l Article

2

On the mechanism of magnesium storage in micro- and

3 nano-particulate tin battery electrodes

- 4 Francisco Nacimiento, Marta Cabello, Carlos Pérez-Vicente, Ricardo Alcántara, Pedro Lavela,
- 5 Gregorio F. Ortiz* and José L. Tirado
 - Departamento de Química Inorgánica e Ingeniería Química, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUIQFN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain
 - * Correspondence: q72maorg@uco.es; Tel.: +34-957-218637

10

11

12

13

14

15

16

17

18

19

20

21

6

7

8

9

- Abstract: A study is reported on the electrochemical alloying-dealloying properties of Mg2Sn intermetallic compounds. ¹¹⁹Sn Mössbauer spectra of β-Sn powder, thermally alloyed cubic-Mg2Sn and an intermediate MgSn nominal composition are used as references. The discharge of a Mg/micro-Sn half-cell led to significant changes in spectra line shape that are explained by a multiphase mechanism involving the coexistence of c-Mg2Sn, distorted Mg2-δSn and Mg-doped β-Sn. Capacities and capacity retention were improved by using nanoparticulate tin electrodes. This material reduces significantly the diffusion lengths for magnesium and contains surface SnO and SnO2, which are partially electroactive. The half-cell potentials were suitable to be combined versus MgMn2O4 cathodes. Energy density and cycling properties of the resulting full Mg-ion cells are also scrutinized.
- **Keywords:** Electrode nanomaterials; magnesium-tin intermetallics; magnesium-ion batteries; Sn-119 Mössbauer spectroscopy

22 23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

1. Introduction

Recent concerns regarding future lithium availability [1-4], together with safety issues [5] affecting Li-ion batteries have prompted an expanding research activity on alternatives to lithiumDue to its high abundance, easy extraction and moderate cost, magnesium is one of the multivalent elements that show promising possibilities [6-13]. Despite its lower potential as compared with lithium, Mg electrodes provide higher volumetric capacity and shows a better reconstruction of its surface on cycling, being less prone to form dendrites on electroplating. Mg²⁺ ions have a similar radius to the Li+ ones, which avoids pronounced volume changes on cycling. However, there is a major difficulty in obtaining reliable Mg-anode batteries, related with the stability of electrolyte solutions [12,13]. Thus, electrolytes commonly stable versus Mg are mostly unstable versus common cathodes found so far and vice versa. For this reason, the research for alternative anodes and hence the concept of Mg-ion batteries is also valid for this alkali-earth element. Recently, the chemical and electrochemical Mg deinsertion from MgMn₂O₄, leading to Mg_{1-x}Mn₂O₄ or λ-MnO₂ have been reported using both aqueous and non-aqueous electrolytes [14-16]. While examining the possible use of several materials as anodes to be combined vs. MgMn₂O₄ as positive electrode, the most successful results were found for tin, a material previously reported to have reversible electrochemical alloying reactions with Mg [17]. On the other hand, Mössbauer spectroscopy (MS) is a uniquely selective technique to study changes in oxidation state and chemical environment of tin. When tin oxides and intermetallic compounds are used as active electrode material in lithium batteries, ¹¹⁹Sn MS provides valuable information [18-22]. Particularly, Aldon et al. found 119Sn MS useful to study lithium insertion in c-Mg2Sn [21].

A ¹¹⁹Sn Mössbauer study is reported here for Sn powdered electrodes in Mg test cells, to unveil the details of the complex mechanism of the electrochemical reaction, which involves a tin-rich

47 intermetallic phase with electrical gradient environment of tin atoms and cubic Mg2Sn. On the other 48 hand, due to the increasing interest in nanomaterials for battery applications [23-24], the 49 optimization of the electrode was carried out by using a nano-dispersed Sn-SnOx composite powder 50 which provides a unique surface electroactive coating of tin oxides that allows better cycling stabilities. Finally, the nano-tin electrodes are combined with a low temperature MgMn₂O₄ material 52 recently reported by our research group to obtain a novel suitable Mg-ion battery.

