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11 Abstract: Muscle mass, strength and physical function are known to decline with age. This is associated with
12 the development of geriatric syndromes including sarcopenia and frailty. These conditions are associated with
13 disability, falls, longer hospital stay, higher readmission rates, institutionalisation, osteoporosis, and death.
14 Moreover, they are associated with reduced quality of life, as well as substantial costs to health services around
15 the world. Dietary protein is essential for skeletal muscle function. Older adults have shown evidence of
16 anabolic resistance, where greater amounts of protein are required to stimulate muscle protein synthesis and
17 therefore require higher daily amounts of dietary protein. Research shows that resistance exercise has the most
18 beneficial effect on preserving skeletal muscle. A synergistic effect has been noted when this is combined with
19 dietary protein, yet studies in this area lack consistency. This is due, in part, to the variation that exists within
20 dietary protein, in terms of dose, quality, source, amino acid composition and timing. Research has targeted
21 participants that are replete in dietary protein with negative results. Inconsistent measures of muscle mass,
22 muscle function, physical activity and diet are used. This review attempts to summarise these issues, as well
23 as introduce the possible role of the gut microbiome and its metabolome in this area.
24 Keywords: protein; skeletal muscle; sarcopenia, gut microbiome, metabolome, diet, supplementation
25

26 1. Introduction

27  Skeletal muscle has several important functions beyond locomotion, including insulin-stimulated glucose
28  uptake, regulation of extracellular potassium, influence on bone density via mechanical force on bones, and
29  whole-body protein metabolism (1). Age associated loss of muscle mass starts as early as age thirty, and is a
30  gradual process (1). Typically there is a greater loss of type II fibres; those which are useful for short bursts of
31  speed and power, and the main ones involved in preventing a fall (1). Older people also lose more skeletal
32 muscle with bedrest than their younger counterparts (2). Sarcopenia is a geriatric syndrome defined as the age-
33 related loss of skeletal mass and function, which is quantified by specific objective measures of muscle mass,
34 strength and physical function (3). Sarcopenia is distinct from frailty although the two conditions may overlap.
35  Frailty is defined as increased vulnerability after a stressor event, with increased risk of adverse outcomes (4).
36 A summary of the consequences of loss of skeletal muscle and sarcopenia in older adults is illustrated in Figure
37 1(5-9). In terms of cost, it has been estimated that reducing the prevalence of sarcopenia by 10% in the United
38  States would save $1.1 billion in healthcare costs annually (10).

39

40  One major risk factor for the development of sarcopenia is protein-energy malnutrition (11). Indeed the
41  Women’s Health Initiative, an American study on over 24,000 women age 65-79 years, reported a 12% lower

42 risk of frailty in those with a 20% increase in protein intake over a three year period (12). High protein intake is
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43 associated with increased bone mineral density, reduced rehabilitation time after acute illness, better
44 cardiovascular function, improved mortality in ventilated patients, healing of pressure ulcers, and reduced risk
45  of surgical complications (11,13-15). As life expectancy worldwide has more than doubled over the past two
46  centuries, the importance of understanding and optimising muscle function in older age is paramount.

47

48  Among the twenty-one amino acids necessary for protein synthesis in humans, nine are referred to as ‘essential
49  amino acids’ (EAAs). These are nutritionally essential as they cannot be synthesised in the body (16). Leucine
50  is an EAA that is considered the key regulator of muscle protein anabolism via its activity in activation of the
51  mTOR pathway and inhibition of the proteasome (11). Animal studies also suggest it may suppress muscle
52 protein breakdown (MPB) (17). Optimisation of dietary protein and EAA intake in older adults has been
53 suggested to prevent the development of sarcopenia and skeletal muscle loss.

