
Review 1 

Dietary Protein and Muscle in Aging People: The Potential 2 

Role of the Gut Microbiome 3 

 4 
Mary Ni Lochlainn 1, 2,*, Ruth C. E. Bowyer 1 and Claire J. Steves 1, 2, 5 

1 The Department of Twin Research, Kings College London, 3-4th Floor South Wing Block D, St Thomas' 6 
Hospital, Westminster Bridge Road, SE1 7EH 7 

2 Clinical Age Research Unit, Kings College Hospital Foundation Trust, London, UK 8 
* Correspondence: marynilochlainn@gmail.com 9 
  10 

Abstract: Muscle mass, strength and physical function are known to decline with age. This is associated with 11 
the development of geriatric syndromes including sarcopenia and frailty. These conditions are associated with 12 
disability, falls, longer hospital stay, higher readmission rates, institutionalisation, osteoporosis, and death. 13 
Moreover, they are associated with reduced quality of life, as well as substantial costs to health services around 14 
the world. Dietary protein is essential for skeletal muscle function. Older adults have shown evidence of 15 
anabolic resistance, where greater amounts of protein are required to stimulate muscle protein synthesis and 16 
therefore require higher daily amounts of dietary protein. Research shows that resistance exercise has the most 17 
beneficial effect on preserving skeletal muscle. A synergistic effect has been noted when this is combined with 18 
dietary protein, yet studies in this area lack consistency. This is due, in part, to the variation that exists within 19 
dietary protein, in terms of dose, quality, source, amino acid composition and timing. Research has targeted 20 
participants that are replete in dietary protein with negative results. Inconsistent measures of muscle mass, 21 
muscle function, physical activity and diet are used. This review attempts to summarise these issues, as well 22 
as introduce the possible role of the gut microbiome and its metabolome in this area. 23 
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 25 
1. Introduction 26 