2. Materials and Methods

51

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

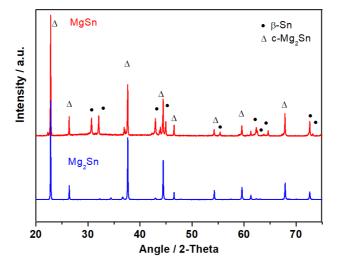
93

94

Commercial magnesium strip and micro- and nano-Sn (Aldrich) powders were used as received. Thermally prepared Mg-Sn intermetallic samples included stoichiometric crystalline Mg2Sn and a sample with MgSn nominal stoichiometry. Both thermal samples were obtained from mechanical mixtures of Mg and micro-Sn, which were heated at 700 °C for 1 h and then cooled to room temperature at 4°C min-1 in a N2 atmosphere. The low-temperature spinel (LT)-MgMn2O4 was prepared as described elsewhere [16], following the Pechini method. The dry powdered precursor was first heated at 200°C, ground in an agate mortar and then heated at 400°C for ten hours.

The electrochemical experiments were performed in a multichannel VMP instrument. Swagelok-type cells were mounted in an M-Braun glove-box filled with Ar. Tin powders and magnesium strip were used as received. The working electrodes were a mixture of active material:carbon black: polyvinylidene difluoride (PVDF) binder in a 80:10:10 ratio supported on Ti substrate. The carbon black additive was supplied by SAFT. The electrode mass load was 3.0-5.0 mg cm⁻². Several non-aqueous electrolyte solutions were tested, including 0.5 M PhMgCl in tetrahydrofuran (THF) or 0.5 M EtMgCl in THF for Mg/Sn half cells, and 0.5 M Mg(N(SO₂CF₃)₂)₂ in dimethoxyethane (DME) or 0.5 M Mg(ClO₄)₂ in acetonitrile (AN). Mg-ion full cells were tested in Swagelok[™]-type three-electrode cells to monitor separately cathode and anode voltages versus a reference electrode consisting of a metallic Mg disk.

X-ray diffraction (XRD) measurements were carried out in a Bruker D8-Advance instrument with CuK₀₁ radiation. Ex-situ XRD patterns of discharged electrodes were recorded by dismantling the electrochemical cells in the dry box under Ar atmosphere and, after recovering the electrodes and separating them from the Ti collector, covering them with Kapton bag to avoid contact with air.


The ¹¹⁹Sn Mössbauer spectra (MS) were recorded in a Wissel instrument at room temperature. The spectra were recorded with adequate acquisition time to permit a deconvolution, typically ten days. The ¹¹⁹Sn isomer shifts are referenced to BaSnO₃. A pure β -Sn foil was used for the calibration. For the fitting of the experimental spectra, the WINSO1.0 program, Lorentzian line-shape absorption peaks and a least-squares method were employed. When the fitting process reached the convergence, the quality of the fitting was controlled by the classical χ^2 - test. The Mössbauer spectra of discharged electrodes were recorded ex-situ by putting the active material under Ar atmosphere in polybags (Aldrich), which were hermetically closed by heat-sealing with a commercial heat sealer at 150ºC.

Field-Emission Scanning Electron Microscope (FESEM) images were obtained in JEOL FESEM 1400 provided with Energy-dispersive X-ray spectroscopy (EDX).

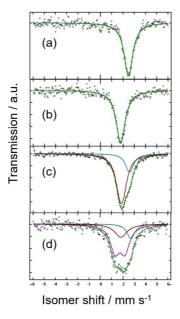

3. Results

Figure 1 shows the X-ray diffraction patterns of thermally prepared, crystalline cubic c-Mg₂Sn phase with a fluorite-type structure. To compare with the electrochemically prepared products with intermediate composition, a sample with MgSn nominal stoichiometry was also prepared by thermal treatment at 700°C. For thermal-MgSn, crystalline β-Sn and c-Mg₂Sn are clearly detected. Traces of MgO impurities were also visible.

Figure 2(a) shows the 119Sn MS data for the commercial tin microparticles. The observed isomer shift (IS) value of 2.5619 mm s⁻¹ (Table 1) and its negligible quadrupolar splitting are consistent with a high-purity and well crystallized β -Sn phase.