54

55  The role of the gut microbiome in healthy as well as disease states is an ever-growing area of interest to
56  researchers. The gut microbiome has a collective genome size that is 150-fold that of the human host (18), and
57 it has been argued that the metabolic activity and size of our gut microbiome is sufficient to warrant its
58  consideration as one of the organs of the human body, with its own intrinsic functions and metabolic needs
59  (19). Over the age of 65, the resilience of the gut microbiome is reduced, as it becomes more vulnerable to
60  medications, disease and changes in lifestyle, with changed species richness and increased inter-individual
61  variability (20). This review aims to summarise the available literature on dietary protein and skeletal muscle

62  in older adults, with a focus on the potential role of the gut microbiome and metabolome.
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Figure 1: Consequences of loss of skeletal muscle and sarcopenia in older adults

2. Patient Factors

A reduced appetite is common in older adults (21,22). This has been linked to reduced acuity of taste and smell,
poor oral health and dentition, reduced chewing efficiency, medications causing reduced saliva production,
and changes in the digestive system such as slower gastric emptying and reduced ghrelin levels (21-23). These
factors lead to smaller portions being consumed and changes in dietary choices. The prevalence of dysphagia
has been estimated at 13% in those over 65 years (24), and is associated with reduced oral intake and
malnutrition (25). Pureed or softened diets may lead to reduced intake of meat, which is likely to result in
reduced dietary protein intake. Reduced meat consumption in the older population has also been reported
elsewhere (22,26).

Chronic disease is common in older adults, with an estimated 40-75% of all people over 65 having a limiting
chronic illness (27,28), which can lead to increased catabolism of protein. Many conditions come with dietary
restrictions, for example diabetes, chronic kidney disease etc. Rates of polypharmacy are also increased with
age, with up to 70% of over 80s taking more than four medications (29). Medication side effects such as dry

mouth, nausea, etc. can influence oral intake.

Mobility and access to shopping is a key factor in shaping the dietary habits of older adults (22,30). Falls and

fear of falling may reduce mobility (31) and therefore influence the ability of older adults to mobilise for
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83  shopping, meal preparation and food consumption. Vision is another important factor in shopping and
84  preparing food, with increasing prevalence of poor visual acuity with increasing age (32). A recent qualitative
85  study assessed 30 older adults’ food choices and dietary habits and noted that living alone, with associated
86  social isolation and loneliness, had a significant impact on diet. Many showed a lack of motivation for cooking
87  and eating alone (22). Indeed bereavement and living alone have been associated with worse nutrition, while
88  marriage has been linked to better diet quality in older men (22).

&9

90  Lastly, socioeconomic status has an influence on dietary choices amongst older people. Lower socioeconomic
91  scores have been associated with lower diet quality, and the price of food is a factor in food decisions (22). The
92  estimated cost of malnutrition in England is £19.6 billion per year, with approximately half of this being
93  attributed to people over 65 (27). In addition to the huge costs associated with frailty and sarcopenia, poor
94 nutrition is extremely costly to our healthcare systems. As the population ages, we can expect these costs to
95  increase accordingly. Please refer to Figure 2 for a summary of the factors leading to lower protein intake in
96  older adults.
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Poor oral Reduced
health appetite
Reduced
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99 Figure 2: Factors leading to lower protein intake in older adults

102 3. Anabolic Resistance
103 Skeletal muscle mass is regulated by the processes of muscle protein synthesis (MPS) and MPB. MPS rates are
104  largely controlled by responsiveness to anabolic stimuli, such as consumption of food, and physical activity.

105  Catabolic stressors include illness, physical inactivity and inflammation, of which the older population tend to
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106  have higher rates. Ageing does not seem to influence MPB to the same degree as MPS, hence MPS is typically
107  considered the more appropriate target for intervention.

108

109  Older adults have shown evidence of ‘anabolic resistance’, whereby a higher dose of protein is required to
110 achieve the same MPS response as a younger person (1,16,33-35). ). The aetiology of these impairments may lie
111 within the aging process, chronic disease or others such as physical inactivity (see Table 1). There are multiple
112 mechanisms postulated and may involve impairments at some, if not all, levels of protein metabolism (see Table
113 2).

114

115 The concept of anabolic resistance is still questioned by some however, with a systematic review by Shad et al.
116  (2016) finding 18 papers with sufficient evidence of age-related muscle anabolic resistance, and 30 papers which
117  did not (6). It is our view that these negative results are possibly due to some of the following methodology and
118  study design limitations; a recurrent these in this area of research. The review only included studies of healthy
119  individuals, 15 of which had only male participants. Discrepancies among the studies included were
120 substantial, including the dose, source and leucine-content of the supplementation, the intensity and volume of
121  exercise, and the use of exercise or protein in isolation or in combination (6). There may also be a sex-difference
122 in anabolic resistance (36,37), which has received almost no attention in the literature.

