than their younger counterparts (2). Sarcopenia is a geriatric syndrome defined as the age-
33 related loss of skeletal mass and function, which is quantified by specific objective measures of muscle mass,
34 strength and physical function (3). Sarcopenia is distinct from frailty although the two conditions may overlap.
35 Frailty is defined as increased vulnerability after a stressor event, with increased risk of adverse outcomes (4).
36 A summary of the consequences of loss of skeletal muscle and sarcopenia in older adults is illustrated in Figure
37 1 (5–9). In terms of cost, it has been estimated that reducing the prevalence of sarcopenia by 10% in the United
38 States would save \$1.1 billion in healthcare costs annually (10).

39

40 One major risk factor for the development of sarcopenia is protein-energy malnutrition (11). Indeed the
41 Women's Health Initiative, an American study on over 24,000 women age 65–79 years, reported a 12% lower
42 risk of frailty in those with a 20% increase in protein intake over a three year period (12). High protein intake is

43 associated with increased bone mineral density, reduced rehabilitation time after acute illness, better
44 cardiovascular function, improved mortality in ventilated patients, healing of pressure ulcers, and reduced risk
45 of surgical complications (11,13–15). As life expectancy worldwide has more than doubled over the past two
46 centuries, the importance of understanding and optimising muscle function in older age is paramount.
47

48 Among the twenty-one amino acids necessary for protein synthesis in humans, nine are referred to as 'essential
49 amino acids' (EAAs). These are nutritionally essential as they cannot be synthesised in the body (16). Leucine
50 is an EAA that is considered the key regulator of muscle protein anabolism via its activity in activation of the
51 mTOR pathway and inhibition of the proteasome (11). Animal studies also suggest it may suppress muscle
52 protein breakdown (MPB) (17). Optimisation of dietary protein and EAA intake in older adults has been
53 suggested to prevent the development of sarcopenia and skeletal muscle loss.
54

55 The role of the gut microbiome in healthy as well as disease states is an ever-growing area of interest to
56 researchers. The gut microbiome has a collective genome size that is 150-fold that of the human host (18), and
57 it has been argued that the metabolic activity and size of our gut microbiome is sufficient to warrant its
58 consideration as one of the organs of the human body, with its own intrinsic functions and metabolic needs
59 (19). Over the age of 65, the resilience of the gut microbiome is reduced, as it becomes more vulnerable to
60 medications, disease and changes in lifestyle, with changed species richness and increased inter-individual
61 variability (20). This review aims to summarise the available literature on dietary protein and skeletal muscle
62 in older adults, with a focus on the potential role of the gut microbiome and metabolome.

Figure 1: Consequences of loss of skeletal muscle and sarcopenia in older adults

63

64

65 2. Patient Factors

66 A reduced appetite is common in older adults (21,22). This has been linked to reduced acuity of taste and smell,
67 poor oral health and dentition, reduced chewing efficiency, medications causing reduced saliva production,
68 and changes in the digestive system such as slower gastric emptying and reduced ghrelin levels (21–23). These
69 factors lead to smaller portions being consumed and changes in dietary choices. The prevalence of dysphagia
70 has been estimated at 13% in those over 65 years (24), and is associated with reduced oral intake and
71 malnutrition (25). Pureed or softened diets may lead to reduced intake of meat, which is likely to result in
72 reduced dietary protein intake. Reduced meat consumption in the older population has also been reported
73 elsewhere (22,26).

74

75 Chronic disease is common in older adults, with an estimated 40–75% of all people over 65 having a limiting
76 chronic illness (27,28), which can lead to increased catabolism of protein. Many conditions come with dietary
77 restrictions, for example diabetes, chronic kidney disease etc. Rates of polypharmacy are also increased with
78 age, with up to 70% of over 80s taking more than four medications (29). Medication side effects such as dry
79 mouth, nausea, etc. can influence oral intake.

80

81 Mobility and access to shopping is a key factor in shaping the dietary habits of older adults (22,30). Falls and
82 fear of falling may reduce mobility (31) and therefore influence the ability of older adults to mobilise for

83 shopping, meal preparation and food consumption. Vision is another important factor in shopping and
84 preparing food, with increasing prevalence of poor visual acuity with increasing age (32). A recent qualitative
85 study assessed 30 older adults' food choices and dietary habits and noted that living alone, with associated
86 social isolation and loneliness, had a significant impact on diet. Many showed a lack of motivation for cooking
87 and eating alone (22). Indeed bereavement and living alone have been associated with worse nutrition, while
88 marriage has been linked to better diet quality in older men (22).

89
90 Lastly, socioeconomic status has an influence on dietary choices amongst older people. Lower socioeconomic
91 scores have been associated with lower diet quality, and the price of food is a factor in food decisions (22). The
92 estimated cost of malnutrition in England is £19.6 billion per year, with approximately half of this being
93 attributed to people over 65 (27). In addition to the huge costs associated with frailty and sarcopenia, poor
94 nutrition is extremely costly to our healthcare systems. As the population ages, we can expect these costs to
95 increase accordingly. Please refer to Figure 2 for a summary of the factors leading to lower protein intake in
96 older adults.

97

98
99
100
101
102 **Figure 2: Factors leading to lower protein intake in older adults**

3. Anabolic Resistance

103 Skeletal muscle mass is regulated by the processes of muscle protein synthesis (MPS) and MPB. MPS rates are
104 largely controlled by responsiveness to anabolic stimuli, such as consumption of food, and physical activity.
105 Catabolic stressors include illness, physical inactivity and inflammation, of which the older population tend to

106 have higher rates. Ageing does not seem to influence MPB to the same degree as MPS, hence MPS is typically
107 considered the more appropriate target for intervention.

108

109 Older adults have shown evidence of 'anabolic resistance', whereby a higher dose of protein is required to
110 achieve the same MPS response as a younger person (1,16,33–35). The aetiology of these impairments may lie
111 within the aging process, chronic disease or others such as physical inactivity (see Table 1). There are multiple
112 mechanisms postulated and may involve impairments at some, if not all, levels of protein metabolism (see Table
113 2).

114

115 The concept of anabolic resistance is still questioned by some however, with a systematic review by Shad et al.
116 (2016) finding 18 papers with sufficient evidence of age-related muscle anabolic resistance, and 30 papers which
117 did not (6). It is our view that these negative results are possibly due to some of the following methodology and
118 study design limitations; a recurrent these in this area of research. The review only included studies of healthy
119 individuals, 15 of which had only male participants. Discrepancies among the studies included were
120 substantial, including the dose, source and leucine-content of the supplementation, the intensity and volume of
121 exercise, and the use of exercise or protein in isolation or in combination (6). There may also be a sex-difference
122 in anabolic resistance (36,37), which has received almost no attention in the literature.

123

124 **Table 1. Factors influencing anabolic resistance**

Anabolic Resistance Aetiology	References
Declining activity levels	(1,11,38–40)
Protracted disuse events	(11,41–44)
Chronic inflammation	(39,45–48)
Insulin resistance	(1,46,48–51)
Higher circulating oxidative and inflammatory stressors	(1,39,49)
Obesity	(46,52)
Reduced oestrogen/testosterone	(1,54)
Increased production of catabolic hormones such as cortisol	(49)
Alcohol	(53)
Smoking	(1)
Poor vitamin D status	(39)
Reduced food intake	(39)
Metabolic acidosis	(1)
More chronic & acute disease in older adults (increased catabolic conditions)	(15)

125

126

127

128

Table 2. Molecular mechanisms implicated in anabolic resistance

Anabolic Resistance Mechanisms	References
Differences in gene expression of proteins involved in MPS	(55–59)
Dysregulation of key signalling proteins in the mTOR pathway	(1,48,56,57,60–62)
Decreased phosphorylation of mTORC1	(48,60,63–65)
Impaired transport of amino acids into muscle/peripheral tissues	(39,61,66,67)
Diminished mRNA translational signalling	(60,65,68,69)
Inflammation (raised TNF α / IL-6/ hs-CRP/NFkB)	(1,48,60,70,71)
Decreased phosphorylation of transcription factors (e.g. p70S6K, S6K1)	(48,60,61,68)
Dysregulation of nutritive blood flow to skeletal muscle	(39,51,72)
Attenuated protein digestion & absorption	(39,73,74)
Mitochondrial dysfunction	(1,20,58)
Autophagy/mitophagy dysfunction	(1,58)
Denervation of muscle fibres	(39,75)
Higher splanchnic extraction of protein	(15,74)
Lipid-induced muscle insulin resistance	(20,76)
Increased AMPK α phosphorylation (leads to increased MPB)	(56)
Increased cortisol generation within muscle by 11bHSD1	(77)
Loss of skeletal muscle stem cells	(78)
Insufficient protein dose given in the trial	(6)

129

Figure 3: Factors leading to loss of skeletal muscle and sarcopenia in older adults

130 **4. Dietary Protein**131 *4.1. Quantity of Protein*

132 It is now considered consensus that a higher RDA of 1-1.3g/kg/day should be consumed by older adults (1,79-
133 82), to offset catabolic conditions. Indeed the PROT-AGE Study Group advise that those with severe illness or
134 injury or with marked malnutrition may need as much as 2.0 g/kg/day (15). There is significant variability in
135 the protein quantity administered in studies, which is highly relevant considering the MPS response to protein
136 is believed to be dose-dependent.

137

138 *4.2. Quality of Protein*

139 Some proteins, such as wheat protein, are deemed lower quality, as they lack or are low in one or more EAAs
140 and fail to stimulate MPS to the same degree as higher quality sources (83). Red meat contains a balanced
141 amount of all EAAs (45), however older adults eat less red meat than their younger counterparts. The definition
142 of protein quality has evolved and now typically includes digestibility and absorption, as well as amino acid
143 composition.

