

1 Article

2 **Bioactive and Bioadhesive Catechol Conjugated**
3 **Polymers for Tissue Regeneration**4 **María Puertas-Bartolomé ^{1,2}, Blanca Vázquez-Lasa ^{1,2*} and Julio San Román ^{1,2}**5 ¹ Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain6 ² CIBER-BBN, Health Institute Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain

7 * bvazquez@ictp.csic.es; Tel.: +34 91 5618806 Ext 921522

8 **Abstract:** The effective treatment for chronic wounds constitute one of the most common worldwide
9 health care problem due to the presence of high levels of proteases, free radicals and exudates in the
10 wound, which constantly activate the inflammatory system avoiding the tissue regeneration. In
11 this study, we describe a multifunctional bioactive and resorbable membrane with in-built
12 antioxidant agent for the continuous quenching of free radicals as well as to control inflammatory
13 response helping to promote the wound healing process. To reach that goal synthesized statistical
14 copolymers of *N*-vinylcaprolactam (V) and 2-hydroxyethyl methacrylate (H) have been conjugated
15 with catechol bearing hydrocaffeic acid (HCA) molecules. The natural polyphenol (catechol) is the
16 key molecule responsible for the mechanism of adhesion of mussels, and provides the
17 functionalized polymer conjugate a continuous antioxidant response, antiinflammatory effect, UV
18 screen and bioadhesion in the moist environment of the human body, all of them key features in the
19 wound healing process. Therefore, these novel mussel-inspired materials have an enormous
20 potential of application and can act very positively, favoring and promoting the healing effect in
21 chronic wounds.

22

23 **Keywords:** wound healing; catechol; conjugated; antioxidant; antiinflammatory; bioadhesion; UV
24 shielding.25 **1. Introduction**

26 To date, substantial research efforts have been directed toward developing wound dressings
27 materials that promote an effective treatment for skin lesions supporting the complex wound healing
28 process [1-3]. It is well known that chronic wounds, defined as wounds that do not heal (diabetic
29 ulcers, pressure sores, venous ulcers, etc.), are extremely difficult to be treated constituting one of the
30 most common worldwide health care problem [4,5]. These lesions are not able to achieve functional
31 integrity of the injured tissue after medical treatment [6], causing constant pain and diminishing the
32 quality of life of the patient [7]. The trouble in healing chronic wounds is the continuous release of
33 high levels of proteases, free radicals (reactive oxygen species (ROS) and reactive nitrogen species
34 (RNOS)) as well as exudates [8-11]. Proteases degrade growth factors and elastin and collagen newly
35 synthesized, while free radicals oxidize biomolecules and constantly activate the inflammatory
36 system [5,7,8,12,13], and moreover, exudates promote microbial infection. These facts make that
37 chronic wounds remain in the inflammatory stage for too long avoiding the tissue regeneration and
38 healing [14].

39 In order to promote an effective healing of chronic wounds, researchers have developed
40 different polymeric wound dressings [15-19]. Since conventional wound dressings act as physical
41 barriers and wound closure occurs as the result of the endogenous healing ability of the wound [20],
42 new researches have been currently developed based on bioactive wound dressings delivering
43 antimicrobial agents, growth factors, antioxidant molecules... able to accelerate the wound healing
44 process [21-24]. Nevertheless, tissue toxicity has been found in wounds and surrounding areas due
45 to the difficulties in controlling delivery the bioactive agents [25,26], and consequently, the effective
46 control of inflammation, protease activity and free radical presence remain a great challenge [27-29];
47 hence improved approaches are still needed. In this sense, the purpose of this work lies in the
48 development of a multifunctional bioactive and reasorbable wound dressing with in-built
49 antioxidant agent for the continuous quenching of free radicals as well as to control inflammatory
50 response helping to promote the healing of chronic wounds and improving therefore the efficacy of
51 existing approaches.

52 Natural phenolic compounds possess important antioxidant activity [30-32], higher even than
53 vitamins [33,34], and some crude plant extracts rich in phenolic groups have been used for wound
54 healing [33,35-38]. The natural polyphenol ortho-dihydroxyphenol (catechol), has been studied in
55 previous studies showing a great ability to assist in quenching the ROS in wounds [39-42]. In this
56 study, catechol has been the bioactive agent chosen for the designed system in order to guarantee a
57 persistent supply of antioxidant activity, which will continuously quench free radicals and inhibit the
58 constant activation of the inflammatory system, promoting wound healing [43-49]. Catechol is the
59 key molecule found in the byssus of mussel adhesive proteins (MAPs) secreted by the mussel's foot
60 and responsible for the great adherence to rocks in wet conditions [50,51]. This bioinspired kind of
61 adhesion has been an emerging strategy developed in several researches in order to obtain wound
62 dressings able to adhere to biological interfaces in moist environments [52-57], which is still a
63 challenge in general surgery [58]. Thus, using catechol in the system proposed by this group, will
64 also provide bioadhesion to the material, allowing to establish an intimate contact with the tissue so
65 that the bioactive wound dressing can properly fulfill their functions. In this manner, the dressing
66 will act as a preventive barrier for microbial infection, further physical damage and preserving a
67 moist wound environment, which has been demonstrated to accelerate the wound re-
68 epithelialization process [59].

69 Therefore, this work is focused on the preparation of resorbable and bioactive catechol
70 conjugated polymers designed for wound dressing purposes. The system suggested consists of
71 conjugates of catechol with N-vinylcaprolactam (V) and 2-hydroxyethyl methacrylate (H) statistical
72 copolymers, which finally bear bioactive hydrocaffeic acid (HCA) moieties. These terpolymers
73 possess a hydrophilic character amiable with the environment of a skin lesion. Although different
74 polymeric materials with catechol functionality have previously been reported [41,60-63], the novelty
75 of the obtained terpolymers lies in the pathway via postpolymerization conjugation reaction to
76 provide a flexible long-arm catechol conjugated polymer with enhanced availability of the catechol
77 side groups. This pathway has the advantages of avoiding the drawbacks coming to the scavenger

78 activity of catechol groups in the polymerization reactions, protection of catechol groups is not
79 required while provides high yield. Thus, the developed terpolymers are directed to wound dressing
80 applications, in which the bioactive agent catechol will be intrinsically built into the wound dressing,
81 providing a continuous antioxidant response, antiinflammatory effect, and bioadhesion in the moist
82 environment of the lesion, all of these properties being key features in the wound healing process.

83 2. Materials and Methods

84 2.1. Materials

85 *N*-vinylcaprolactam (V) (Sigma-Aldrich), 1,4-dioxane (Panreac), 3,4-dihydroxyhydrocinnamic
86 acid or hydrocaffeic acid (HCA) (Sigma-Aldrich), thionyl chloride (Scharlau), *N,N*-
87 dimethylformamide (DMF) (Scharlau), toluene (Merck), dimethyl sulfoxide (DMSO), triethylamine
88 (Scharlau), ethanol (VWR Chemicals), phosphate buffered saline solution 10 mM (PBS) (pH 7.4)
89 (Sigma-Aldrich) were used as received. 2-Hydroxyethyl methacrylate (H) (Fluka) was previously
90 purified according to the literature [64] and azobisisobutyronitrile (AIBN) (Fluka) was previously
91 crystallized in methanol (Sigma-Aldrich).

92 2.2. Characterization techniques

93 Proton nuclear magnetic resonance spectra (¹H-NMR) were recorded at 25 °C on a Bruker
94 Advance III HD-400 equipment in deuterated chloroform (CDCl₃), or deuterated dimethyl sulfoxide
95 (DMSO-d₆), depending on sample. UV spectra of the different terpolymers were recorded using a
96 NanoDrop one (Thermo Fisher Scientific). Attenuated total internal reflectance Fourier transform
97 infrared (ATR-FTIR) spectroscopy spectra were obtained on a Perkin-Elmer (Spectrum One)
98 spectrometer equipped with a ATR accessory. Differential scanning calorimetry (DSC) experiments
99 were carried out on a micro-DSC-Illa apparatus (Setaram, France). Three heating-cooling cycles were
100 analyzed between 25 °C and 180 °C with a scanning rate of 10 °C/min under nitrogen at 20 mL/min
101 flow rate. Standard Hastelloy vessels were used with 3 mg sample weight approximately. An empty
102 vessel was used as reference. The samples were equilibrated at 25 °C for 60 min before each scan.
103 From the thermograms of the second heating scan, the glass transition temperature (T_g) was
104 determined as the midpoint of the transition. Thermogravimetric analysis (TGA) diagrams were
105 obtained in a thermogravimetric analyzer TGA Q500 (TA instruments) apparatus, under dynamic
106 nitrogen at a heating rate of 10 °C/min in a range of 40-800 °C. From the thermograms, the
107 temperature of 50 % weight loss (T_{50%}) and the char yield were obtained. The average molecular
108 weight (M_n and M_w) and polydispersity (M_w/M_n) of all the polymers were determined by gel
109 permeation chromatography (GPC), using a PerkinElmer Isocratic LC pump 250 coupled to a
110 refraction index detector (Series 200). Three polystyrene-divinylbenzene columns (Waters Styragel®
111 HR) were used as solid phase, degassed DMF with 0,1 % BrLi (0.7 mL/min) was used as eluent, and
112 temperature was fixed at 70 °C. Monodisperse polystyrene standards (Agilent Technologies) with
113 molecular weights between 2,930 Da and 3,039 kDa were used to obtain the calibration curve. Data
114 were analyzed using the PerkinElmer LC solution program. Morphology of membranes was
115 examined using a FE-SEM (Field emission scanning electron microscope, Tokyo, Japan) Hitachi SU-
116 8000 with an energy dispersive X-rays (EDS) analyzer Bruker XFlash model Detector 5030 using a
117 voltage of 8 keV and Atomic force microscopy (AFM) experiments performed in tapping mode using
118 a Multimode AFM (Veeco Instruments, Santa Barbara, CA) equipped with a Nanoscope IVa control
119 system (software version 6.14r1).

120 2.3. Synthesis of the VH copolymers

121 *N*-vinylcaprolactam and 2-hydroxyethyl methacrylate statistical copolymers (VH) were
122 obtained by free radical copolymerization initiated by AIBN. V and H monomers were solved in 1,4-
123 dioxane with a concentration of 1 M and the solution was deoxygenated with nitrogen. Two different
124 V:H mol % feed compositions of the monomers were used: 80:20 and 60:40. The radical initiator AIBN
125 was carefully added to the reaction mixture with a concentration of 2.5 x 10⁻² M and nitrogen was

126 bubbled for 1 min. Reaction was carried out under nitrogen atmosphere at 60 °C. After 24 h, the
127 reaction mixture was immersed in an ice bath to stop polymerization. The reaction product was
128 purified by dialysis using a cellulose membrane with a molecular weight cut-off 3.5 kDa, against
129 ethanol/water 1:1 for 48 h and against water for 48 h to remove the unreacted residues. The final
130 product was frozen-dried, recovered and stored. Copolymer compositions were determined by NMR
131 analysis, as it is described in Section 3, giving H contents of 16 and 36 mol % respectively. Hereinafter,
132 copolymers are designated as VH16 and VH36.

