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Abstract: Health information technology has been widely used in healthcare, which has contributed 8 
a huge amount of data. Health data has four characteristics: high volume; high velocity; high variety 9 
and high value. Thus, they can be leveraged to i) discover associations between genes, diseases and 10 
drugs to implement precision medicine; ii) predict diseases and identify their corresponding causal 11 
factors to prevent or control the diseases at an earlier time; iii) learn risk factors related to clinical 12 
outcomes (e.g., patients’ unplanned readmission), to improve care quality and reduce healthcare 13 
expenditure; and iv) discover  care coordination patterns representing good practice in the 14 
implementation of collaborative patient-centered care. At the same time, there are major challenges 15 
existing in data-driven healthcare research, which include: i) inefficient health data exchanges across 16 
different sources; ii) learned knowledge is biased to specific institution; iii) inefficient strategies to 17 
evaluate plausibility of the learned patterns and v) incorrect interpretation and translation of the 18 
learned patterns. In this paper, we review various types of health data, discuss opportunities and 19 
challenges existing in the data-driven healthcare research, provide solutions to solve the challenges, 20 
and state the important role of the data-driven healthcare research in the establishment of smart 21 
healthcare system.  22 

Keywords: opportunity, challenge, perspective, health data; disease prediction; clinical outcome 23 
prediction; healthcare process; data quality; quantity and quality analysis; artificial intelligence 24 

 25 

1. Introduction 26 
Health information technology (HIT) plays an important role in the healthcare system evolution, 27 

and it has had a dramatic impact on the practice of medicine. In many situations, HIT has been 28 
verified to be an effective tool to achieve high quality and safety care [14-16]. We discuss 29 
opportunities and challenges of data-driven healthcare research starting from HIT and also ending 30 
with HIT (as shown in Figure 1). HIT transforms data in the version of paper into electronic and 31 
hatches many novel health related information systems and services such as electronic health record 32 
systems (EHRs) [17], online health communication forums [18-19], next generation sequencing [20] 33 
and wearable devices and mobile health [21-22].  34 

The new systems and services (e.g., EHRs) originated from HIT have contributed a huge amount 35 
of health data, which has four major characteristics [23-25]: i) high volume; it is very common to have 36 
Terabytes or Petabytes of the storage system for healthcare organizations (HCOs) to manage health 37 
data ; ii) high velocity; the health data movement is now almost real time and the update window 38 
has reduced to fractions of the seconds; iii) high variety; the health data can be stored in various 39 
formats such as database including structured and unstructured, extensible markup language, 40 
photos and short message service; and iv) high value, i.e., a patient health status can be visualized 41 
via an enhanced 360 degree of view. 42 

High throughput of health related data provides a direct view of a person’s health; however, 43 
there are many health patterns which are hidden behind the data and are not shown up in front of 44 
care providers and patients [26-27]. Thus, there is an emergent need to learn these hidden patterns.    45 
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Data-driven healthcare research has been proposed to achieve this goal [28-29]. In recent decades, 46 
various types of data-driven healthcare researches have been proposed, for instance, Genome-Wide 47 
Association Study (GWAS) [30-31] and Phenome-Wide Association Study (PheWAS) [32-33] have 48 
been developed to find associations between genes, diseases and drugs; drug-drug interaction 49 
studies have been implemented to detect adverse drug interactions [34]; predictive models are used 50 
to predict diseases such as Alzheimer [35] and suicide [36] at an earlier time; computational 51 
algorithms and statistical models are leveraged to identify risk factors related to patient outcomes 52 
such as unplanned readmission rates [38], mortality rates [39] and prolonged length of stay [40-41]; 53 
and healthcare process modeling aims to identify care coordination patterns representing good 54 
practice in the implementation of patient-centered care [42-43]. However, there are several major 55 
challenges existing in the data-driven healthcare research, which include but not limited to: i) 56 
inefficient health data exchange strategies; ii) biased research findings; and iii) difficulties in the 57 
evaluation, interpretation and translation of the learned patterns.  58 