Skeletal muscle has several important functions beyond locomotion, including insulin-stimulated glucose 27 
uptake, regulation of extracellular potassium, influence on bone density via mechanical force on bones, and 28 
whole-body protein metabolism (1). Age associated loss of muscle mass starts as early as age thirty, and is a 29 
gradual process (1). Typically there is a greater loss of type II fibres; those which are useful for short bursts of 30 
speed and power, and the main ones involved in preventing a fall (1). Older people also lose more skeletal 31 
muscle with bedrest than their younger counterparts (2). Sarcopenia is a geriatric syndrome defined as the age-32 
related loss of skeletal mass and function, which is quantified by specific objective measures of muscle mass, 33 
strength and physical function (3). Sarcopenia is distinct from frailty although the two conditions may overlap. 34 
Frailty is defined as increased vulnerability after a stressor event, with increased risk of adverse outcomes (4). 35 
A summary of the consequences of loss of skeletal muscle and sarcopenia in older adults is illustrated in Figure 36 
1 (5–9). In terms of cost, it has been estimated that reducing the prevalence of sarcopenia by 10% in the United 37 
States would save $1.1 billion in healthcare costs annually (10).  38 
 39 
One major risk factor for the development of sarcopenia is protein-energy malnutrition (11). Indeed the 40 
Women’s Health Initiative, an American study on over 24,000 women age 65-79 years, reported a 12% lower 41 
risk of frailty in those with a 20% increase in protein intake over a three year period (12). High protein intake is 42 
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associated with increased bone mineral density, reduced rehabilitation time after acute illness, better 43 
cardiovascular function, improved mortality in ventilated patients, healing of pressure ulcers, and reduced risk 44 
of surgical complications (11,13–15). As life expectancy worldwide has more than doubled over the past two 45 
centuries, the importance of understanding and optimising muscle function in older age is paramount. 46 
 47 
Among the twenty-one amino acids necessary for protein synthesis in humans, nine are referred to as ‘essential 48 
amino acids’ (EAAs). These are nutritionally essential as they cannot be synthesised in the body (16). Leucine 49 
is an EAA that is considered the key regulator of muscle protein anabolism via its activity in activation of the 50 
mTOR pathway and inhibition of the proteasome (11). Animal studies also suggest it may suppress muscle 51 
protein breakdown (MPB) (17). Optimisation of dietary protein and EAA intake in older adults has been 52 
suggested to prevent the development of sarcopenia and skeletal muscle loss. 53 
 54 
The role of the gut microbiome in healthy as well as disease states is an ever-growing area of interest to 55 
researchers. The gut microbiome has a collective genome size that is 150-fold that of the human host (18), and 56 
it has been argued that the metabolic activity and size of our gut microbiome is sufficient to warrant its 57 
consideration as one of the organs of the human body, with its own intrinsic functions and metabolic needs 58 
(19). Over the age of 65, the resilience of the gut microbiome is reduced, as it becomes more vulnerable to 59 
medications, disease and changes in lifestyle, with changed species richness and increased inter-individual 60 
variability (20). This review aims to summarise the available literature on dietary protein and skeletal muscle 61 
in older adults, with a focus on the potential role of the gut microbiome and metabolome. 62 
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 63 
 64 
2. Patient Factors  65 
A reduced appetite is common in older adults (21,22). This has been linked to reduced acuity of taste and smell, 66 
poor oral health and dentition, reduced chewing efficiency, medications causing reduced saliva production, 67 
and changes in the digestive system such as slower gastric emptying and reduced ghrelin levels (21–23). These 68 
factors lead to smaller portions being consumed and changes in dietary choices. The prevalence of dysphagia 69 
has been estimated at 13% in those over 65 years (24), and is associated with reduced oral intake and 70 
malnutrition (25). Pureed or softened diets may lead to reduced intake of meat, which is likely to result in 71 
reduced dietary protein intake. Reduced meat consumption in the older population has also been reported 72 
elsewhere (22,26). 73 
 74 
Chronic disease is common in older adults, with an estimated 40-75% of all people over 65 having a limiting 75 
chronic illness (27,28), which can lead to increased catabolism of protein. Many conditions come with dietary 76 
restrictions, for example diabetes, chronic kidney disease etc. Rates of polypharmacy are also increased with 77 
age, with up to 70% of over 80s taking more than four medications (29). Medication side effects such as dry 78 
mouth, nausea, etc. can influence oral intake. 79 
 80 
Mobility and access to shopping is a key factor in shaping the dietary habits of older adults (22,30). Falls and 81 
fear of falling may reduce mobility (31) and therefore influence the ability of older adults to mobilise for 82 

Figure 1: Consequences of loss of skeletal muscle and sarcopenia in older adults 
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shopping, meal preparation and food consumption. Vision is another important factor in shopping and 83 
preparing food, with increasing prevalence of poor visual acuity with increasing age (32). A recent qualitative 84 
study assessed 30 older adults’ food choices and dietary habits and noted that living alone, with associated 85 
social isolation and loneliness, had a significant impact on diet. Many showed a lack of motivation for cooking 86 
and eating alone (22). Indeed bereavement and living alone have been associated with worse nutrition, while 87 
marriage has been linked to better diet quality in older men (22). 88 
 89 
Lastly, socioeconomic status has an influence on dietary choices amongst older people. Lower socioeconomic 90 
scores have been associated with lower diet quality, and the price of food is a factor in food decisions (22). The 91 
estimated cost of malnutrition in England is £19.6 billion per year, with approximately half of this being 92 
attributed to people over 65 (27). In addition to the huge costs associated with frailty and sarcopenia, poor 93 
nutrition is extremely costly to our healthcare systems. As the population ages, we can expect these costs to 94 
increase accordingly. Please refer to Figure 2 for a summary of the factors leading to lower protein intake in 95 
older adults. 96 
 97 