133 *2.4. Synthesis of the catechol-conjugated polymers VHC*

134 First, the chloride acid derivative of the hydrocaffeic acid (HCl) was prepared according to a
135 modified method derived from a previously reported strategy [65]: Briefly, 5 g of hydrocaffeic acid
136 (HCA) were added to 20 mL of thionyl chloride. The mixture was stirred for 4 h under reflux (85 °C)
137 and 10 drops of DMF were added. Then, 2 mL of toluene were added and the thionyl chloride excess
138 was removed by distillation (80 °C) at vacuum. The HCl was isolated as an oily orange product.

139 Secondly, the catechol conjugated polymers were obtained by a conjugation reaction between a
140 fraction of the hydroxylic groups of the H units in the VH copolymers (VH16 and VH36) and the
141 chloride acid derivative previously synthesized HCl. To that end, VH copolymers were solved in
142 DMF and triethylamine was added. The HCl was solved in DMF/DMSO and the solution was
143 added dropwise to the mixture. The reaction was kept for 1 day under continuous stirring and
144 nitrogen flux at r.t. Reaction mixture was dialyzed against ethanol/water 1:1 for 1 day and against
145 water for 2 days (cut off 3.5 kDa). The final product was frozen-dried, recovered and stored. UV vis
146 spectroscopy was used to quantify the catechol content recording absorbance at 290 nm and
147 comparing with standard solutions of HCA. The catechol conjugated polymers obtained from the
148 VH16 and VH36 copolymers contained catechol fractions of 2 and 22 mol % respectively. Hereinafter,
149 terpolymers are designated by the catechol composition values as VHC2 and VHC22.

150 *2.5. Films preparation*

151 Thin films were obtained by a casting/solvent evaporation technique by adding 250 µL of a 25
152 mg/mL DMSO solution of the corresponding conjugated polymer to a glass cover (14 mm diameter)
153 at 70 °C. Finally, films were dried until constant weight obtaining a final average thickness of 12±3
154 µm. Films morphology was examined by FE-SEM and AFM.

155 *2.6. In vitro degradation*

156 The *in vitro* degradation of the films was examined gravimetrically under simulated
157 physiological conditions. Briefly, the sample was initially dried and weighed (W_0). Weight loss was
158 monitored as a function of incubation time in Dulbecco's modified Eagle's medium (DMEM)
159 (pH=7.4) at 37 °C. At specific periods of time (1, 4, 7, 14 and 21 days) the samples were carefully
160 withdrawn from the medium. Then, the samples were dried and weighed (W_t). The weight loss
161 percentage (ΔW %) was defined as following equation 1:

$$\Delta W(\%) = [(W_0 - W_t) / W_0] \times 100 \quad (1)$$

163 *2.7. Adhesion strength test*

164 The adhesion strength of VHC polymers was examined on pig skin using a Universal Testing
165 Machine (UTM, Instron model 3366) equipped with a 100 N load cell. The protocol of the lap shear
166 experiment was adapted from the American Society for Testing and Materials (ASTM) standard
167 F2255-05 (Reapproved 2015). Homogeneous test samples of fresh porcine skin with their fat removed
168 were cut into rectangles with dimensions 40 mm length, 15 mm width and 3.5 mm thickness. Polymer
169 and oxidation agent solutions were prepared following an adapted protocol reported in literature
170 [66]. 50 µL of a 300 mg/mL ethanol solution of the VHC polymers in 0.01 M phosphate-buffered saline
171 (pH 7.4) were spread on the dermis surface of one skin sample. Then, 50 µL of a 47 mM NaIO₄ in a
172 10 % NaOH water solution were added and mixed with the polymer solution inducing gelation.

173 Immediately, the sample was covered with the dermis part of another piece of skin (bonding area: 15
174 x 10 mm²). Samples were covered with PBS-soaked gauze to keep the tissue moist, loaded with a
175 normal force of 0.1 N and allowed to cure for 30 min. Adhesion strength data were collected by
176 pulling away the two skin pieces at a rate of 5 mm/min and calculated as the maximum force divided
177 by the overlapping adhesion area. Four replicates were tested for each composition in order to
178 calculate the mean and standard deviation (n=4). Analysis of variance (ANOVA) was performed
179 comparing both samples at significance levels of *p <0.05, **p <0.01 and ***p <0.001 using Origin Pro
180 8 software and Tukey grouping method.

181 *2.8. UV shielding test*

182 An innovative method has been developed in order to evaluate the UV protective screen
183 properties of the catechol conjugates based on the change in the wettability of porcine skin after UV
184 irradiation. In this method, fresh porcine skin samples were cut into squares with dimensions 20 x 20
185 mm² and the wettability was measured by analyzing the water contact angle. Subsequently, skin
186 samples were covered with VHC terpolymer films and exposed to UV radiation generated using a
187 UVP CL-1000 lamp with peak emission at 313 nm with an intensity of 0.95 W/m². Also control skin
188 samples were irradiated under the same conditions. Finally, water contact angle of the skin below
189 the terpolymer films was determined in order to compare and evaluate the UV protection of the
190 conjugated polymers on the porcine skin. Analysis of variance (ANOVA) was performed
191 comparing the irradiated and the non-irradiated skin samples at significance levels of *p <0.05, **p
192 <0.01 and ***p <0.001 using Origin Pro 8 software and Tukey grouping method.

193 *2.9. Cellular assays*

194 *2.9.1. Cell Culture*

195 Cellular toxicity and reactive oxygen species (ROS) assays were evaluated using human bone
196 marrow mesenchymal stem cells (hBMSCs) (Innoprot, Vizcaya, Spain, P5), and antiinflammatory
197 activity was analyzed with murine RAW 264.7 macrophages (ECACC, Sigma, P11). hBMSCs were
198 cultured in Dulbecco's modified Eagle's medium (DMEM) enriched with 5 % of fetal bovine serum
199 (FBS), 5 mL of mesenchymal stem cell growth supplement (MSCGS), 50 µg/mL of Gentamicin (Sigma-
200 Aldrich) and 2.5 µg/mL of Amphotericin B (Gibco); and macrophages were cultured with DMEM
201 enriched with sodium pyruvate (110 mg/L), 10 % FBS, 100 units/mL penicillin, 100 µg/mL
202 streptomycin and 200 mM L-glutamine. A humidified atmosphere with 5 % CO₂ and 95 % of air was
203 used for cell cultures growth. The culture medium was changed at selected time intervals with little
204 disturbance to culture conditions. Films and cover glasses as controls were sterilized with a UV lamp
205 (HNS Osram, 263 nm, 3.6 UVC/W) at a power of 11 W for 30 min.

206 *2.9.2. Cytotoxicity*

207 Alamar Blue (AB) test was used in order to indirectly analyze the cytotoxicity of the conjugated
208 polymers. Films of both terpolymers were set up in a tube with 5 mL of FBS-free supplemented
209 DMEM and placed on a shaker at 37 °C. Then, medium extracts were taken at 1, 2, and 7 days under
210 sterile conditions. hBMSCs were seeded at a density of 9 × 10⁴ cells/mL in complete medium in a
211 sterile 96-well culture plate and incubated to confluence. After 24 h incubation the medium was
212 replaced with the corresponding medium extract and incubated for 24 h. After that time, 1 mL of AB
213 dye (10 % AB solution in phenol red free DMEM medium) was added to the samples. Plates were
214 incubated at 37 °C for 3 h and the fluorescence emission was measured at 530 nm (excitation) and 600
215 nm (emission) on a UV multiplate reader (Biotek Synergy HT). The percentage of relative cell viability
216 (CV) was calculated from equation 2:

$$CV(\%) = 100 \times (OD_s - OD_b) / (OD_c - OD_b) \quad (2)$$

218 where OD_s, OD_b and OD_c are the optical density (OD) of formazan production for the sample, blank
219 and control, respectively. Results are given as mean and standard deviation (n = 8).

220 2.9.3. Reactive oxygen species (ROS) quantification

221 Total ROS free radical activity was measured fluorometrically using 2',7'-dichlorofluorescin
222 diacetate (DCFH-DA) (Sigma-Aldrich). Lixiviates of films of both terpolymers after 24 h in PBS were
223 taken under sterile conditions. hBMSCs were seeded at a density of 9×10^4 cells/mL in complete
224 medium in a sterile 96-well culture plate and incubated to confluence. After 24 h incubation medium
225 was removed and cells were washed three times with PBS. 200 μ L of a 0.02 M DCFH-DA stock
226 solution in PBS were added to the cells, they were incubated at 37 °C for 30 min, and washed again
227 three times with PBS. Then, 100 μ L of the samples and controls were added to each well. The positive
228 control was a 0.02 M solution of H₂O₂ in PBS, the negative control was PBS and the analyzed samples
229 consisted of 100 μ L of the films lixiviates and 50/50 μ L lixiviates/H₂O₂ solution. Samples were
230 measured fluorometrically and the free radical relative content was determined by comparison.
231 Relative fluorescence was measured at 0, 30, 60 and 120 min at 485 nm excitation/580 nm emission
232 with a UV multiplate reader (Biotek Synergy HT). Statistical analysis (ANOVA) between the different
233 groups and the positive control at each time was performed at significance levels of *p < 0.05, **p < 0.01
234 and ***p < 0.001 using Origin Pro 8 software and Tukey grouping method.

235 2.9.4. Antiinflammatory activity

236 The antiinflammatory activity of terpolymers was investigated adapting the standard protocol
237 for nitric oxide (NO) inhibitory assay [67]. RAW 264.7 cells were seeded on the conjugated polymer
238 films and glass covers as controls in 24-well plates at a density of 3×10^5 cells/mL and they were
239 incubated at 37 °C for 24 h. After that time, 5 μ g/mL lipopolysaccharides from *E. coli* 055:B5 (LPS)
240 were added to some of the samples and they were incubated again either with or without LPS. The
241 nitrite concentration was determined by Griess reaction [68,69] after 24 h, 48 h, 72 h and 1 week of
242 incubation. Aliquots (100 μ L) of the supernatant from RAW 264.7 cells were reacted with 100 μ L of
243 Griess reagent [1:1 mixture of 0.1 % N-(1-naphthyl) ethylenediamine in water and 1 %
244 sulphanilamide in 5 % phosphoric acid] (Sigma-Aldrich) in a 96-well plate and incubated for 10 min.
245 Production of nitrite was obtained by measuring the absorbance at 548 nm. Cellular viability (CV) of
246 RAW 264.7 cells in the presence of the terpolymers was evaluated in parallel by using the AB assay
247 described for cytotoxicity tests. Data were expressed as the percentage of NO production and CV,
248 and they were given as mean \pm standard deviation (n = 6).