123

124  Table 1. Factors influencing anabolic resistance

Anabolic Resistance Aetiology References
Declining activity levels (1,11,38-40)
Protracted disuse events (11,41-44)
Chronic inflammation (39,45-48)
Insulin resistance (1,46,48-51)
Higher circulating oxidative and inflammatory stressors (1,39,49)
Obesity (46,52)
Reduced oestrogen/testosterone (1,54)
Increased production of catabolic hormones such as cortisol (49)
Alcohol (53)
Smoking 1
Poor vitamin D status (39)
Reduced food intake (39)
Metabolic acidosis 1
More chronic & acute disease in older adults (increased catabolic conditions) (15)

125

126

127
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129

Table 2. Molecular mechanisms implicated in anabolic resistance

Anabolic Resistance Mechanisms References
Differences in gene expression of proteins involved in MPS (55-59)
Dysregulation of key signalling proteins in the mTOR pathway (1,48,56,57,60-62)
Decreased phosphorylation of mTORC1 (48,60,63-65)
Impaired transport of amino acids into muscle/peripheral tissues (39,61,66,67)
Diminished mRNA translational signalling (60,65,68,69)
Inflammation (raised TNFa/ IL-6/ hs-CRP/NFkB) (1,48,60,70,71)
Decreased phosphorylation of transcription factors (e.g. p70S6K, S6K1) (48,60,61,68)
Dysregulation of nutritive blood flow to skeletal muscle (39,51,72)
Attenuated protein digestion & absorption (39,73,74)
Mitochondrial dysfunction (1,20,58)
Autophagy/mitophagy dysfunction (1,58)
Denervation of muscle fibres (39,75)
Higher splanchnic extraction of protein (15,74)
Lipid-induced muscle insulin resistance (20,76)
Increased AMPKa phosphorylation (leads to increased MPB) (56)
Increased cortisol generation within muscle by 11bHSD1 (77)

Loss of skeletal muscle stem cells (78)
Insufficient protein dose given in the trial (6)
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Figure 3: Factors leading to loss of skeletal muscle and sarcopenia in older adults
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130 4. Dietary Protein

131 4.1. Quantity of Protein

132 Itisnow considered consensus that a higher RDA of 1-1.3g/kg/day should be consumed by older adults (1,79
133 82), to offset catabolic conditions. Indeed the PROT-AGE Study Group advise that those with severe illness or
134 injury or with marked malnutrition may need as much as 2.0 g/kg/day (15). There is significant variability in
135  the protein quantity administered in studies, which is highly relevant considering the MPS response to protein

136  isbelieved to be dose-dependent.
137

138 4.2. Quality of Protein

139 Some proteins, such as wheat protein, are deemed lower quality, as they lack or are low in one or more EAAs
140  and fail to stimulate MPS to the same degree as higher quality sources (83). Red meat contains a balanced
141  amount of all EAAs (45), however older adults eat less red meat than their younger counterparts. The definition
142 of protein quality has evolved and now typically includes digestibility and absorption, as well as amino acid

143 composition.

144

145 4.3. Source of Protein

146  Worldwide ~60% of protein consumed is from plant sources (84), however animal sources predominate in
147  Europe and the United States. Plant proteins tend to have lower digestibility, and lower leucine content (84,85),
148  while meat contains more EAAs per weight than any other food (11). Gorissen et al. (2016) compared protein
149  infusions given to healthy older men. They reported an increased MPS rate in animal versus plant source, and
150  within animal sources (e.g. whey preferable to casein) (86). Little is known about other protein sources such as
I51  mycoprotein, aquatic algae etc. (85). Further research into protein sources is necessary to identify optimal agents
152 forolder adults, particularly in the context of growing concerns about the environmental impact of certain foods
153 (87).

154

155 4.4. Timing of Protein

156  Timing of protein consumption both throughout the day (1,16,88), and in relation to exercise (35), has been an
157  issue of debate. Cardon-Thomas et al. (2017) assessed per meal protein intake of older adults, and reported
158  adequate daily totals, but no participants achieved adequate per-meal protein intake (89). Some have argued
159  that evenly spread intake across meals may be beneficial for MPS, as may pre-sleep protein ingestion (90,91).
160  Murphy et al. (2015) compared skewed to evenly distributed protein intake throughout the day in 20
161  overweight older men. They found greater MPS in those with balanced protein distribution (92). This has been
162  debated by others who reported that total protein intake, irrespective of the pattern, was the most important
163 factor in maximising the anabolic response (13).