 59 

 60 
Figure 1. A circular workflow to depict the position of data-driven health care research, which 61 
originates from health information technology and finally feeds it back. 62 

 63 
Researchers have proposed solutions to solve the aforementioned challenges. For instance, 64 

Observational Health Data Sciences and Informatics (OHDSI) built Observational Medical Outcomes 65 
Partnership (OMOP) common data model (CDM) to solve data quality and data exchange challenges 66 
[44]. Under the OMOP, data can be represented by standard terminology and transferred across 67 
HCOs via application programming interface (API) [45]. With the effort of OHDSI, data-driven 68 
healthcare research can be conducted on a large volume of data and the research findings will have 69 
a high probability not to be biased to specific HCO [45-46]. At the same time, qualitative approaches 70 
(e.g., surveys and focused group interviews) have been proposed to assess plausibility of the learned 71 
patterns and translate them into clinical practice [42, 72].  72 

In this review, beyond showing challenges and opportunities of data-driven healthcare research, 73 
we also depict perspectives of data-driven healthcare research and its important role in building 74 
smart health care systems such as self-diagnosis systems.   75 

2. Health Data 76 
Health data including DNA, EHR, mobile and social median, has been generated in an 77 

accelerated way.  78 

2.1. Genomic Data 79 
Extraordinary progress made in genome sequencing technologies lets the generation of DNA 80 

data in a fastest and cheapest way. According to data collected by the National Human Genome 81 
Research Institute, the cost per genome is around $1,121 in July 2017 [97]. Next generation sequencing 82 
(NGS) platforms can perform sequencing of millions of small fragments of DNA in parallel and each 83 
of the three billion bases in the human genome is sequenced simultaneously, which brings down the 84 
average time of sequencing a human genome to one hour [20, 97]. 85 

 86 
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2.2. EHR Data 87 
As of  2016, over 95% of hospitals are eligible for the Medicare and Medicaid EHR Incentive 88 

Program in United States, and the health information systems they have been using include Epic 89 
Systems, Allscripts, eClinicalWorks, AthenaHealth, NextGen Healthcare, Cerner, MEDITECH 90 
(Medical Information Technology), McKesson, and Orion Health[47].  91 

2.3. Mobile Data 92 

By 2018, it’s predicted that over 50% of smartphone users will have downloaded mobile health 93 
applications (apps), which can be grouped into two major categories: wellness and medical [48-49]. 94 
Wellness apps are typically used by patients accompanying with wearable devices, while medical 95 
apps are designed to be primarily used by physicians. Of the 100,000 mobile health apps in app stores 96 
around the world, 85% of apps are for wellness while the remaining 15% are for medical [50-51].  97 

2.4. Social Media Data 98 
Social media has generated huge amount of health related data. It has been recognized that over 99 

30% of adults are likely to share information on their health, prescribed drugs, hospitals they stayed 100 
and their insurance programs in social media platforms with other patients, and doctors, [52-53]. The 101 
most popular online platforms they have been frequently accessed are WebMD, Wikipedia, health 102 
magazine websites, Facebook, YouTube, online blogs, patient communities, and Twitter [54]. 103 

3. Opportunities in Data-driven Healthcare Research 104 

Health data contains a patient’s genetics and genomics, electronic health records, daily activities, 105 
lifestyle choices and social determinants, which provides a great opportunity to implement precision 106 
medicine. Precision medicine takes into account individual variability in genes, environment 107 
variables, and lifestyle choices to design personalized disease treatment and prevention strategies 108 
[55]. For instance, if a patient has a genetic variation in gene VKORC1, which can reduce the ability 109 
of an enzyme to recycle vitamin K, and subsequently the ability of the blood to clot, then a doctor 110 
needs to prescribe a low dose of warfarin which is a medication that is used to prevent blood from 111 
clotting, also known as an anticoagulant [98]. To achieve the goal of precision medicine, researchers 112 
have done various types of data-driven healthcare researches, which can be categorized into 113 
following six major groups. 114 