249 3. Results

250 3.1. Synthesis of the VH copolymers

251 Statistical radical copolymers of V and H were synthesized at conversions of around 80 %
252 obtaining white solids in all reactions. The FTIR spectra of the copolymers are displayed in Figure S1
253 confirming their chemical structure, and the main bands with their corresponding assigned
254 vibrations are described in Table S1. It can be noticed that the band corresponding to the stretching
255 vibration of the ester group increased with the amount of H units in the copolymer while the band
256 corresponding to the stretching vibration of the carbonyl group of the amide group decreased for the
257 lower content of V units in the copolymer. Copolymers chemical structure was also determined from
258 the ¹H-NMR spectra. The NMR spectra and their corresponding assignments are described in Figure
259 S2 using CDCl₃ as solvent. Furthermore, copolymers compositions (mol %) were quantitatively
260 determined from their ¹H-NMR spectra comparing the relative peak areas of the signal of the protons
261 H_i of the H unit and the signal of the protons H_c of the V unit, obtaining the composition values
262 collected in Table 1. The number average molecular weight (M_n) and polydispersity (PDI = M_w/M_n)
263 determined by GPC are also collected in Table 1. Reactivity ratios of these monomers, which are
264 directly related to the comonomer distribution into the growing copolymeric chains, have been
265 previously determined by Jansen et al. for polymerization reactions at low conversions reporting
266 values of r_H = 7.3 and r_V = 0.01 [70]. These values indicate a much higher reactivity of the acrylic
267 monomer (H) against the vinyl monomer (V) under the copolymerization conditions applied. Taking

268 into consideration these described reactivity values, the kinetics of the copolymerization reaction was
 269 analyzed applying a methodology successfully employed in our research group on numerous
 270 occasions for other analogous copolymeric systems [71-74]. Results are represented in the Figure 1,
 271 where we can observe the diagram of the instantaneous H molar fraction in the copolymer chains as
 272 a function of conversion and feed molar fraction. Thick red lines represent the course of the reactions
 273 with the H feed compositions used in this work.

274 **Table 1.** Copolymer composition values obtained from the NMR spectra, molecular weights of the VH
 275 copolymers and reaction yields.

Copolymer	^a F _H (mol %)	^b f _H (mol %)	^c M _n (Da)	^d PDI	Yield (%)
VH16	20	15.7	23,600	4.5	78
VH36	40	35.8	15,600	2.2	83

276 ^aF = feed composition

277 ^bf = copolymer composition

278 ^cM_n = number average molecular weight

279 ^dPDI = polydispersity (M_w/M_n)

280

281 **Figure 1.** Tridimensional diagram showing the variation of instantaneous H copolymer molar fraction
 282 as a function of conversion and H feed molar fraction. Red lines represent reaction course for H feed
 283 compositions used in this work (0.2 and 0.4 mol %).

284 *3.2. Synthesis of the catechol conjugated polymers VHC*

285 The synthesis schemes of the acid chloride derivative of HCA, VH copolymers and the catechol
 286 conjugated polymers VHC obtained after conjugation reaction are illustrated in Figure 2.

287

288 **Figure 2.** Scheme of the synthesis of the acid chloride derivative of HCA, VH copolymers and the catechol
289 conjugated polymers VHC.

290 The average catechol molar composition of the terpolymers was determined by UV-vis
291 spectroscopy using a hydrocaffeic acid calibration curve at 290 nm. Taking into consideration these
292 UV measurements, the final mol % compositions of the 3 comonomeric units compounding the
293 terpolymers have been determined (Table 2). The chemical structure of the conjugate polymers was
294 confirmed by FTIR spectroscopy. The FTIR spectra (Figure S3) showed the main bands belonging to
295 the different comonomer units and their corresponding vibrations are collected in Table S2. Some
296 differences were observed in the absorption bands of VHC polymers respect to precursor
297 copolymers. In particular, the band between 3200–3600 cm^{-1} became broader as a consequence of the
298 OH-bands in the catechol moieties. It can also be noticed that the band corresponding to the stretching
299 vibration of the ester group increased with the catechol content in the terpolymers while the band
300 corresponding to the stretching vibration of the carbonyl group of the amide group decreased and
301 finally, the bands at 1084 and 1051 cm^{-1} increased due to the C–O stretching vibrations. NMR
302 spectroscopy was also used to confirm the chemical structure of the conjugate polymers. The NMR
303 spectra recorded in DMSO-d_6 of the terpolymers and their corresponding proton assignments are
304 displayed in Figure S4. Molecular weights and polydispersity of the terpolymers were measured by
305 GPC chromatography (Table 2).

306

Table 2. Terpolymers mol % compositions, molecular weight obtained by GPC and reaction yields.

Terpolymer	f _V (mol %)	f _H (mol %)	f _C (mol %)	Yield (%)	^a M_n (Da)	^b PDI
VHC2	84	13.9	2.1	13	22,200	6.7
VHC22	64	14.2	21.8	58	14,000	1.7

307

^a M_n =number average molecular weight

308

^bPDI=polydispersity (M_w/M_n)

309

310 Thermal properties of the conjugated polymers were studied. Thermogravimetric (TGA) and
311 differential thermogravimetric (DTGA) curves were recorded to analyze their thermal stability.
312 VHC2 and VHC22 terpolymers showed one thermal degradation step with maxima rates at 439 $^\circ\text{C}$
313 and 432 $^\circ\text{C}$ respectively. The polymer VHC22 presented a higher char yield than the polymer VHC2
314 in nitrogen atmosphere, corresponding to its higher aromatic structure content coming from the
catechol moieties. Thermal transitions of the terpolymers were analyzed by DSC. Thermograms of

315 VHC2 and VHC22 showed glass transition temperatures of 82 °C and 80 °C respectively, both very
 316 similar. This unique and broad transition indicates that do not exist phase segregation, which means
 317 that precursor copolymers were obtained by statistical copolymerization but, according to the
 318 diagrams in Figure 1, with a clear distribution of monomeric sequences in a gradient order. Results
 319 are presented in Table 3.

320 **Table 3.** Thermal properties of the conjugated polymers including the maxima temperatures (T_{\max} , DTGA
 321 curve), char yields and glass transition temperatures (T_g).

Terpolymer	T_{\max} (°C) main stage	Char yield	T_g (°C)
VHC2	439	3.9	82
VHC22	432	8.9	80

322
 323 Surface morphology of terpolymer membranes was analyzed by SEM and AFM and images are
 324 displayed in Figure 3. Morphology of VHC2 terpolymer was rough and homogenous whereas
 325 roughness considerably increased for the system VHC22 in which, moreover, the presence of
 326 randomly distributed microdomains could be clearly observed.

327
 328 **Figure 3.** SEM and AFM images of (a) VHC2 terpolymer and (b) VHC22 terpolymer.

330 3.3. *In vitro* degradation

331 The degradation analysis was determined gravimetrically in DMEM (pH = 7.4) at 37 °C (Figure
 332 4). As displayed, during the incubation process a decrease in weight loss % of the sample with time
 333 was clearly observed. The initial degradation rate was faster in the first 24 h than in the period
 334 between 1 and 21 days, especially in the VHC2 polymer. Values of 50 and 70 % weight loss were
 335 observed for VH2 and VH22 membranes respectively, in the studied period. The less degradation for
 336 the VHC22 polymer in the studied period can be a consequence of the higher content of catechol
 337 groups.

338

339
340

Figure 4. *In vitro* degradation kinetics of VHC films in DMEM (pH=7.4) at 37 °C. Data are presented as mean \pm standard deviation (n= 3).

341

3.4. Adhesion strength test

342
343
344
345
346
347
348
349

Adhesion strength of VHC catechol conjugated polymers to pig skin was evaluated in a lap shear test using a UTM and following the adapted protocol of ASTM F2255-05 (Figure 5A). Figure 5B shows the (stress-displacement) curves obtained, demonstrating the higher adhesion force of the VHC22 terpolymer (22 mol % catechol) compared to the VHC2 terpolymer (2 mol % catechol). Increased detachment stress (24.3 \pm 4 kPa vs. 9.3 \pm 0.8 kPa) with improved ductile properties (blue curves vs. orange curves) were observed comparing the richest catechol polymer content with the lowest one. Furthermore, significant differences in the adhesive performance of both terpolymers were found as confirmed by statistical analysis using ANOVA (Figure 5C).

350

351
352
353

Figure 5. (a) Application of the polymer solution on the porcine tissue and skin samples attached each other. (b) Comparative studies in adhesion forces between the catechol conjugated polymers VHC2 and VHC22. Each line represents the stress-displacement representative curves of the two compositions after

354 four replicates. (c) Detachment stress of the catechol containing polymers VHC2 and VHC22. Significant
 355 differences are denoted in the graph comparing the two groups at the significance level of ***p <0.001.

356 *3.5 UV shielding test*

357 Water contact angles of non-irradiated skin, irradiated skin and irradiated skin covered by the
 358 VHC films were analyzed in order to study the effect of the catechol conjugates as protective screen
 359 of UV radiation on the skin. It was observed that contact angles of the skin under the terpolymer
 360 films were similar to those of the non-irradiated skin (around 50 °), characteristic of hydrophilic
 361 compounds. However, water contact angle of the irradiated skin was much higher (around 80 °),
 362 indicating that the hydrophobicity of the skin had been increased. Results are displayed in Figure 6.
 363

364

365 **Figure 6.** (a) Porcine skin samples irradiated with the terpolymer film (left) and after removing the
 366 terpolymer film (right). (b) Water contact angle images on the irradiated skin (left) and the irradiated skin
 367 under de terpolymer film (right). (c) Water contact angle results. Significant differences are denoted in the
 368 graph comparing the irradiated and the non-irradiated skin samples (**p <0.001).

369 *3.6. Biological behavior*

370 *3.6.1. Cytotoxicity*

371 Indirect cytotoxicity of the conjugated polymer films at different times was analyzed by AB
 372 assay using hBMSCs. Results are shown in Figure 7. It can be observed that cell viability was not
 373 compromised with the presence of lixiviates of both terpolymers taken at 1, 2, and 7 days, obtaining
 374 CV values around 90 - 100 %. This evidences the absence of *in vitro* cytotoxicity according to standard
 375 specifications [75].

376

377 **Figure 7.** Cell viability of hBMSCs treated with medium extracts of VHC films taken at different times. The
 378 diagrams include the mean and the standard deviation (n = 8).

379 3.6.2. Antioxidant activity

380 Both terpolymer systems efficiently reduced intracellular ROS production *in vitro* even when
 381 hBMSCs had been treated with H₂O₂ activating the oxidative reaction (Figure 8). ROS production
 382 significantly decreased respect to H₂O₂ treated cells at any time, being this reduction more accused
 383 at shorter times.

384

385 **Figure 8.** Intracellular ROS activity in hBMSCs measured from fluorescence emission at different times
 386 after treatment with VHC films extracts collected at 24 h. The diagrams include the mean, the standard
 387 deviation (n = 4) and the ANOVA analysis between the different groups and the positive control at each
 388 time (*p < 0.05, **p < 0.01, ***p < 0.001).

