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Abstract: Parallel manipulators with multiple end-effectors bring us interesting advantages over 
conventional parallel manipulators such as improved manipulability, workspace and avoidance of 
singularities. In this work the kinematics of a five-bar planar parallel manipulator equipped with 
two end-effectors is approached by means of the theory of screws. As an intermediate step the 
displacement analysis of the robot is also investigated. The input-output equations of velocity and 
acceleration are systematically obtained by resorting to reciprocal-screw theory. In that regard the 
Klein form of the Lie algebra se(3) of the Euclidean group SE(3) plays a central role. In order to 
exemplify the method of kinematic analysis, a case study is included. Furthermore, the numerical 
results obtained by means of the theory of screws are confirmed with the aid of special software like 
ADAMS.TM
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1. Introduction12

The benefits and drawbacks of serial and parallel manipulators have been widely discussed in the13

literature, as a result of this productive exchange of ideas and knowledge, mainly emerging from the14

kinematician community, academia and industry have been generously benefited with the introduction15

of creative and ingenious robots able to operate under conditions demanding flexibility as well as high16

precision and dynamic performance; characteristics that exceed definitively the human capacity.17

Despite the effervescent success of modern robotics and its positive impact on the industrial18

environment and in the society in general, the improvement of existing mathematical methods of19

analysis and the proposal of new topologies still being the inspiration for many kinematicians. In that20

concern, with the purpose to improve the dexterity and workspace of parallel manipulators, keeping21

their benefits like rigidity and precision, recently robot manipulators with multiple end-effectors and22

reconfigurable platforms have been introduced [1]. In this work the kinematics of a redundant planar23

manipulator with multiple end-effectors is investigated by means of the theory of screws. The base24

mechanism of the proposed robot is the typical five-bar planar parallel manipulator.25

Eventhough its simplicity, the five-bar planar parallel manipulator, 5R mechanism for brevity,26

has been extensively studied approaching issues like inverse-forward kinematics, singularity analysis,27

optimal workspace, kinematic calibration, topology optimization, robot performance and so on, see28

for instance [2–7]. On the other hand as occur for most parallel manipulators, limited workspace is a29

drawback of the 5R mechanism, e.g. Briot and Goldsztejn [7] proposed a regular dextrous workspace30

of an optimized 5R mechanism as the area of a rectangle delimited by the workspace boundary and31

the direct singularities. In that regard the workspace of a 2R open kinematic chain is the area delimited32

by two concentric circles whose radii depend on the extreme condition folded/unfolded of the serial33

kinematic chain. Furthermore, arbitrary poses of a rigid body are not available for the 5R mechanism.34

However the benefits of the 5R mechanism are indisputable, e.g., it was applied in the development of35

the MELFA RP Series robots in the Mitsubishi Electric Corporation. Therefore it is worth to develop36
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robot manipulators based on the topology of the 5R mechanism alleviating its drawbacks incorporating37

additional kinematic elements.38

In this work two 2R serial kinematic chains working as two end-effectors are assembled to the39

upper links of the 5R mechanism yielding a hybrid robot manipulator (HRM). For simplicity, the40

5R mechanism is chosen as a symmetric planar parallel manipulator. The rest of the contribution is41

organized as follows. In section 2 the HRM and its geometry is briefly described. The displacement42

analysis is presented in section 3 for the sake of completeness. The inverse-forward displacement43

analysis is easily approached based on simple closure equations The instantaneous kinematics, up to44

the acceleration analysis, is approached in section 4. With the purpose to exemplify the method in45

section 5 a case study is provided. Finally, some conclusions are given at the end of the contribution.46

2. Description of the Robot Manipulator47

Figure 1 shows how the concepts of configurable platform and multiple end-effectors can improve48

considerably the capacity of a simple closed kinematic chain yielding, in this case, a hybrid robot49

manipulator (HRM), e.g., the end-effectors of the HRM would work together as two cooperating50

manipulators in addition to the typical operations of serial and parallel manipulators. The idea is51

simple but effective. Firstly, the four-bar mechanism is considered as a parallel manipulator where the52

coupler link is chosen as the moving platform. Secondly, the moving platform is transformed into a53

configurable platform formed with four articulated bars. Finally, two of the articulated links of the54

configurable platform are removed, a practical decision, and one 2R open kinematic chain playing the55

role of end-effector is attached to each one of the remaining links of the configurable platform.56