3.1. GWAS and PheWAS studies 115 

GWAS and PheWAS have been proposed to learn associations between genes and diseases.  116 
GWAS samples a large number of genetic variants for association with a single phenotype (disease) 117 
[30] whereas PheWAS does the same procedure with many phenotypes to one gene [56]. GWAS has 118 
been studied for over decades and as of 2017, the GWAS Catalog contains 3,172 publications and 119 
52,491 unique Single Nucleotide Polymorphism (SNP)-trait associations [31]. Researchers from 120 
Vanderbilt University have done distinguished studies on the scans of diseases for each individual 121 
gene via longitudinal EHRs [56, 100]. As of 2017, PheWAS catalog contain 1,358 EHR-derived 122 
phenotypes associated with 3,144 SNPs [32, 56]. 123 

3.2. Drug Repositioning 124 

Drug repositioning approaches have been designed to identify and develop new therapeutic 125 
indications for existing drugs.  New drug development is a costly, complex and time-consuming 126 
process. The average length of time from target discovery to approval of a new drug is about 14 years 127 
[57]. The failure rate during this process exceeds 95 percent, and the cost per successful drug can be 128 
$1 billion or more [57]. Thus, drug repositioning of approved drugs has recently gained new 129 
momentum for rapid identification and development of new therapeutics for diseases that lack 130 
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effective drug treatment [1-3]. GWAS and PheWAS findings [30-32, 56, 58] and clinical data [59] are 131 
leveraged to discover novel indications for existing drugs. A recent study leveraged GWAS and 132 
PheWAS findings to discover new clinical targets of existing drugs [99]. They used disease-gene 133 
associations found in GWAS and PheWAS, and drug-gene associations in DrugBank to learn 134 
relations between drugs and diseases via their overlapped genes. If the learned relations between 135 
drugs and diseases are novel, which are unknown in clinical observations, then they assume these 136 
relations could provide a great opportunity to develop new functions of existing drugs. Finally, they 137 
found 744 relations between diseases and drugs (e.g., disease asthma and drug irinotecan), which 138 
have not been found in clinical observations. 139 

3.3. Drug-Drug Interactions 140 

Drug-drug interactions (DDIs) learning has been proposed to reduce medication errors and 141 
improve patient safety [60-63]. DDIs is a situation in which a drug affects the activity of another drug 142 
when both are administered together, and it has been one of the commonest causes of medication 143 
error. There are two typical transporter-based DDI risk evaluations: in vitro and in vivo extrapolation 144 
models [101]. University of Washington drug interaction database-Metabolism and Transport Drug 145 
Interaction Database (DIDB)-has been licensed for scientists and clinicians working in the field of 146 
DDIs since 2002 [102]. DIDB is a knowledge base which includes both in vitro and in vivo DDI data, 147 
allowing in vitro to in vivo extrapolations; at the same time, it includes DDI data coming from 291 148 
new drug application reviews [102]. Drugbank is another major data resource which has been 149 
leveraged by researchers to explore DDIs. For instance, researchers used drugbank data and machine 150 
learning algorithms to predict DDIs and DDI induced adverse drug interactions [103].   151 

3.4. Disease Prediction 152 

Disease predictive models have been developed to predict diseases before their occurrences. 153 
These models usually leverage computational models and potential risk factors including 154 
biomarkers, clinical phenotypes, lifestyle behaviors or social determinants to predict diseases at an 155 
early time.  For instance, mutations in the genes encoding amyloid precursor protein, presenilin 1 156 
and presenilin 2 are responsible for early-onset autosomal dominant Alzheimer’s Disease [5]; a high 157 
body mass index (BMI) and high blood cholesterol in cardiovascular diseases [4]; and socio-economic 158 
variables (e.g., income, education, or occupation) is linked to a wide range of health problems, 159 
including low birth weight, cardiovascular disease, infectious intestinal disease, hypertension, 160 
arthritis, diabetes, and cancer [6-7]. A recent study leveraged a machine learning based model and 161 
mothers’ maternal data to predict neonatal encephalopathy (NE), which is a leading cause of infant 162 
mortality and long-term neurological morbidity [104].  This model can predict NE earlier than the 163 
time a child was born, which provides a great opportunity for HCOs to adopt preventative 164 
interventions to minimize the effects of distal risk factors and decrease the risk of NE. 165 