389 3.6.3. Antiinflammatory activity

390 The antiinflammatory activity of the conjugated polymers at different times was analyzed by
 391 measuring the inhibitory effect of the polymers on the NO macrophages production. The inhibitory
 392 effects and the cell viability obtained are represented in the Figure 9. The VHC2 terpolymer showed
 393 a NO inhibition from around 50 % (24 h) to 30 % (1 week), considering a cell viability around 80 – 90
 394 %, whereas the VHC22 terpolymer presented a NO inhibitory effect from around 60 % (24 h) to 90 %
 395 (1 week), with a cell viability around 80 – 90 %.

396

397 **Figure 9.** Inhibitory effects of VHC terpolymers on nitric oxide production in LPS-stimulated RAW 264.7
 398 cells (bars) and cellular viability (lines & symbols).

399 **4. Discussion**

400 The main purpose of this work is the preparation of bioactive membranes in order to solve the
 401 clinical demand of bioactive materials with bioadhesive properties intended for wound healing. The
 402 systems proposed consist of bioinspired films of catechol conjugated polymers. To reach that goal,
 403 firstly, statistical copolymers with a gradient distribution of monomeric sequences of V and H have
 404 been synthesized at high conversions through a free radical polymerization initiated by an azo-
 405 compound using two different feed compositions. Subsequently, catechol molecule has been
 406 conjugated to those copolymers by reaction between the chloride acid of HCA (previously prepared)
 407 and a portion of the hydroxyl groups of the HEMA units in the copolymers (Figure 2). Several
 408 catechol containing synthetic polymers have been recently developed in the family of
 409 polymethacrylates and polymethacrylamides [41,60-63]. Some of them are obtained from the
 410 synthesis of monomers containing the catechol moiety, their purification and finally their subsequent
 411 co/polymerization. However, catechol has been demonstrated to act as a chain transfer agent in the
 412 radical reaction due to the phenolic nature of the catechol group, that confers the monomer
 413 antioxidant activity acting as a radical scavenger [41,76-79]. This fact is usually related with a limited
 414 conversion, low molecular weights and a requirement of a previous protection of the catechol
 415 moieties through multiple reaction/purification steps [80,81]. Therefore, this procedure has numerous
 416 disadvantages. To solve these issues, in this work we have carried out an alternative synthetic
 417 pathway through a postpolymerization reaction on the hydroxy-functional VH copolymers,
 418 obtaining high molecular weight catechol containing terpolymers with a relatively high yield.
 419 Polymers derived from V and H have attracted strong attention over the past years due to their
 420 biocompatible and biodegradable features, and they have been used in our group on numerous
 421 occasions [82-84]. In this study V and H monomers are copolymerized to modulate the hydrophobic
 422 character of the resulting polymer. The subsequent conjugation of the catechol bioinspired molecule
 423 in the H units leads to obtaining a polymer chain with flexible and long-arm catechol side groups.
 424 The advantage of this method lies in the easier pathway via postpolymerization conjugation reaction
 425 to prepare a high molecular weight catechol conjugated polymer with enhanced availability of the
 426 catechol side groups promoting hydrophilic interactions with the medium. These catechol moieties
 427 provide the functionalized polymer with bioadhesive, antiinflammatory and antioxidant properties,
 428 very important features for the wound healing process.

429 The behavior and chemophysical properties of catechol conjugated polymers prepared will be
 430 strongly dependent not only on the chemical composition of catechol but also on the distribution of
 431 the comonomeric units along the macromolecular chains. In this sense, it is of interest to analyze the
 432 microstructure of the VH copolymeric system that will be determined by their reactivity ratios.

433 Reactivity ratios are kinetic parameters that give information about the composition and the sequence
434 distribution of the comonomer units along the macromolecular chains in statistical copolymers.
435 Reactivity ratios of VH copolymers are well documented in the literature [70]. Jansen et al. obtained
436 the reactivity ratios for reactions at low conversions employing a methodology combining RT-FTIR
437 spectroscopy with advanced and alternative multivariate-statistical data analysis techniques, giving
438 values of $r_V = 7.3$ and $r_H = 0.01$. They clearly indicate the much higher reactivity of the acrylic monomer
439 versus the vinyl monomer, which is in agreement with data found in literature where reactivity of
440 some methacrylates are much more reactive than reactivity of V [85,86]. According to these different
441 reactivities, the kinetics of the copolymerization will be quite related to the conversion degree which
442 implies that macromolecular chains formed at low conversions contain a higher proportion of H units
443 in the copolymer sequences, and chains formed at high conversion (after the consumption of most of
444 H) are richer in V monomeric units. VH copolymers of the study were obtained at high conversions
445 (around 80 %), so that in this case it is interesting to analyze the tridimensional diagram of
446 instantaneous copolymer composition variation as a function of feed composition and conversion
447 (Figure 1), where the thick red lines correspond to the course of the reactions to obtain the synthesized
448 copolymers VH16 and VH36. This representation was obtained using the 2004.20 algorithm
449 "Conversion" developed in our group [87] and successfully employed in numerous works [71-74]. In
450 the light of this diagram, we can say that the VH copolymers are gradient polymers composed by
451 long sequences rich in H units and long sequences rich in V units. In the case of the reactions to obtain
452 VH16 and VH36 it can be observed that H is first consumed, as expected, and the low reactive
453 monomer is being consumed as the reaction progresses, leading to the compositions values obtained
454 by NMR (Table 1) at high conversions (around 80 %). These data give an idea of the microstructure
455 and the composition heterogeneity of the high conversion copolymers obtained, modulating their
456 hydrophobic/hydrophilic balance, their solubility and stability in physiological medium, and
457 therefore, of the catechol conjugated polymers. After the conjugation reaction, it is expected that the
458 terpolymers are formed by blocky sequences richer in V and blocky sequences of random HC
459 copolymers, assuming that the conjugation reaction of catechol groups most probably is produced in
460 a random way [88]. This microstructure will determine the chemical and physical behavior of the
461 catechol conjugated polymers.

462 Morphology of terpolymer membranes obtained by casting of the catechol conjugated polymers
463 was observed by SEM and AFM. Images of both techniques show differences depending on the
464 catechol content. Thus, when the terpolymer is richer in catechol groups the presence of random
465 microdomains distributed on the surface of the continuous matrix is evident. This behavior can be
466 explained by the gradient microstructure of the terpolymers, their different hydrophobicity and the
467 content of catechol conjugated moieties (VHC2 or VHC22), all of them contributing to segregation in
468 nano or microdomains in a greater or lesser extend depending on the content. The presence of
469 microdomains along with the roughness of the films are two interrelated factors that will positively
470 contribute to the adhesive properties of the system to biological tissues [89].

471 Bioadhesion is a very important factor for wound healing treatments since an increase in the
472 bioadhesion of the polymer will allow a better fit to the wound, establishing a close contact with the
473 target tissue [90]. Furthermore, enhanced adherence to the tissue will help get a faster regeneration
474 of the skin tissues [55,90,91]. Porcine skin substrate was used by its biological similarities with human
475 dermis. Following biomimetical reasons, skin was kept wet during the adhesion experiment in order
476 to simulate the human damaged tissue [92]; in this way, we analyzed the effective adhesiveness of
477 the polymers in moist environments, which is still a challenge in surgery procedures. Lap shear
478 method, a common and reliable method for quantifying adhesion, was used [93,94]. Adhesion
479 properties were tested at short times (30 min) in order to better observe a postapplication simulation,
480 in contrast to other reported studies that used periods in the range 12 - 24 h [93]. Adhesion of catechol
481 functionalized polymers has been recently studied on numerous occasions [92,94-100]. The oxidation
482 agent NaIO_4 has been widely used to induce crosslinking and increase bioadhesion in catechol
483 containing polymers [66,93,94,99]. In this work, when the NaIO_4 solution was added to the sample
484 deposited on the skin, the polymer solution color immediately changed to brown indicating a

485 catechol oxidation to quinones and further cross-linking reactions. It is known that these reactive
486 catecholquinones can react forming covalent bonds with nucleophiles found in extracellular matrix
487 (ECM) proteins and carbohydrates of the biological tissue [101,102] improving the bioadhesion. In
488 fact, in the tests applied in this work, we observed that both conjugated polymers failed cohesively,
489 indicated by the brown failed polymer attached to each skin surface, demonstrating the strong
490 interfacial adhesion force of the catechol-conjugated polymers [92]. Adhesion results evidence a
491 higher detachment stress for the richest catechol polymer, demonstrating the key role of catechol
492 moieties in the bioadhesion properties of the material. Furthermore, although it is difficult to directly
493 compare the obtained results with other previously reported due to different methodologies and
494 tissues used, it can be said that our values are in the same order of magnitude that others found in
495 literature [100,103-106]. In overall, as far as the bioadhesive behavior is concerned, we can say that
496 these bioinspired materials can be excellent candidates to be tested in further experiments designed
497 for application as efficient adhesives in wound healing clinical treatments.

498 It is known that solar ultraviolet radiation causes various harmful effects [107-111], especially in
499 damage tissue or wounds. For example, skin photo-aging is caused by UV light radiation, inducing
500 photo-oxidative alterations such as damage and reduction in cell migration and proliferation through
501 the production of ROS and the decrease of endogenous antioxidants of the skin [112]. Therefore, strict
502 UV protection strategies have been currently advocated during the tissue regeneration process and
503 wound closure [113-115]. Different natural compounds such as usnic acid, fern leaves, green tea,
504 retinoids, resveratrol or *Cryptomphalus aspersa* [116-118] have been recently considered as potential
505 UV-blocking sunscreens because of their antioxidant activity or their absorption on the UV region
506 [116]. In this work, our bioinspired catechol-conjugated polymers have been studied as UV skin filters
507 due to their UV absorption with a maximum at 290 nm and their proved antioxidant properties [39-
508 42]. There is not a unique methodology to analyze the UV protection of materials as sunscreens, but
509 most of the them are based on the calculation of the *in vitro* sun protection factor (SPF) using the
510 erythematous effective spectrum (EES) [119], which shows that UVB rays (290 - 320 nm) are the most
511 dangerous rays, with a maximum in 310 nm [120]. In this study an innovative method has been
512 developed using porcine skin and studying the effect on the skin surface wettability, a very important
513 aspect of the skin protective function, after being irradiated with a 310 nm UV radiation. For this
514 purpose, water contact angle of skin samples was analyzed before and after UV irradiation. It was
515 observed that samples covered with the terpolymers films preserved the skin surface wettability of
516 the non-treated skin after the irradiation giving water contact values around 50 °, similar to values
517 reported in the literature [121,122]. However, for uncovered samples the skin hydrophobicity
518 significantly increased after irradiation producing a rise in water contact angle of 30 °. This fact
519 demonstrates that the catechol absorption in the UV region is an advantageous factor assisting in
520 antioxidant protection against UV-induced photodamage. Hence, these terpolymer systems provide
521 a new approach for preventing UV induced skin damage and protecting wounds from solar
522 irradiation and they can be considered for use as a safe material whenever their biocompatibility is
523 demonstrated.