Figure 1. Powder X-ray diffraction patterns of the thermally prepared samples with Mg2Sn and MgSn nominal compositions.

Figure 2. ¹¹⁹Sn Mössbauer spectra of (a) tin microparticles, and thermally prepared samples with (b) Mg₂Sn and (c) MgSn nominal compositions. (d) micro-Sn electrode after discharge in Mg half-cell to a Mg_{0.4}Sn nominal composition.

Figure 2(b) shows the spectrum of the crystalline Mg₂Sn alloy. The IS value of 1.8479 mm s⁻¹ is ascribable to cubic c-Mg₂Sn [21,25]. In agreement with the well-known fluorite-type structure of c-Mg₂Sn, tin atoms are eight-fold coordinated by magnesium and twelve-fold coordinated by tin second neighbors, which is in contrast with the use of less and more directional covalent bonds in β -Sn and agrees with the significantly lower isomer shift relative to β -Sn (Fig 2(a)). Again, the highly symmetric coordination of tin atoms in the structure impedes a quadrupole splitting of the signal (Table 1). The spectrum of thermal-MgSn shows two deconvoluted contributions close to c-Mg₂Sn and β -Sn-related phases (Figure 2(c)). However, this spectrum reveals unexpected results. Thus, the singlets ascribable to crystalline β -Sn and c-Mg₂Sn were not sufficient to fit the spectrum. A significant quadrupole splitting (0.304 mm s⁻¹) of the low IS signal was also present (Table 1). This doublet is indicative of the presence of tin nuclei in a low symmetry environment of Sn atoms. It is probably due to incomplete coordination by Mg atoms, in a metastable,

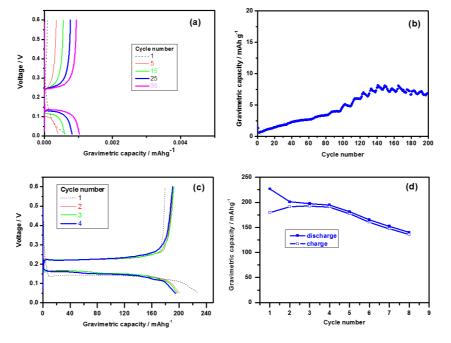
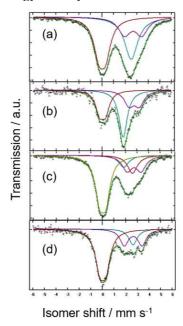

non-stoichiometric and distorted d-Mg₂Sn phase, which is not discerned form the crystalline products in the XRD patterns. This result is consistent with the report by Sirkin et al. [26] on quenched ternary Sn-Mg-M alloys, and latter corroborated by theoretical calculations by Fries and Lukas [25].

Table 1. Isomer shift (IS), quadrupolar splitting (QS), line width (LW), % contribution and attribution of the signals appearing in the 119 Sn Mössbauer spectra of commercial micro- and nano-Sn, mechanochemically produced Mg₂Sn. and discharged/recharged electrodes. *Recoilless fractions, f = 0.05 (Sn) [28,29], 0.3 (c-Mg₂Sn) [27] and 0.15 (Mg_{2-\delta}Sn; ca. half of the reported value [27], due to the possible tin excess). These values were used to convert spectral contributions (%) into semiquantitative composition (%corr).

Sample (nominal)	IS/mms ⁻¹	QS/mms ⁻¹	LW/mms ⁻¹	%	%corr*	attribution
(a) micro-Sn	2.5619	-	0.95_{3}	100	100	β-Sn
(b) thermal-Mg ₂ Sn	1.8479	-	0.99_{3}	100	100	c-Mg ₂ Sn
(c) thermal-MgSn	2.643	-	0.877	24	49	β-Sn
	1.91 ₃	0.30_{4}	0.96_{4}	76	51	Mg _{2-δ} Sn
(d) micro-Mg _{0.4} Sn	2.79_{8}	-	1.831	15	38	β-Sn
discharged	1.8_{2}	-	1.45	21	9	c-Mg ₂ Sn
	1.79_{5}	0.908_{2}	1.051_{2}	64	53	Mg _{2-δ} Sn