3.5. Clinical Outcome Prediction 166 

Outcome prediction aims to measure associations between prognostic factors and clinical 167 
outcomes. The prognostic factors include health conditions such as diseases, [40, 77]; care 168 
coordination routines such as clinical workflows [76, 78] and care team [41, 79]; environmental 169 
variables such as social determinants [80]; and healthcare payers such as health insurance programs 170 
[81]. Clinical outcome includes unplanned readmission rates [38], length of stay (LOS) in hospital [40-171 
41], health care expenditure [73], patient satisfaction [74-75], and morbidity and mortality [36, 39]. 172 
Clinical outcome prediction can bring two major benefits. The first is it can improve efficiency of 173 
resource allocation. For instance, researchers can leverage mothers’ historical health conditions 174 
(before childbirth) to predict their LOS during delivery hospitalizations [40]. HCOs can use such 175 
decision support system to estimate LOS for each patient and then conduct resource allocation 176 
accordingly. Another benefit of clinical outcome prediction is there is a big opportunity to identify 177 
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causal prognostic factors related to outcome, which can potentially improve care quality (e.g., 178 
preventions of unplanned readmission) and reduce health care cost (e.g., reductions in LOS) [8-10]. 179 

3.6. Care Coordination Optimization 180 

It has been recognized that patient centered care, which requires a transition from independent 181 
clinician working in isolation to a care team with fully interactions between each other, can improve 182 
care quality and reduce healthcare cost [105]. Communication, collaboration and care coordination 183 
between health care employees play an important role in establishing or refining patient centered 184 
care [82]. Researchers have developed various data-driven models to learn care teams or clinical 185 
workflows from EHRs [11-13, 42, 83-85]. Their results indicate that the teams and workflows learned 186 
from the data are plausible and can be interpreted by HCOs [42]. At the same time, some of researches 187 
measured associations between care team patterns and clinical outcomes to discover the team 188 
patterns representing good practice in the implementation of patient centered care [41]. Another type 189 
of study in patient centered care aims to put right care providers in place for right patients, in 190 
particular for those patients who exhibit multiple health conditions simultaneously [43]. For instance, 191 
researchers found patients with a collection of health conditions (e.g., anemia, hypogonadism, 192 
prostate cancer and bone loss) were usually co-managed by an integrated clinical workflow in a form 193 
of a bundle of care providers [43]. Compared with the traditional care strategies, which treat each of 194 
conditions independently  such approach can   potentially avoid replicated care (e.g., replicated 195 
tests requested by different care providers) and reduce patient visit durations (e.g., cost of time for 196 
transitions between care providers). 197 

4. Challenges in Data-driven Healthcare Research 198 

Health data provides strong supports to conduct the aforementioned researches to achieve the 199 
goal of precision medicine. However, there are several major challenges to utilize health data to 200 
achieve the goal, which can be categorized as follows. 201 

4.1. Interpretation of Health Information System Utilization 202 

There is a gap between people who design health information systems and those who use the 203 
systems. Healthcare employees who use the same health information system, may even have 204 
disparate interpretations on the system utilizations [64-65]. For instance, a patient’s health 205 
information documented by a provider of one HCO may be misunderstood by providers from 206 
another HCO. Thus, health information systems maybe inappropriately utilized, and thus the data 207 
documented in such information system may be incorrectly interpreted [64]. 208 