524 Biocompatibility of the materials, which is closely related to cell-materials interactions, is highly
525 important in biomaterials designed for wound healing purposes. In this work cytotoxicity of VHC
526 terpolymers was assessed using a hBMSCs line according to ISO 10993-5 standard which
527 recommends to test the cell viability in presence of lixiviates of samples taken at different time
528 intervals. For that reason, in parallel, the degradation of the conjugated polymers in the same medium
529 of lixiviates (DMEM free of serum) was analyzed *in vitro*. These experiments revealed a rather rapid
530 degradation (measured as percentage of weight loss, ΔW) which extent depended on catechol
531 content, being more stable the samples with higher catechol groups (ΔW around 50 % in 21 days)
532 against the lowest catechol samples which degraded to ΔW values of 70 %. Nevertheless, films of
533 both samples maintained dimensional stability. In cytotoxicity experiments, it was observed that,
534 despite the biodegradation of the terpolymers films, cell viability values were close to 100 % for all
535 tested samples. Therefore, it can be said that degradation of any polymer sample do not release
536 cytotoxic rest nor at short times neither at longer times (21 days), when around 50 - 70 % of the film

537 has been degraded, so cell viability of hBMSCs is not compromised during the degradation process
538 of the catechol conjugated polymers. Additionally, this degradation rate is enough to allow films to
539 be degraded and replaced with regenerative tissue ingrowth.

540 Reactive oxygen species (ROS) and free radicals are very important in biological systems and
541 they have attracted increasing attention. Chronic wounds are characterized by the continuous release
542 of proteases, ROS and high amounts of exudates [123,124]. These excessive ROS damage
543 biomolecules and also activate the pro-inflammatory system, avoiding wound healing [14]. It is well
544 known from the literature that phenolic acids, flavonoids etc., have excellent antioxidant properties
545 [125]. The ability of catechol to assist in quenching the ROS in chronic wounds has already been
546 reported [39,40]. In this way, we have carried out a cellular based assay in order to directly evaluate
547 the antioxidant ability of the catechol conjugated polymers *in vitro*. To reach that purpose we used
548 DCFH-DA, a nonfluorescent compound that become DCF and emit fluorescence after being oxidized.
549 By measuring the fluorescence, we were able to quantify the oxidative stress acting as a valuable
550 indicator of oxidative stress and ROS [126]. Results obtained in this study indicated that both
551 terpolymers decreased intracellular ROS production *in vitro* in hBMSCs previously treated with H₂O₂.
552 It was also found that both conjugated polymers initially had a strong antioxidant activity which lost
553 some effectiveness with time, independent of the catechol content, as it was observed by the authors
554 in other low molecular catechol containing polymers when antioxidant experiments were performed
555 in absence of cells [41]. Thereby, these polymers provide a source of ROS scavenger beneficial for
556 wound regeneration processes.

557 Natural polyphenolic compounds, such as catechols, have shown potent antiinflammatory
558 effects documented in the literature [76,78,127,128]. Antiinflammatory activity is a crucial factor in
559 the wound healing process, especially in chronic wounds, which remain in the inflammatory phase
560 preventing the healing [14,123,129]. NO inhibitory assay is a recognized experiment used to measure
561 antiinflammatory activity. NO is a mediator and regulator in pathological reactions, especially in
562 acute inflammatory responses, and LPS is a pro-inflammatory agent that activates inducible nitric
563 oxide synthase meaningfully increasing NO production in macrophages [67,130]. In this experiment
564 we have modified the method by seeding the macrophages cells directly on the polymer films. In this
565 way, we can analyze the direct response of the cells growing on the film and being in contact with
566 the medium released, simulating the wound regeneration process. After LPS stimulation for 24 h, the
567 inhibitory effects of the terpolymers on the treated macrophages were observed (Figure 8). The cell
568 viability was also taken into consideration eliminating the possibility that the reduction of NO is due
569 to the cytotoxicity. Terpolymers did not have a significant cytotoxicity toward macrophages cells in
570 the presence or absence of LPS. Both terpolymers were able to decrease NO production *in vitro* at
571 short times (24 h and 48 h) and this potency of suppression of NO production decreased with time
572 for VHC2 while increased for VHC22. These results demonstrate that antiinflammatory activity is
573 directly related with the catechol composition. Catechols are able to reduce NO production through
574 two mechanisms reported in literature [128]: inhibiting the LPS signaling and directly scavenging
575 NO. In conclusion, this study demonstrates that these catechol conjugated polymers have the
576 potential to attenuate the inflammatory damage coming from the ROS generated by the cells of a
577 wound lesion and therefore, these system can act very positively and favoring and promoting the
578 healing effect.

579 5. Conclusions

580 The synthesis of statistical VH copolymers and the subsequent postpolymerization conjugation
581 reaction with catechol bearing hydrocaffeic acid (HCA) molecules, have been successfully carried out
582 providing high molecular weight polymers with enhanced availability of the catechol side groups.
583 These long-arm catechol moieties have been demonstrated to provide the functionalized terpolymer
584 with bioadhesive properties to porcine skin in wet conditions; prevention for UV induced skin
585 damage; antioxidant properties scavenging the ROS generated by hBMSCs, and attenuation of the
586 inflammatory damage in macrophages cultures. All of these properties are key features in the wound
587 healing process, therefore, we can say that these bioinspired materials can be excellent candidates for

588 application as efficient bioadhesive and bioactive wound dressings promoting and favoring the
589 healing effect.

590 **Supplementary Materials:** FTIR and NMR spectroscopies data are available at www.mdpi.com/xxx/s1.

591 **Funding:** This research was funded by CIBER-BBN, Spain and the Spanish Ministry of Economy and
592 Competititvity (project MAT2014-51918-C2-1-R and M. Puertas-Bartolomé scholarship, and project MAT2017-
593 84277-R).

594 **Acknowledgments:** Authors thank R. Ramírez and R. de Roba of ICTP-CSIC, Spain, for assistance in the
595 biological culture assays.

596 **Conflicts of Interest:** The authors declare no conflict of interest.

597 **References**

- 598 1. Barrientos, S.; Stojadinovic, O.; Golinko, M.S.; Brem, H.; Tomic-Canic, M. Growth factors and
599 cytokines in wound healing. *Wound repair and regeneration* **2008**, *16*, 585-601.
- 600 2. Martin, P. Wound healing--aiming for perfect skin regeneration. *Science* **1997**, *276*, 75-81.
- 601 3. Rahmani Del Bakhshayesh, A.; Annabi, N.; Khalilov, R.; Akbarzadeh, A.; Samiei, M.;
602 Alizadeh, E.; Alizadeh-Ghodsi, M.; Davaran, S.; Montaseri, A. Recent advances on
603 biomedical applications of scaffolds in wound healing and dermal tissue engineering.
604 *Artificial cells, nanomedicine, and biotechnology* **2018**, *46*, 691-705.
- 605 4. Braun, L.R.; Fisk, W.A.; Lev-Tov, H.; Kirsner, R.S.; Isseroff, R.R. Diabetic foot ulcer: An
606 evidence-based treatment update. *American journal of clinical dermatology* **2014**, *15*, 267-281.
- 607 5. Brem, H.; Stojadinovic, O.; Diegelmann, R.F.; Enter, H.; Lee, B.; Pastar, I.; Golinko, M.;
608 Rosenberg, H.; Tomic-Canic, M. Molecular markers in patients with chronic wounds to guide
609 surgical debridement. *Molecular medicine* **2007**, *13*, 30.
- 610 6. Sen, C.K.; Gordillo, G.M.; Roy, S.; Kirsner, R.; Lambert, L.; Hunt, T.K.; Gottrup, F.; Gurtner,
611 G.C.; Longaker, M.T. Human skin wounds: A major and snowballing threat to public health
612 and the economy. *Wound repair and regeneration* **2009**, *17*, 763-771.
- 613 7. Gibson, D.J.; Schultz, G. Chronic wound diagnostic for matrix metalloproteinase: Chronic
614 wounds. *Wound healing Southern Africa* **2009**, *2*, 68-70.
- 615 8. Wiegand, C.; Hipler, U.C. In *Polymer-based biomaterials as dressings for chronic stagnating*
616 *wounds*, Macromolecular symposia, 2010; Wiley Online Library: pp 1-13.
- 617 9. Bjarnsholt, T.; Kirketerp-Møller, K.; Jensen, P.Ø.; Madsen, K.G.; Phipps, R.; Krogfelt, K.;
618 Høiby, N.; Givskov, M. Why chronic wounds will not heal: A novel hypothesis. *Wound repair*
619 *and regeneration* **2008**, *16*, 2-10.
- 620 10. Novo, E.; Parola, M. Redox mechanisms in hepatic chronic wound healing and fibrogenesis.
621 *Fibrogenesis & tissue repair* **2008**, *1*, 5.
- 622 11. Eming, S.A.; Krieg, T.; Davidson, J.M. Inflammation in wound repair: Molecular and cellular
623 mechanisms. *Journal of Investigative Dermatology* **2007**, *127*, 514-525.
- 624 12. Rojkind, M.; Dominguez-Rosales, J.-A.; Nieto, N.; Greenwel, P. Role of hydrogen peroxide
625 and oxidative stress in healing responses. *Cellular and Molecular Life Sciences CMLS* **2002**, *59*,
626 1872-1891.
- 627 13. Cawston, T.E.; Wilson, A.J. Understanding the role of tissue degrading enzymes and their
628 inhibitors in development and disease. *Best Practice & Research Clinical Rheumatology* **2006**, *20*,
629 983-1002.

630 14. Nyanhongo, G.S.; Sygmund, C.; Ludwig, R.; Prasetyo, E.N.; Guebitz, G.M. Synthesis of
631 multifunctional bioresponsive polymers for the management of chronic wounds. *Journal of*
632 *Biomedical Materials Research Part B: Applied Biomaterials* **2013**, *101*, 882-891.

633 15. Li, X.; Chen, S.; Zhang, B.; Li, M.; Diao, K.; Zhang, Z.; Li, J.; Xu, Y.; Wang, X.; Chen, H. In situ
634 injectable nano-composite hydrogel composed of curcumin, n, o-carboxymethyl chitosan and
635 oxidized alginate for wound healing application. *International journal of pharmaceutics* **2012**,
636 *437*, 110-119.

637 16. Li, X.; Nan, K.; Li, L.; Zhang, Z.; Chen, H. *In vivo* evaluation of curcumin nanoformulation
638 loaded methoxy poly (ethylene glycol)-graft-chitosan composite film for wound healing
639 application. *Carbohydrate polymers* **2012**, *88*, 84-90.

640 17. Khil, M.S.; Cha, D.I.; Kim, H.Y.; Kim, I.S.; Bhattarai, N. Electrospun nanofibrous
641 polyurethane membrane as wound dressing. *Journal of Biomedical Materials Research Part B:*
642 *Applied Biomaterials* **2003**, *67*, 675-679.

643 18. Schwartz, V.B.; Thétiot, F.; Ritz, S.; Pütz, S.; Choritz, L.; Lappas, A.; Förch, R.; Landfester, K.;
644 Jonas, U. Antibacterial surface coatings from zinc oxide nanoparticles embedded in poly (n-
645 isopropylacrylamide) hydrogel surface layers. *Advanced Functional Materials* **2012**, *22*, 2376-
646 2386.