144

145 *4.3. Source of Protein*

146 Worldwide ~60% of protein consumed is from plant sources (84), however animal sources predominate in
147 Europe and the United States. Plant proteins tend to have lower digestibility, and lower leucine content (84,85),
148 while meat contains more EAAs per weight than any other food (11). Gorissen et al. (2016) compared protein
149 infusions given to healthy older men. They reported an increased MPS rate in animal versus plant source, and
150 within animal sources (e.g. whey preferable to casein) (86). Little is known about other protein sources such as
151 mycoprotein, aquatic algae etc. (85). Further research into protein sources is necessary to identify optimal agents
152 for older adults, particularly in the context of growing concerns about the environmental impact of certain foods
153 (87).

154

155 *4.4. Timing of Protein*

156 Timing of protein consumption both throughout the day (1,16,88), and in relation to exercise (35), has been an
157 issue of debate. Cardon-Thomas et al. (2017) assessed per meal protein intake of older adults, and reported
158 adequate daily totals, but no participants achieved adequate per-meal protein intake (89). Some have argued
159 that evenly spread intake across meals may be beneficial for MPS, as may pre-sleep protein ingestion (90,91).
160 Murphy et al. (2015) compared skewed to evenly distributed protein intake throughout the day in 20
161 overweight older men. They found greater MPS in those with balanced protein distribution (92). This has been
162 debated by others who reported that total protein intake, irrespective of the pattern, was the most important
163 factor in maximising the anabolic response (13).

164

165 Resistance exercise and protein ingestion have a synergistic positive effect on MPS, with highest level of MPS
166 approximately one-hour post exercise (93). In young men, Burd et al. (2011) reported that the sensitivity of the
167 muscle to protein is increased for 24 hours post exercise (94). More research is needed to establish the

168 importance of protein intake distribution in older adults, whether an anabolic window exists post exercise, and
169 if so whether supplementation of protein during this window elicits a greater response in MPS.
170

171 *4.5. Speed of Protein Digestion*

172 A fast-digestive protein, such as whey, is one which releases its amino acids relatively quickly in the digestive
173 process. Studies have shown improved MPS with fast digestive proteins (95,96), albeit in healthy participants.
174 Many now recommend that we use fast-digestive proteins in older adults and disease states such as sarcopenia,
175 in order to maximise the benefits on skeletal muscle function (15,97).
176
177

178 **5. Protein and Skeletal Muscle**

179 Observational studies give weight to the hypothesis that poor protein intake contributes to sarcopenia and poor
180 clinical outcomes. Three large studies have supported an association between protein intake and muscle
181 strength and mass, although results have conflicted on whether this is confounded by fat mass (98–100).
182

183 *5.1. Protein Supplementation Studies*

184 Clinical trials of protein supplementation have shown varying results. Multiple trials carried out in healthy
185 replete older adults, without an exercise intervention, have been negative (101–103). Systematic reviews have
186 concluded that the most promising results are for specific EAAs, particularly leucine, but also its metabolite β -
187 hydroxy β -methylbutyric acid (HMB) (7,49,103). However, studies of leucine supplementation have had mixed
188 results, with some promising findings (35,49,104), and some negative trials (49,105). There is currently a large
189 ongoing multi-centre trial assessing the benefits of leucine in patients with sarcopenia (106).
190

191 The Deutz study group have done a number of trials showing improvements in muscle mass and nutritional
192 status with HMB supplementation and more work is needed to definitively establish its benefits (107,108). Both
193 leucine and HMB hold promise for those in whom suboptimal quantities of protein are consumed, for example
194 older adults with smaller appetites, poor oral health etc. Supplementation with these more targeted regulators
195 of MPS may be most effective for overcoming anabolic resistance in this cohort.
196

197 Some trials have combined protein with other nutritional supplements. For example Bo et al. (2018) assessed
198 combined supplementation of whey protein, vitamin E and D in their cohort of sixty adults with sarcopenia
199 and reported improvements in both muscle mass and strength (109). However this design can make
200 interpretation of where exactly the benefits lie difficult.
201

202 *5.2. Protein Supplementation & Exercise*

203 Exercise is recognised as a potent stimulator of anabolic response in muscle. In all ages protein intake and
204 exercise act synergistically to increase MPS. Multiple trials have reported greater improvements in muscle mass,
205 muscle strength, and physical function when protein intake is combined with exercise, particularly resistance
206 training (35,45,110).

207

208 Cermak et al. (2012) carried out a meta-analysis of trials assessing protein supplementation in the context of
209 resistance training (111). Interestingly, amongst the six studies looking at older adults (>50 years, 215 subjects),
210 none had found significance in fat free mass (FFM) versus placebo. However, when the data were pooled,
211 protein supplementation was found to increase FFM by 38% versus placebo (111).
212

213 5.3. Issues with Protein Supplementation Trials

214 Conflicting results are not uncommon in this area. Issues with trials include short follow up time, small sample
215 sizes with insufficient power, different doses of protein used, different sources of protein, different settings
216 (hospital vs community), inconsistent timing of supplementation, use of fast versus slow digestive proteins,
217 supplementing replete populations, and heterogeneity of populations studied, as well as substantial variation
218 in the measures used to monitor dietary protein intake. Indeed The International Sarcopenia Initiative (2014)
219 carried out a systematic review and concluded that the results of nutritional supplementation trials are
220 equivocal due to low numbers of high quality studies and heterogeneous study design (7).
221

222 A key consideration is ensuring participants have adequate baseline energy requirements. Supplementing
223 protein in the context of insufficient energy intake will lead to protein being metabolised for energy, rather than
224 leading to increased MPS (82). This is likely to be especially relevant in older adults with reduced appetites.
225 Furthermore, a large variety of measures are used for estimating muscle mass, muscle strength and physical
226 function (see supplementary tables 1, 2 and 3). The International Working Group on Sarcopenia recommended
227 that Computed Tomography and Magnetic Resonance Imaging (MRI) equally be considered the gold standard
228 imaging techniques and discouraged the use of Bioelectrical Impedance Analysis due to its inaccuracy (112).
229 Dual-energy X-ray absorptiometry (DXA) is the most commonly used measure of muscle mass, however FFM
230 and muscle protein mass can be overestimated due to water retention and/or lipid content of muscle in older
231 adults (82). More high quality, well designed research is needed in this area, to determine the benefits of protein
232 supplementation in older adults, with and without exercise.
233

234 5.4. Surrogate Markers of Protein Intake

235 Studies use multiple ways of estimating dietary protein intake (see supplementary table 5). The validity and
236 reliability of these dietary measures has usually been verified in younger populations and may not be relevant
237 to older people. Indeed reduced reliability coefficients of the Food Frequency Questionnaire have been reported
238 with increasing age (113).
239

240 In order to overcome this, researchers have sought objective estimates of dietary intakes. Protein is the major
241 nitrogen-containing substance in the body, and therefore urinary excretion of nitrogen is used as a marker of
242 protein loss (33,101). Urinary (45,114) and blood urea concentration (114), and urinary HMB levels (107) have
243 also been used with the aim of objectively verifying compliance. These methods are not without limitations, as
244 they may not consider subtle changes with protein metabolism that occur with age, such as increased splanchnic
245 uptake (15). The amount of fermentation metabolites detectable in the urine depends on the digestibility of the
246 protein (115), so this too, needs to be considered.

247

248 Other novel techniques in this area include the measurement of MPS using oral labelled isotopes such as
249 deuterium oxide or 3-Methylhistidine, which can be measured via a single blood or urine test the following day
250 (116–118). These methods are less invasive and significantly cheaper than intravenous versions. These
251 techniques represent significant advances in an area with challenging methods, and show promise in measuring
252 efficacy of interventions, as well as providing mechanistic insights into the sarcopenic phenotype.

253

254

255 **6. The Role of the Gut Microbiome**

256 The composition of the bacterial species in one's gut is dependent on age, diet, health, and geographical
257 location, with significant individual variability (119,120). Multiple cross-sectional studies have found
258 associations between gut microbiome composition and frailty (120–123), while the ELDERMET study showed
259 significant loss of diversity amongst people in a care-home setting versus community dwellers (124). Among
260 older hospitalised patients, polypharmacy has been significantly associated with gut microbiota dysbiosis (122).
261 Evidently, the gut microbiome has been implicated in many aging-associated processes, with recent animal
262 studies even showing that transferring gut microbes of young killifish to older ones extends the lifespan of the
263 older fish (125). It has been hypothesised that a gut-muscle axis exists. More research is warranted to explore
264 this theory (20).

265

266 *6.1. Animal Models*

267 Many animal models have been used in the study of the gut microbiome (see supplementary table 4). Studies
268 carried out in mice, rats and hamsters have shown higher microbial diversity in those fed soy protein versus
269 animal protein (126,127) and increased abundance of *Bacteroidales* family S24-7 in those fed soy protein versus
270 other diets (128). Li et al. (2017) assessed high protein, low carbohydrate diets in dogs and found increased
271 abundance of *Clostridium hiranonis*, *Clostridium perfringens*, and *Ruminococcus gnavus*, as well as decreased
272 *Bacteroidetes* to *Firmicutes* ratio and an increase in the *Bacteroides* to *Prevotella* ratio (129), the latter of which has
273 been proposed as a biomarker of good health (130).

274

275 *6.2. Human Data*

276 The digestive system consists of a complex interaction between digestive secretions, intestinal conditions, and
277 the gut microbiome. Nutrients, especially dietary proteins, provide energy sources for the host, as well as
278 substrates for the gut microbiota (115). A significant proportion of undigested peptides and proteins can reach
279 the colon, and this is increased in the context of a high protein diet (114). Consumption of proteins with high
280 digestibility, or a low protein diet, results in less protein reaching the colon, limiting the amount available for
281 protein-fermenting bacteria (115). Work done in this area has shown that a high protein diet does shift the gut
282 microbiome from carbohydrate to protein fermentation, with a diverse metabolic output including branched-
283 chain fatty acids, ammonia, amines and others (114).