 98 
 99 
 100 
 101 
3. Anabolic Resistance 102 
Skeletal muscle mass is regulated by the processes of muscle protein synthesis (MPS) and MPB. MPS rates are 103 
largely controlled by responsiveness to anabolic stimuli, such as consumption of food, and physical activity. 104 
Catabolic stressors include illness, physical inactivity and inflammation, of which the older population tend to 105 
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Figure 2: Factors leading to lower protein intake in older adults 
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have higher rates. Ageing does not seem to influence MPB to the same degree as MPS, hence MPS is typically 106 
considered the more appropriate target for intervention. 107 
 108 
Older adults have shown evidence of ‘anabolic resistance’, whereby a higher dose of protein is required to 109 
achieve the same MPS response as a younger person (1,16,33–35). ). The aetiology of these impairments may lie 110 
within the aging process, chronic disease or others such as physical inactivity (see Table 1). There are multiple 111 
mechanisms postulated and may involve impairments at some, if not all, levels of protein metabolism (see Table 112 
2). 113 
 114 
The concept of anabolic resistance is still questioned by some however, with a systematic review by Shad et al. 115 
(2016) finding 18 papers with sufficient evidence of age-related muscle anabolic resistance, and 30 papers which 116 
did not (6). It is our view that these negative results are possibly due to some of the following methodology and 117 
study design limitations; a recurrent these in this area of research. The review only included studies of healthy 118 
individuals, 15 of which had only male participants. Discrepancies among the studies included were 119 
substantial, including the dose, source and leucine-content of the supplementation, the intensity and volume of 120 
exercise, and the use of exercise or protein in isolation or in combination (6). There may also be a sex-difference 121 
in anabolic resistance (36,37), which has received almost no attention in the literature. 122 
 123 
Table 1. Factors influencing anabolic resistance 124 

Anabolic Resistance Aetiology References 

Declining activity levels (1,11,38–40) 
Protracted disuse events (11,41–44) 
Chronic inflammation (39,45–48) 
Insulin resistance (1,46,48–51) 
Higher circulating oxidative and inflammatory stressors (1,39,49) 
Obesity (46,52) 
Reduced oestrogen/testosterone (1,54) 
Increased production of catabolic hormones such as cortisol  (49) 
Alcohol (53) 
Smoking (1) 
Poor vitamin D status (39) 
Reduced food intake (39) 
Metabolic acidosis (1) 
More chronic & acute disease in older adults (increased catabolic conditions) (15) 

 125 
 126 
  127 
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Table 2. Molecular mechanisms implicated in anabolic resistance 128 
Anabolic Resistance Mechanisms References 

Differences in gene expression of proteins involved in MPS (55–59) 
Dysregulation of key signalling proteins in the mTOR pathway (1,48,56,57,60–62) 
Decreased phosphorylation of mTORC1 (48,60,63–65) 
Impaired transport of amino acids into muscle/peripheral tissues (39,61,66,67) 
Diminished mRNA translational signalling (60,65,68,69) 
Inflammation (raised TNFα/ IL-6/ hs-CRP/NFkB) (1,48,60,70,71) 
Decreased phosphorylation of transcription factors (e.g. p70S6K, S6K1) (48,60,61,68) 
Dysregulation of nutritive blood flow to skeletal muscle (39,51,72) 
Attenuated protein digestion & absorption (39,73,74) 
Mitochondrial dysfunction (1,20,58) 
Autophagy/mitophagy dysfunction (1,58) 
Denervation of muscle fibres (39,75) 
Higher splanchnic extraction of protein (15,74) 
Lipid-induced muscle insulin resistance (20,76) 
Increased AMPKα phosphorylation (leads to increased MPB) (56) 
Increased cortisol generation within muscle by 11bHSD1 (77) 
Loss of skeletal muscle stem cells (78) 
Insufficient protein dose given in the trial (6) 

 129 

Loss of 
skeletal 

muscle and 
sarcopenia

Reduced 
muscle 

perfusion Chronic 
disease-
related 

catabolism

Reduced 
muscle 

innervation

Lower protein 
intake

Physical 
inactivity

Unmet higher 
protein 

requirements

Anabolic 
Resistance

Inflammation

Insulin 
resistance

Lower amino 
acid 

availability

Dysregulation 
of 

transcription 
factors

Figure 3: Factors leading to loss of skeletal muscle and sarcopenia in older adults 
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4. Dietary Protein 130 