647 19. GhavamiNejad, A.; Park, C.H.; Kim, C.S. In situ synthesis of antimicrobial silver
648 nanoparticles within antifouling zwitterionic hydrogels by catecholic redox chemistry for
649 wound healing application. *Biomacromolecules* **2016**, *17*, 1213-1223.

650 20. Sweitzer, S.M.; Fann, S.A.; Borg, T.K.; Baynes, J.W.; Yost, M.J. What is the future of diabetic
651 wound care? *The Diabetes Educator* **2006**, *32*, 197-210.

652 21. Werner, S.; Grose, R. Regulation of wound healing by growth factors and cytokines.
653 *Physiological reviews* **2003**, *83*, 835-870.

654 22. Dworniczek, E.; Nawrot, U.; Seniuk, A.; Włodarczyk, K.; Bialynicki-Birula, R. The *in vitro*
655 effect of a silver-containing dressing on biofilm development. *Adv. Clin. Exp. Med* **2009**, *18*,
656 277-281.

657 23. Jain, R.; Agarwal, A.; Kierski, P.R.; Schurr, M.J.; Murphy, C.J.; McAnulty, J.F.; Abbott, N.L.
658 The use of native chemical functional groups presented by wound beds for the covalent
659 attachment of polymeric microcarriers of bioactive factors. *Biomaterials* **2013**, *34*, 340-352.

660 24. Huang, X.; Bao, X.; Wang, Z.; Hu, Q. A novel silver-loaded chitosan composite sponge with
661 sustained silver release as a long-lasting antimicrobial dressing. *RSC Advances* **2017**, *7*, 34655-
662 34663.

663 25. Atiyeh, B.S.; Costagliola, M.; Hayek, S.N.; Dibo, S.A. Effect of silver on burn wound infection
664 control and healing: Review of the literature. *burns* **2007**, *33*, 139-148.

665 26. Dunn, K.; Edwards-Jones, V. The role of acticoatTM with nanocrystalline silver in the
666 management of burns. *Burns* **2004**, *30*, S1-S9.

667 27. Boateng, J.S.; Matthews, K.H.; Stevens, H.N.; Eccleston, G.M. Wound healing dressings and
668 drug delivery systems: A review. *Journal of pharmaceutical sciences* **2008**, *97*, 2892-2923.

669 28. Munoz-Bonilla, A.; Fernández-García, M. Polymeric materials with antimicrobial activity.
670 *Progress in Polymer Science* **2012**, *37*, 281-339.

671 29. Seaman, S. Dressing selection in chronic wound management. *Journal of the American Podiatric
672 Medical Association* **2002**, *92*, 24-33.

673 30. Prasetyo, E.N.; Kudanga, T.; Steiner, W.; Murkovic, M.; Nyanhongo, G.S.; Guebitz, G.M.
674 Antioxidant activity assay based on laccase-generated radicals. *Analytical and bioanalytical*
675 *chemistry* **2009**, *393*, 679.

676 31. Roleira, F.M.; Tavares-da-Silva, E.J.; Varela, C.L.; Costa, S.C.; Silva, T.; Garrido, J.; Borges, F.
677 Plant derived and dietary phenolic antioxidants: Anticancer properties. *Food Chemistry* **2015**,
678 *183*, 235-258.

679 32. Heleno, S.A.; Martins, A.; Queiroz, M.J.R.; Ferreira, I.C. Bioactivity of phenolic acids:
680 Metabolites versus parent compounds: A review. *Food chemistry* **2015**, *173*, 501-513.

681 33. Fresco, P.; Borges, F.; Diniz, C.; Marques, M. New insights on the anticancer properties of
682 dietary polyphenols. *Medicinal research reviews* **2006**, *26*, 747-766.

683 34. Thiem, B.; Goślińska, O. Antimicrobial activity of rubus chamaemorus leaves. *Fitoterapia*
684 **2004**, *75*, 93-95.

685 35. Sakihama, Y.; Cohen, M.F.; Grace, S.C.; Yamasaki, H. Plant phenolic antioxidant and
686 prooxidant activities: Phenolics-induced oxidative damage mediated by metals in plants.
687 *Toxicology* **2002**, *177*, 67-80.

688 36. Amaral, S.; Mira, L.; Nogueira, J.; da Silva, A.P.; Florêncio, M.H. Plant extracts with anti-
689 inflammatory properties—a new approach for characterization of their bioactive compounds
690 and establishment of structure–antioxidant activity relationships. *Bioorganic & medicinal*
691 *chemistry* **2009**, *17*, 1876-1883.

692 37. Landis, S.J. Chronic wound infection and antimicrobial use. *Advances in skin & wound care*
693 **2008**, *21*, 531-540.

694 38. Kim, H.; Kawazoe, T.; Han, D.W.; Matsumara, K.; Suzuki, S.; Tsutsumi, S.; Hyon, S.H.
695 Enhanced wound healing by an epigallocatechin gallate-incorporated collagen sponge in
696 diabetic mice. *Wound repair and regeneration* **2008**, *16*, 714-720.

697 39. Schweigert, N.; Zehnder, A.J.; Eggen, R.I. Chemical properties of catechols and their
698 molecular modes of toxic action in cells, from microorganisms to mammals. *Environmental*
699 *microbiology* **2001**, *3*, 81-91.

700 40. Nagababu, E.; Rifkind, J.M.; Boindala, S.; Nakka, L. Assessment of antioxidant activity of
701 eugenol *in vitro* and *in vivo*. In *Free radicals and antioxidant protocols*, Springer: 2010; pp 165-
702 180.

703 41. Puertas-Bartolomé, M.; Fernández-Gutiérrez, M.; García-Fernández, L.; Vázquez-Lasa, B.;
704 San Román, J. Biocompatible and bioadhesive low molecular weight polymers containing
705 long-arm catechol-functionalized methacrylate. *European Polymer Journal* **2018**, *98*, 47-55.

706 42. Huber, D.; Grzelak, A.; Baumann, M.; Borth, N.; Schleining, G.; Nyanhongo, G.S.; Guebitz,
707 G.M. Anti-inflammatory and anti-oxidant properties of laccase-synthesized phenolic- o -
708 carboxymethyl chitosan hydrogels. *New Biotechnology* **2018**, *40*, 236-244.

709 43. Barclay, L.R.C.; Edwards, C.; Vinqvist, M.R. Media effects on antioxidant activities of phenols
710 and catechols. *Journal of the American Chemical society* **1999**, *121*, 6226-6231.

711 44. Justino, G.C.; Correia, C.F.; Mira, L.; Borges dos Santos, R.M.; Martinho Simões, J.A.; Silva,
712 A.M.; Santos, C.; Gigante, B. Antioxidant activity of a catechol derived from abietic acid.
713 *Journal of agricultural and food chemistry* **2006**, *54*, 342-348.

714 45. Silva, M.M.; Santos, M.R.; Caroço, G.; Rocha, R.; Justino, G.; Mira, L. Structure-antioxidant
715 activity relationships of flavonoids: A re-examination. *Free Radical Research* **2002**, *36*, 1219-
716 1227.

717 46. Heijnen, C.; Haenen, G.; Van Acker, F.; Van der Vijgh, W.; Bast, A. Flavonoids as
718 peroxynitrite scavengers: The role of the hydroxyl groups. *Toxicology in vitro* **2001**, *15*, 3-6.

719 47. Heijnen, C.G.; Haenen, G.R.; Minou Oostveen, R.; Stalpers, E.M.; Bast, A. Protection of
720 flavonoids against lipid peroxidation: The structure activity relationship revisited. *Free
721 Radical Research* **2002**, *36*, 575-581.

722 48. Heijnen, C.G.; Haenen, G.R.; Vekemans, J.A.; Bast, A. Peroxynitrite scavenging of flavonoids:
723 Structure activity relationship. *Environmental Toxicology and Pharmacology* **2001**, *10*, 199-206.

724 49. Boots, A.W.; Haenen, G.R.; den Hartog, G.J.; Bast, A. Oxidative damage shifts from lipid
725 peroxidation to thiol arylation by catechol-containing antioxidants. *Biochimica et Biophysica
726 Acta (BBA)-Molecular and Cell Biology of Lipids* **2002**, *1583*, 279-284.

727 50. Lee, H.; Dellatore, S.M.; Miller, W.M.; Messersmith, P.B. Mussel-inspired surface chemistry
728 for multifunctional coatings. *science* **2007**, *318*, 426-430.

729 51. Lee, B.P.; Dalsin, J.L.; Messersmith, P.B. Synthesis and gelation of dopa-modified poly
730 (ethylene glycol) hydrogels. *Biomacromolecules* **2002**, *3*, 1038-1047.

731 52. Scognamiglio, F.; Travani, A.; Borgogna, M.; Donati, I.; Marsich, E.; Bosmans, J.W.A.M.; Perge,
732 L.; Foulc, M.P.; Bouvy, N.D.; Paoletti, S. Enhanced bioadhesivity of dopamine-functionalized
733 polysaccharidic membranes for general surgery applications. *Acta Biomaterialia* **2016**, *44*, 232-
734 242.

735 53. Han, L.; Lu, X.; Liu, K.; Wang, K.; Fang, L.; Weng, L.-T.; Zhang, H.; Tang, Y.; Ren, F.; Zhao,
736 C., et al. Mussel-inspired adhesive and tough hydrogel based on nanoclay confined
737 dopamine polymerization. *ACS Nano* **2017**, *11*, 2561-2574.

738 54. GhavamiNejad, A.; Rajan Unnithan, A.; Ramachandra Kurup Sasikala, A.; Samarikhala, M.;
739 Thomas, R.G.; Jeong, Y.Y.; Nasseri, S.; Murugesan, P.; Wu, D.; Hee Park, C., et al. Mussel-
740 inspired electrospun nanofibers functionalized with size-controlled silver nanoparticles for
741 wound dressing application. *ACS Applied Materials & Interfaces* **2015**, *7*, 12176-12183.

742 55. Lu, D.; Wang, H.; Li, T.e.; Li, Y.; Dou, F.; Sun, S.; Guo, H.; Liao, S.; Yang, Z.; Wei, Q. Mussel-
743 inspired thermoresponsive polypeptide-pluronic copolymers for versatile surgical
744 adhesives and hemostasis. *ACS applied materials & interfaces* **2017**, *9*, 16756-16766.

745 56. Sato, T.; Aoyagi, T.; Ebara, M.; Auzély-Velty, R. Catechol-modified hyaluronic acid: In situ-
746 forming hydrogels by auto-oxidation of catechol or photo-oxidation using visible light.
747 *Polymer Bulletin* **2017**, *74*, 4069-4085.

748 57. Jeon, E.Y.; Choi, B.-H.; Jung, D.; Hwang, B.H.; Cha, H.J. Natural healing-inspired collagen-
749 targeting surgical protein glue for accelerated scarless skin regeneration. *Biomaterials* **2017**,
750 *134*, 154-165.