4.2. Data Standard 209 

Aligning data coming from different sources can provide a complete care journey for each 210 
patient, which is a necessity to implement patient centered care and value-based care [66-67]. For 211 
instance, a trauma patient may be diagnosed in disparate HCOs, such as primary care hospital, 212 
trauma center, and skilled nursing facilities. The primary care recorded his historical health 213 
information, trauma center recorded detailed surgical procedures he had received and nursing 214 
facilities recorded progresses of his post-operative recovery. Getting all information associate with 215 
the patient requires involved HCOs to coordinate with each other to ensure the information locates 216 
in each HCO could be communicated accurately. This is very important to advocate patient-centered 217 
care, which coordinates healthcare workers across disparate HCOs to make a decision for a patient’s 218 
diagnosis and value-based care, which continuously monitors health status and outcome of a patient 219 
and then make a payment according to the outcome achieved. However, there are few common data 220 
models which can be served as channels to let data be communicated across HCOs. Another benefit 221 
of common data model is it can support the building of a big cohort for research purpose, and 222 
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subsequently increases the power of learned knowledge [68]. For instance, if a research aims to infer 223 
causal relationship between maternal disease (e.g., depression) and neonatal disease (hypo-pituitary 224 
axis-childhood growth and development), then they need to identify subjects to get sufficient power 225 
to conduct a case-control study to test the significance of the causal relationship. In this case, it will 226 
be required to identify more subjects from various HCOs. Thus, a common data model is critically 227 
important to ensure information is accurately aligned across disparate HCOs. 228 

4.3. Biased Finding 229 

Most of data-driven healthcare researches have been conducted on an individual healthcare 230 
system, and thus the findings learned from such studies are biased to the specific healthcare system 231 
[104, 106-107]. For instance, performance of NE prediction models introduced in [104] are biased to 232 
the investigated patient population at Vanderbilt University Medical Center (VUMC).  Majority of 233 
maternal patients admitted to VUMC are high risk and thus, findings of prediction model built on 234 
such population are biased to high risk patients. In other words, low risk patients with NE babies 235 
may not be captured by the predictive models.  236 

Data-driven models are usually trained on unbalanced cohorts, where the number of cases is 237 
much smaller than the controls, and thus patterns learned from such models are biased, in many 238 
scenarios, resulting in always predicting the majority class (controls). For instance, NE is a rare 239 
disease and the number of cases is much smaller than the number of controls [104]. Thus, models 240 
built on such unbalanced cohorts are dominated by controls. 241 

4.4. Interpretation of Learned Patterns 242 

There is a gap between data-driven findings and their applications in clinical practice. Usually 243 
researchers focus on performances (e.g., predictive accuracy) of data-driven approach and seldom 244 
emphasize on interpretation and evaluation of patters learned from the data. Two typical approaches: 245 
supervised learning [69-70, 104] and unsupervised learning [41-43] exist in the data-driven healthcare 246 
research, and they both face challenges to interpret knowledge learned from data. Supervised 247 
learning is very similar with traditional hypothesis-driven case-control study, which requires experts 248 
to predefine a hypothesis and then build a cohort of cases and controls to test the hypothesis. 249 
Supervised learning requires that the cases and controls are pre-labeled by experts according to a 250 
golden standard. At the same time, it requires experts’ prior knowledge to identify potential 251 
explanatory variables influencing cases or controls. Computational models are built based on the 252 
identified explanatory variables and labeled cases and controls [69-70]. This type of research aims to 253 
achieve a high accuracy of identifying cases and controls via the identified explanatory variables. 254 
However, it is hard to interpret causal relationships between explanatory and response (cases or 255 
controls) variables.  For instance, a study used logistical regression to predict NE via mothers’ 256 
maternal data and measure associations between NE and risk factors of the mothers [104]. The model 257 
can achieve an area under curve (AUC) of 0.87 to predict NE and identify risk factors which play the 258 
most important roles in the prediction. However, it is still hard for it to figure out causal factors 259 
leading to NE.  260 

Unsupervised learning which does not need manual effort to build cohorts of cases and controls, 261 
automatically learns novel patterns from the data [41-43]. It is much harder to interpret patterns 262 
learned from the unsupervised than the supervised. This is because most of patterns learned from 263 
the unsupervised approaches are novel, which is difficult for experts to interpret via their domain 264 
knowledge. For instance, a study learned care teams from EHRs via an unsupervised clustering 265 
approach, and it is hard for it to evaluate if the learned care teams are plausible or if they are effective 266 
in clinical practice [42]. 267 