Figures 3 (a) and (b) show the cycling properties of the Mg / 0.5 M PhMgCl (THF) / micro-Sn cell. Extremely low capacity values were obtained in the 0.01-0.6 V potential window, although the capacity increases upon cycling, probably indicating the progressive conditioning of the metal electrode surface. According to the Gibbs phase rule, the presence of well-defined plateaus in both discharge and charge should be consistent with a biphasic mechanism of the alloying-dealloying reaction:

$$\beta-Sn + 2Mg^{2+} + 4e^{-} \rightleftharpoons c-Mg_{2}Sn \tag{1}$$

Figure 3. (a) Galvanostatic charge-discharge plots and (b) cycling performance at at 10 mA/g (C/20) current density of microparticulate β-Sn in Mg half-cell, using 0.5 M PhMgCl in THF as electrolyte. (c) Galvanostatic charge-discharge plots and (d) cycling performance at 10 mA/g (C/20) of nanoparticulate-Sn in in Mg half-cell using 0.5 M EtMgCl in THF as electrolyte.

The average discharge and charge voltages are 0.1 V and 0.25 V, respectively. The limited cell polarization and low charge potential suggest that a Sn / 0.5 M PhMgCl (THF) / MgMn₂O₄ full cell (ca. 2.0 V) would provide a suitable energy density.

144 145

141

142

143

146 147

148

153

Figure 4. 119Sn Mössbauer spectra of (a) Commercial nano-Sn, and (b) discharged nano-Sn electrodes in Mg half-cell to a Mg13Sn nominal composition. (c) discharged-charged nano-Sn electrodes in Mg half-cell to a Mg04Sn nominal composition. (d) discharged-fully charged nano-Sn electrodes in Mg half-cell.

Table 2. Isomer shift (IS), quadrupolar splitting (QS), line width (LW), % contribution and attribution of the signals appearing in the 119Sn Mössbauer spectra of commercial micro- and nano-Sn, mechanochemically produced Mg2Sn. and discharged/recharged electrodes. *Recoilless fractions, f = 0.05 (Sn and d-Mg₂Sn), 0.35 (SnO), 0.60 (SnO₂) [27,28], and 0.3 (c-Mg₂Sn) [26]. These values were used to convert spectral contributions (%) into semiquantitative composition (%corr).

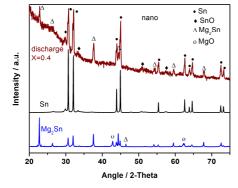
Sample (nominal)	IS/mms ⁻¹	QS/mms ⁻¹	LW/mms ⁻¹	%	%corr*	attribution
(a) nano-Sn	2.5798	-	1.419	33	76	β-Sn
	2.753	1.525	1.12_{2}	25	2	SnO
	0.0267	1.581	1.165	42	13	SnO ₂
(b) nano-Mg1.3Sn	1.87_{1}	-	0.88_{4}	40	50	c-Mg ₂ Sn
discharged	2.856	0.90_{6}	1.0_{1}	27	29	SnO
_	0.05_{2}	0.53_{3}	0.83_{6}	33	21	SnO ₂
(c) thermal-MgSn	2.672	-	1.043	14	60	d-Mg _δ Sn
discharged+charged	1.90 ₃	-	1.04_{4}	9	7	c-Mg ₂ Sn
	2.812	1.223	1.04_{1}	23	14	SnO
	0.05_{1}	0.55_{1}	0.94_{2}	54	19	SnO ₂
(d) micro-Mg _{0.4} Sn	2.708	-	0.874	15	60	d-MgδSn
discharged+fully	2.712	1.573	0.877	26	17	SnO
charged	0.05_{1}	0.54_{2}	0.96_{3}	61	23	SnO ₂

154 155

156

157

158


159

160

The reaction mechanism of the micro-Sn electrodes was explored by using ¹¹⁹Sn MS. Figure 2(d) shows the results for a discharged electrode prepared by applying multiple galvanostatic pulses followed by relaxation periods to a Mg/micro-Sn half-cell until a stable nominal Mg_{0.4}Sn stoichiometry was achieved. The spectrum shows significant changes in line shape as referred to the pristine tin microparticles (see Figure 2(a)) that agree with tin electroactivity. The IS parameters shown in Table 1 evidence the simultaneous presence of a Mg-deficient, distorted Mg2-δSn phase, a 6 of 9