284

285 It has been reported that protein consumption is correlated positively with gut microbiome diversity (131). This
286 is based on studies carried out on healthy volunteers (132), elite athletes (133), and obese/overweight

287 individuals (134). The source of protein is influential, with plant protein associated with more *Bifidobacterium*,
288 *Lactobacillus*, *Roseburia*, *Eubacterium rectale*, and *Ruminococcus bromii*; and less *Bacteroides* and *Clostridium*
289 *perfringens* (131,132). Meanwhile animal protein is associated with higher levels of *Bacteroides*, *Alistipes*, *Bilophila*
290 and *Ruminococcus*, and lower levels of *Bifidobacterium* (131,132). High levels of *Bacteroides* have also been
291 reported with Western diets, which are high in protein and animal fat (18), although it has been suggested that
292 differences in fat content, rather than protein, is the major influencing factor here (135).

293

294 Significant associations have been reported between increased levels of faecal short chain fatty acids (SCFAs),
295 *Prevotella* and some *Firmicutes*, with consumption of a Mediterranean diet (20,136), which is typically lower in
296 protein than animal-based diets, although may contain high levels of plant-source protein. Indeed, certain
297 microbial clusters are associated with long term dietary patterns (18). Clusters can change within 24 hours of
298 controlled feeding, however research shows that microbiome composition is far more influenced by long term
299 diet patterns, rather than acute changes (137). Dietary pattern studies make assessment of the contribution of
300 each macronutrient difficult.

301

302 A healthy gut microbiome plays a role in many of the physiological processes implicated in the
303 mechanisms for the development of anabolic resistance (see table 2). These include suppression of chronic
304 inflammation, prevention of insulin resistance, modulation of host gene expression, enhancement of
305 antioxidant activity and maintenance of gut barrier function (20). A reduced rate of dietary protein digestion
306 has also been hypothesised as one of the processes involved (84). Indeed production of SCFAs by the gut
307 microbiome has been associated with anabolism itself (138) and depletion of taxa producing SCFAs may
308 promote anabolic resistance (139). A randomised controlled trial has been carried out exploring the effect
309 of modulating the gut microbiome on muscle function and frailty, where 60 older adults received a
310 prebiotic or placebo for 13 weeks. Promisingly, both exhaustion and handgrip strength were significantly
311 improved in the treatment arm (140), highlighting the potential role for the gut microbiome in future
312 interventions, but the study remains to be replicated.

313

314 There is increasing evidence for the association between exercise and the gut microbiome, which may be
315 secondary to both host health and diet (141,142). Claesson et al. (2012) showed that gut microbiota diversity is
316 inversely correlated with physical function in frail older adults (120), suggesting a potential role for the gut
317 microbiome in the development of, and therefore potentially prevention of, sarcopenia (20). The gut
318 microbiomes of critically ill patients on average display enrichment of virulent pathogens, and loss of health-
319 promoting microbes (143). Protein supplementation has shown some benefits for muscle parameters in this
320 population (144,145), but whether this effect is modulated by the gut microbiome is not known.

321

322 The hypothesis that the dysbiotic gut plays a role in the loss of skeletal muscle and response to protein is yet to
323 be tested. If supported, the gut microbiome could represent a target for interventions aiming to overcome
324 anabolic resistance, to maintain muscle mass and strength in older adults.

325

326

327 6.2. *The Metabolome*

328 Studies assessing the specific effect of dietary protein on gut microbiota composition are limited and some of
329 the work done thus far has focused instead on the altered fermentation products. Trials using ¹H-nuclear
330 magnetic resonance (NMR) technology have shown a shift in bacterial metabolism with different metabolite
331 profiles according to the source of protein (114) and one study of high-protein, low-carbohydrate diets in 17
332 obese men reported increased hazardous metabolites (e.g. N-nitrosamines), and decrease in cancer-protective
333 metabolites (e.g. ferulic acid) in their faecal samples (146). Indeed a growing number of studies are using ¹H-
334 NMR technology to assess faecal, urinary and plasma metabolomes as measures of metabolic health [e.g. (147)].
335 More research is needed into the use of the metabolome in the context of dietary protein intake, and the
336 significance of changes in the metabolome for skeletal muscle mass and function.
337

338 **7. Discussion**

339 As the world's population ages, it has become imperative to gain more understanding of the aging process.
340 Declines in muscle mass and function with age have significant associated morbidity and mortality, and the
341 prevalence of both sarcopenia and frailty is increasing. The care of older people is complex, and a multitude of
342 factors influence lower protein intake and loss of skeletal muscle with age (see Figures 1 and 2).
343

344 Anabolic resistance is likely to result from cumulative declines across multiple physiological systems, with
345 effects on both MPS and MPB, a dynamic interaction of multiple factors (see Figure 3). Current thinking must
346 not be limited to one or two mechanisms but focus on anabolic resistance as a complex and multidimensional
347 construct. The aetiologies and mechanisms involved are not understood and may be different for each aging
348 individual, suggesting a possible need for personalised medicine within this population to guide future
349 interventions.
350

351 Dietary protein is essential for skeletal muscle and it has been established that older adults require a higher
352 RDA of dietary protein. Research suggests that better quality protein, especially that containing higher
353 quantities of leucine, is likely to benefit muscle health in the older population. The importance of timing of
354 protein administration needs to be more clearly understood, and the potential benefit on skeletal muscle of fast-
355 versus slow-digestive proteins is another question yet to be answered. A significant amount of work has
356 focused on protein source, with animal sources typically containing more leucine, greater digestibility and
357 achieving a higher MPS responses. That said, meat intake declines with age, and chewing and poor oral health
358 can be an issue for older adults. There are also increasing concerns about the environmental impact of animal
359 sourced food (85). Furthermore, research is needed to confirm whether increases in MPS, muscle mass and/or
360 muscle strength lead to meaningful functional outcomes in this older demographic.
361

362 Studies show that supplementing protein/EAs, particularly in combination with resistance exercise, is
363 beneficial for aging muscle. However, many trials have had conflicting results. As with all nutritional studies,
364 it is difficult to ensure the adherence of participants to the intervention, and to quantify the impact of non-
365 compliance on the results. Trials of nutritional supplements in participants already replete have limited usage,
366 and a wide variety of measures and assessments are currently being used. This heterogeneity leads to significant
367 uncertainty amongst current evidence and makes clinical translation of findings extremely difficult. High

368 quality studies are needed to establish standardised, feasible measures of muscle mass, strength and physical
369 function for future work in this area. Personalised dietary recommendations may show promise going forward,
370 and this is currently being assessed in a large randomised controlled trial of a multi-component intervention in
371 the management of sarcopenia (148).

372

373 Difficulties in carrying out accurate studies in this area are highlighted by the use of such extreme methods as
374 Ferrando et al. (1996), in which volunteers were required to stay for 22 days in the lab, 7 of which were for diet
375 stabilisation, and 15 of which were spent in strict head-down bed rest (149). Others have employed similar
376 methods (42). With limited funding throughout academia, the feasibility of such trials is limited. Some ways in
377 which shortcomings can be addressed include twin studies, reducing heterogeneity at baseline, more consistent
378 use of measures throughout studies, use of standardised diets prior to interventions, and the development of
379 standardised measures of muscle mass, muscle function, physical activity, and diet. In light of the low levels of
380 reliability of our current dietary recording methods (150), the use of the metabolome may represent an objective
381 and reliable way of assessing compliance with dietary interventions going forward (151). Novel techniques in
382 the measurement of MPS, such as the use of oral heavy water as a stable isotope, show significant promise for
383 future research in this field.

384

385 Few human studies have evaluated the effects of the gut microbiome on dietary protein metabolism, and the
386 ensuing metabolome or vice versa, and those that have, have had limitations such as highly heterogeneous
387 groups at baseline, short intervention periods, variation in dietary measures used, different sample storage
388 methods, and disparate lab processing. Animal studies have shown promise, and the one available human trial
389 on gut microbiome modulation showed positive improvements in muscle function (140). Research is needed to
390 establish whether a dysbiotic gut microbiome contributes to skeletal muscle loss in the context of acute/or
391 chronic illness, or indeed in the aging process itself. Furthermore, the potential role of the gut microbiome in
392 anabolic resistance warrants further investigation. The plasticity and diversity of the gut microbiome and its
393 metabolome, in comparison to the human genome, represent exciting prospects for personalised medicine, and
394 indeed, in the role of dietary protein in skeletal muscle function of older adults.

395

396

397

398

399 **Acknowledgments:** MNL is an Academic Clinical Fellow in Geriatric Medicine, this fellowship is funded by the National
400 Institute of Health Research (NIHR).

401 TwinsUK is funded by the Wellcome Trust, Medical Research Council, European Union, the NIHR-funded BioResource,
402 Clinical Research Facility and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in
403 partnership with King's College London.

404 CJS acknowledges funding from the Chronic Disease Research Foundation (which receives funding from The Denise Coates
405 Foundation) and the Wellcome Trust (grant WT081878MA).

406

407 **Author Contributions:** MNL and CJS conceived the idea for the manuscript. MNL undertook the majority of the drafting
408 of the manuscript, under the supervision of CJS. RCB assisted in the drafting and critique of the work.

409

410 **Conflicts of Interest:** The authors declare no conflict of interest.