 268 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 June 2018                   doi:10.20944/preprints201806.0137.v1

http://dx.doi.org/10.20944/preprints201806.0137.v1


 

 

5. Potential Solutions 269 

Although there are many challenges existing in data-driven healthcare research, we have 270 
witnessed big effort to solve these challenges. 271 

5.1. Transfer Learning 272 

To quantify differences in interpretations of health information system utilizations, researchers 273 
have done studies to measure similarities of health information system utilization behaviors [86-88].  274 
For instance, a study investigated the transferability and stability of phenotypes learned from one 275 
health information system to another [86]. The study assumed that healthcare employees in the two 276 
HCOs (Vanderbilt University Medical Center and Northwestern University) have similar 277 
interpretations of using diagnosis codes (International Classification of Diseases, Ninth Revision, 278 
Clinical Modification) in their EHR systems. They learned phenotypes from diagnosis codes in each 279 
healthcare system, and did a cross projection of patients based on the learned phenotypes (e.g., a 280 
phenotype learned from system A used to explain patients in system B); and then they compare 281 
differences between patients projected by phenotypes learned from their own system and projected 282 
by phenotypes learned from other systems. They found that utilization behavior of standard 283 
terminology such as ICD-9 codes across disparate healthcare systems are consistent [86]. 284 

5.2. Common Data Model 285 

To promote health data coming from disparate sources can be exchanged, OHDSI has proposed 286 
OMOP CDM, which allows for the systematic analysis of disparate observational databases via 287 
standardized terminologies [44-45]. CDM transforms data contained within disparate sources into a 288 
common format as well as a common representation (terminologies, vocabularies, coding schemes). 289 
For instance, OHDSI has developed an open source software ATLAS [71] for researchers to identify 290 
people with specific conditions, drug exposures from disparate sources. ATLAS can transform health 291 
information coming from disparate sources to a standardized observational data via CDM. At the 292 
same time, ATLAS can visualize a particular subject's health care records coming from different 293 
sources.   294 

It is notable that data exchange between HCOs can potentially solve the problem of bias findings.  295 
This is because, CDM can let researchers to construct a big cohort to include all types of subjects 296 
(patients) from various sources. Models built on such big patient population have a potentiality to 297 
learn knowledge which are not biased to a specific healthcare system. 298 

5.3. Under-sampling and Over-sampling 299 

To solve the challenge of training a model on an unbalanced cohort, researchers use over-300 
sampling (up sampling more cases to match the number of controls) or under-sampling (down 301 
sampling controls to match the number of cases) strategies to construct a balanced cohort [108-109]. 302 
For all investigated cases, under-sampling randomly selects controls whose number is the equal or 303 
close to cases, and then build balanced cohort. This process can be done many times and generate a 304 
series of cohorts. Models will be trained and validated within each cohort. Each independent model 305 
is not biased to unbalanced data. However, the main drawback of this strategy is that each model 306 
could not capture complete characteristics of controls, and thus the model has a high false positive 307 
and low positive predictive rates (many controls predicted as cases) in the practice. An alternative 308 
way to reduce high false positive rates is that given a new subject, first measuring distance between 309 
a new subject and each independent mode (e.g., average distance between the subject and all subjects 310 
involved in an independent model), and then using the model which has the smallest distance to 311 
predict the class of the new subject.  312 
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Over-sampling randomly samples cases to increase the number of cases to an equal number of 313 
controls. A potential problem over-sampling will approach is the overfitting. This is because, 314 
validation set may have the same cases with those in training set. An alternative way to solve 315 
overfitting is to separate validation set first, and then oversampling cases in the training set. A recent 316 
technique the synthetic minority over-sampling technique, which not only over-samples minority 317 
class, as well as under-samples the majority class, has been developed to solve drawbacks yield by 318 
both over-sampling and under-sampling [110]. 319 