β-Sn-related phase with possible Mg doping and c-Mg₂Sn, which partially agrees with the biphasic mechanism above suggested. The low proportion of c-Mg₂Sn is indicative of impediments to the full conversion of the tin microparticles, probably due to an incomplete diffusion of magnesium through the large tin particles. Moreover, the high broadening and significant quadrupole splitting of the d-Mg₆Sn signal may point out to a structural deterioration and/or partial Mg alloying in a metastable phase yielding many different local environments of the tin atoms. It is well known that electrochemical reactions may lead to metastable products, thus being one of the most useful soft-chemistry synthetic routes in the solid state [18-22].

To improve the electrochemical performance, a nanodispersed commercial sample (nano-Sn) was also essayed. 119Sn MS data were also recorded. This spectrum was deconvoluted in several components attributed to β -Sn, a quadrupole split signal of SnO (IS = 2.65 mm s⁻¹) and SnO₂ with a cassiterite structure with IS ca. 0.0 mm s⁻¹ (Figure 4(a) and Table 2) [28]. The high intensity of the signals attributed to tin oxides, as compared with that of metallic tin is a consequence of the significantly lower f value for the latter. The necessary corrections lead to an atomic percentage of 76 % β -Sn. The XRD pattern shows reflections of β -Sn and some additional low intensity lines which could be ascribable to SnO (Figure 5) that support this conclusion. The presence of the oxides may involve surface oxidation of tin nanoparticles. This process is particularly visible in nanoparticulate materials due to their high surface-to-volume ratio. However, its presence could provide passivation of the electrode material that could prevent undesirable surface reactions with the electrolyte during the cycling or contribute to the total capacity if the oxides are electroactive. Figure 6 shows the FESEM images of micro and nano-Sn. In contrast to the ca. 100 μm particles of crystalline tin, nano-Sn shows particle around 100 nm. Also, the EDX spectra showed an average Sn/O atomic ratio of 1.16, and the composition mapping showed a uniform distribution of oxygen in the surface of the particles. With this in mind, we decided to use the nano-Sn sample without further chemical treatments for the electrochemical experiments.

Figure 5. Powder X-ray diffraction pattern of commercial nano-Sn, and discharged nano-Sn electrode in Mg half-cell at Mg_xSn nominal compositions with x = 0.4 and x = 2.0.

Figures 3 (c) and (d) show the galvanostatic cycling experiments of Mg/nano-Sn half-cells. The initial capacity is higher and cell polarization is lower than that of micro-Sn cell, preserving well-defined plateaus. Moreover, cycling stability is also considerably better than that of micro-Sn, doing of nanodispersion a suitable strategy to improve the electrode performance.

Figure 4(b) shows 119 Sn MS data for nano-Sn electrodes after discharge to a nominal Mg13Sn composition. The fitting parameters in Table 2 reveal the expected formation of c-Mg2Sn but also that those tin oxides initially present in the samples are still present, thus offering a sufficient coating of the tin nanoparticles to be preserved during the alloying-dealloying processes and stabilized the electrode structure upon cycling. The XRD pattern for x = 0.4 in Figure 5 is also in agreement with the MS data. The good reversibility of the process is exemplified by the 119 Sn MS data for nano-Sn electrodes after recharge to a nominal Mg0.4Sn composition (Figs. 4 (c, d) and Table 2). Although the oxide lines were always present, it can be highlighted that the initial SnO2/SnO ratio in nano-Sn decreases during the discharge and increases again during charge. The SnO2/SnO pair can be then

7 of 9

considered electroactive, as shown in other systems [28]. Not only prevents undesirable surface reactions but also contributes to the overall capacity.