411

412 **References**

- 413 1. Welch AA. Nutritional influences on age-related skeletal muscle loss. *Proc Nutr Soc*. 2014;73(1):16–33.
- 414 2. Kortebein P, Ferrando A, Lombeida J, Wolfe R, Evans WJ. Effect of 10 Days of Bed Rest on Skeletal
415 Muscle in Healthy Older Adults. *JAMA* [Internet]. 2007 Apr 25 [cited 2018 Apr 19];297(16):1769.
416 Available from: <http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.297.16.1772-b>
- 417 3. International Working Group on Sarcopenia. Sarcopenia : an undiagnosed condition in older
418 adults.Consensus Definition: Prevalence, Etiology, and Consequences. *J Am Med Dir Assoc*.
419 2011;12(4):249–56.
- 420 4. Clegg A, Young J, Iliffe S, Olde Rikkert MGM, Rockwood K, Rikkert MO, et al. Frailty in older people.
421 *Lancet* [Internet]. 2013;381(9868):752–62. Available from:
422 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098658/>
- 423 5. Rizzoli R, Reginster J, Arnal J, Bautmans I. Quality of Life in Sarcopenia and Frailty. *Calcif Tissue Int*.
424 2013;93(2):101–20.
- 425 6. Shad BJ, Thompson JL, Breen L. Does the muscle protein synthetic response to exercise and amino acid-
426 based nutrition diminish with advancing age? A systematic review. *Am J Physiol - Endocrinol Metab*
427 [Internet]. 2016;311(5):E803–17. Available from:
428 <http://ajpendo.physiology.org/lookup/doi/10.1152/ajpendo.00213.2016>
- 429 7. Cruz-Jentoft AJ, Landi F, Schneider SM, Zúñiga C, Arai H, Boirie Y, et al. Prevalence of and interventions
430 for sarcopenia in ageing adults: A systematic review. Report of the International Sarcopenia Initiative
431 (EWGSOP and IWGS). *Age Ageing*. 2014;43(6):48–759.
- 432 8. Tsekoura M, Kastrinis A, Billis E, Katsoulaki M, Gliatis J. Sarcopenia and Its Impact on Quality of Life.
433 In: Vlamos P. (eds) GeNeDis 2016. In: *Advances in Experimental Medicine and Biology* [Internet].
434 Springer, Cham; 2016. Available from: https://link.springer.com/chapter/10.1007%2F978-3-319-57379-3_19#citeas

436 9. Strasser B, Volaklis K, Fuchs D, Burtscher M. Role of Dietary Protein and Muscular Fitness on Longevity
437 and Aging. *Aging Dis.* 2018;9(1):119–32.

438 10. Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R. The Healthcare Costs of Sarcopenia in the United
439 States. *J Am Geriatr Soc.* 2004;52(1):80–5.

440 11. Landi F, Calvani R, Tosato M, Martone AM, Ortolani E, Savera G, et al. Protein intake and muscle health
441 in old age: From biological plausibility to clinical evidence. *Nutrients.* 2016;8(5):1–12.

442 12. Beasley JM, LaCroix AZ, Neuhouser ML, Huang Y, Tinker L, Woods N, et al. Protein intake and incident
443 frailty in the Women's Health Initiative observational study. *J Am Geriatr Soc* [Internet]. 2010 Jun [cited
444 2018 Apr 23];58(6):1063–71. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/20487071>

445 13. Baum JI, Kim IY, Wolfe RR. Protein consumption and the elderly: What is the optimal level of intake?
446 *Nutrients.* 2016;8(6):1–9.

447 14. Secretariat MA. Management of chronic pressure ulcers: an evidence-based analysis. *Ont Health
448 Technol Assess Ser* [Internet]. 2009 [cited 2018 Apr 25];9(3):1–203. Available from:
449 <http://www.ncbi.nlm.nih.gov/pubmed/23074533>

450 15. Bauer J, Biolo G, Cederholm T, Cesari M, Cruz-Jentoft AJ, Morley MB JE, et al. Evidence-Based
451 Recommendations for Optimal Dietary Protein Intake in Older People: A Position Paper From the
452 PROT-AGE Study Group. *Journal Am Med Dir Assoc* [Internet]. 2013 [cited 2018 Apr 16];(14):542–59.
453 Available from: [https://ac.els-cdn.com/S1525861013003265/1-s2.0-S1525861013003265-
main.pdf?_tid=4c645147-910f-4e45-b642-
e833f6a024ea&acdnat=1523871215_d23f4ce9bb010de2ab7aa7d3a688362](https://ac.els-cdn.com/S1525861013003265/1-s2.0-S1525861013003265-
454 main.pdf?_tid=4c645147-910f-4e45-b642-
455 e833f6a024ea&acdnat=1523871215_d23f4ce9bb010de2ab7aa7d3a688362)

456 16. Dillon EL. Nutritionally essential amino acids and metabolic signaling in aging. *Amino Acids.*
457 2013;45(3):431–41.

458 17. Nakashima K, Ishida A, Yamazaki M, Abe H. Leucine suppresses myofibrillar proteolysis by down-
459 regulating ubiquitin–proteasome pathway in chick skeletal muscles. *Biochem Biophys Res Commun*
460 [Internet]. 2005 Oct 21 [cited 2018 Apr 23];336(2):660–6. Available from:
461 <http://www.ncbi.nlm.nih.gov/pubmed/16153608>

462 18. Wu GD, Bushman FD, Lewis JD. Diet, the human gut microbiota, and IBD. *Anaerobe* [Internet].
463 2013;24:117–20. Available from: <http://dx.doi.org/10.1016/j.anaerobe.2013.03.011>

464 19. O'Keefe SJD. Towards the determination of the nutritional needs of the body and its microbiome in
465 sickness and in health. *Curr Opin Gastroenterol.* 2014;30(2):175–7.

466 20. Ticinesi A, Lauretani F, Milani C, Nouvenne A, Tana C, Del Rio D, et al. Aging Gut Microbiota at the
467 Cross-Road between Nutrition, Physical Frailty, and Sarcopenia: Is There a Gut-Muscle Axis? *Nutrients*
468 [Internet]. 2017 Nov 30 [cited 2018 Jun 5];9(12). Available from:
469 <http://www.ncbi.nlm.nih.gov/pubmed/29189738>

470 21. Pilgrim A, Robinson S, Sayer AA, Roberts H. An overview of appetite decline in older people. *Nurs*
471 *Older People*. 2015;27(5):29–35.

472 22. Whitelock E, Ensaff H. On Your Own: Older Adults' Food Choice and Dietary Habits. *Nutrients*.
473 2018;10(413).

474 23. Kremer S, Bult JHF, Mojet J, Kroeze JHA. Food Perception with Age and Its Relationship to Pleasantness.
475 *Chem Senses* [Internet]. 2007 [cited 2018 Apr 11];32:591–602. Available from:
476 https://watermark.silverchair.com/bjm028.pdf?token=AQECAHi208BE49Ooan9khhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAdEwggHNBgkqhkiG9w0BBwagggG-MIIBugIBADCCAbMGCSqGSIb3DQEHAeBglghkgBZQMEAS4wEQQMP-MV4KGl-KCeCiMQAgEQgIBhD5-Diww4rP_TKbUZ1qx-SjXyWywHO7QfHA7zaSKZ3-VLmty

480 24. Organisation WG. World Gastroenterology Organisation Global Guidelines Dysphagia Global
481 Guidelines [Internet]. 2014 [cited 2018 Apr 18]. Available from: <http://www.spg.pt/wp-content/uploads/2015/11/2014-dysphagia.pdf>

483 25. Sura L, Madhavan A, Carnaby G, Crary MA. Dysphagia in the elderly: management and nutritional
484 considerations. *Clin Interv Aging* [Internet]. 2012 [cited 2018 Apr 18];7:287–98. Available from:
485 <http://www.ncbi.nlm.nih.gov/pubmed/22956864>

486 26. Delaney M, McCarthy M. Food choice and health across the life course: A qualitative study examining
487 food choice in older Irish adults. In: 113th EAAE Seminar "A resilient European food industry and food
488 chain in a challenging world" [Internet]. 2009 [cited 2018 Apr 11]. Available from:
489 <http://ageconsearch.umn.edu/bitstream/58004/2/Delaney.pdf>

490 27. Age UK. Later Life in the United Kingdom. 2018 [cited 2018 Apr 18]; Available from:
491 https://www.ageuk.org.uk/globalassets/age-uk/documents/reports-and-publications/later_life_uk_factsheet.pdf

493 28. Barnett K, Mbchb N, Phd G, Phd W, Guthrie B, Barnett K, et al. Epidemiology of multimorbidity and
494 implications for health care, research, and medical education: a cross-sectional study. *Lancet* [Internet].
495 2012 [cited 2018 Apr 18];380:37–43. Available from:
496 [http://www.thelancet.com/pdfs/journals/lancet/PIIS0140-6736\(12\)60240-2.pdf](http://www.thelancet.com/pdfs/journals/lancet/PIIS0140-6736(12)60240-2.pdf)

497 29. Payne RA, Avery AJ, Duerden M, Saunders CL, Simpson CR, Abel GA. Prevalence of polypharmacy in
498 a Scottish primary care population. *Eur J Clin Pharmacol* [Internet]. 2014 May 1 [cited 2018 Apr
499 18];70(5):575–81. Available from: <http://link.springer.com/10.1007/s00228-013-1639-9>

500 30. Kamphuis CB, de Bekker-Grob EW, van Lenthe FJ. Factors affecting food choices of older adults from
501 high and low socioeconomic groups: a discrete choice experiment. *Am J Clin Nutr* [Internet]. 2015 Apr
502 1 [cited 2018 Apr 18];101(4):768–74. Available from:
503 <https://academic.oup.com/ajcn/article/101/4/768/4564502>

504 31. Parry SW, Finch T, Deary V. How should we manage fear of falling in older adults living in the

505 community? *BMJ* [Internet]. 2013 May 28 [cited 2018 Apr 18];346:f2933. Available from:
506 <http://www.ncbi.nlm.nih.gov/pubmed/23714190>

507 32. Evans JR, Fletcher AE, Wormald RPL, Ng ES-W, Stirling S, Smeeth L, et al. Prevalence of visual
508 impairment in people aged 75 years and older in Britain: results from the MRC trial of assessment and
509 management of older people in the community. *Br J Ophthalmol* [Internet]. 2002 Jul [cited 2018 Apr
510 18];86(7):795–800. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/12084753>

511 33. Mitchell CJ, Milan AM, Mitchell SM, Zeng N, Ramzan F, Sharma P, et al. The effects of dietary protein
512 intake on appendicular lean mass and muscle function in elderly men: a 10-wk randomized controlled
513 trial. *Am J Clin Nutr.* 2017;106(6):1375–83.

514 34. Moore DR, Churchward-Venne TA, Witard O, Breen L, Burd NA, Tipton KD, et al. Protein ingestion to
515 stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus
516 younger men. *Journals Gerontol - Ser A Biol Sci Med Sci.* 2015;70(1):57–62.