164

165  Resistance exercise and protein ingestion have a synergistic positive effect on MPS, with highest level of MPS
166  approximately one-hour post exercise (93). In young men, Burd et al. (2011) reported that the sensitivity of the

167  muscle to protein is increased for 24 hours post exercise (94). More research is needed to establish the
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168  importance of protein intake distribution in older adults, whether an anabolic window exists post exercise, and

169  if so whether supplementation of protein during this window elicits a greater response in MPS.

170

171 4.5. Speed of Protein Digestion

172 A fast-digestive protein, such as whey, is one which releases its amino acids relatively quickly in the digestive
173 process. Studies have shown improved MPS with fast digestive proteins (95,96), albeit in healthy participants.
174 Many now recommend that we use fast-digestive proteins in older adults and disease states such as sarcopenia,
175  in order to maximise the benefits on skeletal muscle function (15,97).

176

177

178 5. Protein and Skeletal Muscle

179  Observational studies give weight to the hypothesis that poor protein intake contributes to sarcopenia and poor
180  clinical outcomes. Three large studies have supported an association between protein intake and muscle

181  strength and mass, although results have conflicted on whether this is confounded by fat mass (98-100).
182

183 5.1. Protein Supplementation Studies

184  Clinical trials of protein supplementation have shown varying results. Multiple trials carried out in healthy
185  replete older adults, without an exercise intervention, have been negative (101-103). Systematic reviews have
186  concluded that the most promising results are for specific EAAs, particularly leucine, but also its metabolite B-
187  hydroxy B-methylbutyric acid (HMB) (7,49,103). However, studies of leucine supplementation have had mixed
188  results, with some promising findings (35,49,104), and some negative trials (49,105). There is currently a large
189  ongoing multi-centre trial assessing the benefits of leucine in patients with sarcopenia (106).

190

191  The Deutz study group have done a number of trials showing improvements in muscle mass and nutritional
192 status with HMB supplementation and more work is needed to definitively establish its benefits (107,108). Both
193 leucine and HMB hold promise for those in whom suboptimal quantities of protein are consumed, for example
194 older adults with smaller appetites, poor oral health etc. Supplementation with these more targeted regulators
195  of MPS may be most effective for overcoming anabolic resistance in this cohort.

196

197  Some trials have combined protein with other nutritional supplements. For example Bo et al. (2018) assessed
198  combined supplementation of whey protein, vitamin E and D in their cohort of sixty adults with sarcopenia
199  and reported improvements in both muscle mass and strength (109). However this design can make

200  interpretation of where exactly the benefits lie difficult.
201

202 5.2. Protein Supplementation & Exercise

203  Exercise is recognised as a potent stimulator of anabolic response in muscle. In all ages protein intake and
204  exercise act synergistically to increase MPS. Multiple trials have reported greater improvements in muscle mass,
205  muscle strength, and physical function when protein intake is combined with exercise, particularly resistance
206  training (35,45,110).
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207

208  Cermak et al. (2012) carried out a meta-analysis of trials assessing protein supplementation in the context of
209  resistance training (111). Interestingly, amongst the six studies looking at older adults (>50 years, 215 subjects),
210 none had found significance in fat free mass (FFM) versus placebo. However, when the data were pooled,

211  protein supplementation was found to increase FFM by 38% versus placebo (111).

212

213 5.3. Issues with Protein Supplementation Trials

214 Conlflicting results are not uncommon in this area. Issues with trials include short follow up time, small sample
215  sizes with insufficient power, different doses of protein used, different sources of protein, different settings
216  (hospital vs community), inconsistent timing of supplementation, use of fast versus slow digestive proteins,
217  supplementing replete populations, and heterogeneity of populations studied, as well as substantial variation
218  in the measures used to monitor dietary protein intake. Indeed The International Sarcopenia Initiative (2014)
219  carried out a systematic review and concluded that the results of nutritional supplementation trials are
220  equivocal due to low numbers of high quality studies and heterogeneous study design (7).