4.1. Quantity of Protein 131 

It is now considered consensus that a higher RDA of 1-1.3g/kg/day should be consumed by older adults (1,79–132 
82), to offset catabolic conditions. Indeed the PROT-AGE Study Group advise that those with severe illness or 133 
injury or with marked malnutrition may need as much as 2.0 g/kg/day (15). There is significant variability in 134 
the protein quantity administered in studies, which is highly relevant considering the MPS response to protein 135 
is believed to be dose-dependent. 136 
 137 

4.2. Quality of Protein 138 

Some proteins, such as wheat protein, are deemed lower quality, as they lack or are low in one or more EAAs 139 
and fail to stimulate MPS to the same degree as higher quality sources (83). Red meat contains a balanced 140 
amount of all EAAs (45), however older adults eat less red meat than their younger counterparts. The definition 141 
of protein quality has evolved and now typically includes digestibility and absorption, as well as amino acid 142 
composition. 143 
 144 

4.3. Source of Protein 145 

Worldwide ~60% of protein consumed is from plant sources (84), however animal sources predominate in 146 
Europe and the United States. Plant proteins tend to have lower digestibility, and lower leucine content (84,85), 147 
while meat contains more EAAs per weight than any other food (11). Gorissen et al. (2016) compared protein 148 
infusions given to healthy older men. They reported an increased MPS rate in animal versus plant source, and 149 
within animal sources (e.g. whey preferable to casein) (86). Little is known about other protein sources such as 150 
mycoprotein, aquatic algae etc. (85). Further research into protein sources is necessary to identify optimal agents 151 
for older adults, particularly in the context of growing concerns about the environmental impact of certain foods 152 
(87). 153 
 154 

4.4. Timing of Protein 155 

Timing of protein consumption both throughout the day (1,16,88), and in relation to exercise (35), has been an 156 
issue of debate. Cardon-Thomas et al. (2017) assessed per meal protein intake of older adults, and reported 157 
adequate daily totals, but no participants achieved adequate per-meal protein intake (89). Some have argued 158 
that evenly spread intake across meals may be beneficial for MPS, as may pre-sleep protein ingestion (90,91). 159 
Murphy et al. (2015) compared skewed to evenly distributed protein intake throughout the day in 20 160 
overweight older men. They found greater MPS in those with balanced protein distribution (92). This has been 161 
debated by others who reported that total protein intake, irrespective of the pattern, was the most important 162 
factor in maximising the anabolic response (13). 163 
 164 
Resistance exercise and protein ingestion have a synergistic positive effect on MPS, with highest level of MPS 165 
approximately one-hour post exercise (93). In young men, Burd et al. (2011) reported that the sensitivity of the 166 
muscle to protein is increased for 24 hours post exercise (94). More research is needed to establish the 167 
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importance of protein intake distribution in older adults, whether an anabolic window exists post exercise, and 168 
if so whether supplementation of protein during this window elicits a greater response in MPS.  169 
 170 

4.5. Speed of Protein Digestion 171 

A fast-digestive protein, such as whey, is one which releases its amino acids relatively quickly in the digestive 172 
process. Studies have shown improved MPS with fast digestive proteins (95,96), albeit in healthy participants. 173 
Many now recommend that we use fast-digestive proteins in older adults and disease states such as sarcopenia, 174 
in order to maximise the benefits on skeletal muscle function (15,97).  175 
 176 
 177 
5. Protein and Skeletal Muscle 178 
Observational studies give weight to the hypothesis that poor protein intake contributes to sarcopenia and poor 179 
clinical outcomes. Three large studies have supported an association between protein intake and muscle 180 
strength and mass, although results have conflicted on whether this is confounded by fat mass (98–100). 181 
 182 