517 35. Deutz NEP, Bauer JM, Barazzoni R, Biolo G, Boirie Y, Bosy-Westphal A, et al. Protein intake and exercise
518 for optimal muscle function with aging: Recommendations from the ESPEN Expert Group. *Clin Nutr*
519 2014. 2014;33(6):929–36.

520 36. Churchward-Venne TA, Breen L, Phillips SM. Alterations in human muscle protein metabolism with
521 aging: Protein and exercise as countermeasures to offset sarcopenia. *BioFactors.* 2014;40(2):199–205.

522 37. Markofski MM, Volpi E. Protein metabolism in women and men: similarities and disparities. *Curr Opin
523 Clin Nutr Metab Care* [Internet]. 2011 [cited 2018 Apr 11];14(1):93–7. Available from:
524 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176666/pdf/nihms323584.pdf>

525 38. Burd NA, Gorissen SH, Van Loon LJC. Anabolic Resistance of Muscle Protein Synthesis with Aging.
526 *Exerc Sport Sci Rev* [Internet]. 2013 [cited 2018 Apr 19];41(3):169–73. Available from:
527 <https://insights.ovid.com/pubmed?pmid=23558692>

528 39. Murton AJ. Muscle protein turnover in the elderly and its potential contribution to the development of
529 sarcopenia. *Proc Nutr Soc.* 2015;74(4):387–96.

530 40. Breen L, Stokes KA, Churchward-Venne TA, Moore DR, Baker SK, Smith K, et al. Two weeks of reduced
531 activity decreases leg lean mass and induces 'anabolic resistance' of myofibrillar protein synthesis in
532 healthy elderly. *J Clin Endocrinol Metab.* 2013;98(6):2604–12.

533 41. Wall BT, van Loon LJ. Nutritional strategies to attenuate muscle disuse atrophy. *Nutr Rev.*
534 2013;71(4):195–208.

535 42. Biolo G, Ciocchi B, Lebenstedt M, Barazzoni R, Zanetti M, Platen P, et al. Short-term bed rest impairs
536 amino acid-induced protein anabolism in humans. *J Physiol* [Internet]. 2004 Jul 15 [cited 2018 May
537 2];558(Pt 2):381–8. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/15131238>

538 43. Glover EI, Phillips SM, Oates BR, Tang JE, Tarnopolsky MA, Selby A, et al. Immobilization induces
539 anabolic resistance in human myofibrillar protein synthesis with low and high dose amino acid infusion.
540 Supplementary Data. *J Physiol* [Internet]. 2008 Dec 15 [cited 2018 May 2];586(24):6049–61. Available
541 from: <http://www.ncbi.nlm.nih.gov/pubmed/18955382>

542 44. Wall BT, Snijders T, Senden JMG, Ottenbros CLP, Gijsen AP, Verdijk LB, et al. Disuse Impairs the Muscle
543 Protein Synthetic Response to Protein Ingestion in Healthy Men. *J Clin Endocrinol Metab* [Internet]. 2013
544 Dec 1 [cited 2018 May 2];98(12):4872–81. Available from: <https://academic.oup.com/jcem/article-lookup/doi/10.1210/jc.2013-2098>

546 45. Daly RM, O'Connell SL, Mundell NL, Grimes CA, Dunstan DW, Nowson CA. Protein-enriched diet,
547 with the use of lean red meat, combined with progressive resistance training enhances lean tissue mass
548 and muscle strength and reduces circulating IL-6 concentrations in elderly women: a cluster randomized
549 controlled trial. *Am J Clin Nutr* [Internet]. 2014;(99):899–910. Available from:
550 <http://ajcn.nutrition.org/content/99/4/899.short>

551 46. Guillet C, Masgrau A, Walrand S, Boirie Y. Impaired protein metabolism: interlinks between obesity,
552 insulin resistance and inflammation. *Obes Rev* [Internet]. 2012 Dec 1 [cited 2018 Apr 19];13:51–7.
553 Available from: <http://doi.wiley.com/10.1111/j.1467-789X.2012.01037.x>

554 47. Balage M, Averous J, Rémond D, Bos C, Pujos-Guillot E, Papet I, et al. Presence of low-grade
555 inflammation impaired postprandial stimulation of muscle protein synthesis in old rats. *J Nutr Biochem*
556 [Internet]. 2010 Apr 1 [cited 2018 May 2];21(4):325–31. Available from:
557 <https://www.sciencedirect.com/science/article/pii/S0955286309000138?via%3Dihub>

558 48. Haran PH, Rivas DA, Fielding RA. Role and potential mechanisms of anabolic resistance in sarcopenia.
559 *J Cachexia Sarcopenia Muscle*. 2012;3(3):157–62.

560 49. Cholewa JM, Dardevet D, Lima-Soares F, de Araújo Pessôa K, Oliveira PH, dos Santos Pinho JR, et al.
561 Dietary proteins and amino acids in the control of the muscle mass during immobilization and aging:
562 role of the MPS response. *Amino Acids*. 2017;49(5):811–20.

563 50. Volpi E, Mittendorfer B, Rasmussen BB, Wolfe RR. The response of muscle protein anabolism to
564 combined hyperaminoacidemia and glucose-induced hyperinsulinemia is impaired in the elderly. *J Clin*
565 *Endocrinol Metab* [Internet]. 2000 Dec [cited 2018 May 1];85(12):4481–90. Available from:
566 <http://www.ncbi.nlm.nih.gov/pubmed/11134097>

567 51. Meneilly GS, Elliot T, Bryer-Ash M, Floras JS. Insulin-mediated increase in blood flow is impaired in the
568 elderly. *J Clin Endocrinol Metab* [Internet]. 1995 Jun 1 [cited 2018 May 1];80(6):1899–903. Available from:
569 <https://academic.oup.com/jcem/article-lookup/doi/10.1210/jc.80.6.7775638>

570 52. Murton AJ, Marimuthu K, Mallinson JE, Selby AL, Smith K, Rennie MJ, et al. Obesity Appears to Be
571 Associated With Altered Muscle Protein Synthetic and Breakdown Responses to Increased Nutrient
572 Delivery in Older Men, but Not Reduced Muscle Mass or Contractile Function. *Diabetes* [Internet]. 2015
573 Sep 1 [cited 2018 May 2];64(9):3160–71. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/26015550>

574 53. Parr EB, Camera DM, Areta JL, Burke LM, Phillips SM, Hawley JA, et al. Alcohol Ingestion Impairs
575 Maximal Post-Exercise Rates of Myofibrillar Protein Synthesis following a Single Bout of Concurrent
576 Training. Alway SE, editor. PLoS One [Internet]. 2014 Feb 12 [cited 2018 Apr 19];9(2):e88384. Available
577 from: <http://dx.plos.org/10.1371/journal.pone.0088384>

578 54. Volpato S, Bianchi L, Cherubini A, Landi F, Maggio M, Savino E, et al. Prevalence and clinical correlates
579 of sarcopenia in community-dwelling older people: application of the EWGSOP definition and
580 diagnostic algorithm. J Gerontol A Biol Sci Med Sci [Internet]. 2014 Apr [cited 2018 Jun 5];69(4):438–46.
581 Available from: <http://www.ncbi.nlm.nih.gov/pubmed/24085400>

582 55. Drummond MJ, Miyazaki M, Dreyer HC, Pennings B, Dhanani S, Volpi E, et al. Expression of growth-
583 related genes in young and older human skeletal muscle following an acute stimulation of protein
584 synthesis. J Appl Physiol [Internet]. 2009 Apr [cited 2018 Apr 25];106(4):1403–11. Available from:
585 <http://www.ncbi.nlm.nih.gov/pubmed/18787087>

586 56. Tanner RE, Brunker LB, Aggergaard J, Barrows KM, Briggs RA, Kwon OS, et al. Age-related differences
587 in lean mass, protein synthesis and skeletal muscle markers of proteolysis after bed rest and exercise
588 rehabilitation. J Physiol [Internet]. 2015 Sep 15 [cited 2018 Apr 25];593(18):4259–73. Available from:
589 <http://www.ncbi.nlm.nih.gov/pubmed/26173027>

590 57. Greig CA, Gray C, Rankin D, Young A, Mann V, Noble B, et al. Blunting of adaptive responses to
591 resistance exercise training in women over 75 y. Exp Gerontol [Internet]. 2011 Nov 1 [cited 2018 Apr
592 16];46(11):884–90. Available from: <https://www.sciencedirect.com/science/article/pii/S0531556511001975?via%3Dihub>

593

594 58. Drummond MJ, Addison O, Brunker L, Hopkins PN, McClain DA, Lastayo PC, et al. Downregulation
595 of E3 ubiquitin ligases and mitophagy-related genes in skeletal muscle of physically inactive, frail older
596 women: A cross-sectional comparison. Journals Gerontol - Ser A Biol Sci Med Sci. 2014;69(8):1040–8.

597 59. Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, et al. Multiple types of skeletal muscle
598 atrophy involve a common program of changes in gene expression. FASEB J [Internet]. 2004 [cited 2018
599 May 1];18(1):39–51. Available from: <https://www.fasebj.org/doi/pdf/10.1096/fj.03-0610com>

600 60. Cuthbertson D, Smith K, Babraj J, Leese G, Waddell T, Atherton P, et al. Anabolic signaling deficits
601 underlie amino acid resistance of wasting, aging muscle. FASEB J [Internet]. 2005 Mar [cited 2018 Apr
602 23];19(3):422–4. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/15596483>

603 61. Drummond MJ, Dickinson JM, Fry CS, Walker DK, Gundermann DM, Reidy PT, et al. Bed rest impairs
604 skeletal muscle amino acid transporter expression, mTORC1 signaling, and protein synthesis in
605 response to essential amino acids in older adults. Am J Physiol Endocrinol Metab [Internet]. 2012 May
606 15 [cited 2018 Apr 25];302(9):E1113-22. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/22338078>

607 62. Malkin I, Williams FMK, Lachance G, Spector T, Macgregor AJ, Livshits G. Low back and common
608 widespread pain share common genetic determinants. Ann Hum Genet. 2014;78(5):357–66.