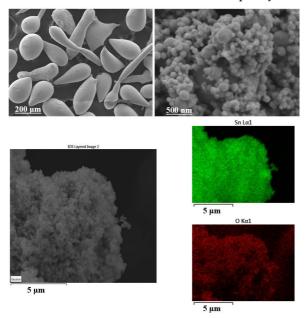
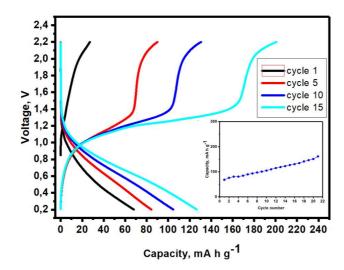



Figure 6. Upper: FESEM images of micro and nano-Sn. Lower: EDX composition mapping of nano-Sn.

A better perspective of the possible use of these materials as anodes in Mg-ion batteries, can be given by essaying their electrochemical behavior in full cells. For this purpose, the cycling properties of the nano- $Sn/MgMn_2O_4$ full cells were tested for different electrolyte solutions. The expected overall reaction can be written as:

$$2 MgMn2O4 + x nano-Sn \rightleftharpoons 2 Mg1-xMn2O4 + x Mg2Sn$$
 (2)

Figure 7. Galvanostatic charge-discharge plot at 20 mA g^{-1} of a nano-Sn/MgMn₂O₄ full cell, using 0.5 M Mg(ClO₄)₂ in AN electrolyte and m₊/m₋ = 4:1. Inset: Capacity vs. cycle number.

Due to the incompatibility of the organometallic electrolytes versus MgMn₂O₄ [16], and perchlorate electrolytes in acetonitrile versus Mg metal, the changes in cell voltage were monitored by using two electrode cells and Mg(ClO₄)₂ in AN as the electrolyte. Several mass ratios m₊/m₋ were examined. Figure 7 shows the best response observed that corresponds to a spinel mass excess (m₊/m₋ = 4.0) that could provide enough magnesium extraction from the cathode during charge to complete eq. (2) in the anode, even assuming that x=1.0. The capacities were thus calculated by using

the anode mass. The full Mg-ion cell showed the typical S-shaped voltage profile with an average discharge potential close to 0.8 V and moderate polarization and an increasing discharge capacity up to ca. 150 mA h g⁻¹ (Figure 7). This trend is related with the conditioning behavior of the anode that was discussed in the light of Figure 3. An energy density of up to ca. 120 W h kg⁻¹ can be estimated.

5. Conclusions

226

227

228

229

230

231

232

233

234

235

236

237

238

The alternative intermetallic anode Mg₂Sn/Sn for Mg-ion batteries is evaluated in Mg half cells with the valuable help of ¹¹⁹Sn Mössbauer spectroscopy. This technique suggests the electrochemical alloying-dealloying properties by a complex mechanism involving amorphous intermetallic phases with an electrical gradient in the environment of tin atoms. Nanoparticulate tin was also examined. Tin nanoparticles are surrounded by a SnO/SnO₂ film due to surface oxidation and are partially reduced during cycling. Their lower diffusion lengths for magnesium improve the performance as compared to tin microparticles. The spinel-related solid, MgMn₂O₄, which is known to deintercalate magnesium by chemical and electrochemical means in both aqueous and non-aqueous electrolytes, was found to be compatible with Mg₂Sn anodes. Cycling properties of the full Mg-ion cells provided voltages around 0.8 V. Capacity values and their retention during cycling were good for the Mg(ClO₄)₂ - AN electrolyte. In this case, a reversible discharge capacity of ca. 25 mA h g⁻¹ and maximum energy density of ca. 120 W h kg⁻¹ were observed.

- 239 Author Contributions: All authors contributed substantially to the work reported. Formal analysis, Francisco
- Nacimiento, Marta Cabello and Ricardo Alcántara; Investigation, Francisco Nacimiento, Marta Cabello, Carlos
- Pérez-Vicente, Pedro Lavela and Gregorio F. Ortiz; Project administration, Gregorio F. Ortiz and José L. Tirado;
- 242 Software, Carlos Pérez-Vicente; Supervision, Pedro Lavela; Writing original draft, Ricardo Alcántara,
- Gregorio F. Ortiz and José L. Tirado; Writing review & editing, Pedro Lavela, Gregorio F. Ortiz and José L.
- 244 Tirado.
- Funding: The authors are grateful to Ministerio de Ciencia e Innovación (MICINN) (MAT2014–56470-R, and
- 246 MAT2017-84002-C2-1-R), ERDF funds and Junta de Andalucía for financial support (group FQM288).
- 247 **Acknowledgments:** We also thank the Fine Chemistry Institute (IUIQFN).
- 248 Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
- study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision
- to publish the results.