751 58. Scognamiglio, F.; Travani, A.; Rustighi, I.; Tarchi, P.; Palmisano, S.; Marsich, E.; Borgogna, M.;
752 Donati, I.; de Manzini, N.; Paoletti, S. Adhesive and sealant interfaces for general surgery
753 applications. *Journal of Biomedical Materials Research Part B: Applied Biomaterials* **2016**, *104*, 626-
754 639.

755 59. Winter, G.D. Formation of the scab and the rate of epithelialization of superficial wounds in the
756 skin of the young domestic pig. *Nature* **1962**, *193*, 293.

757 60. Kim, M.; Ondrusek, B.A.; Lee, C.; Douglas, W.G.; Chung, H. Synthesis of lightly crosslinked
758 zwitterionic polymer-based bioinspired adhesives for intestinal tissue sealing. *Journal of*
759 *Polymer Science Part A: Polymer Chemistry*.

760 61. Czuba, U.; Quintana, R.; De Pauw-Gillet, M.C.; Bourguignon, M.; Moreno-Couranjou, M.;
761 Alexandre, M.; Detrembleur, C.; Choquet, P. Atmospheric plasma deposition of methacrylate
762 layers containing catechol/quinone groups: An alternative to polydopamine bioconjugation
763 for biomedical applications. *Advanced healthcare materials* **2018**, 1701059.

764 62. Xu, B.; Sun, X.; Wu, C.; Hu, J.; Huang, X. Construction of catechol-containing semi-
765 fluorinated asymmetric polymer brush via successive raft polymerization and atrp. *Polymer*
766 *Chemistry* **2017**, *8*, 7499-7506.

767 63. Hadjesfandiari, N.; Weinhart, M.; Kizhakkedathu, J.N.; Haag, R.; Brooks, D.E. Development
768 of antifouling and bactericidal coatings for platelet storage bags using dopamine chemistry.
769 *Advanced healthcare materials* **2018**, *7*, 1700839.

770 64. Fort, R.; Polyzoidis, T. Intrinsic viscosity-molecular weight relationships for poly (2-
771 hydroxyethyl methacrylate). *European Polymer Journal* **1976**, *12*, 685-689.

772 65. Xi, P.; Cheng, K.; Sun, X.; Zeng, Z.; Sun, S. Fluorescent magnetic nanoparticles based on a
773 ruthenium complex and fe 3 o 4. *Journal of Materials Chemistry* **2011**, *21*, 11464-11467.

774 66. Paez, J.I.; Ustahüseyin, O.; Serrano, C.; Ton, X.-A.; Shafiq, Z.; Auernhammer, G.n.K.; d'Ischia,
775 M.; del Campo, A.n. Gauging and tuning cross-linking kinetics of catechol-peg adhesives via
776 catecholamine functionalization. *Biomacromolecules* **2015**, *16*, 3811-3818.

777 67. Wang, S.Y.; Lan, X.Y.; Xiao, J.H.; Yang, J.C.; Kao, Y.T.; Chang, S.T. Antiinflammatory activity
778 of lindera erythrocarpa fruits. *Phytotherapy research* **2008**, *22*, 213-216.

779 68. Guevara, I.; Iwanejko, J.; Dembińska-Kieć, A.; Pankiewicz, J.; Wanat, A.; Anna, P.; Gołębek,
780 I.; Bartuś, S.; Malczewska-Malec, M.; Szczudlik, A. Determination of nitrite/nitrate in human
781 biological material by the simple griess reaction. *Clin. Chim. Acta* **1998**, *274*, 177-188.

782 69. Choi, M.S.; Lee, S.H.; Cho, H.S.; Kim, Y.; Yun, Y.P.; Jung, H.Y.; Jung, J.K.; Lee, B.C.; Pyo, H.B.;
783 Hong, J.T. Inhibitory effect of obovatol on nitric oxide production and activation of nf-
784 κb/map kinases in lipopolysaccharide-treated raw 264.7 cells. *European Journal of*
785 *Pharmacology* **2007**, *556*, 181-189.

786 70. Jansen, J.F.; Houben, E.E.; Tummers, P.H.; Wienke, D.; Hoffmann, J. Real-time infrared
787 determination of photoinitiated copolymerization reactivity ratios: Application of the hilbert
788 transform and critical evaluation of data analysis techniques. *Macromolecules* **2004**, *37*, 2275-
789 2286.

790 71. Aguilar, M.R.; Gallardo, A.; Fernández, M.d.M.; Román, J.S. In situ quantitative 1h nmr
791 monitoring of monomer consumption: A simple and fast way of estimating reactivity ratios.
792 *Macromolecules* **2002**, *35*, 2036-2041.

793 72. Lopez-Donaire, M.L.; Sussman, E.M.; Fernandez-Gutierrez, M.; Mendez-Vilas, A.; Ratner,
794 B.D.; Vazquez-Lasa, B.; San Roman, J. Amphiphilic self-assembled "polymeric drugs":
795 Morphology, properties, and biological behavior of nanoparticles. *Biomacromolecules* **2012**, *13*,
796 624-635.

797 73. Lopez Donaire, M.L.; Parra-Caceres, J.; Vazquez-Lasa, B.; Garcia-Alvarez, I.; Fernandez-
798 Mayoralas, A.; Lopez-Bravo, A.; San Roman, J. Polymeric drugs based on bioactive
799 glycosides for the treatment of brain tumours. *Biomaterials* **2009**, *30*, 1613-1626.

800 74. García-Fernández, L.; Aguilar, M.a.R.; Fernández, M.a.M.; Lozano, R.M.; Giménez, G.;
801 Román, J.S. Antimitogenic polymer drugs based on amps: Monomer distribution– bioactivity
802 relationship of water-soluble macromolecules. *Biomacromolecules* **2010**, *11*, 626–634.

803 75. Standardization, I.O.f. Biological evaluation of medical devices— part 5: Tests for *in vitro*
804 cytotoxicity. *ISO: Geneva, Switzerland*, **2009**, 3rd ed.

805 76. Huang, J.; de Paulis, T.; May, J.M. Antioxidant effects of dihydrocaffeic acid in human ea.
806 Hy926 endothelial cells. *The Journal of nutritional biochemistry* **2004**, *15*, 722–729.

807 77. Lee, B.P.; Huang, K.; Nunalee, F.N.; Shull, K.R.; Messersmith, P.B. Synthesis of 3, 4-
808 dihydroxyphenylalanine (dopa) containing monomers and their co-polymerization with
809 peg-diacrylate to form hydrogels. *Journal of Biomaterials Science, Polymer Edition* **2004**, *15*, 449-
810 464.

811 78. Larrosa, M.; Luceri, C.; Vivoli, E.; Pagliuca, C.; Lodovici, M.; Moneti, G.; Dolara, P.
812 Polyphenol metabolites from colonic microbiota exert anti-inflammatory activity on different
813 inflammation models. *Molecular nutrition & food research* **2009**, *53*, 1044–1054.

814 79. Odian, G. Radical chain polymerization. *Principles of Polymerization, Fourth Edition* **2004**, 198-
815 349.

816 80. Ahn, B.K.; Lee, D.W.; Israelachvili, J.N.; Waite, J.H. Surface-initiated self-healing of polymers
817 in aqueous media. *Nature materials* **2014**, *13*, 867.

818 81. Glass, P.; Chung, H.; Washburn, N.R.; Sitti, M. Enhanced reversible adhesion of dopamine
819 methacrylamide-coated elastomer microfibrillar structures under wet conditions. *Langmuir*
820 **2009**, *25*, 6607–6612.

821 82. Fernández-Quiroz, D.; González-Gómez, Á.; Lizardi-Mendoza, J.; Vázquez-Lasa, B.;
822 Goycoolea, F.M.; San Román, J.; Argüelles-Monal, W.M. Effect of the molecular architecture
823 on the thermosensitive properties of chitosan-g-poly (n-vinylcaprolactam). *Carbohydrate
824 polymers* **2015**, *134*, 92–101.

825 83. Bölgön, N.; Aguilar, M.R.; Fernández, M.D.M.; Gonzalo-Flores, S.; Villar-Rodil, S.; San
826 Román, J.; Pişkin, E. Thermoresponsive biodegradable hema–lactate–dextran–co-nipa
827 cryogels for controlled release of simvastatin. *Artificial cells, nanomedicine, and biotechnology*
828 **2015**, *43*, 40–49.

829 84. Rojo, L.; Barcenilla, J.M.; Vázquez, B.; González, R.; San Román, J. Intrinsically antibacterial
830 materials based on polymeric derivatives of eugenol for biomedical applications.
831 *Biomacromolecules* **2008**, *9*, 2530–2535.

832 85. Shah, S.; Pal, A.; Gude, R.; Devi, S. Synthesis and characterization of thermo-responsive
833 copolymeric nanoparticles of poly(methyl methacrylate-co-n-vinylcaprolactam). *Eur. Polym. J.* **2010**, *46*, 958–967.

835 86. Qiu, X.; Sukhishvili, S.A. Copolymerization of n-vinylcaprolactam and glycidyl
836 methacrylate: Reactivity ratio and composition control. *Journal of Polymer Science, Part A: Polymer
837 Chemistry* **2006**, *44*, 183–191.

838 87. Gallardo, A.; Aguilar, M.R.; Abraham, G.A.; San Román, J. Chain copolymerization reactions:
839 An algorithm to predict the reaction evolution with conversion. *Journal of Chemical Education*
840 **2004**, *81*, 1210.

841 88. Akiyoshi, K.; Deguchi, S.; Tajima, H.; Nishikawa, T.; Sunamoto, J. Microscopic structure and
842 thermoresponsiveness of a hydrogel nanoparticle by self-assembly of a hydrophobized
843 polysaccharide. *Macromolecules* **1997**, *30*, 857-861.

844 89. Li, L.; Smitthipong, W.; Zeng, H. Mussel-inspired hydrogels for biomedical and
845 environmental applications. *Polymer Chemistry* **2015**, *6*, 353-358.

846 90. Scognamiglio, F.; Travan, A.; Borgogna, M.; Donati, I.; Marsich, E.; Bosmans, J.; Perge, L.;
847 Foulc, M.; Bouvy, N.; Paoletti, S. Enhanced bioadhesivity of dopamine-functionalized
848 polysaccharidic membranes for general surgery applications. *Acta biomaterialia* **2016**, *44*, 232-
849 242.

850 91. Liu, H.; Qu, X.; Kim, E.; Lei, M.; Dai, K.; Tan, X.; Xu, M.; Li, J.; Liu, Y.; Shi, X. Bio-inspired
851 redox-cycling antimicrobial film for sustained generation of reactive oxygen species.
852 *Biomaterials* **2018**.

853 92. Ye, M.; Jiang, R.; Zhao, J.; Zhang, J.; Yuan, X.; Yuan, X. In situ formation of adhesive hydrogels
854 based on pl with laterally grafted catechol groups and their bonding efficacy to wet organic
855 substrates. *J Mater Sci Mater Med* **2015**, *26*, 273.

856 93. Brubaker, C.E.; Messersmith, P.B. Enzymatically degradable mussel-inspired adhesive
857 hydrogel. *Biomacromolecules* **2011**, *12*, 4326-4334.