5.1. Protein Supplementation Studies 183 

Clinical trials of protein supplementation have shown varying results. Multiple trials carried out in healthy 184 
replete older adults, without an exercise intervention, have been negative (101–103). Systematic reviews have 185 
concluded that the most promising results are for specific EAAs, particularly leucine, but also its metabolite -186 
hydroxy -methylbutyric acid (HMB) (7,49,103). However, studies of leucine supplementation have had mixed 187 
results, with some promising findings (35,49,104), and some negative trials (49,105). There is currently a large 188 
ongoing multi-centre trial assessing the benefits of leucine in patients with sarcopenia (106). 189 
 190 
The Deutz study group have done a number of trials showing improvements in muscle mass and nutritional 191 
status with HMB supplementation and more work is needed to definitively establish its benefits (107,108). Both 192 
leucine and HMB hold promise for those in whom suboptimal quantities of protein are consumed, for example 193 
older adults with smaller appetites, poor oral health etc. Supplementation with these more targeted regulators 194 
of MPS may be most effective for overcoming anabolic resistance in this cohort. 195 
 196 
Some trials have combined protein with other nutritional supplements. For example Bo et al. (2018) assessed 197 
combined supplementation of whey protein, vitamin E and D in their cohort of sixty adults with sarcopenia 198 
and reported improvements in both muscle mass and strength (109). However this design can make 199 
interpretation of where exactly the benefits lie difficult. 200 
 201 

5.2. Protein Supplementation & Exercise 202 

Exercise is recognised as a potent stimulator of anabolic response in muscle. In all ages protein intake and 203 
exercise act synergistically to increase MPS. Multiple trials have reported greater improvements in muscle mass, 204 
muscle strength, and physical function when protein intake is combined with exercise, particularly resistance 205 
training (35,45,110). 206 
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 207 
Cermak et al. (2012) carried out a meta-analysis of trials assessing protein supplementation in the context of 208 
resistance training (111). Interestingly, amongst the six studies looking at older adults (>50 years, 215 subjects), 209 
none had found significance in fat free mass (FFM) versus placebo. However, when the data were pooled, 210 
protein supplementation was found to increase FFM by 38% versus placebo (111). 211 
 212 

5.3. Issues with Protein Supplementation Trials 213 

Conflicting results are not uncommon in this area. Issues with trials include short follow up time, small sample 214 
sizes with insufficient power, different doses of protein used, different sources of protein, different settings 215 
(hospital vs community), inconsistent timing of supplementation, use of fast versus slow digestive proteins, 216 
supplementing replete populations, and heterogeneity of populations studied, as well as substantial variation 217 
in the measures used to monitor dietary protein intake. Indeed The International Sarcopenia Initiative (2014) 218 
carried out a systematic review and concluded that the results of nutritional supplementation trials are 219 
equivocal due to low numbers of high quality studies and heterogeneous study design (7). 220 
 221 
A key consideration is ensuring participants have adequate baseline energy requirements. Supplementing 222 
protein in the context of insufficient energy intake will lead to protein being metabolised for energy, rather than 223 
leading to increased MPS (82). This is likely to be especially relevant in older adults with reduced appetites. 224 
Furthermore, a large variety of measures are used for estimating muscle mass, muscle strength and physical 225 
function (see supplementary tables 1, 2 and 3). The International Working Group on Sarcopenia recommended 226 
that Computed Tomography and Magnetic Resonance Imaging (MRI) equally be considered the gold standard 227 
imaging techniques and discouraged the use of Bioelectrical Impedance Analysis due to its inaccuracy (112). 228 
Dual-energy X-ray absorptiometry (DXA) is the most commonly used measure of muscle mass, however FFM 229 
and muscle protein mass can be overestimated due to water retention and/or lipid content of muscle in older 230 
adults (82). More high quality, well designed research is needed in this area, to determine the benefits of protein 231 
supplementation in older adults, with and without exercise.  232 
 233 