609 63. Fry CS, Drummond MJ, Glynn EL, Dickinson JM, Gundermann DM, Timmerman KL, et al. Skeletal
610 muscle autophagy and protein breakdown following resistance exercise are similar in younger and older
611 adults. *J Gerontol A Biol Sci Med Sci* [Internet]. 2013 May [cited 2018 Apr 25];68(5):599–607. Available
612 from: <http://www.ncbi.nlm.nih.gov/pubmed/23089333>

613 64. Dickinson JM, Fry CS, Drummond MJ, Gundermann DM, Walker DK, Glynn EL, et al. Mammalian
614 target of rapamycin complex 1 activation is required for the stimulation of human skeletal muscle
615 protein synthesis by essential amino acids. *J Nutr* [Internet]. 2011 May [cited 2018 May 1];141(5):856–62.
616 Available from: <http://www.ncbi.nlm.nih.gov/pubmed/21430254>

617 65. Fry CS, Drummond MJ, Glynn EL, Dickinson JM, Gundermann DM, Timmerman KL, et al. Aging
618 impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. *Skelet
619 Muscle* [Internet]. 2011 Mar 2 [cited 2018 May 2];1(11):1–11. Available from:
620 <http://www.ncbi.nlm.nih.gov/pubmed/21798089>

621 66. Dickinson JM, Gundermann DM, Walker DK, Reidy PT, Borack MS, Drummond MJ, et al. Leucine-
622 enriched amino acid ingestion after resistance exercise prolongs myofibrillar protein synthesis and
623 amino acid transporter expression in older men. *J Nutr* [Internet]. 2014 Nov [cited 2018 May
624 2];144(11):1694–702. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/25332468>

625 67. Dickinson JM, Drummond MJ, Coben JR, Volpi E, Rasmussen BB. Aging differentially affects human
626 skeletal muscle amino acid transporter expression when essential amino acids are ingested after exercise.
627 *Clin Nutr* [Internet]. 2013 Apr [cited 2018 May 2];32(2):273–80. Available from:
628 <http://www.ncbi.nlm.nih.gov/pubmed/22889597>

629 68. GUILLET C, PROD'HOMME M, BALAGE M, GACHON P, GIRAUDET C, MORIN L, et al. Impaired
630 anabolic response of muscle protein synthesis is associated with S6K1 dysregulation in elderly humans.
631 *FASEB J* [Internet]. 2004 Oct [cited 2018 Apr 25];18(13):1586–7. Available from:
632 <http://www.ncbi.nlm.nih.gov/pubmed/15319361>

633 69. Markofski MM, Dickinson JM, Drummond MJ, Fry CS, Fujita S, Gundermann DM, et al. Effect of age on
634 basal muscle protein synthesis and mTORC1 signaling in a large cohort of young and older men and
635 women. *Exp Gerontol* [Internet]. 2015 May [cited 2018 May 2];65:1–7. Available from:
636 <http://www.ncbi.nlm.nih.gov/pubmed/25735236>

637 70. Welch AA, Kelaiditi E, Jennings A, Steves CJ, Spector TD, MacGregor A. Dietary Magnesium Is
638 Positively Associated With Skeletal Muscle Power and Indices of Muscle Mass and May Attenuate the
639 Association Between Circulating C-Reactive Protein and Muscle Mass in Women. *J Bone Min Res*
640 [Internet]. 2016;31(2):317–25. Available from: <https://www.ncbi.nlm.nih.gov/pubmed/26288012>

641 71. Schaap LA, Pluijm SMF, Deeg DJH, Harris TB, Kritchevsky SB, Newman AB, et al. Higher inflammatory
642 marker levels in older persons: associations with 5-year change in muscle mass and muscle strength. *J
643 Gerontol A Biol Sci Med Sci* [Internet]. 2009 Nov [cited 2018 May 2];64(11):1183–9. Available from:
644 <http://www.ncbi.nlm.nih.gov/pubmed/19622801>

645 72. Dillon EL, Casperson SL, Durham WJ, Randolph KM, Urban RJ, Volpi E, et al. Muscle protein
646 metabolism responds similarly to exogenous amino acids in healthy younger and older adults during
647 NO-induced hyperemia. *Am J Physiol Integr Comp Physiol* [Internet]. 2011 Nov [cited 2018 May
648 1];301(5):R1408–17. Available from: <http://www.physiology.org/doi/10.1152/ajpregu.00211.2011>

649 73. Saffrey MJ. Aging of the mammalian gastrointestinal tract: a complex organ system. *Age (Omaha)*
650 [Internet]. 2014 Jun 20 [cited 2018 May 1];36(3):9603. Available from:
651 <http://link.springer.com/10.1007/s11357-013-9603-2>

652 74. Boirie Y, Gachon P, Beaufrère B. Splanchnic and whole-body leucine kinetics in young and elderly men.
653 *Am J Clin Nutr* [Internet]. 1997 Feb 1 [cited 2018 May 2];65(2):489–95. Available from:
654 <https://academic.oup.com/ajcn/article/65/2/489-495/4655358>

655 75. Piasecki M, Ireland A, Piasecki J, Stashuk DW, Swiecicka A, Rutter MK, et al. Failure to expand the motor
656 unit size to compensate for declining motor unit numbers distinguishes sarcopenic from non-sarcopenic
657 older men. *J Physiol*. 2018;

658 76. Stephens FB, Chee C, Wall BT, Murton AJ, Shannon CE, van Loon LJC, et al. Lipid-induced insulin
659 resistance is associated with an impaired skeletal muscle protein synthetic response to amino acid
660 ingestion in healthy young men. *Diabetes* [Internet]. 2015 May 1 [cited 2018 May 2];64(5):1615–20.
661 Available from: <http://www.ncbi.nlm.nih.gov/pubmed/25524913>

662 77. Kilgour AHM, Gallagher IJ, MacLullich AMJ, Andrew R, Gray CD, Hyde P, et al. Increased skeletal
663 muscle 11 β HSD1 mRNA is associated with lower muscle strength in ageing. *PLoS One*. 2013;8(12):8–13.

664 78. Liu W, Klose A, Forman S, Paris ND, Wei-LaPierre L, Cortés-López M, et al. Loss of adult skeletal muscle
665 stem cells drives age-related neuromuscular junction degeneration. *Elife* [Internet]. 2017 Jun 6 [cited
666 2018 Jun 5];6:e26464. Available from: <https://elifesciences.org/articles/26464>

667 79. Wolfe RR. The role of dietary protein in optimizing muscle mass, function and health outcomes in older
668 individuals. *Br J Nutr*. 2012;108(SUPPL. 2):88–93.

669 80. Malafarina V, Uriz-Otano F, Iniesta R, Gil-Guerrero L. Effectiveness of Nutritional Supplementation on
670 Muscle Mass in Treatment of Sarcopenia in Old Age: A Systematic Review. *J Am Med Dir Assoc*
671 [Internet]. 2013;14(1):10–7. Available from: <http://dx.doi.org/10.1016/j.jamda.2012.08.001>

672 81. Dulac MC, Pion CH, Lemieux F, Boutros El Hajj G, Belanger M, Gaudreau P, et al. Differences in muscle
673 adaptation to a 12-week mixed power training in elderly men, depending on usual protein intake. *Exp
674 Gerontol* [Internet]. 2018; Available from:
675 <http://linkinghub.elsevier.com/retrieve/pii/S0531556517305296>

676 82. Nowson C, O'Connell S. Protein requirements and recommendations for older people: A review.
677 *Nutrients*. 2015;7(8):6874–99.

678 83. Stokes T, Hector AJ, Morton RW, McGlory C, Phillips SM. Recent Perspectives Regarding the Role of

679 Dietary Protein for the Promotion of Muscle Hypertrophy with Resistance Exercise Training. *Nutrients*.
680 2018;10(180):1–18.

681 84. Gorissen SHM, Witard OC. Characterising the muscle anabolic potential of dairy, meat and plant-based
682 protein sources in older adults. *Proc Nutr Soc* [Internet]. 2018;77:20–30. Available from:
683 https://www.cambridge.org/core/product/identifier/S002966511700194X/type/journal_article

684 85. van Vliet S, Burd NA, van Loon LJ. The Skeletal Muscle Anabolic Response to Plant- versus Animal-
685 Based Protein Consumption. *J Nutr* [Internet]. 2015;145(9):1981–91. Available from:
686 <http://jn.nutrition.org/cgi/doi/10.3945/jn.114.204305>

687 86. Gorissen SH, Horstman AM, Franssen R, Crombag JJ, Langer H, Bierau J, et al. Ingestion of Wheat
688 Protein Increases In Vivo Muscle Protein Synthesis Rates in Healthy Older Men in a Randomized Trial.
689 *J Nutr* [Internet]. 2016;146(9):1651–9. Available from:
690 <http://jn.nutrition.org/lookup/doi/10.3945/jn.116.231340>

691 87. Poore J, Nemecek T. Reducing food's environmental impacts through producers and consumers. *Science*
692 [Internet]. 2018 Jun 1 [cited 2018 Jun 7];360(6392):987–92. Available from:
693 <http://www.ncbi.nlm.nih.gov/pubmed/29853680>

694 88. Deer RR, Volpi E. Protein Intake and Muscle Function in Older Adults. *Curr Opin Clin Nutr Metab Care*.
695 2015;18(3):248–53.

696 89. Cardon-Thomas DK, Riviere T, Tieges Z, Greig CA. Dietary protein in older adults: Adequate daily
697 intake but potential for improved distribution. *Nutrients*. 2017;9(3):1–10.