858 94. Cencer, M.; Murley, M.; Liu, Y.; Lee, B.P. Effect of nitro-functionalization on the cross-linking
859 and bioadhesion of biomimetic adhesive moiety. *Biomacromolecules* **2015**, *16*, 404-410.

860 95. Xu, J.; Strandman, S.; Zhu, J.X.X.; Barralet, J.; Cerruti, M. Genipin-crosslinked catechol-
861 chitosan mucoadhesive hydrogels for buccal drug delivery. *Biomaterials* **2015**, *37*, 395-404.

862 96. Lee, Y.; Chung, H.J.; Yeo, S.; Ahn, C.H.; Lee, H.; Messersmith, P.B.; Park, T.G. Thermo-
863 sensitive, injectable, and tissue adhesive sol-gel transition hyaluronic acid/pluronic
864 composite hydrogels prepared from bio-inspired catechol-thiol reaction. *Soft Matter* **2010**, *6*,
865 977-983.

866 97. Kim, K.; Kim, K.; Ryu, J.H.; Lee, H. Chitosan-catechol: A polymer with long-lasting
867 mucoadhesive properties. *Biomaterials* **2015**, *52*, 161-170.

868 98. Bonakdar, S.; Emami, S.H.; Shokrgozar, M.A.; Farhadi, A.; Ahmadi, S.A.H.; Amanzadeh, A.
869 Preparation and characterization of polyvinyl alcohol hydrogels crosslinked by
870 biodegradable polyurethane for tissue engineering of cartilage. *Materials Science &*
871 *Engineering C* **2010**, *30*, 636-643.

872 99. Ryu, J.H.; Lee, Y.; Do, M.J.; Jo, S.D.; Kim, J.S.; Kim, B.S.; Im, G.I.; Park, T.G.; Lee, H. Chitosan-
873 g-hematin: Enzyme-mimicking polymeric catalyst for adhesive hydrogels. *Acta Biomater*
874 **2014**, *10*, 224-233.

875 100. Paez, J.I.; Ustahuseyin, O.; Serrano, C.; Ton, X.A.; Shafiq, Z.; Auernhammer, G.K.; d'Ischia,
876 M.; del Campo, A. Gauging and tuning cross-linking kinetics of catechol-peg adhesives via
877 catecholamine functionalization. *Biomacromolecules* **2015**, *16*, 3811-3818.

878 101. Kalyanaraman, B.; Premovic, P.; Sealy, R.C. Semiquinone anion radicals from addition of
879 amino acids, peptides, and proteins to quinones derived from oxidation of catechols and
880 catecholamines. An esr spin stabilization study. *Journal of Biological Chemistry* **1987**, *262*,
881 11080-11087.

882 102. Alegria, A.E.; Sanchez-Cruz, P.; Kumar, A.; Garcia, C.; Gonzalez, F.A.; Orellano, A.; Zayas, B.; Gordaliza, M. Thiols oxidation and covalent binding of bsa by cycloignanic quinones are enhanced by the magnesium cation. *Free radical research* **2008**, *42*, 70-81.

883 103. Ryu, J.H.; Lee, Y.; Kong, W.H.; Kim, T.G.; Park, T.G.; Lee, H. Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials. *Biomacromolecules* **2011**, *12*, 2653-2659.

884 104. Lee, Y.; Chung, H.J.; Yeo, S.; Ahn, C.-H.; Lee, H.; Messersmith, P.B.; Park, T.G. Thermo-sensitive, injectable, and tissue adhesive sol-gel transition hyaluronic acid/pluronic composite hydrogels prepared from bio-inspired catechol-thiol reaction. *Soft Matter* **2010**, *6*, 977.

885 105. Cencer, M.; Liu, Y.; Winter, A.; Murley, M.; Meng, H.; Lee, B.P. Effect of ph on the rate of curing and bioadhesive properties of dopamine functionalized poly(ethylene glycol) hydrogels. *Biomacromolecules* **2014**, *15*, 2861-2869.

886 106. Chen, W.; Shen, X.; Hu, Y.; Xu, K.; Ran, Q.; Yu, Y.; Dai, L.; Yuan, Z.; Huang, L.; Shen, T., *et al.* Surface functionalization of titanium implants with chitosan-catechol conjugate for suppression of ros-induced cells damage and improvement of osteogenesis. *Biomaterials* **2017**, *114*, 82-96.

887 107. Wu, M.-S.; Sun, D.-S.; Lin, Y.-C.; Cheng, C.-L.; Hung, S.-C.; Chen, P.-K.; Yang, J.-H.; Chang, H.-H. Nanodiamonds protect skin from ultraviolet b-induced damage in mice. *Journal of nanobiotechnology* **2015**, *13*, 35.

888 108. Mencucci, R.; Mercatelli, L.; Fusi, F.; Ponchietti, C.; Monici, M.; Menchini, U. Acrysof natural intraocular lens optical characteristics during and after different doses of ultraviolet-visible light illumination. *Journal of Cataract & Refractive Surgery* **2006**, *32*, 1961-1965.

889 109. Gantwerker, E.A.; Hom, D.B. Skin: Histology and physiology of wound healing. *Clinics in plastic surgery* **2012**, *39*, 85-97.

890 110. Zhong, J.; Hu, N.; Xiong, X.; Lei, Q.; Li, L. A novel promising therapy for skin aging: Dermal multipotent stem cells against photoaged skin by activation of tgf- β /smad and p38 mapk signaling pathway. *Medical hypotheses* **2011**, *76*, 343-346.

891 111. Xian, D.; Zhong, J.; Gao, X. A new approach for skin-derived precursors to ameliorate skin photodamage through activation of nrf2 signaling pathway. *Current Signal Transduction Therapy* **2017**, *12*, 34-38.

892 112. Pullar, J.M.; Carr, A.C.; Vissers, M. The roles of vitamin c in skin health. *Nutrients* **2017**, *9*, 866.

893 113. Jiang, S.; Ma, B.C.; Reinholtz, J.; Li, Q.; Wang, J.; Zhang, K.A.; Landfester, K.; Crespy, D. Efficient nanofibrous membranes for antibacterial wound dressing and uv protection. *ACS applied materials & interfaces* **2016**, *8*, 29915-29922.

894 114. Kim, T.-S.; Cha, J.-R.; Gong, M.-S. Investigation of the antimicrobial and wound healing properties of silver nanoparticle-loaded cotton prepared using silver carbamate. *Textile Research Journal* **2017**, *0040517516688630*.

895 115. Rajwade, J.; Paknikar, K.; Kumbhar, J. Applications of bacterial cellulose and its composites in biomedicine. *Applied microbiology and biotechnology* **2015**, *99*, 2491-2511.

923 116. Araujo, A.; de Melo, M.; Rabelo, T.; Nunes, P.; Santos, S.; Serafini, M.; Santos, M.; Quintans-
924 Júnior, L.; Gelain, D. Review of the biological properties and toxicity of usnic acid. *Natural*
925 *product research* **2015**, *29*, 2167-2180.

926 117. Espada, J.; Matabuena, M.; Salazar, N.; Lucena, S.; Kourani, O.; Carrasco, E.; Calvo, M.;
927 Rodriguez, C.; Reyes, E.; Gonzalez, S. *Cryptomphalus aspersa* mollusc eggs extract promotes
928 migration and prevents cutaneous ageing in keratinocytes and dermal fibroblasts *in vitro*.
929 *International journal of cosmetic science* **2015**, *37*, 41-55.

930 118. Park, K.-M.; Yoo, J.-H.; Shin, Y.-J. Effects of egg shell membrane hydrolysates on skin
931 whitening, wound healing, and uv-protection. *Korean Journal for Food Science of Animal*
932 *Resources* **2012**, *32*, 308-315.

933 119. Sohn, M.; Malburet, C.; Baptiste, L.; Prigl, Y. Development of a synthetic substrate for the *in*
934 *vitro* performance testing of sunscreens. *Skin pharmacology and physiology* **2017**, *30*, 159-170.

935 120. Osterwalder, U.; Sohn, M.; Herzog, B. Global state of sunscreens. *Photodermatology,*
936 *photoimmunology & photomedicine* **2014**, *30*, 62-80.

937 121. Mavon, A.; Zahouani, H.; Redoules, D.; Agache, P.; Gall, Y.; Humbert, P. Sebum and stratum
938 corneum lipids increase human skin surface free energy as determined from contact angle
939 measurements: A study on two anatomical sites. *Colloids and surfaces B: Biointerfaces* **1997**, *8*,
940 147-155.

941 122. Ginn, M.; Noyes, C.; Jungermann, E. The contact angle of water on viable human skin. *Journal*
942 *of colloid and interface science* **1968**, *26*, 146-151.

943 123. Francesko, A.; da Costa, D.S.; Lisboa, P.; Reis, R.L.; Pashkuleva, I.; Tzanov, T. Gags-thiolated
944 chitosan assemblies for chronic wounds treatment: Control of enzyme activity and cell
945 attachment. *Journal of Materials Chemistry* **2012**, *22*, 19438-19446.

946 124. Perelshtein, I.; Ruderman, E.; Francesko, A.; Fernandes, M.M.; Tzanov, T.; Gedanken, A.
947 Tannic acid nps-synthesis and immobilization onto a solid surface in a one-step process and
948 their antibacterial and anti-inflammatory properties. *Ultrasonics sonochemistry* **2014**, *21*, 1916-
949 1920.

950 125. Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112
951 traditional chinese medicinal plants associated with anticancer. *Life sciences* **2004**, *74*, 2157-
952 2184.

953 126. Wang, H.; Joseph, J.A. Quantifying cellular oxidative stress by dichlorofluorescein assay
954 using microplate reader1. *Free Radical Biology and Medicine* **1999**, *27*, 612-616.

955 127. Dileep, K.V.; Tintu, I.; Mandal, P.K.; Karthe, P.; Haridas, M.; Sadasivan, C. Binding to pla2
956 may contribute to the anti-inflammatory activity of catechol. *Chemical biology & drug design*
957 **2012**, *79*, 143-147.

958 128. Zheng, L.T.; Ryu, G.-M.; Kwon, B.-M.; Lee, W.-H.; Suk, K. Anti-inflammatory effects of
959 catechols in lipopolysaccharide-stimulated microglia cells: Inhibition of microglial
960 neurotoxicity. *European journal of pharmacology* **2008**, *588*, 106-113.

961 129. Huber, D.; Grzelak, A.; Baumann, M.; Borth, N.; Schleining, G.; Nyanhongo, G.S.; Guebitz,
962 G.M. Anti-inflammatory and anti-oxidant properties of laccase-synthesized phenolic-o-
963 carboxymethyl chitosan hydrogels. *New biotechnology* **2018**, *40*, 236-244.

964 130. Kojima, M.; Morisaki, T.; Izuhara, K.; Uchiyama, A.; Matsunari, Y.; Katano, M.; Tanaka, M.
965 Lipopolysaccharide increases cyclo-oxygenase-2 expression in a colon carcinoma cell line
966 through nuclear factor- κ b activation. *Oncogene* 2000, 19, 1225.

967