5.4. Surrogate Markers of Protein Intake 234 

Studies use multiple ways of estimating dietary protein intake (see supplementary table 5). The validity and 235 
reliability of these dietary measures has usually been verified in younger populations and may not be relevant 236 
to older people. Indeed reduced reliability coefficients of the Food Frequency Questionnaire have been reported 237 
with increasing age (113). 238 
 239 
In order to overcome this, researchers have sought objective estimates of dietary intakes. Protein is the major 240 
nitrogen-containing substance in the body, and therefore urinary excretion of nitrogen is used as a marker of 241 
protein loss (33,101). Urinary (45,114) and blood urea concentration (114), and urinary HMB levels (107) have 242 
also been used with the aim of objectively verifying compliance. These methods are not without limitations, as 243 
they may not consider subtle changes with protein metabolism that occur with age, such as increased splanchnic 244 
uptake (15). The amount of fermentation metabolites detectable in the urine depends on the digestibility of the 245 
protein (115), so this too, needs to be considered. 246 
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 247 
Other novel techniques in this area include the measurement of MPS using oral labelled isotopes such as 248 
deuterium oxide or 3-Methylhistidine, which can be measured via a single blood or urine test the following day 249 
(116–118). These methods are less invasive and significantly cheaper than intravenous versions. These 250 
techniques represent significant advances in an area with challenging methods, and show promise in measuring 251 
efficacy of interventions, as well as providing mechanistic insights into the sarcopenic phenotype. 252 
 253 
 254 
6. The Role of the Gut Microbiome 255 
The composition of the bacterial species in one’s gut is dependent on age, diet, health, and geographical 256 
location, with significant individual variability (119,120). Multiple cross-sectional studies have found 257 
associations between gut microbiome composition and frailty (120–123), while the ELDERMET study showed 258 
significant loss of diversity amongst people in a care-home setting versus community dwellers (124). Among 259 
older hospitalised patients, polypharmacy has been significantly associated with gut microbiota dysbiosis (122). 260 
Evidently, the gut microbiome has been implicated in many aging-associated processes, with recent animal 261 
studies even showing that transferring gut microbes of young killifish to older ones extends the lifespan of the 262 
older fish (125). It has been hypothesised that a gut-muscle axis exists. More research is warranted to explore 263 
this theory (20). 264 
 265 

6.1. Animal Models 266 

Many animal models have been used in the study of the gut microbiome (see supplementary table 4). Studies 267 
carried out in mice, rats and hamsters have shown higher microbial diversity in those fed soy protein versus 268 
animal protein (126,127) and increased abundance of Bacteroidales family S24-7 in those fed soy protein versus 269 
other diets (128). Li et al. (2017) assessed high protein, low carbohydrate diets in dogs and found increased 270 
abundance of Clostridium hiranonis, Clostridium perfringens, and Ruminococcus gnavus, as well as decreased 271 
Bacteroidetes to Firmicutes ratio and an increase in the Bacteroides to Prevotella ratio (129), the latter of which has 272 
been proposed as a biomarker of good health (130). 273 
 274 