Figure 1. Transition of a closed kinematic chain into a hybrid robot manipulator

Hence, the proposed robot manipulator, right planar mechanism of Fig. 2, consists of two57

end-effectors sharing a five-bar planar mechanism. The five-bar mechanism is a planar parallel58

mechanism which owing its two degrees of freedom is used for positioning a point on a region of the59

workspace. The five bars are serially connected by means of revolute joints where conveniently the60

two revolute joints mounted on the base link are actuated.61

In order to explain the geometry of the HRM let us consider that XY is a reference frame attached62

to the base link whose origin is located at point O1, see Fig. 2. Afterwards, let us consider that h63

denotes the length of the base link while the lengths of the lower and upper links of the legs of the 5R64

mechanism are denoted, respectively, by a and b. The orientation of the lower links is controlled by65

means of the lower generalized coordinates q
i

which are characterized by points Oi located by vectors66
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Figure 2. Geometry scheme of the hybrid robot manipulator

oooi. Unless otherwise, in the rest of the paper i = 1, 2. The end of the lower links are denoted by points67

Pi located by vectors pppi. The output point of the 5R mechanism is the point G which is located by vector68

ggg and of course also is the common point of the two legs of the 5R mechanism. The ith 2R serial chain69

is connected to the 5R mechanism through a revolute joint denoted by point Qi, located by vector qqqi, in70

which c denotes the distance between points Pi and Qi. The arm and forearm of the ith end effector are71

denoted by the lengths d and r and are articulated by means of a revolute joint characterized by point72

Ri, located by vector rrri. Naturally, the revolute joints of the end-effectors are actuated according to73

the middle and upper generalized coordinates qi and q̄i. Thus the set of generalized coordinates are74

notated as {q
i
, qi, q̄i}. Finally, the positions of the end-effectors are denoted by points Ei, located by75

vectors eeei. With the purpose to arrive at point Ei, beginning from point Oi, let us consider four unit76

vectors: i) âaai expresses a unit vector pointed from Oi to Pi, ii) b̂bbi denotes a unit vector directed from Pi77

to Qi, iii) d̂ddi stands for a unit vector pointed from Qi to Ri and, iv) r̂rri is a unit vector specified from Ri78

to Ei.79

3. Displacement analysis80

In this section the finite kinematics of the HRM manipulator is presented.81

3.1. Displacement Analysis of the 5R Mechanism82

3.1.1. Forward Displacement Analysis of the 5R Mechanism83

The forward displacement analysis consists of finding the coordinates of the output point G =

(XG, YG) given the lower generalized coordinates q
i
. Since G is described by the vector ggg then the

analysis may be solved based on the following two closure equations

(ggg− pppi) · (ggg− pppi) = b2 (1)

in which pppi = oooi + aâaai where âaai = cos q
i
îii + sin q

i
ĵjj. Meanwhile the dot (·) denotes the inner product of

three-dimensional vector algebra. From expressions (1) one obtains two quadratic equations in the
unknown coordinates XG and YG which may be reduced after a few computations into two simple
equations as follows

(1 + K2
1)X2

G + 2(K1K2 − a cos q
1
− K1a sin q

1
)XG + a2 − b2 + K2

2 − 2K2a sin q
1
= 0, YG = K1XG + K2

(2)
where the coefficients K1 and K2 are given by84
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K1 = (a cos q
1
− a cos q

2
− h)/a(sin q

2
− sin q

1
)85

K2 = (ha cos q
2
+ h2/2)/a(sin q

2
− sin q

1
)86

As it was expected, given the parameters of the 5R mechanism and the lower generalized coordinates87

q
1

and q
2
, the output point G can reach at most two positions.88

3.1.2. Inverse Displacement Analysis of the 5R Mechanism89

The inverse displacement analysis of the 5R mechanism consists of finding their configurations
given the coordinates of point G, e.g., it is required to compute the lower generalized coordinates q

i
given the coordinates of point G. To this end from Eq. (1) an expression of the form