221

222 A key consideration is ensuring participants have adequate baseline energy requirements. Supplementing
223 protein in the context of insufficient energy intake will lead to protein being metabolised for energy, rather than
224  leading to increased MPS (82). This is likely to be especially relevant in older adults with reduced appetites.
225  Furthermore, a large variety of measures are used for estimating muscle mass, muscle strength and physical
226  function (see supplementary tables 1, 2 and 3). The International Working Group on Sarcopenia recommended
227  that Computed Tomography and Magnetic Resonance Imaging (MRI) equally be considered the gold standard
228  imaging techniques and discouraged the use of Bioelectrical Impedance Analysis due to its inaccuracy (112).
229  Dual-energy X-ray absorptiometry (DXA) is the most commonly used measure of muscle mass, however FFM
230  and muscle protein mass can be overestimated due to water retention and/or lipid content of muscle in older
231 adults (82). More high quality, well designed research is needed in this area, to determine the benefits of protein

232 supplementation in older adults, with and without exercise.

233

234 5.4. Surrogate Markers of Protein Intake

235  Studies use multiple ways of estimating dietary protein intake (see supplementary table 5). The validity and
236  reliability of these dietary measures has usually been verified in younger populations and may not be relevant
237  toolder people. Indeed reduced reliability coefficients of the Food Frequency Questionnaire have been reported
238  with increasing age (113).

239

240  In order to overcome this, researchers have sought objective estimates of dietary intakes. Protein is the major
241  nitrogen-containing substance in the body, and therefore urinary excretion of nitrogen is used as a marker of
242 protein loss (33,101). Urinary (45,114) and blood urea concentration (114), and urinary HMB levels (107) have
243 also been used with the aim of objectively verifying compliance. These methods are not without limitations, as
244 they may not consider subtle changes with protein metabolism that occur with age, such as increased splanchnic
245  uptake (15). The amount of fermentation metabolites detectable in the urine depends on the digestibility of the
246  protein (115), so this too, needs to be considered.
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247

248  Other novel techniques in this area include the measurement of MPS using oral labelled isotopes such as
249  deuterium oxide or 3-Methylhistidine, which can be measured via a single blood or urine test the following day
250  (116-118). These methods are less invasive and significantly cheaper than intravenous versions. These
251  techniques represent significant advances in an area with challenging methods, and show promise in measuring

252  efficacy of interventions, as well as providing mechanistic insights into the sarcopenic phenotype.

253

254

255 6. The Role of the Gut Microbiome

256  The composition of the bacterial species in one’s gut is dependent on age, diet, health, and geographical
257  location, with significant individual variability (119,120). Multiple cross-sectional studies have found
258  associations between gut microbiome composition and frailty (120-123), while the ELDERMET study showed
259  significant loss of diversity amongst people in a care-home setting versus community dwellers (124). Among
260  olderhospitalised patients, polypharmacy has been significantly associated with gut microbiota dysbiosis (122).
261  Evidently, the gut microbiome has been implicated in many aging-associated processes, with recent animal
262  studies even showing that transferring gut microbes of young killifish to older ones extends the lifespan of the
263 older fish (125). It has been hypothesised that a gut-muscle axis exists. More research is warranted to explore
264  this theory (20).

265

266  6.1. Animal Models

267  Many animal models have been used in the study of the gut microbiome (see supplementary table 4). Studies
268  carried out in mice, rats and hamsters have shown higher microbial diversity in those fed soy protein versus
269  animal protein (126,127) and increased abundance of Bacteroidales family S24-7 in those fed soy protein versus
270  other diets (128). Li et al. (2017) assessed high protein, low carbohydrate diets in dogs and found increased
271  abundance of Clostridium hiranonis, Clostridium perfringens, and Ruminococcus gnavus, as well as decreased
272 Bacteroidetes to Firmicutes ratio and an increase in the Bacteroides to Prevotella ratio (129), the latter of which has

273  been proposed as a biomarker of good health (130).
274

275 6.2. Human Data

276  The digestive system consists of a complex interaction between digestive secretions, intestinal conditions, and
277  the gut microbiome. Nutrients, especially dietary proteins, provide energy sources for the host, as well as
278  substrates for the gut microbiota (115). A significant proportion of undigested peptides and proteins can reach
279  the colon, and this is increased in the context of a high protein diet (114). Consumption of proteins with high
280  digestibility, or a low protein diet, results in less protein reaching the colon, limiting the amount available for
281  protein-fermenting bacteria (115). Work done in this area has shown that a high protein diet does shift the gut
282  microbiome from carbohydrate to protein fermentation, with a diverse metabolic output including branched-
283  chain fatty acids, ammonia, amines and others (114).