6.2. Human Data 275 

The digestive system consists of a complex interaction between digestive secretions, intestinal conditions, and 276 
the gut microbiome. Nutrients, especially dietary proteins, provide energy sources for the host, as well as 277 
substrates for the gut microbiota (115). A significant proportion of undigested peptides and proteins can reach 278 
the colon, and this is increased in the context of a high protein diet (114). Consumption of proteins with high 279 
digestibility, or a low protein diet, results in less protein reaching the colon, limiting the amount available for 280 
protein-fermenting bacteria (115). Work done in this area has shown that a high protein diet does shift the gut 281 
microbiome from carbohydrate to protein fermentation, with a diverse metabolic output including branched-282 
chain fatty acids, ammonia, amines and others (114). 283 
 284 
It has been reported that protein consumption is correlated positively with gut microbiome diversity (131). This 285 
is based on studies carried out on healthy volunteers (132), elite athletes (133), and obese/overweight 286 
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individuals (134). The source of protein is influential, with plant protein associated with more Bifidofacterium, 287 
Lactobacillus, Roseburia, Eubacterium rectale, and Ruminococcus bromii; and less Bacteroides and Clostridium 288 
perfringens (131,132). Meanwhile animal protein is associated with higher levels of Bacteroides, Alistipes, Bilophila 289 
and Ruminococcus, and lower levels of Bifidobacterium (131,132). High levels of Bacteroides have also been 290 
reported with Western diets, which are high in protein and animal fat (18), although it has been suggested that 291 
differences in fat content, rather than protein, is the major influencing factor here (135). 292 
 293 
Significant associations have been reported between increased levels of faecal short chain fatty acids (SCFAs), 294 
Prevotella and some Firmicutes, with consumption of a Mediterranean diet (20,136), which is typically lower in 295 
protein than animal-based diets, although may contain high levels of plant-source protein. Indeed, certain 296 
microbial clusters are associated with long term dietary patterns (18). Clusters can change within 24 hours of 297 
controlled feeding, however research shows that microbiome composition is far more influenced by long term 298 
diet patterns, rather than acute changes (137). Dietary pattern studies make assessment of the contribution of 299 
each macronutrient difficult. 300 
 301 
A healthy gut microbiome plays a role in many of the physiological processes implicated in the 302 
mechanisms for the development of anabolic resistance (see table 2). These include suppression of chronic 303 
inflammation, prevention of insulin resistance, modulation of host gene expression, enhancement of 304 
antioxidant activity and maintenance of gut barrier function (20). A reduced rate of dietary protein digestion 305 
has also been hypothesised as one of the processes involved (84). Indeed production of SCFAs by the gut 306 
microbiome has been associated with anabolism itself (138) and depletion of taxa producing SCFAs may 307 
promote anabolic resistance (139). A randomised controlled trial has been carried out exploring the effect 308 
of modulating the gut microbiome on muscle function and frailty, where 60 older adults received a 309 
prebiotic or placebo for 13 weeks. Promisingly, both exhaustion and handgrip strength were significantly 310 
improved in the treatment arm (140), highlighting the potential role for the gut microbiome in future 311 
interventions, but the study remains to be replicated.  312 
 313 
There is increasing evidence for the association between exercise and the gut microbiome, which may be 314 
secondary to both host health and diet (141,142). Claesson et al. (2012) showed that gut microbiota diversity is 315 
inversely correlated with physical function in frail older adults (120), suggesting a potential role for the gut 316 
microbiome in the development of, and therefore potentially prevention of, sarcopenia (20). The gut 317 
microbiomes of critically ill patients on average display enrichment of virulent pathogens, and loss of health-318 
promoting microbes (143). Protein supplementation has shown some benefits for muscle parameters in this 319 
population (144,145), but whether this effect is modulated by the gut microbiome is not known.  320 
 321 
The hypothesis that the dysbiotic gut plays a role in the loss of skeletal muscle and response to protein is yet to 322 
be tested. If supported, the gut microbiome could represent a target for interventions aiming to overcome 323 
anabolic resistance, to maintain muscle mass and strength in older adults. 324 
 325 
  326 
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6.2. The Metabolome 327 

Studies assessing the specific effect of dietary protein on gut microbiota composition are limited and some of 328 
the work done thus far has focused instead on the altered fermentation products. Trials using 1H-nuclear 329 
magnetic resonance (NMR) technology have shown a shift in bacterial metabolism with different metabolite 330 
profiles according to the source of protein (114) and one study of high-protein, low-carbohydrate diets in 17 331 
obese men reported increased hazardous metabolites (e.g. N-nitrosamines), and decrease in cancer-protective 332 
metabolites (e.g. ferulic acid) in their faecal samples (146). Indeed a growing number of studies are using 1H-333 
NMR technology to assess faecal, urinary and plasma metabolomes as measures of metabolic health [e.g. (147)]. 334 
More research is needed into the use of the metabolome in the context of dietary protein intake, and the 335 
significance of changes in the metabolome for skeletal muscle mass and function. 336 
 337 