Ai sin(q
i
) + Bi cos(q

i
) = Ci (3)

is easily derived in which the coefficients are given by90

Ai = 2aYG,91

Bi = 2aXG − 2δiah where δ1 = 0, δ2 = 1,92

Ci = X2
G + Y2

G + a2 − b2 + δih2
93

Equation (3) yields a quadratic equation in the unknown sin q
i

as follows

(A2
i + B2

i ) sin2 q
i
− 2AiCi sin q

i
+ C2

i − B2
i = 0 (4)

Therefore there are four possible solutions for the inverse displacement analysis of the 5R mechanism.94

3.2. Displacement Analysis of the Open Kinematic Chains95

In order to approach the displacement analysis of the two open kinematic chains let us consider
that the position vector eeei of Ei may be obtained as

eeei = oooi + aâaai + cb̂bbi + dd̂ddi + rr̂rri (5)

Therein, the unit vectors d̂ddi and r̂rri may be obtained as d̂ddi = Rqib̂bbi and r̂rri = Rq̄id̂ddi where Rqi and Rq̄i are96

the usual rotation matrices built according to the middle and upper generalized coordinates qi and q̄i,97

respectively. Meanwhile, it is evident that b̂bbi = (ggg− pppi)/b.98

3.2.1. Forward Displacement Analysis of the Open Kinematic Chains99

This analysis comprises the computation of the coordinates of points Ei for a set of generalized100

coordinates q
i
, qi and q̄i. Once the forward displacement analysis of the 5R mechanism is solved, see101

subsection 3.1.1, the coordinates of Ei are obtained by a direct application of Eq. (5). Hence, each point102

Ei can reach at most two locations.103

3.2.2. Inverse Displacement Analysis of the Open Kinematic Chains104

This analysis deals with the computation of the generalized coordinates of the HRM given
the coordinates of points Ei. The possibilities of this analysis are immense due to the inclusion of
extra generalized coordinates. For example assuming values for the lower revolute joints, then the
coordinates of points Qi, which are located by vectors qqqi, may be resolved taking into account that
qqqi = oooi + cb̂bbi. Afterwards, with the purpose to compute the generalized coordinates Qi and Ri the
following closure equations would be considered for each open chain

(êeei − rrri) · (êeei − rrri) = e2
i , (r̂rri − oooi − cb̂bbi) · (r̂rri − oooi − cb̂bbi) = r2 (6)

Following the method of the displacement analysis realized for the 5R mechanism, the position105

vectors rrri are determined solving Eqs. (6), and the computation of the generalized coordinates qi and106

q̄i is immediate.107
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4. Instantaneous Kinematics108

In this section the velocity and acceleration analyses of the HRM are addressed by means of109

the theory of screws. The screws representing the revolute joints and reciprocal lines of the robot110

manipulator are shown in Fig. 3. For details of this section the reader is referred to Gallardo-Alvarado111

[8].112

Figure 3. The screws of the hybrid robot manipulator

Let us consider that m is a rigid body in motion with respect to another body or reference frame
labeled 0. Furthermore, let us consider that 0ωωωm is the angular velocity vector of m as measured from
the reference frame 0 while vvv∗ is the linear velocity vector of an arbitrary point (∗) of m. The vectors
0ωωωm and vvv∗ form an inseparable entity named the velocity state of m with respect to 0, notated as
0VVVm. In fact, the velocity state of body m is defined as a six-dimensional vector 0VVVm created with
two concatenated vectors namely the primal and dual parts of the velocity state notated as p(0VVVm)

and d(0VVVm), respectively. The first one is the vector 0ωωωm while the second one is the vector vvv∗, i.e.,
0VVVm ≡ (p(0VVVm), d(0VVVm)) = (0ωωωm, vvv∗). The confirmation of the equivalence of the velocity state of
rigid body as a twist about a screw is one of the most relevant contributions of the theory of screws to
the study of the kinematics of rigid body, specially in the field of robot kinematics, e.g., assuming that
m is the end effector of an open kinematic chain while 0 is the base link then the velocity state of m as
measured from 0 may be expressed as a linear combination of the infinitesimal screws representing the
kinematic pairs of the open chain as follows

0VVVm = 0ω1
0$1O + 1ω2

1$2O + . . . + m−2ωm−1
m−2$m−1O + m−1ωm

m−1$mO (7)

where k−1ωk is the joint rate between the adjacent bodies k− 1 and k while O is the reference point for
computing the Plücker coordinates of the infinitesimal screws, also known as the reference pole. If the
reference pole (O) is the point (∗) then 0VVVm