284

285  Ithasbeen reported that protein consumption is correlated positively with gut microbiome diversity (131). This

286  is based on studies carried out on healthy volunteers (132), elite athletes (133), and obese/overweight
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287  individuals (134). The source of protein is influential, with plant protein associated with more Bifidofacterium,
288 Lactobacillus, Roseburia, Eubacterium rectale, and Ruminococcus bromii; and less Bacteroides and Clostridium
289  perfringens (131,132). Meanwhile animal protein is associated with higher levels of Bacteroides, Alistipes, Bilophila
290  and Ruminococcus, and lower levels of Bifidobacterium (131,132). High levels of Bacteroides have also been
291  reported with Western diets, which are high in protein and animal fat (18), although it has been suggested that
292  differences in fat content, rather than protein, is the major influencing factor here (135).

293

294  Significant associations have been reported between increased levels of faecal short chain fatty acids (SCFAs),
295  Prevotella and some Firmicutes, with consumption of a Mediterranean diet (20,136), which is typically lower in
296  protein than animal-based diets, although may contain high levels of plant-source protein. Indeed, certain
297  microbial clusters are associated with long term dietary patterns (18). Clusters can change within 24 hours of
298  controlled feeding, however research shows that microbiome composition is far more influenced by long term
299  diet patterns, rather than acute changes (137). Dietary pattern studies make assessment of the contribution of
300  each macronutrient difficult.

301

302 A healthy gut microbiome plays a role in many of the physiological processes implicated in the
303  mechanisms for the development of anabolic resistance (see table 2). These include suppression of chronic
304  inflammation, prevention of insulin resistance, modulation of host gene expression, enhancement of
305  antioxidant activity and maintenance of gut barrier function (20). A reduced rate of dietary protein digestion
306  has also been hypothesised as one of the processes involved (84). Indeed production of SCFAs by the gut
307  microbiome has been associated with anabolism itself (138) and depletion of taxa producing SCFAs may
308  promote anabolic resistance (139). A randomised controlled trial has been carried out exploring the effect
309  of modulating the gut microbiome on muscle function and frailty, where 60 older adults received a
310  prebiotic or placebo for 13 weeks. Promisingly, both exhaustion and handgrip strength were significantly
311  improved in the treatment arm (140), highlighting the potential role for the gut microbiome in future
312 interventions, but the study remains to be replicated.

313

314  There is increasing evidence for the association between exercise and the gut microbiome, which may be
315  secondary to both host health and diet (141,142). Claesson et al. (2012) showed that gut microbiota diversity is
316  inversely correlated with physical function in frail older adults (120), suggesting a potential role for the gut
317  microbiome in the development of, and therefore potentially prevention of, sarcopenia (20). The gut
318  microbiomes of critically ill patients on average display enrichment of virulent pathogens, and loss of health-
319  promoting microbes (143). Protein supplementation has shown some benefits for muscle parameters in this
320  population (144,145), but whether this effect is modulated by the gut microbiome is not known.

321

322 The hypothesis that the dysbiotic gut plays a role in the loss of skeletal muscle and response to protein is yet to
323 be tested. If supported, the gut microbiome could represent a target for interventions aiming to overcome
324  anabolic resistance, to maintain muscle mass and strength in older adults.

325

326
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327  6.2. The Metabolome

328  Studies assessing the specific effect of dietary protein on gut microbiota composition are limited and some of
329  the work done thus far has focused instead on the altered fermentation products. Trials using 'H-nuclear
330  magnetic resonance (NMR) technology have shown a shift in bacterial metabolism with different metabolite
331  profiles according to the source of protein (114) and one study of high-protein, low-carbohydrate diets in 17
332 obese men reported increased hazardous metabolites (e.g. N-nitrosamines), and decrease in cancer-protective
333 metabolites (e.g. ferulic acid) in their faecal samples (146). Indeed a growing number of studies are using 'H-
334 NMR technology to assess faecal, urinary and plasma metabolomes as measures of metabolic health [e.g. (147)].
335  More research is needed into the use of the metabolome in the context of dietary protein intake, and the

336  significance of changes in the metabolome for skeletal muscle mass and function.