698 90. Tomé D. Muscle Protein Synthesis and Muscle Mass in Healthy Older Men. *J Nutr* [Internet].
699 2017;147(12):2209–11. Available from: <http://jn.nutrition.org/lookup/doi/10.3945/jn.117.263491>

700 91. Mamerow MM, Mettler JA, English KL, Casperson SL, Arentson-Lantz E, Sheffield-Moore M, et al.
701 Dietary protein distribution positively influences 24-h muscle protein synthesis in healthy adults. *J Nutr*
702 [Internet]. 2014 Jun [cited 2018 May 1];144(6):876–80. Available from:
703 <http://www.ncbi.nlm.nih.gov/pubmed/24477298>

704 92. Murphy CH, Churchward-Venne TA, Mitchell CJ, Kolar NM, Kassis A, Karagounis LG, et al.
705 Hypoenergetic diet-induced reductions in myofibrillar protein synthesis are restored with resistance
706 training and balanced daily protein ingestion in older men. *Am J Physiol Endocrinol Metab* [Internet].
707 2015 May 1 [cited 2018 Apr 23];308(9):E734–43. Available from:
708 <http://www.ncbi.nlm.nih.gov/pubmed/25738784>

709 93. Witard OC, Wardle SL, Macnaughton LS, Hodgson AB, Tipton KD. Protein Considerations for
710 Optimising Skeletal Muscle Mass in Healthy Young and Older Adults. *Nutrients* [Internet]. 2016 Mar 23
711 [cited 2018 Apr 19];8(4):181. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/27023595>

712 94. Burd NA, West DWD, Moore DR, Atherton PJ, Staples AW, Prior T, et al. Enhanced Amino Acid

713 Sensitivity of Myofibrillar Protein Synthesis Persists for up to 24 h after Resistance Exercise in Young
714 Men. *J Nutr* [Internet]. 2011 Apr 1 [cited 2018 Apr 19];141(4):568–73. Available from:
715 <https://academic.oup.com/jn/article/141/4/568/4630587>

716 95. Conley TB, Apolzan JW, Leidy HJ, Greaves KA, Lim E, Campbell WW. Effect of food form on
717 postprandial plasma amino acid concentrations in older adults. *Br J Nutr* [Internet]. 2011 Jul 4 [cited 2018
718 Apr 19];106(02):203–7. Available from: http://www.journals.cambridge.org/abstract_S0007114511000419

719 96. Walrand S, Gryson C, Salles J, Giraudeau C, Migné C, Bonhomme C, et al. Fast-digestive protein
720 supplement for ten days overcomes muscle anabolic resistance in healthy elderly men. *Clin Nutr*
721 [Internet]. 2016 Jun 1 [cited 2018 Apr 19];35(3):660–8. Available from:
722 <https://www.sciencedirect.com/science/article/pii/S0261561415001302?via%3Dihub>

723 97. Boirie Y, Guillet C. Fast digestive proteins and sarcopenia of aging. *Curr Opin Clin Nutr Metab Care*.
724 2018;21(1):37–41.

725 98. Houston DK, Nicklas BJ, Ding J, Harris TB, Tylavsky FA, Newman AB, et al. Dietary protein intake is
726 associated with lean mass change in older , community-dwelling adults : the Health , Aging , and Body
727 Composition (Health ABC) Study. *Am J Clin Nutr* 2008;87150–5. 2008;87:150–5.

728 99. Isanejad M, Mursu J, Sirola J, Kröger H, Rikkonen T, Tuppurainen M, et al. Dietary protein intake is
729 associated with better physical function and muscle strength among elderly women. *Br J Nutr*.
730 2016;115(7):1281–91.

731 100. Landi F, Calvani R, Tosato M, Martone AM, Picca A, Ortolani E, et al. ANIMAL-DERIVED PROTEIN
732 CONSUMPTION IS ASSOCIATED WITH MUSCLE MASS AND STRENGTH IN COMMUNITY-
733 DWELLERS : RESULTS FROM THE MILAN EXPO SURVEY. *J Nutr Heal Aging*. 2017;21(9):1050–6.

734 101. Zhu K, Kerr DA, Meng X, Devine A, Solah V, Binns CW, et al. Two-Year Whey Protein Supplementation
735 Did Not Enhance Muscle Mass and Physical Function in Well-Nourished Healthy Older
736 Postmenopausal Women. *J Nutr* [Internet]. 2015;145(11):2520–6. Available from:
737 <http://jn.nutrition.org/cgi/doi/10.3945/jn.115.218297>

738 102. Tieland M, Franssen R, Dullemeijer C, van Dronkelaar C, Kim HK, Ispoglou T, et al. The impact of
739 dietary protein or amino acid supplementation on muscle mass and strength in elderly people:
740 Individual participant data and meta-analysis of RCT's. *J Nutr Health Aging* [Internet]. 2017;21(9):994–
741 1001. Available from:
742 <http://www.ncbi.nlm.nih.gov/pubmed/29083440%0Ahttp://link.springer.com/10.1007/s12603-017-0896-1>

744 103. Beaudart C, Rabenda V, Simmons M, Geerinck A, Araujo de Carvalho I, Reginster J-Y, et al. Effects of
745 protein, essential amino acids, B-hydroxy B-methylbutyrate, creatine, dehydroepiandrosterone and fatty
746 acid supplementation on muscle mass, muscle strength and physical performance in older people aged
747 60 years and over. A systematic review of . *J Nutr Health Aging* [Internet]. 2017;1–14. Available from:
748 <http://link.springer.com/10.1007/s12603-017-0934-z>

749 104. Murphy CH, Saddler NI, Devries MC, McGlory C, Baker SK, Phillips SM. Leucine supplementation
750 enhances integrative myofibrillar protein synthesis in free-living older men consuming lower- and
751 higher-protein diets: a parallel-group crossover study. *Am J Clin Nutr* [Internet]. 2016 [cited 2018 May
752 16];104(6):1594–606. Available from: <https://academic.oup.com/ajcn/article/104/6/1594/4668580>

753 105. Verhoeven S. Long-term leucine supplementation does not increase muscle mass or strength in healthy
754 elderly men. *Am J ...* [Internet]. 2009;(April):1468–75. Available from:
755 <http://ajcn.nutrition.org/content/89/5/1468.short>

756 106. Band MM, Sumukadas D, Struthers AD, Avenell A, Donnan PT, Kemp PR, et al. Leucine and ACE
757 inhibitors as therapies for sarcopenia (LACE trial): study protocol for a randomised controlled trial.
758 *Trials* [Internet]. 2018 Jan 4 [cited 2018 Apr 5];19(1):6. Available from:
759 <http://www.ncbi.nlm.nih.gov/pubmed/29301558>

760 107. Deutz NEP, Pereira SL, Hays NP, Oliver JS, Edens NK, Evans CM, et al. Effect of β -hydroxy- β -
761 methylbutyrate (HMB) on lean body mass during 10 days of bed rest in older adults. *Clin Nutr* [Internet].
762 2013;32(5):704–12. Available from: <http://dx.doi.org/10.1016/j.clnu.2013.02.011>

763 108. Deutz NE, Matheson EM, Matarese LE, Luo M, Baggs GE, Nelson JL, et al. Readmission and mortality
764 in malnourished, older, hospitalized adults treated with a specialized oral nutritional supplement: A
765 randomized clinical trial. *Clin Nutr* [Internet]. 2016 Feb 1 [cited 2018 Apr 19];35(1):18–26. Available from:
766 <https://www.sciencedirect.com/science/article/pii/S0261561415003489?via%3Dihub>

767 109. Bo Y, Liu C, Zhe J, Yang R, An Q, Zhang X, et al. A high whey protein, vitamin D and E supplement
768 preserves muscle mass, strength, and quality of life in sarcopenic older adults: a double-blind
769 randomized controlled trial. *Clin Nutr* [Internet]. 2018; Available from:
770 <http://linkinghub.elsevier.com/retrieve/pii/S0261561418300074>

771 110. Daly R., Formica MB, Gianoudis J, Ellis K, O'Connell S. DOES LEAN RED MEAT ENHANCE THE
772 EFFECTS OF EXERCISE ON MUSCLE HEALTH AND FUNCTION IN THE ELDERLY? *Innov Aging*.
773 2017;1(March):3–4.

774 111. Cermak NM, Res PT, Groot LC De, Saris WHM, Loon LJC Van. Protein supplementation augments the
775 adaptive response of skeletal muscle to resistance type exercise training a meta analysis. *Am J Clin Nutr*.
776 2012;96(February):1454–64.

777 112. Cesari M, Fielding RA, Pahor M, Goodpaster B, Hellerstein M, van Kan GA, et al. Biomarkers of
778 sarcopenia in clinical trials-recommendations from the International Working Group on Sarcopenia. *J*
779 *Cachexia Sarcopenia Muscle*. 2012;3(3):181–90.

780 113. Stevens J, Metcalf PA, Dennis BH, Tell GS, Shimakawa T, Folsom AR. Reliability of a food frequency
781 questionnaire by ethnicity, gender, age and education. *Nutr Res* [Internet]. 1996 May 1 [cited 2018 May
782 11];16(5):735–45. Available from: <https://www.sciencedirect.com/science/article/pii/0271531796000644>

783 114. Beaumont M, Portune KJ, Steuer N, Lan A, Cerrudo V, Audebert M, et al. Quantity and source of dietary

784 protein influence metabolite production by gut microbiota and rectal mucosa gene expression: A
785 randomized, parallel, double-blind trial in overweight humans. *Am J Clin Nutr.* 2017;106(4):1005–19.

786 115. Ma N, Tian Y, Wu Y, Ma X. Contributions of the Interaction Between Dietary Protein and Gut Microbiota
787 to Intestinal Health. *Curr Protein Pept Sci* [Internet]. 2017;18(8). Available from:
788 <http://www.eurekaselect.com/150179/article>

789 116. Wilkinson DJ, Brook MS, Smith K, Atherton PJ. Stable isotope tracers and exercise physiology: past,
790 present and future. *J Physiol* [Internet]. 2017;595(9):2873–82. Available from:
791 <http://doi.wiley.com/10.1113/JP272277>

792 117. Macdonald AJ, Small AC, Greig CA, Husi H, Ross JA, Stephens NA, et al. A novel oral tracer procedure
793 for measurement of habitual myofibrillar protein synthesis. *Rapid Commun Mass Spectrom.*
794 2013;27(15):1769–77.