∗ = 0VVVm. Otherwise, according to the theory of helicoidal
vector fields we have

0VVVm
∗ =

[
p(0VVVm)

d(0VVVm) + p(0VVVm)× rrr∗/O

]
(8)

where rrr∗/O is the position vector of ∗ with respect to O.113

On the other hand, the reduced acceleration state, or accelerator for brevity, of rigid body m
as observed from body 0 is defined as a six-dimensional vector 0AAAm built with two concatenated
vectors namely the primal and dual parts of the accelerator. The primal part corresponds to the
angular acceleration vector 0αααm, i.e. 0αααm = d

dt
0ωωωm, while the dual part is a composed vector given

by aaa∗ − 0ωωωm × vvv∗ in which aaa∗ is the linear acceleration vector of point (∗), i.e. aaa∗ = d
dtvvv∗. In fact, the

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 June 2018                   doi:10.20944/preprints201806.0111.v1

http://dx.doi.org/10.20944/preprints201806.0111.v1


6 of 12

accelerator is defined as 0AAAm ≡ (p(0AAAm), d(0AAAm)) = (0αααm, aaa∗ − 0ωωωm × vvv∗). Furthermore, in an open
serial chain the accelerator may be written in screw form as follows

0AAAm = 0α1
0$1O + 1α2

1$2O + . . . + m−2αm−1
m−2$m−1O + m−1αm

m−1$mO + 0LLLm (9)

where k−1αk =
d
dt k−1ωk. Meanwhile, 0LLLm is the Lie screw of acceleration which is given by114

0LLLm =
[

0ω1
0$1O 1ω2

1$2O + . . . + m−2ωm−1
m−2$m−1O + m−1ωm

m−1$mO
]

+
[

1ω2
1$2O 2ω3

2$3O + . . . + m−2ωm−1
m−2$m−1O + m−1ωm

m−1$mO
]

+ . . . +
[

m−2ωm−1
m−2$m−1O + m−1ωm

m−1$mO
]

(10)

4.1. Instantaneous Kinematics of the 5R Mechanism115

Let us consider that 0VVVG
G = (ωωω, vvvG) is the velocity state of G as observed from the base link,

where point G plays the role of reference pole. It is evident that due to the planar nature of
the robot manipulator at hand some terms of the velocity state vanish, i.e., 0VVVG

G = (ωωω, vvvG) =[
0 0 ωZ vGX vGY 0

]T
. On the other hand, the velocity state 0VVVG

G may be written in screw
form as follows

0VVVG
G = 0ωi

1
0$1

i + 1ωi
2

1$2
i + 2ωi

3
2$3

i (11)

where 0ωi
1 = q̇

i
is the ith lower generalized velocity.116

In order to obtain the linear input-output equation of velocity of the 5R mechanism let us consider
that TTTi is a line in Plücker coordinates directed from Pi to G, e.g. TTTi = (bbbi, 000) advised that G is the
reference pole. The application of the Klein form of the line TTTi to both sides of expression (11) with the
reduction of terms leads to

{TTTi; 0VVVG
G} = q̇

i
{TTTi; 0$1

i } (12)

Hence, after a few computations the linear input-output equation of velocity of the 5R mechanism
results in

JT

[
vGX
vGY

]
= J Qv (13)

where117

J =
[
b̂bb1 b̂bb2

]
is the direct Jacobian matrix of the 5R mechanism,118

J = diag
[
{TTT1; 0$1

1} {TTT2; 0$1
2}
]

is the inverse Jacobian matrix of the 5R mechanism, and119

Qv =
[
q̇

1
q̇

2

]T
is the first-order driver matrix of the 5R mechanism.120

In order to compute the passive joint velocity rates 1ωi
2 and 2ωi

3, a necessary step for approaching
the acceleration analysis, let us consider two lines in Plücker coordinates for each leg of the 5R
mechanism: i) UUUi is a line pointed from Oi to G, i.e. UUUi = (ûuui, 000) where ûuui = (ggg− oooi)/ | ggg− oooi |, ii) SSSi
is a line pointed from Oi to Pi, i.e. SSSi = (âaai, âaai × rrrG/Oi