337

338  7.Discussion

339 As the world’s population ages, it has become imperative to gain more understanding of the aging process.
340  Declines in muscle mass and function with age have significant associated morbidity and mortality, and the
341  prevalence of both sarcopenia and frailty is increasing. The care of older people is complex, and a multitude of
342 factors influence lower protein intake and loss of skeletal muscle with age (see Figures 1 and 2).

343

344 Anabolic resistance is likely to result from cumulative declines across multiple physiological systems, with
345  effects on both MPS and MPB, a dynamic interaction of multiple factors (see Figure 3). Current thinking must
346  notbe limited to one or two mechanisms but focus on anabolic resistance as a complex and multidimensional
347  construct. The aetiologies and mechanisms involved are not understood and may be different for each aging
348  individual, suggesting a possible need for personalised medicine within this population to guide future
349  interventions.

350

351  Dietary protein is essential for skeletal muscle and it has been established that older adults require a higher
352  RDA of dietary protein. Research suggests that better quality protein, especially that containing higher
353  quantities of leucine, is likely to benefit muscle health in the older population. The importance of timing of
354  protein administration needs to be more clearly understood, and the potential benefit on skeletal muscle of fast-
355  versus slow-digestive proteins is another question yet to be answered. A significant amount of work has
356  focused on protein source, with animal sources typically containing more leucine, greater digestibility and
357  achieving a higher MPS responses. That said, meat intake declines with age, and chewing and poor oral health
358  canbe an issue for older adults. There are also increasing concerns about the environmental impact of animal
359  sourced food (85). Furthermore, research is needed to confirm whether increases in MPS, muscle mass and/or
360  muscle strength lead to meaningful functional outcomes in this older demographic.

361

362  Studies show that supplementing protein/EAAs, particularly in combination with resistance exercise, is
363  beneficial for aging muscle. However, many trials have had conflicting results. As with all nutritional studies,
364 it is difficult to ensure the adherence of participants to the intervention, and to quantify the impact of non-
365  compliance on the results. Trials of nutritional supplements in participants already replete have limited usage,
366  and a wide variety of measures and assessments are currently being used. This heterogeneity leads to significant

367  uncertainty amongst current evidence and makes clinical translation of findings extremely difficult. High
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368  quality studies are needed to establish standardised, feasible measures of muscle mass, strength and physical
369  function for future work in this area. Personalised dietary recommendations may show promise going forward,
370  and this is currently being assessed in a large randomised controlled trial of a multi-component intervention in
371  the management of sarcopenia (148).

372

373  Difficulties in carrying out accurate studies in this area are highlighted by the use of such extreme methods as
374  Ferrando et al. (1996), in which volunteers were required to stay for 22 days in the lab, 7 of which were for diet
375  stabilisation, and 15 of which were spent in strict head-down bed rest (149). Others have employed similar
376  methods (42). With limited funding throughout academia, the feasibility of such trials is limited. Some ways in
377  which shortcomings can be addressed include twin studies, reducing heterogeneity at baseline, more consistent
378  use of measures throughout studies, use of standardised diets prior to interventions, and the development of
379  standardised measures of muscle mass, muscle function, physical activity, and diet. In light of the low levels of
380  reliability of our current dietary recording methods (150), the use of the metabolome may represent an objective
381  and reliable way of assessing compliance with dietary interventions going forward (151). Novel techniques in
382  the measurement of MPS, such as the use of oral heavy water as a stable isotope, show significant promise for
383  future research in this field.

384

385  Few human studies have evaluated the effects of the gut microbiome on dietary protein metabolism, and the
386  ensuing metabolome or vice versa, and those that have, have had limitations such as highly heterogeneous
387  groups at baseline, short intervention periods, variation in dietary measures used, different sample storage
388  methods, and disparate lab processing. Animal studies have shown promise, and the one available human trial
389  on gut microbiome modulation showed positive improvements in muscle function (140). Research is needed to
390  establish whether a dysbiotic gut microbiome contributes to skeletal muscle loss in the context of acute/or
391  chronic illness, or indeed in the aging process itself. Furthermore, the potential role of the gut microbiome in
392 anabolic resistance warrants further investigation. The plasticity and diversity of the gut microbiome and its
393 metabolome, in comparison to the human genome, represent exciting prospects for personalised medicine, and

394  indeed, in the role of dietary protein in skeletal muscle function of older adults.

395
396
397
398
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