7. Discussion 338 

As the world’s population ages, it has become imperative to gain more understanding of the aging process. 339 
Declines in muscle mass and function with age have significant associated morbidity and mortality, and the 340 
prevalence of both sarcopenia and frailty is increasing. The care of older people is complex, and a multitude of 341 
factors influence lower protein intake and loss of skeletal muscle with age (see Figures 1 and 2). 342 
 343 
Anabolic resistance is likely to result from cumulative declines across multiple physiological systems, with 344 
effects on both MPS and MPB, a dynamic interaction of multiple factors (see Figure 3). Current thinking must 345 
not be limited to one or two mechanisms but focus on anabolic resistance as a complex and multidimensional 346 
construct. The aetiologies and mechanisms involved are not understood and may be different for each aging 347 
individual, suggesting a possible need for personalised medicine within this population to guide future 348 
interventions. 349 
 350 
Dietary protein is essential for skeletal muscle and it has been established that older adults require a higher 351 
RDA of dietary protein. Research suggests that better quality protein, especially that containing higher 352 
quantities of leucine, is likely to benefit muscle health in the older population. The importance of timing of 353 
protein administration needs to be more clearly understood, and the potential benefit on skeletal muscle of fast- 354 
versus slow-digestive proteins is another question yet to be answered. A significant amount of work has 355 
focused on protein source, with animal sources typically containing more leucine, greater digestibility and 356 
achieving a higher MPS responses. That said, meat intake declines with age, and chewing and poor oral health 357 
can be an issue for older adults. There are also increasing concerns about the environmental impact of animal 358 
sourced food (85). Furthermore, research is needed to confirm whether increases in MPS, muscle mass and/or 359 
muscle strength lead to meaningful functional outcomes in this older demographic. 360 
 361 
Studies show that supplementing protein/EAAs, particularly in combination with resistance exercise, is 362 
beneficial for aging muscle. However, many trials have had conflicting results. As with all nutritional studies, 363 
it is difficult to ensure the adherence of participants to the intervention, and to quantify the impact of non-364 
compliance on the results. Trials of nutritional supplements in participants already replete have limited usage, 365 
and a wide variety of measures and assessments are currently being used. This heterogeneity leads to significant 366 
uncertainty amongst current evidence and makes clinical translation of findings extremely difficult. High 367 
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quality studies are needed to establish standardised, feasible measures of muscle mass, strength and physical 368 
function for future work in this area. Personalised dietary recommendations may show promise going forward, 369 
and this is currently being assessed in a large randomised controlled trial of a multi-component intervention in 370 
the management of sarcopenia (148). 371 
 372 
Difficulties in carrying out accurate studies in this area are highlighted by the use of such extreme methods as 373 
Ferrando et al. (1996), in which volunteers were required to stay for 22 days in the lab, 7 of which were for diet 374 
stabilisation, and 15 of which were spent in strict head-down bed rest (149). Others have employed similar 375 
methods (42). With limited funding throughout academia, the feasibility of such trials is limited. Some ways in 376 
which shortcomings can be addressed include twin studies, reducing heterogeneity at baseline, more consistent 377 
use of measures throughout studies, use of standardised diets prior to interventions, and the development of 378 
standardised measures of muscle mass, muscle function, physical activity, and diet. In light of the low levels of 379 
reliability of our current dietary recording methods (150), the use of the metabolome may represent an objective 380 
and reliable way of assessing compliance with dietary interventions going forward (151). Novel techniques in 381 
the measurement of MPS, such as the use of oral heavy water as a stable isotope, show significant promise for 382 
future research in this field. 383 
 384 
Few human studies have evaluated the effects of the gut microbiome on dietary protein metabolism, and the 385 
ensuing metabolome or vice versa, and those that have, have had limitations such as highly heterogeneous 386 
groups at baseline, short intervention periods, variation in dietary measures used, different sample storage 387 
methods, and disparate lab processing. Animal studies have shown promise, and the one available human trial 388 
on gut microbiome modulation showed positive improvements in muscle function (140). Research is needed to 389 
establish whether a dysbiotic gut microbiome contributes to skeletal muscle loss in the context of acute/or 390 
chronic illness, or indeed in the aging process itself. Furthermore, the potential role of the gut microbiome in 391 
anabolic resistance warrants further investigation. The plasticity and diversity of the gut microbiome and its 392 
metabolome, in comparison to the human genome, represent exciting prospects for personalised medicine, and 393 
indeed, in the role of dietary protein in skeletal muscle function of older adults.  394 
 395 
 396 
 397 
  398 
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