). Thus by taking advantage of the concept of
reciprocal screw it follows that

1ωi
2 = {UUUi; 0VVVG

G}/{UUUi; 1$2
i }, 2ωi

3 = {SSSi; 0VVVG
G}/{SSSi; 2$3

i } (14)

Finally, once the joint velocity rates 1ωi
2 and 2ωi

3 are computed, the angular velocity vector ωωω is121

obtained as the primal part of 0VVVG
G by resorting to Eqs. (11), (17) and (14).122

In what follows the acceleration analysis of the 5R mechanism is presented. The reduced
acceleration state of point G may be written as 0AAAG

G = (ααα, aaaG −ωωω × vvvG). However, it is evident
that due to the planar nature of the robot manipulator at hand some terms of the accelerator vanish,
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i.e., 0AAAG
G = (ααα, aaaG −ωωω × vvvG) =

[
0 0 αZ aGX + ωZvGY aGY − wZvGX 0

]T
. Furthermore, the

accelerator 0AAAG
G may be written in screw form as follows

0AAAG
G = 0αi

1
0$1

i + 1αi
2

1$2
i + 2αi

3
2$3

i +
0LLLGi

G (15)

where 0αi
1 = q̈

i
is the ith lower generalized acceleration. Meanwhile, 0LLLGi

G is the ith Lie screw of
acceleration which is calculated as follows

0LLLGi
G =

[
0ωi

1
0$1

i 1ωi
2

1$2
i + 2ωi

3
2$3

i

]
+

[
1ωi

2
1$2

i 2ωi
3

2$3
i

]
(16)

where the brackets, [∗ ∗], denote the Lie product or outer product of the Lie algebra se(3) of the123

Euclidean group SE(3).124

Following the trend of the velocity analysis, the linear input-output equation of acceleration of125

the 5R mechanism results in126

JT

[
aGX + ωZvGY
aGY −ωZvGX

]
= J Qa +

[
{TTT1; LLLG1}
{TTT2; LLLG2}

]
(17)

where Qa =
[
q̈

1
q̈

2

]T
is the second-order driver matrix of the 5R mechanism. Furthermore, the127

passive joint acceleration rates are given by128

1αi
2 = {UUUi; 0AAAG

G − 0LLLGi
G }/{UUUi; 1$2

i }, 2ωi
3 = {SSSi; 0AAAG

G − 0LLLGi
G }/{SSSi; 2$3

i } (18)

4.2. Instantaneous Kinematics of the Open Chains129

Once the passive joint velocity rate 1ωi
2 was computed, see Eq. (14), the velocity state of the ith

end-effector may be determined as follows

0VVVEi
G = q̇

i
0$1

i + 1ωi
2

1$2
i + q̇i$1

i + ˙̄qi$2
i (19)

Furthermore, according to the theory of helicoidal vector fields, the velocity state of the ith end-effector
considering point Ei as the reference pole is given by

0VVVEi
Ei =

[
ωωωEi
vvvEi

]
=

[
p(0VVVEi

G )

d(0VVVEi
G ) + p(0VVVEi

G )× rrrEi/G

]
(20)

where rrrEi/G is the position vector of Ei with respect to G. Meanwhile, ωωωEi is the angular velocity vector130

of the ith end-effector whereas vvvEi is the velocity of point Ei. It is worth to note that according to131

Eq. (19) there is a unique solution for solving the forward velocity analysis given the joint velocity rates132

q̇
i
, q̇i and ˙̄qi whereas for the solution of the inverse velocity analysis there is an infinite of possibilities,133

e.g., given the velocity state 0VVVEi
Ei one can freely choose arbitrary lower generalized speeds q̇

1
and q̇

2
134

and then the computation of the required values of q̇i and ˙̄qi is straightforward by resorting to Eq. (19).135

With the purpose to approach the acceleration analysis let us consider that the accelerator of the
ith end-effector may be written in screw form as follows

0AAAEi
G = q̈

i
0$1

i + 1αi
2

1$2
i + q̈i$1

i + ¨̄qi$2
i +

0LLLEi
G (21)

where the ith Lie screw of acceleration 0LLLEi
G is computed as

0LLLEi
G =

[
q̇

i
0$1

i 1ωi
2

1$2
i + q̇i$1

i + ¨̄qi$2
i

]
+

[
1ωi

2
1$2

i q̇i$1
i + ˙̄qi$2

i

]
+

[
q̇i$1

i
˙̄qi$2

i

]
(22)
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As it was expected, the solution of the forward acceleration analysis of the HRM is unique while136

for the inverse acceleration analysis we have an infinite of solutions, a virtue of the redundancy of137