795 118. Sheffield-Moore M, Dillon EL, Randolph KM, Casperson SL, White GR, Jennings K, et al. Isotopic decay
796 of urinary or plasma 3-methylhistidine as a potential biomarker of pathologic skeletal muscle loss. *J*
797 *Cachexia Sarcopenia Muscle* [Internet]. 2014 Mar [cited 2018 Apr 16];5(1):19–25. Available from:
798 <http://www.ncbi.nlm.nih.gov/pubmed/24009031>

799 119. Jeffery IB, O'Toole PW. Diet-microbiota interactions and their implications for healthy living. *Nutrients.*
800 2013;5(1):234–52.

801 120. Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, Cusack S, et al. Gut microbiota composition
802 correlates with diet and health in the elderly. *Nature* [Internet]. 2012;488(7410):178–84. Available from:
803 <https://www.ncbi.nlm.nih.gov/pubmed/22797518>

804 121. Jackson MA, Jeffery IB, Beaumont M, Bell JT, Clark AG, Ley RE, et al. Signatures of early frailty in the
805 gut microbiota. *Genome Med* [Internet]. 2016;8(1):8. Available from:
806 <https://www.ncbi.nlm.nih.gov/pubmed/26822992>

807 122. Ticinesi A, Milani C, Lauretani F, Nouvenne A, Mancabelli L, Lugli GA, et al. Gut microbiota
808 composition is associated with polypharmacy in elderly hospitalized patients. *Sci Rep* [Internet]. 2017
809 Dec 11 [cited 2018 Jun 5];7(1):11102. Available from: <http://www.nature.com/articles/s41598-017-10734-y>

811 123. Jeffery IB, Lynch DB, O'Toole PW. Composition and temporal stability of the gut microbiota in older
812 persons. *ISME J.* 2016;10(1):170–82.

813 124. Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, Cusack S, et al. Gut microbiota composition
814 correlates with diet and health in the elderly. *Nature* [Internet]. 2012;488(7410):178–84. Available from:
815 <http://www.ncbi.nlm.nih.gov/pubmed/22797518>

816 125. Smith P, Willemsen D, Popkes ML, Metge F, Gandiwa E, Reichard M, et al. Regulation of Life Span by
817 the Gut Microbiota in The Short-Lived African Turquoise Killifish. *bioRxiv* [Internet]. 2017 Mar 27 [cited

818 2018 Jun 5];120980. Available from: <https://www.biorxiv.org/content/early/2017/03/27/120980>

819 126. Butteiger DN, Hibberd AA, Mcgraw NJ, Napawan N, Hall-porter JM, Krul ES. Soy Protein Compared
820 with Milk Protein in a Western Diet Increases Gut Microbial Diversity and Reduces Serum Lipids in
821 Golden Syrian Hamsters. *J Nutr.* 2016;146(4):697–705.

822 127. An C, Kuda T, Yazaki T, Takahashi H, Kimura B. Caecal fermentation, putrefaction and microbiotas in
823 rats fed milk casein, soy protein or fish meal. *Appl Microbiol Biotechnol.* 2014;98(6):2779–87.

824 128. Kar SK, Jansman AJM, Benis N, Ramiro-Garcia J, Schokker D, Kruijt L, et al. Dietary protein sources
825 differentially affect microbiota, mTOR activity and transcription of mTOR signaling pathways in the
826 small intestine. *PLoS One.* 2017;12(11):1–19.

827 129. Li Q, Lauber CL, Czarnecki-Maulden G, Pan Y, Hannah SS. Effects of the dietary protein and
828 carbohydrate ratio on gut microbiomes in dogs of different body conditions. *MBio.* 2017;8(1):1–14.

829 130. Gorvitovskaia A, Holmes SP, Huse SM. Interpreting Prevotella and Bacteroides as biomarkers of diet
830 and lifestyle. *Microbiome* [Internet]. 2016 Apr 12 [cited 2018 Jun 5];4:15. Available from:
831 <http://www.ncbi.nlm.nih.gov/pubmed/27068581>

832 131. Singh RK, Chang HW, Yan D, Lee KM, Ucmak D, Wong K, et al. Influence of diet on the gut microbiome
833 and implications for human health. *J Transl Med.* 2017;15(1):1–17.

834 132. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and
835 reproducibly alters the human gut microbiome. *Nature.* 2014;505(7484):559–63.

836 133. Clarke SF, Murphy EF, O’Sullivan O, Lucey AJ, Humphreys M, Hogan A, et al. Exercise and associated
837 dietary extremes impact on gut microbial diversity. *Gut* [Internet]. 2014 Dec 1 [cited 2018 Apr
838 11];63(12):1913–20. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/25021423>

839 134. Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, et al. Dietary intervention impact on
840 gut microbial gene richness. *Nature.* 2013;500(7464):585–8.

841 135. Flint HJ, Duncan SH, Scott KP, Louis P. Links between diet, gut microbiota composition and gut
842 metabolism. *Proc Nutr Soc.* 2015;74(1):13–22.

843 136. De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi L, et al. High-level adherence to a
844 Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. *Gut.*
845 2016;65(11):1812–21.

846 137. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y, Keilbaugh SA, et al. Linking Long-Term Dietary
847 Patterns with Gut Microbial Enterotypes. *Science* (80-). 2011;334(6052):105–8.

848 138. Den Besten G, Lange K, Havinga R, Van Dijk TH, Gerding A, Van Eunen K, et al. Gut-derived short-
849 chain fatty acids are vividly assimilated into host carbohydrates and lipids. [cited 2018 Jun 5]; Available
850 from: <https://www.physiology.org/doi/pdf/10.1152/ajpgi.00265.2013>

851 139. Sonnenburg JL, Bäckhed F. Diet–microbiota interactions as moderators of human metabolism. *Nature*
852 [Internet]. 2016 Jul 7 [cited 2018 Jun 5];535(7610):56–64. Available from:
853 <http://www.nature.com/articles/nature18846>

854 140. Buigues C, Fernández-Garrido J, Pruimboom L, Hoogland AJ, Navarro-Martínez R, Martínez-Martínez
855 M, et al. Effect of a Prebiotic Formulation on Frailty Syndrome: A Randomized, Double-Blind Clinical
856 Trial. *Int J Mol Sci* [Internet]. 2016 Jun 14 [cited 2018 Jun 5];17(6). Available from:
857 <http://www.ncbi.nlm.nih.gov/pubmed/27314331>

858 141. Cerdá B, Pérez M, Pérez-Santiago JD, Tornero-Aguilera JF, González-Soltero R, Larrosa M. Gut
859 Microbiota Modification: Another Piece in the Puzzle of the Benefits of Physical Exercise in Health?
860 *Front Physiol* [Internet]. 2016 [cited 2018 Jun 5];7:51. Available from:
861 <http://www.ncbi.nlm.nih.gov/pubmed/26924990>

862 142. Clark A, Mach N. The Crosstalk between the Gut Microbiota and Mitochondria during Exercise. *Front*
863 *Physiol* [Internet]. 2017 [cited 2018 Jun 5];8:319. Available from:
864 <http://www.ncbi.nlm.nih.gov/pubmed/28579962>

865 143. Krezalek MA, Yeh A, Alverdy JC, Morowitz M. Influence of nutrition therapy on the intestinal
866 microbiome. *Curr Opin Clin Nutr Metab Care*. 2017;20(2):131–7.

867 144. Bear DE, Wandrag L, Merriweather JL, Connolly B, Hart N, Grocott MPW. The role of nutritional
868 support in the physical and functional recovery of critically ill patients: A narrative review. *Crit Care*.
869 2017;21(1):1–10.

870 145. Ferrie S, Allman-Farinelli M, Daley M, Smith K. Protein Requirements in the Critically Ill: A Randomized
871 Controlled Trial Using Parenteral Nutrition. *J Parenter Enter Nutr*. 2016;40(6):795–805.

872 146. Russell WR, Gratz SW, Duncan SH, Holtrop G, Ince J, Scobbie L, et al. High-protein, reduced-
873 carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health.
874 *Am J Clin Nutr*. 2011;93:1062–72.

875 147. van de Rest O, Schutte BAM, Deelen J, Stassen SAM, van den Akker EB, van Heemst D, et al. Metabolic
876 effects of a 13-weeks lifestyle intervention in older adults: The Growing Old Together Study. *Aging*
877 (Albany NY) [Internet]. 2016;8(1):111–26. Available from:
878 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4761717/>
879 abstract

880 148. Marzetti E, Calvani R, Landi F, Hoogendoijk EO, Fougère B, Vellas B, et al. Innovative Medicines
881 Initiative: The SPRINTT Project. *J frailty aging* [Internet]. 2015 Dec 1 [cited 2018 Apr 19];4(4):207–8.
882 Available from: <http://www.ncbi.nlm.nih.gov/pubmed/26693163>

883 149. Ferrando AA, Lane HW, Stuart CA, Davis-Street J, Wolfe RR. Prolonged bed rest decreases skeletal
884 muscle and whole body protein synthesis. *Am J Physiol* [Internet]. 1996 Apr [cited 2018 May 2];270(4 Pt
885 1):E627–33. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/8928769>

886 150. Dhurandhar N V, Schoeller D, Brown AW, Heymsfield SB, Thomas D, Sorensen TIA, et al. Energy
887 Balance Measurement: When Something is Not Better than Nothing. *Int J Obes*. 2015;39(7):1109–13.

888 151. Garcia-Perez I, Posma JM, Gibson R, Chambers ES, Hansen TH, Vestergaard H, et al. Objective
889 assessment of dietary patterns by use of metabolic phenotyping: a randomised, controlled, crossover
890 trial. *Lancet Diabetes Endocrinol* [Internet]. 2017;5(3):184–95. Available from:
891 [http://dx.doi.org/10.1016/S2213-8587\(16\)30419-3](http://dx.doi.org/10.1016/S2213-8587(16)30419-3)

892