251 References

- 252 1. Gerst, M.D.; Graedel, T.E. In-Use Stocks of Metals: Status and Implications. *Environ. Sci. Technol.* **2008**, 42, 7038–7044.
- 254 2. Tarascon, J.M. Is lithium the new gold? *Nat. Chem.* **2010**, 2, 510.
- Wadia, C.; Albertus, P.; Srinivasan, V. Resource constraints on the battery energy storage potential for grid and transportation applications. *J. Power Sources* **2011**, *196*, 1593 –1598.
- 4. Speirs, J.; Contestabile, M.; Houari, Y.; Gross, R. The future of lithium availability for electric vehicle batteries. *Renew. Sust. Energ. Rev.* **2014**, *35*, 183-93.
- 5. Lyon, R.E.; Walters, R.N. Energetics of lithium ion battery failure. J. Hazard. Mater. 2016, 318, 164-172.
- 260 6. Novák, P.; Imhof, R.; Haas, O. Magnesium insertion electrodes for rechargeable nonaqueous batteries a competitive alternative to lithium? *Electrochim. Acta* **1999**, *45*, 351–367.
- Aurbach, D.; Lu, Z.; Schechter, A.; Gofer, Y.; Gizbar, H.; Turgeman, R.; Cohen, Y.; Moshkovich, M.; Levi, E.
 Prototype systems for rechargeable magnesium batteries. *Nature* 2000, 407, 724-727.
- 8. Saha, P.; Datta, M.K.; Velikokhatnyi, O.I.; Manivannan, A.; Alman, D.; Kumta, P.N. Rechargeable magnesium battery: Current status and key challenges for the future. *Prog. Mater. Sci.* **2014**, *66*, 1–86.
- Zhao-Karger, Z.; Zhao, X.Y.; Wang, D.; Thomas, D.; Behm, R.J.; Fichtner, M. Performance Improvement of
 Magnesium Sulfur Batteries with Modified Non-Nucleophilic Electrolytes. *Adv. Energy Mater.* 2015, 5,
 1401155.
- 269 10. Song, J.; Sahadeo, E.; Noked, M.; Lee, S.B. Mapping the Challenges of Magnesium Battery. *J. Phys. Chem.* 270 *Lett.* 2016, 7, 1736–1749.