5.4. Quantity and Quality Analysis 320 

To fill the gap between patterns learned from health data and its interpretation and application 321 
in clinical practice, researchers have proposed many interpretation strategies. For instance, online 322 
survey is a popular approach aiming to recruit clinical experts to assess and interpret learned patterns 323 
[42, 72]. Usually a survey contains the learned patterns and their corresponding clinical context.  324 
Researchers send these surveys to clinical experts and ask them to assess plausibility of the patterns 325 
according to their domain knowledge [72].  For instance, a data-driven study learned care teams of 326 
a HCOs via computational models and then they invited administrative and clinical experts to assess 327 
plausibility of the learned care teams via online surveys [42]. They designed survey question for each 328 
learned care team and asked experts to determine if each learned care team satisfies their 329 
expectations. Beyond online surveys, researchers also design focus group interview to let content 330 
experts discuss and interpret the learned patterns [89]. 331 

6. Perspectives of Data-driven Healthcare Research 332 

According to the aforementioned opportunities, challenges, and potential solutions to the 333 
challenges, data-driven healthcare research can provide big opportunities to establish clinical 334 
decision support systems or smart self-diagnosis systems.   335 

5.1. Artificial Intelligence 336 

Artificial intelligence has been populated in recent years [90-91]. For instance, Amazon Alexa 337 
system has been providing APIs to allow disparate types of devices communicate with their clouds 338 
[92-93]. Furthermore, they incorporate various computational models and algorithms in their clouds, 339 
which can be leveraged to automatically analyze data collected from disparate devices. In the near 340 
future, we believe smart control systems such as Alexa can connect medical devices, wearable 341 
devices, social media accounts, and shopping accounts which can monitor patients’ health status (e.g., 342 
heart rate, blood pressure) and life style choices (e.g., sleeping hours, physical exercise, social 343 
behaviors, and eating habits) all the time. The computational models developed in the field of data-344 
driven healthcare research can also be connected to clouds to provide smart clinical decisions. For 345 
instance, disease predictive models can be integrated to provide risk alerts for Parkinson disease, 346 
Alzheimer, and suicide; drug-drug interaction models can provide information for people to avoid 347 
adverse drug interactions; GWAS and PheWAS models can assist physicians in prescribing 348 
appropriate medications based on a patient’s genome and phenome data; and patient aligned care 349 
team models can recommend right care teams for right patients at right time. 350 

5.2. Smart Healthcare System 351 

Speech recognition [94] and visualization technologies [95-96] have been progressing very fast 352 
in recent years, which provides strong support to build input (voice-assisted care) and output (360 353 
degree of visualization of a patient health status) of a smart healthcare system. Healthcare employees 354 
can communicate with decision support systems via voices settled in smart healthcare systems, and 355 
interpret changes of patients’ health status via visualized interactive graphs.  356 
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A smart healthcare system has three core components: i) inputs (e.g., smart devices, audio speech 357 
recognition, online social media and shopping account), which automatically collect patients’ data; 358 
ii) computational models (e.g., data mining, deep learning), which analyze health data and discover 359 
patterns; and iii) outputs (e.g., visualization tools) to visualize the learned patterns. Data-driven 360 
healthcare research aims to conduct smart analysis on the collected data and discover valuable 361 
patterns or knowledge, which are subsequently visualized to be shown up in front of patients, 362 
physicians and HCOs. 363 

7. Conclusions 364 

Data-driven healthcare research plays an important role in the establishment of smart healthcare 365 
system. This paper reviews opportunities, challenges, potential solutions to challenges, and 366 
perspectives existing in data-driven healthcare research. Data-driven healthcare research originated 367 
from analysis of health data generated by HIT and its ultimate goal is to discover valuable knowledge 368 
learned from the data to feed the HIT. In other words, data-driven healthcare research both starts and 369 
ends at HIT. Although many challenges including data quality, data standards, interpretation of 370 
learned patterns and translation of the patterns into clinical practice, exist in the data-driven 371 
healthcare research, it still has a great potentiality to assist in the establishment of smart healthcare 372 
systems.  373 
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