HRM. On the other hand, by resorting to the theory of helicoidal vector fields it follows that the138

reduced acceleration state of the ith end-effector taking Ei as the reference pole may obtained as139

0AAAEi
Ei =

[
αααEi

aaaEi − αααEi × vvvEi

]
=

[
p(0AAAEi

G )

d(0AAAEi
G ) + p(0AAAEi

G )× rrrEi/G

]
(23)

where αααEi is the angular acceleration vector of the ith end-effector while aaaEi is the linear acceleration140

vector of point Ei.141

5. Numerical Example142

In order to show the application of the method of kinematic analysis, in this section a case study143

is provided. In that concern it is interesting to take into account that Huang [9] applied a parametric144

variation method with the purpose to optimize the dimensions of the 5R mechanism according to the145

solution of a multi-variable non-linear system generated with the objective to enlarge the workspace146

and also to alleviate singularities. The optimal parameters of that research for the 5R mechanism was147

proposed as a = 1.9m, b = 2.1m, h = 1.407m. In the contribution the remaining parameters of the148

HRM manipulators are chosen as c = b/2 = 1.05m, d = 0.75m, r = 0.5m. There is nothing special in149

these last parameters.150

The first part of the example deals with the forward displacement analysis. With this hope, assume151

that the generalized coordinates are given by q
1
= 125o, q1 = 55o, q̄1 = 280o, q

2
= 50o, q2 = 245o,152

q̄2 = 110o. After a few computations, the application of the method explained in section 3.2 yields two153

possible configurations of the HRM which are illustrated in Fig. 4.154

Figure 4. Case study. Available configurations of the hybrid robot manipulator

The next part of the exercise is devoted to the numerical solution of the instantaneous kinematics155

of the HRM. To this end let us consider that upon the reference configuration, left pose of Fig. 4, the156

generalized coordinates are commanded to follow periodical functions given by157

q
1
= 0.15 sin(t), q1 = 0.25[sin(t) + sin(4t) + sin(2t) cos(t)], q̄1 = 0.25 sin(t) cos(t),

q
2
= −0.1 sin(t), q2 = 0.1[sin(4t)− sin(t)], q̄2 = −0.1 sin(t)

where the time t is given in the interval 0 ≤ t ≤ 2π. Said otherwise, the period of the generalized158

coordinates is 2π. The temporal behavior of the kinematics of the end-effectors by applying the159

proposed method in the contribution is summarized in the plots provided in Fig. 5.160
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Furthermore, the numerical results shown in Fig. 5 are compared with results obtained using161

another approach such as special software like ADAMS,TMthe corresponding plots are given in Fig. 6.162

Finally, it is worth to note that the results obtained by applying the theory of screws are in excellent163

agreement with those generated with ADAMS.TM
164

6. Conclusions165

In this work the kinematics of a hybrid robot manipulator composed of two 2R open kinematic166

chains sharing a five-bar planar mechanism is approached by means of the theory of screws. The167

displacement analysis of the HRM is easy to follow owing the fact that closed-form solutions are168

obtained based on closure equations that lead us simple quadratic equations. After, the instantaneous169

kinematics of the HRM is carried out by solving firstly the velocity and acceleration analyses of the170

five-bar planar mechanism. The input-output equations of velocity and acceleration of the five-bar171

mechanism are systematically obtained by resorting to reciprocal-screw theory. Finally, the velocity172

and acceleration analyses of the end-effectors are performed by considering that their revolute joints173

are actuated. A case study is included with the purpose to exemplify the method of kinematic analysis.174

Furthermore, the numerical results of the instantaneous kinematics of the case study obtained by175

means of the theory of screws were verified with the aid of commercially available software like176

ADAMS.TM
177
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Left end-effector

Right end-effector

Figure 5. Case study. Instantaneous kinematics of the end-effectors of the hybrid robot manipulator
using screw theory
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Figure 6. Case study. Instantaneous kinematics of the end-effectors of the hybrid robot manipulator
using ADAMSTM
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