- Jia, X.; Wang, C.; Ranganathan, V.; Napier, B.; Yu, C.; Chao, Y.; Forsyth, M.; Omenetto, F.G.; MacFarlane,
 D.R..; Wallace, G. G. A Biodegradable Thin-Film Magnesium Primary Battery Using Silk Fibroin–Ionic
 Liquid Polymer Electrolyte. ACS Energy Lett. 2017, 2, 831–836.
- 274 12. Muldoon, J.; Bucur, C.B.; Gregory T. Quest for Nonaqueous Multivalent Secondary Batteries: Magnesium and Beyond. *Chem. Rev.* **2014**, *114*, 11683 –11720.
- 276 13. Canepa, P.; Gautam, G.S.; Hannah, D.C.; Malik, R.; Liu, M.; Gallagher, K.G.; Persson, K.A.; Ceder, G. Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. *Chem. Rev.* 2017, 117, 4287–4341.
- 279 14. Okamoto, S.; Ichitsubo, T.; Kawaguchi, T.; Kumagai, Y.; Oba, F.; Yagi, S.; Shimokawa, K.; Goto, N.; Doi, T.; 280 Matsubara, E. Intercalation and Push-Out Process with Spinel-to-Rocksalt Transition on Mg Insertion into Spinel Oxides in Magnesium Batteries. *Adv. Sci.* 2015, *2*, 1500072.
- 282 15. Knight, J.C.; Therese, S.; Manthiram, A. On the Utility of Spinel Oxide Hosts for Magnesium-Ion Batteries. *ACS Appl. Mater. Interfaces* **2015**, *7*, 22953–2296.
- 284 16. Cabello, M.; Alcántara, R.; Nacimiento, F.; Ortiz, G.; Lavela, P.; Tirado, J.L. Electrochemical and chemical insertion/deinsertion of magnesium in spinel-type MgMn₂O₄ and lambda-MnO₂ for both aqueous and non-aqueous magnesium-ion batteries. *CrystEngComm* **2015**, *17*, 8728–8735.
- 287 17. Singh, N.; Arthur, T.S.; Ling, C.; Matsui, M.; Mizuno, F.A high energy-density tin anode for rechargeable magnesium-ion batteries. *Chem. Commun.* **2013**, 49, 149–151.
- 289 18. Courtney, I.A.; Dunlap, R.A.; Dahn, J.R. In-situ ¹¹⁹Sn Mössbauer effect studies of the reaction of lithium with SnO and SnO:0.25 P₂O₃:0.25 P₂O₅ glass. *Electrochim. Acta* **1999**, 45, 51–58.
- 291 19. Fernández-Madrigal, F.J.; Lavela, P.; Pérez-Vicente, C.; Tirado, J.L.; Jumas, J.C.; Olivier-Fourcade, J. X-ray 292 Diffraction, 7Li MAS NMR Spectroscopy, and 119Sn Mössbauer Spectroscopy Study of SnSb-Based 293 Electrode Materials. *Chem. Mater.* **2002**, *14*, 2962–2968.
- 294 20. Alcántara, R.; Ortiz, G. F.; Lavela, P.; Tirado, J.L. Electrochemical and ¹¹⁹Sn Mössbauer studies of the reaction of Co₂SnO₄ with lithium Electrochem. Commun. 8 (2006) 731–736.
- 21. Aldon, L.; Ionica, C.M.; Lippens, P.E.; Larcher, D.; Tarascon, J.M.; Olivier-Fourcade, J.; Jumas, J.C. In situ ¹¹⁹Sn Mössbauer spectroscopy used to study lithium insertion in c-Mg₂Sn. *Hyperfine Interact.* **2006**, *167*, 729–732.
- 299 22. Alcántara, R.; Rodríguez, I.; Tirado, J.L. Structural and Electrochemical Properties of Micro-and Nano-Crystalline CoSn Electrode Materials. *ChemPhysChem* **2008**, *9*, 1171–1177.
- 301 23. Gogotsi, Y.; Penner, R.M. Energy Storage in Nanomaterials Capacitive, Pseudocapacitive, or Battery-like? *ACS Nano* **2018**, *12*, 2081–2083.
- 24. Liu, Z.; Lee, J.; Xiang, G.; Glass, H.F. J.; Keyzer, E.N.; Dutton, S.E.; Grey, C.P. Insights into the Electrochemical Performances of Bi Anodes for Mg-Ion Batteries Using ²⁵Mg Solid State NMR Spectroscopy. *Chem. Commun.* **2018**, *4*, 743–746.
- 306 25. Kapitanov, E.V.; Pakovl E.K. Mössbauer Study of Phase Transitions (I) The Phase Transition of Mg₂Sn. *phys. stat. sol.* (*a*) **1979**, 53, 473–480.
- 308 26. Sirkin, H.; Mingolo E.; Nassif, N.; Arcondo, B. Increase of the glass-forming composition range of Mg-based binary alloys by addition of tin. *J. Non-Cryst. Solids* **1987**, *93*, 323–330.
- 310 27. Fries, S.G.; Lukas, H.L. Optimisation of the Mg-Sn System. *J. Chim. Phys.* **1993**, 90, 181–187.
- 28. Chouvin, J.; Olivier-Fourcade, J.; Jumas, J.C.; Simon, B.; Biensan, Ph.; Fernández Madrigal, F.J.; Tirado, J.L.; Pérez-Vicente, C. SnO reduction in lithium cells: study by X-ray absorption, ¹¹⁹Sn Mössbauer spectroscopy and X-ray diffraction. *J. Electroanal. Chem.* **2000**, 494, 136–146.
- 314 29. Stockler, H.A.; Sano, H. Mössbauer recoilless fraction in tin compounds. *Nucl. Instrum. Meth.* **1966**, 44, 103–108.